linux/arch/parisc/kernel/firmware.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *      PDC == Processor Dependent Code
   6 *
   7 * See http://www.parisc-linux.org/documentation/index.html
   8 * for documentation describing the entry points and calling
   9 * conventions defined below.
  10 *
  11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  13 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  16 */
  17
  18/*      I think it would be in everyone's best interest to follow this
  19 *      guidelines when writing PDC wrappers:
  20 *
  21 *       - the name of the pdc wrapper should match one of the macros
  22 *         used for the first two arguments
  23 *       - don't use caps for random parts of the name
  24 *       - use the static PDC result buffers and "copyout" to structs
  25 *         supplied by the caller to encapsulate alignment restrictions
  26 *       - hold pdc_lock while in PDC or using static result buffers
  27 *       - use __pa() to convert virtual (kernel) pointers to physical
  28 *         ones.
  29 *       - the name of the struct used for pdc return values should equal
  30 *         one of the macros used for the first two arguments to the
  31 *         corresponding PDC call
  32 *       - keep the order of arguments
  33 *       - don't be smart (setting trailing NUL bytes for strings, return
  34 *         something useful even if the call failed) unless you are sure
  35 *         it's not going to affect functionality or performance
  36 *
  37 *      Example:
  38 *      int pdc_cache_info(struct pdc_cache_info *cache_info )
  39 *      {
  40 *              int retval;
  41 *
  42 *              spin_lock_irq(&pdc_lock);
  43 *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  44 *              convert_to_wide(pdc_result);
  45 *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
  46 *              spin_unlock_irq(&pdc_lock);
  47 *
  48 *              return retval;
  49 *      }
  50 *                                      prumpf  991016  
  51 */
  52
  53#include <stdarg.h>
  54
  55#include <linux/delay.h>
  56#include <linux/init.h>
  57#include <linux/kernel.h>
  58#include <linux/module.h>
  59#include <linux/string.h>
  60#include <linux/spinlock.h>
  61
  62#include <asm/page.h>
  63#include <asm/pdc.h>
  64#include <asm/pdcpat.h>
  65#include <asm/processor.h>      /* for boot_cpu_data */
  66
  67#if defined(BOOTLOADER)
  68# undef  spin_lock_irqsave
  69# define spin_lock_irqsave(a, b) { b = 1; }
  70# undef  spin_unlock_irqrestore
  71# define spin_unlock_irqrestore(a, b)
  72#else
  73static DEFINE_SPINLOCK(pdc_lock);
  74#endif
  75
  76extern unsigned long pdc_result[NUM_PDC_RESULT];
  77extern unsigned long pdc_result2[NUM_PDC_RESULT];
  78
  79#ifdef CONFIG_64BIT
  80#define WIDE_FIRMWARE 0x1
  81#define NARROW_FIRMWARE 0x2
  82
  83/* Firmware needs to be initially set to narrow to determine the 
  84 * actual firmware width. */
  85int parisc_narrow_firmware __ro_after_init = 1;
  86#endif
  87
  88/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  89 * and MEM_PDC calls are always the same width as the OS.
  90 * Some PAT boxes may have 64-bit IODC I/O.
  91 *
  92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  94 * This allowed wide kernels to run on Cxxx boxes.
  95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  97 */
  98
  99#ifdef CONFIG_64BIT
 100long real64_call(unsigned long function, ...);
 101#endif
 102long real32_call(unsigned long function, ...);
 103
 104#ifdef CONFIG_64BIT
 105#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 107#else
 108#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 109#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 110#endif
 111
 112
 113/**
 114 * f_extend - Convert PDC addresses to kernel addresses.
 115 * @address: Address returned from PDC.
 116 *
 117 * This function is used to convert PDC addresses into kernel addresses
 118 * when the PDC address size and kernel address size are different.
 119 */
 120static unsigned long f_extend(unsigned long address)
 121{
 122#ifdef CONFIG_64BIT
 123        if(unlikely(parisc_narrow_firmware)) {
 124                if((address & 0xff000000) == 0xf0000000)
 125                        return 0xf0f0f0f000000000UL | (u32)address;
 126
 127                if((address & 0xf0000000) == 0xf0000000)
 128                        return 0xffffffff00000000UL | (u32)address;
 129        }
 130#endif
 131        return address;
 132}
 133
 134/**
 135 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 136 * @address: The return buffer from PDC.
 137 *
 138 * This function is used to convert the return buffer addresses retrieved from PDC
 139 * into kernel addresses when the PDC address size and kernel address size are
 140 * different.
 141 */
 142static void convert_to_wide(unsigned long *addr)
 143{
 144#ifdef CONFIG_64BIT
 145        int i;
 146        unsigned int *p = (unsigned int *)addr;
 147
 148        if (unlikely(parisc_narrow_firmware)) {
 149                for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 150                        addr[i] = p[i];
 151        }
 152#endif
 153}
 154
 155#ifdef CONFIG_64BIT
 156void set_firmware_width_unlocked(void)
 157{
 158        int ret;
 159
 160        ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 161                __pa(pdc_result), 0);
 162        convert_to_wide(pdc_result);
 163        if (pdc_result[0] != NARROW_FIRMWARE)
 164                parisc_narrow_firmware = 0;
 165}
 166        
 167/**
 168 * set_firmware_width - Determine if the firmware is wide or narrow.
 169 * 
 170 * This function must be called before any pdc_* function that uses the
 171 * convert_to_wide function.
 172 */
 173void set_firmware_width(void)
 174{
 175        unsigned long flags;
 176        spin_lock_irqsave(&pdc_lock, flags);
 177        set_firmware_width_unlocked();
 178        spin_unlock_irqrestore(&pdc_lock, flags);
 179}
 180#else
 181void set_firmware_width_unlocked(void)
 182{
 183        return;
 184}
 185
 186void set_firmware_width(void)
 187{
 188        return;
 189}
 190#endif /*CONFIG_64BIT*/
 191
 192
 193#if !defined(BOOTLOADER)
 194/**
 195 * pdc_emergency_unlock - Unlock the linux pdc lock
 196 *
 197 * This call unlocks the linux pdc lock in case we need some PDC functions
 198 * (like pdc_add_valid) during kernel stack dump.
 199 */
 200void pdc_emergency_unlock(void)
 201{
 202        /* Spinlock DEBUG code freaks out if we unconditionally unlock */
 203        if (spin_is_locked(&pdc_lock))
 204                spin_unlock(&pdc_lock);
 205}
 206
 207
 208/**
 209 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 210 * @address: Address to be verified.
 211 *
 212 * This PDC call attempts to read from the specified address and verifies
 213 * if the address is valid.
 214 * 
 215 * The return value is PDC_OK (0) in case accessing this address is valid.
 216 */
 217int pdc_add_valid(unsigned long address)
 218{
 219        int retval;
 220        unsigned long flags;
 221
 222        spin_lock_irqsave(&pdc_lock, flags);
 223        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 224        spin_unlock_irqrestore(&pdc_lock, flags);
 225
 226        return retval;
 227}
 228EXPORT_SYMBOL(pdc_add_valid);
 229
 230/**
 231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 232 * @instr: Pointer to variable which will get instruction opcode.
 233 *
 234 * The return value is PDC_OK (0) in case call succeeded.
 235 */
 236int __init pdc_instr(unsigned int *instr)
 237{
 238        int retval;
 239        unsigned long flags;
 240
 241        spin_lock_irqsave(&pdc_lock, flags);
 242        retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 243        convert_to_wide(pdc_result);
 244        *instr = pdc_result[0];
 245        spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247        return retval;
 248}
 249
 250/**
 251 * pdc_chassis_info - Return chassis information.
 252 * @result: The return buffer.
 253 * @chassis_info: The memory buffer address.
 254 * @len: The size of the memory buffer address.
 255 *
 256 * An HVERSION dependent call for returning the chassis information.
 257 */
 258int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 259{
 260        int retval;
 261        unsigned long flags;
 262
 263        spin_lock_irqsave(&pdc_lock, flags);
 264        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 265        memcpy(&pdc_result2, led_info, len);
 266        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 267                              __pa(pdc_result), __pa(pdc_result2), len);
 268        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 269        memcpy(led_info, pdc_result2, len);
 270        spin_unlock_irqrestore(&pdc_lock, flags);
 271
 272        return retval;
 273}
 274
 275/**
 276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 277 * @retval: -1 on error, 0 on success. Other value are PDC errors
 278 * 
 279 * Must be correctly formatted or expect system crash
 280 */
 281#ifdef CONFIG_64BIT
 282int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 283{
 284        int retval = 0;
 285        unsigned long flags;
 286        
 287        if (!is_pdc_pat())
 288                return -1;
 289
 290        spin_lock_irqsave(&pdc_lock, flags);
 291        retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 292        spin_unlock_irqrestore(&pdc_lock, flags);
 293
 294        return retval;
 295}
 296#endif
 297
 298/**
 299 * pdc_chassis_disp - Updates chassis code
 300 * @retval: -1 on error, 0 on success
 301 */
 302int pdc_chassis_disp(unsigned long disp)
 303{
 304        int retval = 0;
 305        unsigned long flags;
 306
 307        spin_lock_irqsave(&pdc_lock, flags);
 308        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 309        spin_unlock_irqrestore(&pdc_lock, flags);
 310
 311        return retval;
 312}
 313
 314/**
 315 * pdc_cpu_rendenzvous - Stop currently executing CPU
 316 * @retval: -1 on error, 0 on success
 317 */
 318int __pdc_cpu_rendezvous(void)
 319{
 320        if (is_pdc_pat())
 321                return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 322        else
 323                return mem_pdc_call(PDC_PROC, 1, 0);
 324}
 325
 326
 327/**
 328 * pdc_chassis_warn - Fetches chassis warnings
 329 * @retval: -1 on error, 0 on success
 330 */
 331int pdc_chassis_warn(unsigned long *warn)
 332{
 333        int retval = 0;
 334        unsigned long flags;
 335
 336        spin_lock_irqsave(&pdc_lock, flags);
 337        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 338        *warn = pdc_result[0];
 339        spin_unlock_irqrestore(&pdc_lock, flags);
 340
 341        return retval;
 342}
 343
 344int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 345{
 346        int ret;
 347
 348        ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 349        convert_to_wide(pdc_result);
 350        pdc_coproc_info->ccr_functional = pdc_result[0];
 351        pdc_coproc_info->ccr_present = pdc_result[1];
 352        pdc_coproc_info->revision = pdc_result[17];
 353        pdc_coproc_info->model = pdc_result[18];
 354
 355        return ret;
 356}
 357
 358/**
 359 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 360 * @pdc_coproc_info: Return buffer address.
 361 *
 362 * This PDC call returns the presence and status of all the coprocessors
 363 * attached to the processor.
 364 */
 365int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 366{
 367        int ret;
 368        unsigned long flags;
 369
 370        spin_lock_irqsave(&pdc_lock, flags);
 371        ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 372        spin_unlock_irqrestore(&pdc_lock, flags);
 373
 374        return ret;
 375}
 376
 377/**
 378 * pdc_iodc_read - Read data from the modules IODC.
 379 * @actcnt: The actual number of bytes.
 380 * @hpa: The HPA of the module for the iodc read.
 381 * @index: The iodc entry point.
 382 * @iodc_data: A buffer memory for the iodc options.
 383 * @iodc_data_size: Size of the memory buffer.
 384 *
 385 * This PDC call reads from the IODC of the module specified by the hpa
 386 * argument.
 387 */
 388int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 389                  void *iodc_data, unsigned int iodc_data_size)
 390{
 391        int retval;
 392        unsigned long flags;
 393
 394        spin_lock_irqsave(&pdc_lock, flags);
 395        retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 396                              index, __pa(pdc_result2), iodc_data_size);
 397        convert_to_wide(pdc_result);
 398        *actcnt = pdc_result[0];
 399        memcpy(iodc_data, pdc_result2, iodc_data_size);
 400        spin_unlock_irqrestore(&pdc_lock, flags);
 401
 402        return retval;
 403}
 404EXPORT_SYMBOL(pdc_iodc_read);
 405
 406/**
 407 * pdc_system_map_find_mods - Locate unarchitected modules.
 408 * @pdc_mod_info: Return buffer address.
 409 * @mod_path: pointer to dev path structure.
 410 * @mod_index: fixed address module index.
 411 *
 412 * To locate and identify modules which reside at fixed I/O addresses, which
 413 * do not self-identify via architected bus walks.
 414 */
 415int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 416                             struct pdc_module_path *mod_path, long mod_index)
 417{
 418        int retval;
 419        unsigned long flags;
 420
 421        spin_lock_irqsave(&pdc_lock, flags);
 422        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 423                              __pa(pdc_result2), mod_index);
 424        convert_to_wide(pdc_result);
 425        memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 426        memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 427        spin_unlock_irqrestore(&pdc_lock, flags);
 428
 429        pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 430        return retval;
 431}
 432
 433/**
 434 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 435 * @pdc_addr_info: Return buffer address.
 436 * @mod_index: Fixed address module index.
 437 * @addr_index: Address range index.
 438 * 
 439 * Retrieve additional information about subsequent address ranges for modules
 440 * with multiple address ranges.  
 441 */
 442int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 443                              long mod_index, long addr_index)
 444{
 445        int retval;
 446        unsigned long flags;
 447
 448        spin_lock_irqsave(&pdc_lock, flags);
 449        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 450                              mod_index, addr_index);
 451        convert_to_wide(pdc_result);
 452        memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 453        spin_unlock_irqrestore(&pdc_lock, flags);
 454
 455        pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 456        return retval;
 457}
 458
 459/**
 460 * pdc_model_info - Return model information about the processor.
 461 * @model: The return buffer.
 462 *
 463 * Returns the version numbers, identifiers, and capabilities from the processor module.
 464 */
 465int pdc_model_info(struct pdc_model *model) 
 466{
 467        int retval;
 468        unsigned long flags;
 469
 470        spin_lock_irqsave(&pdc_lock, flags);
 471        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 472        convert_to_wide(pdc_result);
 473        memcpy(model, pdc_result, sizeof(*model));
 474        spin_unlock_irqrestore(&pdc_lock, flags);
 475
 476        return retval;
 477}
 478
 479/**
 480 * pdc_model_sysmodel - Get the system model name.
 481 * @name: A char array of at least 81 characters.
 482 *
 483 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 484 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 485 * on HP/UX.
 486 */
 487int pdc_model_sysmodel(char *name)
 488{
 489        int retval;
 490        unsigned long flags;
 491
 492        spin_lock_irqsave(&pdc_lock, flags);
 493        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 494                              OS_ID_HPUX, __pa(name));
 495        convert_to_wide(pdc_result);
 496
 497        if (retval == PDC_OK) {
 498                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 499        } else {
 500                name[0] = 0;
 501        }
 502        spin_unlock_irqrestore(&pdc_lock, flags);
 503
 504        return retval;
 505}
 506
 507/**
 508 * pdc_model_versions - Identify the version number of each processor.
 509 * @cpu_id: The return buffer.
 510 * @id: The id of the processor to check.
 511 *
 512 * Returns the version number for each processor component.
 513 *
 514 * This comment was here before, but I do not know what it means :( -RB
 515 * id: 0 = cpu revision, 1 = boot-rom-version
 516 */
 517int pdc_model_versions(unsigned long *versions, int id)
 518{
 519        int retval;
 520        unsigned long flags;
 521
 522        spin_lock_irqsave(&pdc_lock, flags);
 523        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 524        convert_to_wide(pdc_result);
 525        *versions = pdc_result[0];
 526        spin_unlock_irqrestore(&pdc_lock, flags);
 527
 528        return retval;
 529}
 530
 531/**
 532 * pdc_model_cpuid - Returns the CPU_ID.
 533 * @cpu_id: The return buffer.
 534 *
 535 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 536 * the processor module.
 537 */
 538int pdc_model_cpuid(unsigned long *cpu_id)
 539{
 540        int retval;
 541        unsigned long flags;
 542
 543        spin_lock_irqsave(&pdc_lock, flags);
 544        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 545        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 546        convert_to_wide(pdc_result);
 547        *cpu_id = pdc_result[0];
 548        spin_unlock_irqrestore(&pdc_lock, flags);
 549
 550        return retval;
 551}
 552
 553/**
 554 * pdc_model_capabilities - Returns the platform capabilities.
 555 * @capabilities: The return buffer.
 556 *
 557 * Returns information about platform support for 32- and/or 64-bit
 558 * OSes, IO-PDIR coherency, and virtual aliasing.
 559 */
 560int pdc_model_capabilities(unsigned long *capabilities)
 561{
 562        int retval;
 563        unsigned long flags;
 564
 565        spin_lock_irqsave(&pdc_lock, flags);
 566        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 567        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 568        convert_to_wide(pdc_result);
 569        if (retval == PDC_OK) {
 570                *capabilities = pdc_result[0];
 571        } else {
 572                *capabilities = PDC_MODEL_OS32;
 573        }
 574        spin_unlock_irqrestore(&pdc_lock, flags);
 575
 576        return retval;
 577}
 578
 579/**
 580 * pdc_model_platform_info - Returns machine product and serial number.
 581 * @orig_prod_num: Return buffer for original product number.
 582 * @current_prod_num: Return buffer for current product number.
 583 * @serial_no: Return buffer for serial number.
 584 *
 585 * Returns strings containing the original and current product numbers and the
 586 * serial number of the system.
 587 */
 588int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 589                char *serial_no)
 590{
 591        int retval;
 592        unsigned long flags;
 593
 594        spin_lock_irqsave(&pdc_lock, flags);
 595        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 596                __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 597        convert_to_wide(pdc_result);
 598        spin_unlock_irqrestore(&pdc_lock, flags);
 599
 600        return retval;
 601}
 602
 603/**
 604 * pdc_cache_info - Return cache and TLB information.
 605 * @cache_info: The return buffer.
 606 *
 607 * Returns information about the processor's cache and TLB.
 608 */
 609int pdc_cache_info(struct pdc_cache_info *cache_info)
 610{
 611        int retval;
 612        unsigned long flags;
 613
 614        spin_lock_irqsave(&pdc_lock, flags);
 615        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 616        convert_to_wide(pdc_result);
 617        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 618        spin_unlock_irqrestore(&pdc_lock, flags);
 619
 620        return retval;
 621}
 622
 623/**
 624 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 625 * @space_bits: Should be 0, if not, bad mojo!
 626 *
 627 * Returns information about Space ID hashing.
 628 */
 629int pdc_spaceid_bits(unsigned long *space_bits)
 630{
 631        int retval;
 632        unsigned long flags;
 633
 634        spin_lock_irqsave(&pdc_lock, flags);
 635        pdc_result[0] = 0;
 636        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 637        convert_to_wide(pdc_result);
 638        *space_bits = pdc_result[0];
 639        spin_unlock_irqrestore(&pdc_lock, flags);
 640
 641        return retval;
 642}
 643
 644#ifndef CONFIG_PA20
 645/**
 646 * pdc_btlb_info - Return block TLB information.
 647 * @btlb: The return buffer.
 648 *
 649 * Returns information about the hardware Block TLB.
 650 */
 651int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 652{
 653        int retval;
 654        unsigned long flags;
 655
 656        spin_lock_irqsave(&pdc_lock, flags);
 657        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 658        memcpy(btlb, pdc_result, sizeof(*btlb));
 659        spin_unlock_irqrestore(&pdc_lock, flags);
 660
 661        if(retval < 0) {
 662                btlb->max_size = 0;
 663        }
 664        return retval;
 665}
 666
 667/**
 668 * pdc_mem_map_hpa - Find fixed module information.  
 669 * @address: The return buffer
 670 * @mod_path: pointer to dev path structure.
 671 *
 672 * This call was developed for S700 workstations to allow the kernel to find
 673 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 674 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 675 * call.
 676 *
 677 * This call is supported by all existing S700 workstations (up to  Gecko).
 678 */
 679int pdc_mem_map_hpa(struct pdc_memory_map *address,
 680                struct pdc_module_path *mod_path)
 681{
 682        int retval;
 683        unsigned long flags;
 684
 685        spin_lock_irqsave(&pdc_lock, flags);
 686        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 687        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 688                                __pa(pdc_result2));
 689        memcpy(address, pdc_result, sizeof(*address));
 690        spin_unlock_irqrestore(&pdc_lock, flags);
 691
 692        return retval;
 693}
 694#endif  /* !CONFIG_PA20 */
 695
 696/**
 697 * pdc_lan_station_id - Get the LAN address.
 698 * @lan_addr: The return buffer.
 699 * @hpa: The network device HPA.
 700 *
 701 * Get the LAN station address when it is not directly available from the LAN hardware.
 702 */
 703int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 704{
 705        int retval;
 706        unsigned long flags;
 707
 708        spin_lock_irqsave(&pdc_lock, flags);
 709        retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 710                        __pa(pdc_result), hpa);
 711        if (retval < 0) {
 712                /* FIXME: else read MAC from NVRAM */
 713                memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 714        } else {
 715                memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 716        }
 717        spin_unlock_irqrestore(&pdc_lock, flags);
 718
 719        return retval;
 720}
 721EXPORT_SYMBOL(pdc_lan_station_id);
 722
 723/**
 724 * pdc_stable_read - Read data from Stable Storage.
 725 * @staddr: Stable Storage address to access.
 726 * @memaddr: The memory address where Stable Storage data shall be copied.
 727 * @count: number of bytes to transfer. count is multiple of 4.
 728 *
 729 * This PDC call reads from the Stable Storage address supplied in staddr
 730 * and copies count bytes to the memory address memaddr.
 731 * The call will fail if staddr+count > PDC_STABLE size.
 732 */
 733int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 734{
 735       int retval;
 736        unsigned long flags;
 737
 738       spin_lock_irqsave(&pdc_lock, flags);
 739       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 740               __pa(pdc_result), count);
 741       convert_to_wide(pdc_result);
 742       memcpy(memaddr, pdc_result, count);
 743       spin_unlock_irqrestore(&pdc_lock, flags);
 744
 745       return retval;
 746}
 747EXPORT_SYMBOL(pdc_stable_read);
 748
 749/**
 750 * pdc_stable_write - Write data to Stable Storage.
 751 * @staddr: Stable Storage address to access.
 752 * @memaddr: The memory address where Stable Storage data shall be read from.
 753 * @count: number of bytes to transfer. count is multiple of 4.
 754 *
 755 * This PDC call reads count bytes from the supplied memaddr address,
 756 * and copies count bytes to the Stable Storage address staddr.
 757 * The call will fail if staddr+count > PDC_STABLE size.
 758 */
 759int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 760{
 761       int retval;
 762        unsigned long flags;
 763
 764       spin_lock_irqsave(&pdc_lock, flags);
 765       memcpy(pdc_result, memaddr, count);
 766       convert_to_wide(pdc_result);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 768               __pa(pdc_result), count);
 769       spin_unlock_irqrestore(&pdc_lock, flags);
 770
 771       return retval;
 772}
 773EXPORT_SYMBOL(pdc_stable_write);
 774
 775/**
 776 * pdc_stable_get_size - Get Stable Storage size in bytes.
 777 * @size: pointer where the size will be stored.
 778 *
 779 * This PDC call returns the number of bytes in the processor's Stable
 780 * Storage, which is the number of contiguous bytes implemented in Stable
 781 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 782 * which is a multiple of four.
 783 */
 784int pdc_stable_get_size(unsigned long *size)
 785{
 786       int retval;
 787        unsigned long flags;
 788
 789       spin_lock_irqsave(&pdc_lock, flags);
 790       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 791       *size = pdc_result[0];
 792       spin_unlock_irqrestore(&pdc_lock, flags);
 793
 794       return retval;
 795}
 796EXPORT_SYMBOL(pdc_stable_get_size);
 797
 798/**
 799 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 800 *
 801 * This PDC call is meant to be used to check the integrity of the current
 802 * contents of Stable Storage.
 803 */
 804int pdc_stable_verify_contents(void)
 805{
 806       int retval;
 807        unsigned long flags;
 808
 809       spin_lock_irqsave(&pdc_lock, flags);
 810       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 811       spin_unlock_irqrestore(&pdc_lock, flags);
 812
 813       return retval;
 814}
 815EXPORT_SYMBOL(pdc_stable_verify_contents);
 816
 817/**
 818 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 819 * the validity indicator.
 820 *
 821 * This PDC call will erase all contents of Stable Storage. Use with care!
 822 */
 823int pdc_stable_initialize(void)
 824{
 825       int retval;
 826        unsigned long flags;
 827
 828       spin_lock_irqsave(&pdc_lock, flags);
 829       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 830       spin_unlock_irqrestore(&pdc_lock, flags);
 831
 832       return retval;
 833}
 834EXPORT_SYMBOL(pdc_stable_initialize);
 835
 836/**
 837 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 838 * @hwpath: fully bc.mod style path to the device.
 839 * @initiator: the array to return the result into
 840 *
 841 * Get the SCSI operational parameters from PDC.
 842 * Needed since HPUX never used BIOS or symbios card NVRAM.
 843 * Most ncr/sym cards won't have an entry and just use whatever
 844 * capabilities of the card are (eg Ultra, LVD). But there are
 845 * several cases where it's useful:
 846 *    o set SCSI id for Multi-initiator clusters,
 847 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 848 *    o bus width exported is less than what the interface chip supports.
 849 */
 850int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 851{
 852        int retval;
 853        unsigned long flags;
 854
 855        spin_lock_irqsave(&pdc_lock, flags);
 856
 857/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 858#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 859        strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 860
 861        retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 862                              __pa(pdc_result), __pa(hwpath));
 863        if (retval < PDC_OK)
 864                goto out;
 865
 866        if (pdc_result[0] < 16) {
 867                initiator->host_id = pdc_result[0];
 868        } else {
 869                initiator->host_id = -1;
 870        }
 871
 872        /*
 873         * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 874         * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 875         */
 876        switch (pdc_result[1]) {
 877                case  1: initiator->factor = 50; break;
 878                case  2: initiator->factor = 25; break;
 879                case  5: initiator->factor = 12; break;
 880                case 25: initiator->factor = 10; break;
 881                case 20: initiator->factor = 12; break;
 882                case 40: initiator->factor = 10; break;
 883                default: initiator->factor = -1; break;
 884        }
 885
 886        if (IS_SPROCKETS()) {
 887                initiator->width = pdc_result[4];
 888                initiator->mode = pdc_result[5];
 889        } else {
 890                initiator->width = -1;
 891                initiator->mode = -1;
 892        }
 893
 894 out:
 895        spin_unlock_irqrestore(&pdc_lock, flags);
 896
 897        return (retval >= PDC_OK);
 898}
 899EXPORT_SYMBOL(pdc_get_initiator);
 900
 901
 902/**
 903 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 904 * @num_entries: The return value.
 905 * @hpa: The HPA for the device.
 906 *
 907 * This PDC function returns the number of entries in the specified cell's
 908 * interrupt table.
 909 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 910 */ 
 911int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 912{
 913        int retval;
 914        unsigned long flags;
 915
 916        spin_lock_irqsave(&pdc_lock, flags);
 917        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 918                              __pa(pdc_result), hpa);
 919        convert_to_wide(pdc_result);
 920        *num_entries = pdc_result[0];
 921        spin_unlock_irqrestore(&pdc_lock, flags);
 922
 923        return retval;
 924}
 925
 926/** 
 927 * pdc_pci_irt - Get the PCI interrupt routing table.
 928 * @num_entries: The number of entries in the table.
 929 * @hpa: The Hard Physical Address of the device.
 930 * @tbl: 
 931 *
 932 * Get the PCI interrupt routing table for the device at the given HPA.
 933 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 934 */
 935int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 936{
 937        int retval;
 938        unsigned long flags;
 939
 940        BUG_ON((unsigned long)tbl & 0x7);
 941
 942        spin_lock_irqsave(&pdc_lock, flags);
 943        pdc_result[0] = num_entries;
 944        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 945                              __pa(pdc_result), hpa, __pa(tbl));
 946        spin_unlock_irqrestore(&pdc_lock, flags);
 947
 948        return retval;
 949}
 950
 951
 952#if 0   /* UNTEST CODE - left here in case someone needs it */
 953
 954/** 
 955 * pdc_pci_config_read - read PCI config space.
 956 * @hpa         token from PDC to indicate which PCI device
 957 * @pci_addr    configuration space address to read from
 958 *
 959 * Read PCI Configuration space *before* linux PCI subsystem is running.
 960 */
 961unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 962{
 963        int retval;
 964        unsigned long flags;
 965
 966        spin_lock_irqsave(&pdc_lock, flags);
 967        pdc_result[0] = 0;
 968        pdc_result[1] = 0;
 969        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 970                              __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 971        spin_unlock_irqrestore(&pdc_lock, flags);
 972
 973        return retval ? ~0 : (unsigned int) pdc_result[0];
 974}
 975
 976
 977/** 
 978 * pdc_pci_config_write - read PCI config space.
 979 * @hpa         token from PDC to indicate which PCI device
 980 * @pci_addr    configuration space address to write
 981 * @val         value we want in the 32-bit register
 982 *
 983 * Write PCI Configuration space *before* linux PCI subsystem is running.
 984 */
 985void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 986{
 987        int retval;
 988        unsigned long flags;
 989
 990        spin_lock_irqsave(&pdc_lock, flags);
 991        pdc_result[0] = 0;
 992        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 993                              __pa(pdc_result), hpa,
 994                              cfg_addr&~3UL, 4UL, (unsigned long) val);
 995        spin_unlock_irqrestore(&pdc_lock, flags);
 996
 997        return retval;
 998}
 999#endif /* UNTESTED CODE */
1000
1001/**
1002 * pdc_tod_read - Read the Time-Of-Day clock.
1003 * @tod: The return buffer:
1004 *
1005 * Read the Time-Of-Day clock
1006 */
1007int pdc_tod_read(struct pdc_tod *tod)
1008{
1009        int retval;
1010        unsigned long flags;
1011
1012        spin_lock_irqsave(&pdc_lock, flags);
1013        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014        convert_to_wide(pdc_result);
1015        memcpy(tod, pdc_result, sizeof(*tod));
1016        spin_unlock_irqrestore(&pdc_lock, flags);
1017
1018        return retval;
1019}
1020EXPORT_SYMBOL(pdc_tod_read);
1021
1022int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023{
1024        int retval;
1025        unsigned long flags;
1026
1027        spin_lock_irqsave(&pdc_lock, flags);
1028        retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029        convert_to_wide(pdc_result);
1030        memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031        spin_unlock_irqrestore(&pdc_lock, flags);
1032
1033        return retval;
1034}
1035
1036int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037                unsigned long *pdt_entries_ptr)
1038{
1039        int retval;
1040        unsigned long flags;
1041
1042        spin_lock_irqsave(&pdc_lock, flags);
1043        retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044                        __pa(pdt_entries_ptr));
1045        if (retval == PDC_OK) {
1046                convert_to_wide(pdc_result);
1047                memcpy(pret, pdc_result, sizeof(*pret));
1048        }
1049        spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051#ifdef CONFIG_64BIT
1052        /*
1053         * 64-bit kernels should not call this PDT function in narrow mode.
1054         * The pdt_entries_ptr array above will now contain 32-bit values
1055         */
1056        if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057                return PDC_ERROR;
1058#endif
1059
1060        return retval;
1061}
1062
1063/**
1064 * pdc_tod_set - Set the Time-Of-Day clock.
1065 * @sec: The number of seconds since epoch.
1066 * @usec: The number of micro seconds.
1067 *
1068 * Set the Time-Of-Day clock.
1069 */ 
1070int pdc_tod_set(unsigned long sec, unsigned long usec)
1071{
1072        int retval;
1073        unsigned long flags;
1074
1075        spin_lock_irqsave(&pdc_lock, flags);
1076        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077        spin_unlock_irqrestore(&pdc_lock, flags);
1078
1079        return retval;
1080}
1081EXPORT_SYMBOL(pdc_tod_set);
1082
1083#ifdef CONFIG_64BIT
1084int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085                struct pdc_memory_table *tbl, unsigned long entries)
1086{
1087        int retval;
1088        unsigned long flags;
1089
1090        spin_lock_irqsave(&pdc_lock, flags);
1091        retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092        convert_to_wide(pdc_result);
1093        memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094        memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095        spin_unlock_irqrestore(&pdc_lock, flags);
1096
1097        return retval;
1098}
1099#endif /* CONFIG_64BIT */
1100
1101/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1102 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1103 * it later. :)
1104 */
1105int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106{
1107        int retval;
1108        unsigned long flags;
1109
1110        spin_lock_irqsave(&pdc_lock, flags);
1111        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113        spin_unlock_irqrestore(&pdc_lock, flags);
1114
1115        return retval;
1116}
1117
1118/*
1119 * pdc_do_reset - Reset the system.
1120 *
1121 * Reset the system.
1122 */
1123int pdc_do_reset(void)
1124{
1125        int retval;
1126        unsigned long flags;
1127
1128        spin_lock_irqsave(&pdc_lock, flags);
1129        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130        spin_unlock_irqrestore(&pdc_lock, flags);
1131
1132        return retval;
1133}
1134
1135/*
1136 * pdc_soft_power_info - Enable soft power switch.
1137 * @power_reg: address of soft power register
1138 *
1139 * Return the absolute address of the soft power switch register
1140 */
1141int __init pdc_soft_power_info(unsigned long *power_reg)
1142{
1143        int retval;
1144        unsigned long flags;
1145
1146        *power_reg = (unsigned long) (-1);
1147        
1148        spin_lock_irqsave(&pdc_lock, flags);
1149        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150        if (retval == PDC_OK) {
1151                convert_to_wide(pdc_result);
1152                *power_reg = f_extend(pdc_result[0]);
1153        }
1154        spin_unlock_irqrestore(&pdc_lock, flags);
1155
1156        return retval;
1157}
1158
1159/*
1160 * pdc_soft_power_button - Control the soft power button behaviour
1161 * @sw_control: 0 for hardware control, 1 for software control 
1162 *
1163 *
1164 * This PDC function places the soft power button under software or
1165 * hardware control.
1166 * Under software control the OS may control to when to allow to shut 
1167 * down the system. Under hardware control pressing the power button 
1168 * powers off the system immediately.
1169 */
1170int pdc_soft_power_button(int sw_control)
1171{
1172        int retval;
1173        unsigned long flags;
1174
1175        spin_lock_irqsave(&pdc_lock, flags);
1176        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177        spin_unlock_irqrestore(&pdc_lock, flags);
1178
1179        return retval;
1180}
1181
1182/*
1183 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185 * who knows what other platform firmware might do with this OS "hook".
1186 */
1187void pdc_io_reset(void)
1188{
1189        unsigned long flags;
1190
1191        spin_lock_irqsave(&pdc_lock, flags);
1192        mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193        spin_unlock_irqrestore(&pdc_lock, flags);
1194}
1195
1196/*
1197 * pdc_io_reset_devices - Hack to Stop USB controller
1198 *
1199 * If PDC used the usb controller, the usb controller
1200 * is still running and will crash the machines during iommu 
1201 * setup, because of still running DMA. This PDC call
1202 * stops the USB controller.
1203 * Normally called after calling pdc_io_reset().
1204 */
1205void pdc_io_reset_devices(void)
1206{
1207        unsigned long flags;
1208
1209        spin_lock_irqsave(&pdc_lock, flags);
1210        mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211        spin_unlock_irqrestore(&pdc_lock, flags);
1212}
1213
1214#endif /* defined(BOOTLOADER) */
1215
1216/* locked by pdc_console_lock */
1217static int __attribute__((aligned(8)))   iodc_retbuf[32];
1218static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219
1220/**
1221 * pdc_iodc_print - Console print using IODC.
1222 * @str: the string to output.
1223 * @count: length of str
1224 *
1225 * Note that only these special chars are architected for console IODC io:
1226 * BEL, BS, CR, and LF. Others are passed through.
1227 * Since the HP console requires CR+LF to perform a 'newline', we translate
1228 * "\n" to "\r\n".
1229 */
1230int pdc_iodc_print(const unsigned char *str, unsigned count)
1231{
1232        unsigned int i;
1233        unsigned long flags;
1234
1235        for (i = 0; i < count;) {
1236                switch(str[i]) {
1237                case '\n':
1238                        iodc_dbuf[i+0] = '\r';
1239                        iodc_dbuf[i+1] = '\n';
1240                        i += 2;
1241                        goto print;
1242                default:
1243                        iodc_dbuf[i] = str[i];
1244                        i++;
1245                        break;
1246                }
1247        }
1248
1249print:
1250        spin_lock_irqsave(&pdc_lock, flags);
1251        real32_call(PAGE0->mem_cons.iodc_io,
1252                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255        spin_unlock_irqrestore(&pdc_lock, flags);
1256
1257        return i;
1258}
1259
1260#if !defined(BOOTLOADER)
1261/**
1262 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263 *
1264 * Read a character (non-blocking) from the PDC console, returns -1 if
1265 * key is not present.
1266 */
1267int pdc_iodc_getc(void)
1268{
1269        int ch;
1270        int status;
1271        unsigned long flags;
1272
1273        /* Bail if no console input device. */
1274        if (!PAGE0->mem_kbd.iodc_io)
1275                return 0;
1276        
1277        /* wait for a keyboard (rs232)-input */
1278        spin_lock_irqsave(&pdc_lock, flags);
1279        real32_call(PAGE0->mem_kbd.iodc_io,
1280                    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281                    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1282                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283
1284        ch = *iodc_dbuf;
1285        status = *iodc_retbuf;
1286        spin_unlock_irqrestore(&pdc_lock, flags);
1287
1288        if (status == 0)
1289            return -1;
1290        
1291        return ch;
1292}
1293
1294int pdc_sti_call(unsigned long func, unsigned long flags,
1295                 unsigned long inptr, unsigned long outputr,
1296                 unsigned long glob_cfg)
1297{
1298        int retval;
1299        unsigned long irqflags;
1300
1301        spin_lock_irqsave(&pdc_lock, irqflags);  
1302        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303        spin_unlock_irqrestore(&pdc_lock, irqflags);
1304
1305        return retval;
1306}
1307EXPORT_SYMBOL(pdc_sti_call);
1308
1309#ifdef CONFIG_64BIT
1310/**
1311 * pdc_pat_cell_get_number - Returns the cell number.
1312 * @cell_info: The return buffer.
1313 *
1314 * This PDC call returns the cell number of the cell from which the call
1315 * is made.
1316 */
1317int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318{
1319        int retval;
1320        unsigned long flags;
1321
1322        spin_lock_irqsave(&pdc_lock, flags);
1323        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324        memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325        spin_unlock_irqrestore(&pdc_lock, flags);
1326
1327        return retval;
1328}
1329
1330/**
1331 * pdc_pat_cell_module - Retrieve the cell's module information.
1332 * @actcnt: The number of bytes written to mem_addr.
1333 * @ploc: The physical location.
1334 * @mod: The module index.
1335 * @view_type: The view of the address type.
1336 * @mem_addr: The return buffer.
1337 *
1338 * This PDC call returns information about each module attached to the cell
1339 * at the specified location.
1340 */
1341int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342                        unsigned long view_type, void *mem_addr)
1343{
1344        int retval;
1345        unsigned long flags;
1346        static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347
1348        spin_lock_irqsave(&pdc_lock, flags);
1349        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1350                              ploc, mod, view_type, __pa(&result));
1351        if(!retval) {
1352                *actcnt = pdc_result[0];
1353                memcpy(mem_addr, &result, *actcnt);
1354        }
1355        spin_unlock_irqrestore(&pdc_lock, flags);
1356
1357        return retval;
1358}
1359
1360/**
1361 * pdc_pat_cell_info - Retrieve the cell's information.
1362 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363 * @actcnt: The number of bytes which should be written to info.
1364 * @offset: offset of the structure.
1365 * @cell_number: The cell number which should be asked, or -1 for current cell.
1366 *
1367 * This PDC call returns information about the given cell (or all cells).
1368 */
1369int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370                unsigned long *actcnt, unsigned long offset,
1371                unsigned long cell_number)
1372{
1373        int retval;
1374        unsigned long flags;
1375        struct pdc_pat_cell_info_rtn_block result;
1376
1377        spin_lock_irqsave(&pdc_lock, flags);
1378        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379                        __pa(pdc_result), __pa(&result), *actcnt,
1380                        offset, cell_number);
1381        if (!retval) {
1382                *actcnt = pdc_result[0];
1383                memcpy(info, &result, *actcnt);
1384        }
1385        spin_unlock_irqrestore(&pdc_lock, flags);
1386
1387        return retval;
1388}
1389
1390/**
1391 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392 * @cpu_info: The return buffer.
1393 * @hpa: The Hard Physical Address of the CPU.
1394 *
1395 * Retrieve the cpu number for the cpu at the specified HPA.
1396 */
1397int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398{
1399        int retval;
1400        unsigned long flags;
1401
1402        spin_lock_irqsave(&pdc_lock, flags);
1403        retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404                              __pa(&pdc_result), hpa);
1405        memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406        spin_unlock_irqrestore(&pdc_lock, flags);
1407
1408        return retval;
1409}
1410
1411/**
1412 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413 * @num_entries: The return value.
1414 * @cell_num: The target cell.
1415 *
1416 * This PDC function returns the number of entries in the specified cell's
1417 * interrupt table.
1418 */
1419int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420{
1421        int retval;
1422        unsigned long flags;
1423
1424        spin_lock_irqsave(&pdc_lock, flags);
1425        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426                              __pa(pdc_result), cell_num);
1427        *num_entries = pdc_result[0];
1428        spin_unlock_irqrestore(&pdc_lock, flags);
1429
1430        return retval;
1431}
1432
1433/**
1434 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435 * @r_addr: The return buffer.
1436 * @cell_num: The target cell.
1437 *
1438 * This PDC function returns the actual interrupt table for the specified cell.
1439 */
1440int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441{
1442        int retval;
1443        unsigned long flags;
1444
1445        spin_lock_irqsave(&pdc_lock, flags);
1446        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447                              __pa(r_addr), cell_num);
1448        spin_unlock_irqrestore(&pdc_lock, flags);
1449
1450        return retval;
1451}
1452
1453/**
1454 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455 * @actlen: The return buffer.
1456 * @mem_addr: Pointer to the memory buffer.
1457 * @count: The number of bytes to read from the buffer.
1458 * @offset: The offset with respect to the beginning of the buffer.
1459 *
1460 */
1461int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1462                            unsigned long count, unsigned long offset)
1463{
1464        int retval;
1465        unsigned long flags;
1466
1467        spin_lock_irqsave(&pdc_lock, flags);
1468        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1469                              __pa(pdc_result2), count, offset);
1470        *actual_len = pdc_result[0];
1471        memcpy(mem_addr, pdc_result2, *actual_len);
1472        spin_unlock_irqrestore(&pdc_lock, flags);
1473
1474        return retval;
1475}
1476
1477/**
1478 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479 * @legacy_rev: The legacy revision.
1480 * @pat_rev: The PAT revision.
1481 * @pdc_cap: The PDC capabilities.
1482 *
1483 */
1484int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485                unsigned long *pat_rev, unsigned long *pdc_cap)
1486{
1487        int retval;
1488        unsigned long flags;
1489
1490        spin_lock_irqsave(&pdc_lock, flags);
1491        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492                                __pa(pdc_result));
1493        if (retval == PDC_OK) {
1494                *legacy_rev = pdc_result[0];
1495                *pat_rev = pdc_result[1];
1496                *pdc_cap = pdc_result[2];
1497        }
1498        spin_unlock_irqrestore(&pdc_lock, flags);
1499
1500        return retval;
1501}
1502
1503
1504/**
1505 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506 * @pci_addr: PCI configuration space address for which the read request is being made.
1507 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1508 * @mem_addr: Pointer to return memory buffer.
1509 *
1510 */
1511int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512{
1513        int retval;
1514        unsigned long flags;
1515
1516        spin_lock_irqsave(&pdc_lock, flags);
1517        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518                                        __pa(pdc_result), pci_addr, pci_size);
1519        switch(pci_size) {
1520                case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1521                case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1522                case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1523        }
1524        spin_unlock_irqrestore(&pdc_lock, flags);
1525
1526        return retval;
1527}
1528
1529/**
1530 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531 * @pci_addr: PCI configuration space address for which the write  request is being made.
1532 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1533 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1534 *         written to PCI Config space.
1535 *
1536 */
1537int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538{
1539        int retval;
1540        unsigned long flags;
1541
1542        spin_lock_irqsave(&pdc_lock, flags);
1543        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544                                pci_addr, pci_size, val);
1545        spin_unlock_irqrestore(&pdc_lock, flags);
1546
1547        return retval;
1548}
1549
1550/**
1551 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552 * @rinfo: memory pdt information
1553 *
1554 */
1555int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556{
1557        int retval;
1558        unsigned long flags;
1559
1560        spin_lock_irqsave(&pdc_lock, flags);
1561        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562                        __pa(&pdc_result));
1563        if (retval == PDC_OK)
1564                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565        spin_unlock_irqrestore(&pdc_lock, flags);
1566
1567        return retval;
1568}
1569
1570/**
1571 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572 *                              table of a cell
1573 * @rinfo: memory pdt information
1574 * @cell: cell number
1575 *
1576 */
1577int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578                unsigned long cell)
1579{
1580        int retval;
1581        unsigned long flags;
1582
1583        spin_lock_irqsave(&pdc_lock, flags);
1584        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585                        __pa(&pdc_result), cell);
1586        if (retval == PDC_OK)
1587                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588        spin_unlock_irqrestore(&pdc_lock, flags);
1589
1590        return retval;
1591}
1592
1593/**
1594 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595 * @pret: array of PDT entries
1596 * @pdt_entries_ptr: ptr to hold number of PDT entries
1597 * @max_entries: maximum number of entries to be read
1598 *
1599 */
1600int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601                unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602{
1603        int retval;
1604        unsigned long flags, entries;
1605
1606        spin_lock_irqsave(&pdc_lock, flags);
1607        /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609                        __pa(&pdc_result), parisc_cell_num,
1610                        __pa(pdt_entries_ptr));
1611
1612        if (retval == PDC_OK) {
1613                /* build up return value as for PDC_PAT_MEM_PD_READ */
1614                entries = min(pdc_result[0], max_entries);
1615                pret->pdt_entries = entries;
1616                pret->actual_count_bytes = entries * sizeof(unsigned long);
1617        }
1618
1619        spin_unlock_irqrestore(&pdc_lock, flags);
1620        WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621
1622        return retval;
1623}
1624/**
1625 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626 * @pret: array of PDT entries
1627 * @pdt_entries_ptr: ptr to hold number of PDT entries
1628 * @count: number of bytes to read
1629 * @offset: offset to start (in bytes)
1630 *
1631 */
1632int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633                unsigned long *pdt_entries_ptr, unsigned long count,
1634                unsigned long offset)
1635{
1636        int retval;
1637        unsigned long flags, entries;
1638
1639        spin_lock_irqsave(&pdc_lock, flags);
1640        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641                __pa(&pdc_result), __pa(pdt_entries_ptr),
1642                count, offset);
1643
1644        if (retval == PDC_OK) {
1645                entries = min(pdc_result[0], count);
1646                pret->actual_count_bytes = entries;
1647                pret->pdt_entries = entries / sizeof(unsigned long);
1648        }
1649
1650        spin_unlock_irqrestore(&pdc_lock, flags);
1651
1652        return retval;
1653}
1654
1655/**
1656 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657 * @pret: ptr to hold returned information
1658 * @phys_addr: physical address to examine
1659 *
1660 */
1661int pdc_pat_mem_get_dimm_phys_location(
1662                struct pdc_pat_mem_phys_mem_location *pret,
1663                unsigned long phys_addr)
1664{
1665        int retval;
1666        unsigned long flags;
1667
1668        spin_lock_irqsave(&pdc_lock, flags);
1669        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670                __pa(&pdc_result), phys_addr);
1671
1672        if (retval == PDC_OK)
1673                memcpy(pret, &pdc_result, sizeof(*pret));
1674
1675        spin_unlock_irqrestore(&pdc_lock, flags);
1676
1677        return retval;
1678}
1679#endif /* CONFIG_64BIT */
1680#endif /* defined(BOOTLOADER) */
1681
1682
1683/***************** 32-bit real-mode calls ***********/
1684/* The struct below is used
1685 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686 * real32_call_asm() then uses this stack in narrow real mode
1687 */
1688
1689struct narrow_stack {
1690        /* use int, not long which is 64 bits */
1691        unsigned int arg13;
1692        unsigned int arg12;
1693        unsigned int arg11;
1694        unsigned int arg10;
1695        unsigned int arg9;
1696        unsigned int arg8;
1697        unsigned int arg7;
1698        unsigned int arg6;
1699        unsigned int arg5;
1700        unsigned int arg4;
1701        unsigned int arg3;
1702        unsigned int arg2;
1703        unsigned int arg1;
1704        unsigned int arg0;
1705        unsigned int frame_marker[8];
1706        unsigned int sp;
1707        /* in reality, there's nearly 8k of stack after this */
1708};
1709
1710long real32_call(unsigned long fn, ...)
1711{
1712        va_list args;
1713        extern struct narrow_stack real_stack;
1714        extern unsigned long real32_call_asm(unsigned int *,
1715                                             unsigned int *, 
1716                                             unsigned int);
1717        
1718        va_start(args, fn);
1719        real_stack.arg0 = va_arg(args, unsigned int);
1720        real_stack.arg1 = va_arg(args, unsigned int);
1721        real_stack.arg2 = va_arg(args, unsigned int);
1722        real_stack.arg3 = va_arg(args, unsigned int);
1723        real_stack.arg4 = va_arg(args, unsigned int);
1724        real_stack.arg5 = va_arg(args, unsigned int);
1725        real_stack.arg6 = va_arg(args, unsigned int);
1726        real_stack.arg7 = va_arg(args, unsigned int);
1727        real_stack.arg8 = va_arg(args, unsigned int);
1728        real_stack.arg9 = va_arg(args, unsigned int);
1729        real_stack.arg10 = va_arg(args, unsigned int);
1730        real_stack.arg11 = va_arg(args, unsigned int);
1731        real_stack.arg12 = va_arg(args, unsigned int);
1732        real_stack.arg13 = va_arg(args, unsigned int);
1733        va_end(args);
1734        
1735        return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736}
1737
1738#ifdef CONFIG_64BIT
1739/***************** 64-bit real-mode calls ***********/
1740
1741struct wide_stack {
1742        unsigned long arg0;
1743        unsigned long arg1;
1744        unsigned long arg2;
1745        unsigned long arg3;
1746        unsigned long arg4;
1747        unsigned long arg5;
1748        unsigned long arg6;
1749        unsigned long arg7;
1750        unsigned long arg8;
1751        unsigned long arg9;
1752        unsigned long arg10;
1753        unsigned long arg11;
1754        unsigned long arg12;
1755        unsigned long arg13;
1756        unsigned long frame_marker[2];  /* rp, previous sp */
1757        unsigned long sp;
1758        /* in reality, there's nearly 8k of stack after this */
1759};
1760
1761long real64_call(unsigned long fn, ...)
1762{
1763        va_list args;
1764        extern struct wide_stack real64_stack;
1765        extern unsigned long real64_call_asm(unsigned long *,
1766                                             unsigned long *, 
1767                                             unsigned long);
1768    
1769        va_start(args, fn);
1770        real64_stack.arg0 = va_arg(args, unsigned long);
1771        real64_stack.arg1 = va_arg(args, unsigned long);
1772        real64_stack.arg2 = va_arg(args, unsigned long);
1773        real64_stack.arg3 = va_arg(args, unsigned long);
1774        real64_stack.arg4 = va_arg(args, unsigned long);
1775        real64_stack.arg5 = va_arg(args, unsigned long);
1776        real64_stack.arg6 = va_arg(args, unsigned long);
1777        real64_stack.arg7 = va_arg(args, unsigned long);
1778        real64_stack.arg8 = va_arg(args, unsigned long);
1779        real64_stack.arg9 = va_arg(args, unsigned long);
1780        real64_stack.arg10 = va_arg(args, unsigned long);
1781        real64_stack.arg11 = va_arg(args, unsigned long);
1782        real64_stack.arg12 = va_arg(args, unsigned long);
1783        real64_stack.arg13 = va_arg(args, unsigned long);
1784        va_end(args);
1785        
1786        return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787}
1788
1789#endif /* CONFIG_64BIT */
1790