linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  S390 version
   4 *    Copyright IBM Corp. 1999, 2000
   5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6 *               Ulrich Weigand (weigand@de.ibm.com)
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "include/asm-i386/pgtable.h"
  10 */
  11
  12#ifndef _ASM_S390_PGTABLE_H
  13#define _ASM_S390_PGTABLE_H
  14
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/page-flags.h>
  18#include <linux/radix-tree.h>
  19#include <linux/atomic.h>
  20#include <asm/bug.h>
  21#include <asm/page.h>
  22
  23extern pgd_t swapper_pg_dir[];
  24extern void paging_init(void);
  25
  26enum {
  27        PG_DIRECT_MAP_4K = 0,
  28        PG_DIRECT_MAP_1M,
  29        PG_DIRECT_MAP_2G,
  30        PG_DIRECT_MAP_MAX
  31};
  32
  33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  34
  35static inline void update_page_count(int level, long count)
  36{
  37        if (IS_ENABLED(CONFIG_PROC_FS))
  38                atomic_long_add(count, &direct_pages_count[level]);
  39}
  40
  41struct seq_file;
  42void arch_report_meminfo(struct seq_file *m);
  43
  44/*
  45 * The S390 doesn't have any external MMU info: the kernel page
  46 * tables contain all the necessary information.
  47 */
  48#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  50
  51/*
  52 * ZERO_PAGE is a global shared page that is always zero; used
  53 * for zero-mapped memory areas etc..
  54 */
  55
  56extern unsigned long empty_zero_page;
  57extern unsigned long zero_page_mask;
  58
  59#define ZERO_PAGE(vaddr) \
  60        (virt_to_page((void *)(empty_zero_page + \
  61         (((unsigned long)(vaddr)) &zero_page_mask))))
  62#define __HAVE_COLOR_ZERO_PAGE
  63
  64/* TODO: s390 cannot support io_remap_pfn_range... */
  65
  66#define FIRST_USER_ADDRESS  0UL
  67
  68#define pte_ERROR(e) \
  69        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  70#define pmd_ERROR(e) \
  71        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  72#define pud_ERROR(e) \
  73        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  74#define p4d_ERROR(e) \
  75        printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
  76#define pgd_ERROR(e) \
  77        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  78
  79/*
  80 * The vmalloc and module area will always be on the topmost area of the
  81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  83 * modules will reside. That makes sure that inter module branches always
  84 * happen without trampolines and in addition the placement within a 2GB frame
  85 * is branch prediction unit friendly.
  86 */
  87extern unsigned long VMALLOC_START;
  88extern unsigned long VMALLOC_END;
  89#define VMALLOC_DEFAULT_SIZE    ((128UL << 30) - MODULES_LEN)
  90extern struct page *vmemmap;
  91
  92#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  93
  94extern unsigned long MODULES_VADDR;
  95extern unsigned long MODULES_END;
  96#define MODULES_VADDR   MODULES_VADDR
  97#define MODULES_END     MODULES_END
  98#define MODULES_LEN     (1UL << 31)
  99
 100static inline int is_module_addr(void *addr)
 101{
 102        BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 103        if (addr < (void *)MODULES_VADDR)
 104                return 0;
 105        if (addr > (void *)MODULES_END)
 106                return 0;
 107        return 1;
 108}
 109
 110/*
 111 * A 64 bit pagetable entry of S390 has following format:
 112 * |                     PFRA                         |0IPC|  OS  |
 113 * 0000000000111111111122222222223333333333444444444455555555556666
 114 * 0123456789012345678901234567890123456789012345678901234567890123
 115 *
 116 * I Page-Invalid Bit:    Page is not available for address-translation
 117 * P Page-Protection Bit: Store access not possible for page
 118 * C Change-bit override: HW is not required to set change bit
 119 *
 120 * A 64 bit segmenttable entry of S390 has following format:
 121 * |        P-table origin                              |      TT
 122 * 0000000000111111111122222222223333333333444444444455555555556666
 123 * 0123456789012345678901234567890123456789012345678901234567890123
 124 *
 125 * I Segment-Invalid Bit:    Segment is not available for address-translation
 126 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 127 * P Page-Protection Bit: Store access not possible for page
 128 * TT Type 00
 129 *
 130 * A 64 bit region table entry of S390 has following format:
 131 * |        S-table origin                             |   TF  TTTL
 132 * 0000000000111111111122222222223333333333444444444455555555556666
 133 * 0123456789012345678901234567890123456789012345678901234567890123
 134 *
 135 * I Segment-Invalid Bit:    Segment is not available for address-translation
 136 * TT Type 01
 137 * TF
 138 * TL Table length
 139 *
 140 * The 64 bit regiontable origin of S390 has following format:
 141 * |      region table origon                          |       DTTL
 142 * 0000000000111111111122222222223333333333444444444455555555556666
 143 * 0123456789012345678901234567890123456789012345678901234567890123
 144 *
 145 * X Space-Switch event:
 146 * G Segment-Invalid Bit:  
 147 * P Private-Space Bit:    
 148 * S Storage-Alteration:
 149 * R Real space
 150 * TL Table-Length:
 151 *
 152 * A storage key has the following format:
 153 * | ACC |F|R|C|0|
 154 *  0   3 4 5 6 7
 155 * ACC: access key
 156 * F  : fetch protection bit
 157 * R  : referenced bit
 158 * C  : changed bit
 159 */
 160
 161/* Hardware bits in the page table entry */
 162#define _PAGE_NOEXEC    0x100           /* HW no-execute bit  */
 163#define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 164#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 165#define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 166
 167/* Software bits in the page table entry */
 168#define _PAGE_PRESENT   0x001           /* SW pte present bit */
 169#define _PAGE_YOUNG     0x004           /* SW pte young bit */
 170#define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 171#define _PAGE_READ      0x010           /* SW pte read bit */
 172#define _PAGE_WRITE     0x020           /* SW pte write bit */
 173#define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 174#define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 175
 176#ifdef CONFIG_MEM_SOFT_DIRTY
 177#define _PAGE_SOFT_DIRTY 0x002          /* SW pte soft dirty bit */
 178#else
 179#define _PAGE_SOFT_DIRTY 0x000
 180#endif
 181
 182/* Set of bits not changed in pte_modify */
 183#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 184                                 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 185
 186/*
 187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 189 * distinguish present from not-present ptes. It is changed only with the page
 190 * table lock held.
 191 *
 192 * The following table gives the different possible bit combinations for
 193 * the pte hardware and software bits in the last 12 bits of a pte
 194 * (. unassigned bit, x don't care, t swap type):
 195 *
 196 *                              842100000000
 197 *                              000084210000
 198 *                              000000008421
 199 *                              .IR.uswrdy.p
 200 * empty                        .10.00000000
 201 * swap                         .11..ttttt.0
 202 * prot-none, clean, old        .11.xx0000.1
 203 * prot-none, clean, young      .11.xx0001.1
 204 * prot-none, dirty, old        .11.xx0010.1
 205 * prot-none, dirty, young      .11.xx0011.1
 206 * read-only, clean, old        .11.xx0100.1
 207 * read-only, clean, young      .01.xx0101.1
 208 * read-only, dirty, old        .11.xx0110.1
 209 * read-only, dirty, young      .01.xx0111.1
 210 * read-write, clean, old       .11.xx1100.1
 211 * read-write, clean, young     .01.xx1101.1
 212 * read-write, dirty, old       .10.xx1110.1
 213 * read-write, dirty, young     .00.xx1111.1
 214 * HW-bits: R read-only, I invalid
 215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 216 *          u unused, l large
 217 *
 218 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 219 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 221 */
 222
 223/* Bits in the segment/region table address-space-control-element */
 224#define _ASCE_ORIGIN            ~0xfffUL/* region/segment table origin      */
 225#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 226#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 227#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 228#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 229#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 230#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 231#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 232#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 233#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 234#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 235
 236/* Bits in the region table entry */
 237#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 238#define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 239#define _REGION_ENTRY_NOEXEC    0x100   /* region no-execute bit            */
 240#define _REGION_ENTRY_OFFSET    0xc0    /* region table offset              */
 241#define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 242#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region table type mask           */
 243#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 244#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 245#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 246#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 247
 248#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 249#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 250#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 251#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 252#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 253#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 254
 255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address      */
 256#define _REGION3_ENTRY_DIRTY    0x2000  /* SW region dirty bit */
 257#define _REGION3_ENTRY_YOUNG    0x1000  /* SW region young bit */
 258#define _REGION3_ENTRY_LARGE    0x0400  /* RTTE-format control, large page  */
 259#define _REGION3_ENTRY_READ     0x0002  /* SW region read bit */
 260#define _REGION3_ENTRY_WRITE    0x0001  /* SW region write bit */
 261
 262#ifdef CONFIG_MEM_SOFT_DIRTY
 263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 264#else
 265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 266#endif
 267
 268#define _REGION_ENTRY_BITS       0xfffffffffffff22fUL
 269
 270/* Bits in the segment table entry */
 271#define _SEGMENT_ENTRY_BITS                     0xfffffffffffffe33UL
 272#define _SEGMENT_ENTRY_HARDWARE_BITS            0xfffffffffffffe30UL
 273#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE      0xfffffffffff00730UL
 274#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 275#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* page table origin                */
 276#define _SEGMENT_ENTRY_PROTECT  0x200   /* segment protection bit           */
 277#define _SEGMENT_ENTRY_NOEXEC   0x100   /* segment no-execute bit           */
 278#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 279#define _SEGMENT_ENTRY_TYPE_MASK 0x0c   /* segment table type mask          */
 280
 281#define _SEGMENT_ENTRY          (0)
 282#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 283
 284#define _SEGMENT_ENTRY_DIRTY    0x2000  /* SW segment dirty bit */
 285#define _SEGMENT_ENTRY_YOUNG    0x1000  /* SW segment young bit */
 286#define _SEGMENT_ENTRY_LARGE    0x0400  /* STE-format control, large page */
 287#define _SEGMENT_ENTRY_WRITE    0x0002  /* SW segment write bit */
 288#define _SEGMENT_ENTRY_READ     0x0001  /* SW segment read bit */
 289
 290#ifdef CONFIG_MEM_SOFT_DIRTY
 291#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 292#else
 293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 294#endif
 295
 296#define _CRST_ENTRIES   2048    /* number of region/segment table entries */
 297#define _PAGE_ENTRIES   256     /* number of page table entries */
 298
 299#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 300#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 301
 302#define _REGION1_SHIFT  53
 303#define _REGION2_SHIFT  42
 304#define _REGION3_SHIFT  31
 305#define _SEGMENT_SHIFT  20
 306
 307#define _REGION1_INDEX  (0x7ffUL << _REGION1_SHIFT)
 308#define _REGION2_INDEX  (0x7ffUL << _REGION2_SHIFT)
 309#define _REGION3_INDEX  (0x7ffUL << _REGION3_SHIFT)
 310#define _SEGMENT_INDEX  (0x7ffUL << _SEGMENT_SHIFT)
 311#define _PAGE_INDEX     (0xffUL  << _PAGE_SHIFT)
 312
 313#define _REGION1_SIZE   (1UL << _REGION1_SHIFT)
 314#define _REGION2_SIZE   (1UL << _REGION2_SHIFT)
 315#define _REGION3_SIZE   (1UL << _REGION3_SHIFT)
 316#define _SEGMENT_SIZE   (1UL << _SEGMENT_SHIFT)
 317
 318#define _REGION1_MASK   (~(_REGION1_SIZE - 1))
 319#define _REGION2_MASK   (~(_REGION2_SIZE - 1))
 320#define _REGION3_MASK   (~(_REGION3_SIZE - 1))
 321#define _SEGMENT_MASK   (~(_SEGMENT_SIZE - 1))
 322
 323#define PMD_SHIFT       _SEGMENT_SHIFT
 324#define PUD_SHIFT       _REGION3_SHIFT
 325#define P4D_SHIFT       _REGION2_SHIFT
 326#define PGDIR_SHIFT     _REGION1_SHIFT
 327
 328#define PMD_SIZE        _SEGMENT_SIZE
 329#define PUD_SIZE        _REGION3_SIZE
 330#define P4D_SIZE        _REGION2_SIZE
 331#define PGDIR_SIZE      _REGION1_SIZE
 332
 333#define PMD_MASK        _SEGMENT_MASK
 334#define PUD_MASK        _REGION3_MASK
 335#define P4D_MASK        _REGION2_MASK
 336#define PGDIR_MASK      _REGION1_MASK
 337
 338#define PTRS_PER_PTE    _PAGE_ENTRIES
 339#define PTRS_PER_PMD    _CRST_ENTRIES
 340#define PTRS_PER_PUD    _CRST_ENTRIES
 341#define PTRS_PER_P4D    _CRST_ENTRIES
 342#define PTRS_PER_PGD    _CRST_ENTRIES
 343
 344#define MAX_PTRS_PER_P4D        PTRS_PER_P4D
 345
 346/*
 347 * Segment table and region3 table entry encoding
 348 * (R = read-only, I = invalid, y = young bit):
 349 *                              dy..R...I...wr
 350 * prot-none, clean, old        00..1...1...00
 351 * prot-none, clean, young      01..1...1...00
 352 * prot-none, dirty, old        10..1...1...00
 353 * prot-none, dirty, young      11..1...1...00
 354 * read-only, clean, old        00..1...1...01
 355 * read-only, clean, young      01..1...0...01
 356 * read-only, dirty, old        10..1...1...01
 357 * read-only, dirty, young      11..1...0...01
 358 * read-write, clean, old       00..1...1...11
 359 * read-write, clean, young     01..1...0...11
 360 * read-write, dirty, old       10..0...1...11
 361 * read-write, dirty, young     11..0...0...11
 362 * The segment table origin is used to distinguish empty (origin==0) from
 363 * read-write, old segment table entries (origin!=0)
 364 * HW-bits: R read-only, I invalid
 365 * SW-bits: y young, d dirty, r read, w write
 366 */
 367
 368/* Page status table bits for virtualization */
 369#define PGSTE_ACC_BITS  0xf000000000000000UL
 370#define PGSTE_FP_BIT    0x0800000000000000UL
 371#define PGSTE_PCL_BIT   0x0080000000000000UL
 372#define PGSTE_HR_BIT    0x0040000000000000UL
 373#define PGSTE_HC_BIT    0x0020000000000000UL
 374#define PGSTE_GR_BIT    0x0004000000000000UL
 375#define PGSTE_GC_BIT    0x0002000000000000UL
 376#define PGSTE_UC_BIT    0x0000800000000000UL    /* user dirty (migration) */
 377#define PGSTE_IN_BIT    0x0000400000000000UL    /* IPTE notify bit */
 378#define PGSTE_VSIE_BIT  0x0000200000000000UL    /* ref'd in a shadow table */
 379
 380/* Guest Page State used for virtualization */
 381#define _PGSTE_GPS_ZERO                 0x0000000080000000UL
 382#define _PGSTE_GPS_NODAT                0x0000000040000000UL
 383#define _PGSTE_GPS_USAGE_MASK           0x0000000003000000UL
 384#define _PGSTE_GPS_USAGE_STABLE         0x0000000000000000UL
 385#define _PGSTE_GPS_USAGE_UNUSED         0x0000000001000000UL
 386#define _PGSTE_GPS_USAGE_POT_VOLATILE   0x0000000002000000UL
 387#define _PGSTE_GPS_USAGE_VOLATILE       _PGSTE_GPS_USAGE_MASK
 388
 389/*
 390 * A user page table pointer has the space-switch-event bit, the
 391 * private-space-control bit and the storage-alteration-event-control
 392 * bit set. A kernel page table pointer doesn't need them.
 393 */
 394#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 395                                 _ASCE_ALT_EVENT)
 396
 397/*
 398 * Page protection definitions.
 399 */
 400#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 401#define PAGE_RO         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 402                                 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 403#define PAGE_RX         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 404                                 _PAGE_INVALID | _PAGE_PROTECT)
 405#define PAGE_RW         __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 406                                 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 407#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 408                                 _PAGE_INVALID | _PAGE_PROTECT)
 409
 410#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 411                                 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 412#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 413                                 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 414#define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 415                                 _PAGE_PROTECT | _PAGE_NOEXEC)
 416#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 417                                  _PAGE_YOUNG | _PAGE_DIRTY)
 418
 419/*
 420 * On s390 the page table entry has an invalid bit and a read-only bit.
 421 * Read permission implies execute permission and write permission
 422 * implies read permission.
 423 */
 424         /*xwr*/
 425#define __P000  PAGE_NONE
 426#define __P001  PAGE_RO
 427#define __P010  PAGE_RO
 428#define __P011  PAGE_RO
 429#define __P100  PAGE_RX
 430#define __P101  PAGE_RX
 431#define __P110  PAGE_RX
 432#define __P111  PAGE_RX
 433
 434#define __S000  PAGE_NONE
 435#define __S001  PAGE_RO
 436#define __S010  PAGE_RW
 437#define __S011  PAGE_RW
 438#define __S100  PAGE_RX
 439#define __S101  PAGE_RX
 440#define __S110  PAGE_RWX
 441#define __S111  PAGE_RWX
 442
 443/*
 444 * Segment entry (large page) protection definitions.
 445 */
 446#define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 447                                 _SEGMENT_ENTRY_PROTECT)
 448#define SEGMENT_RO      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 449                                 _SEGMENT_ENTRY_READ | \
 450                                 _SEGMENT_ENTRY_NOEXEC)
 451#define SEGMENT_RX      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 452                                 _SEGMENT_ENTRY_READ)
 453#define SEGMENT_RW      __pgprot(_SEGMENT_ENTRY_READ | \
 454                                 _SEGMENT_ENTRY_WRITE | \
 455                                 _SEGMENT_ENTRY_NOEXEC)
 456#define SEGMENT_RWX     __pgprot(_SEGMENT_ENTRY_READ | \
 457                                 _SEGMENT_ENTRY_WRITE)
 458#define SEGMENT_KERNEL  __pgprot(_SEGMENT_ENTRY |       \
 459                                 _SEGMENT_ENTRY_LARGE | \
 460                                 _SEGMENT_ENTRY_READ |  \
 461                                 _SEGMENT_ENTRY_WRITE | \
 462                                 _SEGMENT_ENTRY_YOUNG | \
 463                                 _SEGMENT_ENTRY_DIRTY | \
 464                                 _SEGMENT_ENTRY_NOEXEC)
 465#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |     \
 466                                 _SEGMENT_ENTRY_LARGE | \
 467                                 _SEGMENT_ENTRY_READ |  \
 468                                 _SEGMENT_ENTRY_YOUNG | \
 469                                 _SEGMENT_ENTRY_PROTECT | \
 470                                 _SEGMENT_ENTRY_NOEXEC)
 471#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |   \
 472                                 _SEGMENT_ENTRY_LARGE | \
 473                                 _SEGMENT_ENTRY_READ |  \
 474                                 _SEGMENT_ENTRY_WRITE | \
 475                                 _SEGMENT_ENTRY_YOUNG | \
 476                                 _SEGMENT_ENTRY_DIRTY)
 477
 478/*
 479 * Region3 entry (large page) protection definitions.
 480 */
 481
 482#define REGION3_KERNEL  __pgprot(_REGION_ENTRY_TYPE_R3 | \
 483                                 _REGION3_ENTRY_LARGE |  \
 484                                 _REGION3_ENTRY_READ |   \
 485                                 _REGION3_ENTRY_WRITE |  \
 486                                 _REGION3_ENTRY_YOUNG |  \
 487                                 _REGION3_ENTRY_DIRTY | \
 488                                 _REGION_ENTRY_NOEXEC)
 489#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 490                                   _REGION3_ENTRY_LARGE |  \
 491                                   _REGION3_ENTRY_READ |   \
 492                                   _REGION3_ENTRY_YOUNG |  \
 493                                   _REGION_ENTRY_PROTECT | \
 494                                   _REGION_ENTRY_NOEXEC)
 495
 496static inline bool mm_p4d_folded(struct mm_struct *mm)
 497{
 498        return mm->context.asce_limit <= _REGION1_SIZE;
 499}
 500#define mm_p4d_folded(mm) mm_p4d_folded(mm)
 501
 502static inline bool mm_pud_folded(struct mm_struct *mm)
 503{
 504        return mm->context.asce_limit <= _REGION2_SIZE;
 505}
 506#define mm_pud_folded(mm) mm_pud_folded(mm)
 507
 508static inline bool mm_pmd_folded(struct mm_struct *mm)
 509{
 510        return mm->context.asce_limit <= _REGION3_SIZE;
 511}
 512#define mm_pmd_folded(mm) mm_pmd_folded(mm)
 513
 514static inline int mm_has_pgste(struct mm_struct *mm)
 515{
 516#ifdef CONFIG_PGSTE
 517        if (unlikely(mm->context.has_pgste))
 518                return 1;
 519#endif
 520        return 0;
 521}
 522
 523static inline int mm_alloc_pgste(struct mm_struct *mm)
 524{
 525#ifdef CONFIG_PGSTE
 526        if (unlikely(mm->context.alloc_pgste))
 527                return 1;
 528#endif
 529        return 0;
 530}
 531
 532/*
 533 * In the case that a guest uses storage keys
 534 * faults should no longer be backed by zero pages
 535 */
 536#define mm_forbids_zeropage mm_has_pgste
 537static inline int mm_uses_skeys(struct mm_struct *mm)
 538{
 539#ifdef CONFIG_PGSTE
 540        if (mm->context.uses_skeys)
 541                return 1;
 542#endif
 543        return 0;
 544}
 545
 546static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 547{
 548        register unsigned long reg2 asm("2") = old;
 549        register unsigned long reg3 asm("3") = new;
 550        unsigned long address = (unsigned long)ptr | 1;
 551
 552        asm volatile(
 553                "       csp     %0,%3"
 554                : "+d" (reg2), "+m" (*ptr)
 555                : "d" (reg3), "d" (address)
 556                : "cc");
 557}
 558
 559static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 560{
 561        register unsigned long reg2 asm("2") = old;
 562        register unsigned long reg3 asm("3") = new;
 563        unsigned long address = (unsigned long)ptr | 1;
 564
 565        asm volatile(
 566                "       .insn   rre,0xb98a0000,%0,%3"
 567                : "+d" (reg2), "+m" (*ptr)
 568                : "d" (reg3), "d" (address)
 569                : "cc");
 570}
 571
 572#define CRDTE_DTT_PAGE          0x00UL
 573#define CRDTE_DTT_SEGMENT       0x10UL
 574#define CRDTE_DTT_REGION3       0x14UL
 575#define CRDTE_DTT_REGION2       0x18UL
 576#define CRDTE_DTT_REGION1       0x1cUL
 577
 578static inline void crdte(unsigned long old, unsigned long new,
 579                         unsigned long table, unsigned long dtt,
 580                         unsigned long address, unsigned long asce)
 581{
 582        register unsigned long reg2 asm("2") = old;
 583        register unsigned long reg3 asm("3") = new;
 584        register unsigned long reg4 asm("4") = table | dtt;
 585        register unsigned long reg5 asm("5") = address;
 586
 587        asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
 588                     : "+d" (reg2)
 589                     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
 590                     : "memory", "cc");
 591}
 592
 593/*
 594 * pgd/p4d/pud/pmd/pte query functions
 595 */
 596static inline int pgd_folded(pgd_t pgd)
 597{
 598        return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 599}
 600
 601static inline int pgd_present(pgd_t pgd)
 602{
 603        if (pgd_folded(pgd))
 604                return 1;
 605        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 606}
 607
 608static inline int pgd_none(pgd_t pgd)
 609{
 610        if (pgd_folded(pgd))
 611                return 0;
 612        return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 613}
 614
 615static inline int pgd_bad(pgd_t pgd)
 616{
 617        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 618                return 0;
 619        return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 620}
 621
 622static inline unsigned long pgd_pfn(pgd_t pgd)
 623{
 624        unsigned long origin_mask;
 625
 626        origin_mask = _REGION_ENTRY_ORIGIN;
 627        return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 628}
 629
 630static inline int p4d_folded(p4d_t p4d)
 631{
 632        return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 633}
 634
 635static inline int p4d_present(p4d_t p4d)
 636{
 637        if (p4d_folded(p4d))
 638                return 1;
 639        return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 640}
 641
 642static inline int p4d_none(p4d_t p4d)
 643{
 644        if (p4d_folded(p4d))
 645                return 0;
 646        return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 647}
 648
 649static inline unsigned long p4d_pfn(p4d_t p4d)
 650{
 651        unsigned long origin_mask;
 652
 653        origin_mask = _REGION_ENTRY_ORIGIN;
 654        return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 655}
 656
 657static inline int pud_folded(pud_t pud)
 658{
 659        return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 660}
 661
 662static inline int pud_present(pud_t pud)
 663{
 664        if (pud_folded(pud))
 665                return 1;
 666        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 667}
 668
 669static inline int pud_none(pud_t pud)
 670{
 671        if (pud_folded(pud))
 672                return 0;
 673        return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 674}
 675
 676#define pud_leaf        pud_large
 677static inline int pud_large(pud_t pud)
 678{
 679        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 680                return 0;
 681        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 682}
 683
 684static inline unsigned long pud_pfn(pud_t pud)
 685{
 686        unsigned long origin_mask;
 687
 688        origin_mask = _REGION_ENTRY_ORIGIN;
 689        if (pud_large(pud))
 690                origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
 691        return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
 692}
 693
 694#define pmd_leaf        pmd_large
 695static inline int pmd_large(pmd_t pmd)
 696{
 697        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 698}
 699
 700static inline int pmd_bad(pmd_t pmd)
 701{
 702        if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
 703                return 1;
 704        return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 705}
 706
 707static inline int pud_bad(pud_t pud)
 708{
 709        unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 710
 711        if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
 712                return 1;
 713        if (type < _REGION_ENTRY_TYPE_R3)
 714                return 0;
 715        return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 716}
 717
 718static inline int p4d_bad(p4d_t p4d)
 719{
 720        unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 721
 722        if (type > _REGION_ENTRY_TYPE_R2)
 723                return 1;
 724        if (type < _REGION_ENTRY_TYPE_R2)
 725                return 0;
 726        return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 727}
 728
 729static inline int pmd_present(pmd_t pmd)
 730{
 731        return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 732}
 733
 734static inline int pmd_none(pmd_t pmd)
 735{
 736        return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 737}
 738
 739static inline unsigned long pmd_pfn(pmd_t pmd)
 740{
 741        unsigned long origin_mask;
 742
 743        origin_mask = _SEGMENT_ENTRY_ORIGIN;
 744        if (pmd_large(pmd))
 745                origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
 746        return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
 747}
 748
 749#define pmd_write pmd_write
 750static inline int pmd_write(pmd_t pmd)
 751{
 752        return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 753}
 754
 755#define pud_write pud_write
 756static inline int pud_write(pud_t pud)
 757{
 758        return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
 759}
 760
 761static inline int pmd_dirty(pmd_t pmd)
 762{
 763        return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 764}
 765
 766static inline int pmd_young(pmd_t pmd)
 767{
 768        return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 769}
 770
 771static inline int pte_present(pte_t pte)
 772{
 773        /* Bit pattern: (pte & 0x001) == 0x001 */
 774        return (pte_val(pte) & _PAGE_PRESENT) != 0;
 775}
 776
 777static inline int pte_none(pte_t pte)
 778{
 779        /* Bit pattern: pte == 0x400 */
 780        return pte_val(pte) == _PAGE_INVALID;
 781}
 782
 783static inline int pte_swap(pte_t pte)
 784{
 785        /* Bit pattern: (pte & 0x201) == 0x200 */
 786        return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 787                == _PAGE_PROTECT;
 788}
 789
 790static inline int pte_special(pte_t pte)
 791{
 792        return (pte_val(pte) & _PAGE_SPECIAL);
 793}
 794
 795#define __HAVE_ARCH_PTE_SAME
 796static inline int pte_same(pte_t a, pte_t b)
 797{
 798        return pte_val(a) == pte_val(b);
 799}
 800
 801#ifdef CONFIG_NUMA_BALANCING
 802static inline int pte_protnone(pte_t pte)
 803{
 804        return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 805}
 806
 807static inline int pmd_protnone(pmd_t pmd)
 808{
 809        /* pmd_large(pmd) implies pmd_present(pmd) */
 810        return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 811}
 812#endif
 813
 814static inline int pte_soft_dirty(pte_t pte)
 815{
 816        return pte_val(pte) & _PAGE_SOFT_DIRTY;
 817}
 818#define pte_swp_soft_dirty pte_soft_dirty
 819
 820static inline pte_t pte_mksoft_dirty(pte_t pte)
 821{
 822        pte_val(pte) |= _PAGE_SOFT_DIRTY;
 823        return pte;
 824}
 825#define pte_swp_mksoft_dirty pte_mksoft_dirty
 826
 827static inline pte_t pte_clear_soft_dirty(pte_t pte)
 828{
 829        pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
 830        return pte;
 831}
 832#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 833
 834static inline int pmd_soft_dirty(pmd_t pmd)
 835{
 836        return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 837}
 838
 839static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 840{
 841        pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
 842        return pmd;
 843}
 844
 845static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 846{
 847        pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
 848        return pmd;
 849}
 850
 851/*
 852 * query functions pte_write/pte_dirty/pte_young only work if
 853 * pte_present() is true. Undefined behaviour if not..
 854 */
 855static inline int pte_write(pte_t pte)
 856{
 857        return (pte_val(pte) & _PAGE_WRITE) != 0;
 858}
 859
 860static inline int pte_dirty(pte_t pte)
 861{
 862        return (pte_val(pte) & _PAGE_DIRTY) != 0;
 863}
 864
 865static inline int pte_young(pte_t pte)
 866{
 867        return (pte_val(pte) & _PAGE_YOUNG) != 0;
 868}
 869
 870#define __HAVE_ARCH_PTE_UNUSED
 871static inline int pte_unused(pte_t pte)
 872{
 873        return pte_val(pte) & _PAGE_UNUSED;
 874}
 875
 876/*
 877 * pgd/pmd/pte modification functions
 878 */
 879
 880static inline void pgd_clear(pgd_t *pgd)
 881{
 882        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 883                pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
 884}
 885
 886static inline void p4d_clear(p4d_t *p4d)
 887{
 888        if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 889                p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
 890}
 891
 892static inline void pud_clear(pud_t *pud)
 893{
 894        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 895                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 896}
 897
 898static inline void pmd_clear(pmd_t *pmdp)
 899{
 900        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 901}
 902
 903static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 904{
 905        pte_val(*ptep) = _PAGE_INVALID;
 906}
 907
 908/*
 909 * The following pte modification functions only work if
 910 * pte_present() is true. Undefined behaviour if not..
 911 */
 912static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 913{
 914        pte_val(pte) &= _PAGE_CHG_MASK;
 915        pte_val(pte) |= pgprot_val(newprot);
 916        /*
 917         * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 918         * has the invalid bit set, clear it again for readable, young pages
 919         */
 920        if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 921                pte_val(pte) &= ~_PAGE_INVALID;
 922        /*
 923         * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 924         * protection bit set, clear it again for writable, dirty pages
 925         */
 926        if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 927                pte_val(pte) &= ~_PAGE_PROTECT;
 928        return pte;
 929}
 930
 931static inline pte_t pte_wrprotect(pte_t pte)
 932{
 933        pte_val(pte) &= ~_PAGE_WRITE;
 934        pte_val(pte) |= _PAGE_PROTECT;
 935        return pte;
 936}
 937
 938static inline pte_t pte_mkwrite(pte_t pte)
 939{
 940        pte_val(pte) |= _PAGE_WRITE;
 941        if (pte_val(pte) & _PAGE_DIRTY)
 942                pte_val(pte) &= ~_PAGE_PROTECT;
 943        return pte;
 944}
 945
 946static inline pte_t pte_mkclean(pte_t pte)
 947{
 948        pte_val(pte) &= ~_PAGE_DIRTY;
 949        pte_val(pte) |= _PAGE_PROTECT;
 950        return pte;
 951}
 952
 953static inline pte_t pte_mkdirty(pte_t pte)
 954{
 955        pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
 956        if (pte_val(pte) & _PAGE_WRITE)
 957                pte_val(pte) &= ~_PAGE_PROTECT;
 958        return pte;
 959}
 960
 961static inline pte_t pte_mkold(pte_t pte)
 962{
 963        pte_val(pte) &= ~_PAGE_YOUNG;
 964        pte_val(pte) |= _PAGE_INVALID;
 965        return pte;
 966}
 967
 968static inline pte_t pte_mkyoung(pte_t pte)
 969{
 970        pte_val(pte) |= _PAGE_YOUNG;
 971        if (pte_val(pte) & _PAGE_READ)
 972                pte_val(pte) &= ~_PAGE_INVALID;
 973        return pte;
 974}
 975
 976static inline pte_t pte_mkspecial(pte_t pte)
 977{
 978        pte_val(pte) |= _PAGE_SPECIAL;
 979        return pte;
 980}
 981
 982#ifdef CONFIG_HUGETLB_PAGE
 983static inline pte_t pte_mkhuge(pte_t pte)
 984{
 985        pte_val(pte) |= _PAGE_LARGE;
 986        return pte;
 987}
 988#endif
 989
 990#define IPTE_GLOBAL     0
 991#define IPTE_LOCAL      1
 992
 993#define IPTE_NODAT      0x400
 994#define IPTE_GUEST_ASCE 0x800
 995
 996static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
 997                                        unsigned long opt, unsigned long asce,
 998                                        int local)
 999{
1000        unsigned long pto = (unsigned long) ptep;
1001
1002        if (__builtin_constant_p(opt) && opt == 0) {
1003                /* Invalidation + TLB flush for the pte */
1004                asm volatile(
1005                        "       .insn   rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1006                        : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1007                          [m4] "i" (local));
1008                return;
1009        }
1010
1011        /* Invalidate ptes with options + TLB flush of the ptes */
1012        opt = opt | (asce & _ASCE_ORIGIN);
1013        asm volatile(
1014                "       .insn   rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1015                : [r2] "+a" (address), [r3] "+a" (opt)
1016                : [r1] "a" (pto), [m4] "i" (local) : "memory");
1017}
1018
1019static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1020                                              pte_t *ptep, int local)
1021{
1022        unsigned long pto = (unsigned long) ptep;
1023
1024        /* Invalidate a range of ptes + TLB flush of the ptes */
1025        do {
1026                asm volatile(
1027                        "       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1028                        : [r2] "+a" (address), [r3] "+a" (nr)
1029                        : [r1] "a" (pto), [m4] "i" (local) : "memory");
1030        } while (nr != 255);
1031}
1032
1033/*
1034 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1035 * both clear the TLB for the unmapped pte. The reason is that
1036 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1037 * to modify an active pte. The sequence is
1038 *   1) ptep_get_and_clear
1039 *   2) set_pte_at
1040 *   3) flush_tlb_range
1041 * On s390 the tlb needs to get flushed with the modification of the pte
1042 * if the pte is active. The only way how this can be implemented is to
1043 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1044 * is a nop.
1045 */
1046pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1047pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1048
1049#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1050static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1051                                            unsigned long addr, pte_t *ptep)
1052{
1053        pte_t pte = *ptep;
1054
1055        pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1056        return pte_young(pte);
1057}
1058
1059#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1060static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1061                                         unsigned long address, pte_t *ptep)
1062{
1063        return ptep_test_and_clear_young(vma, address, ptep);
1064}
1065
1066#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1067static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1068                                       unsigned long addr, pte_t *ptep)
1069{
1070        return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1071}
1072
1073#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1074pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1075void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1076                             pte_t *, pte_t, pte_t);
1077
1078#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1079static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1080                                     unsigned long addr, pte_t *ptep)
1081{
1082        return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1083}
1084
1085/*
1086 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1087 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1088 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1089 * cannot be accessed while the batched unmap is running. In this case
1090 * full==1 and a simple pte_clear is enough. See tlb.h.
1091 */
1092#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1093static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1094                                            unsigned long addr,
1095                                            pte_t *ptep, int full)
1096{
1097        if (full) {
1098                pte_t pte = *ptep;
1099                *ptep = __pte(_PAGE_INVALID);
1100                return pte;
1101        }
1102        return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1103}
1104
1105#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1106static inline void ptep_set_wrprotect(struct mm_struct *mm,
1107                                      unsigned long addr, pte_t *ptep)
1108{
1109        pte_t pte = *ptep;
1110
1111        if (pte_write(pte))
1112                ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1113}
1114
1115#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1116static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1117                                        unsigned long addr, pte_t *ptep,
1118                                        pte_t entry, int dirty)
1119{
1120        if (pte_same(*ptep, entry))
1121                return 0;
1122        ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1123        return 1;
1124}
1125
1126/*
1127 * Additional functions to handle KVM guest page tables
1128 */
1129void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1130                     pte_t *ptep, pte_t entry);
1131void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1132void ptep_notify(struct mm_struct *mm, unsigned long addr,
1133                 pte_t *ptep, unsigned long bits);
1134int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1135                    pte_t *ptep, int prot, unsigned long bit);
1136void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1137                     pte_t *ptep , int reset);
1138void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1139int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1140                    pte_t *sptep, pte_t *tptep, pte_t pte);
1141void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1142
1143bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1144                            pte_t *ptep);
1145int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1146                          unsigned char key, bool nq);
1147int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1148                               unsigned char key, unsigned char *oldkey,
1149                               bool nq, bool mr, bool mc);
1150int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1151int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1152                          unsigned char *key);
1153
1154int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1155                                unsigned long bits, unsigned long value);
1156int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1157int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1158                        unsigned long *oldpte, unsigned long *oldpgste);
1159void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1160void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1161void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1162void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1163
1164/*
1165 * Certain architectures need to do special things when PTEs
1166 * within a page table are directly modified.  Thus, the following
1167 * hook is made available.
1168 */
1169static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1170                              pte_t *ptep, pte_t entry)
1171{
1172        if (pte_present(entry))
1173                pte_val(entry) &= ~_PAGE_UNUSED;
1174        if (mm_has_pgste(mm))
1175                ptep_set_pte_at(mm, addr, ptep, entry);
1176        else
1177                *ptep = entry;
1178}
1179
1180/*
1181 * Conversion functions: convert a page and protection to a page entry,
1182 * and a page entry and page directory to the page they refer to.
1183 */
1184static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1185{
1186        pte_t __pte;
1187        pte_val(__pte) = physpage + pgprot_val(pgprot);
1188        if (!MACHINE_HAS_NX)
1189                pte_val(__pte) &= ~_PAGE_NOEXEC;
1190        return pte_mkyoung(__pte);
1191}
1192
1193static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1194{
1195        unsigned long physpage = page_to_phys(page);
1196        pte_t __pte = mk_pte_phys(physpage, pgprot);
1197
1198        if (pte_write(__pte) && PageDirty(page))
1199                __pte = pte_mkdirty(__pte);
1200        return __pte;
1201}
1202
1203#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1204#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1205#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1206#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1207#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1208
1209#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1210#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1211#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1212#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1213
1214/*
1215 * The pgd_offset function *always* adds the index for the top-level
1216 * region/segment table. This is done to get a sequence like the
1217 * following to work:
1218 *      pgdp = pgd_offset(current->mm, addr);
1219 *      pgd = READ_ONCE(*pgdp);
1220 *      p4dp = p4d_offset(&pgd, addr);
1221 *      ...
1222 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1223 * only add an index if they dereferenced the pointer.
1224 */
1225static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1226{
1227        unsigned long rste;
1228        unsigned int shift;
1229
1230        /* Get the first entry of the top level table */
1231        rste = pgd_val(*pgd);
1232        /* Pick up the shift from the table type of the first entry */
1233        shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1234        return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1235}
1236
1237#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1238#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1239
1240static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1241{
1242        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1243                return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1244        return (p4d_t *) pgd;
1245}
1246
1247static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1248{
1249        if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1250                return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1251        return (pud_t *) p4d;
1252}
1253
1254static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1255{
1256        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1257                return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1258        return (pmd_t *) pud;
1259}
1260
1261static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1262{
1263        return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1264}
1265
1266#define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1267#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1268
1269static inline void pte_unmap(pte_t *pte) { }
1270
1271static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1272{
1273        return end <= current->mm->context.asce_limit;
1274}
1275#define gup_fast_permitted gup_fast_permitted
1276
1277#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1278#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1279#define pte_page(x) pfn_to_page(pte_pfn(x))
1280
1281#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1282#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1283#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1284#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1285
1286static inline pmd_t pmd_wrprotect(pmd_t pmd)
1287{
1288        pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1289        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1290        return pmd;
1291}
1292
1293static inline pmd_t pmd_mkwrite(pmd_t pmd)
1294{
1295        pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1296        if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1297                pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1298        return pmd;
1299}
1300
1301static inline pmd_t pmd_mkclean(pmd_t pmd)
1302{
1303        pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1304        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1305        return pmd;
1306}
1307
1308static inline pmd_t pmd_mkdirty(pmd_t pmd)
1309{
1310        pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1311        if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1312                pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1313        return pmd;
1314}
1315
1316static inline pud_t pud_wrprotect(pud_t pud)
1317{
1318        pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1319        pud_val(pud) |= _REGION_ENTRY_PROTECT;
1320        return pud;
1321}
1322
1323static inline pud_t pud_mkwrite(pud_t pud)
1324{
1325        pud_val(pud) |= _REGION3_ENTRY_WRITE;
1326        if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1327                pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1328        return pud;
1329}
1330
1331static inline pud_t pud_mkclean(pud_t pud)
1332{
1333        pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1334        pud_val(pud) |= _REGION_ENTRY_PROTECT;
1335        return pud;
1336}
1337
1338static inline pud_t pud_mkdirty(pud_t pud)
1339{
1340        pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1341        if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1342                pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1343        return pud;
1344}
1345
1346#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1347static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1348{
1349        /*
1350         * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1351         * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1352         */
1353        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1354                return pgprot_val(SEGMENT_NONE);
1355        if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1356                return pgprot_val(SEGMENT_RO);
1357        if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1358                return pgprot_val(SEGMENT_RX);
1359        if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1360                return pgprot_val(SEGMENT_RW);
1361        return pgprot_val(SEGMENT_RWX);
1362}
1363
1364static inline pmd_t pmd_mkyoung(pmd_t pmd)
1365{
1366        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1367        if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1368                pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1369        return pmd;
1370}
1371
1372static inline pmd_t pmd_mkold(pmd_t pmd)
1373{
1374        pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1375        pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1376        return pmd;
1377}
1378
1379static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1380{
1381        pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1382                _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1383                _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1384        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1385        if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1386                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1387        if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1388                pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1389        return pmd;
1390}
1391
1392static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1393{
1394        pmd_t __pmd;
1395        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1396        return __pmd;
1397}
1398
1399#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1400
1401static inline void __pmdp_csp(pmd_t *pmdp)
1402{
1403        csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1404            pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1405}
1406
1407#define IDTE_GLOBAL     0
1408#define IDTE_LOCAL      1
1409
1410#define IDTE_PTOA       0x0800
1411#define IDTE_NODAT      0x1000
1412#define IDTE_GUEST_ASCE 0x2000
1413
1414static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1415                                        unsigned long opt, unsigned long asce,
1416                                        int local)
1417{
1418        unsigned long sto;
1419
1420        sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1421        if (__builtin_constant_p(opt) && opt == 0) {
1422                /* flush without guest asce */
1423                asm volatile(
1424                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1425                        : "+m" (*pmdp)
1426                        : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1427                          [m4] "i" (local)
1428                        : "cc" );
1429        } else {
1430                /* flush with guest asce */
1431                asm volatile(
1432                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1433                        : "+m" (*pmdp)
1434                        : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1435                          [r3] "a" (asce), [m4] "i" (local)
1436                        : "cc" );
1437        }
1438}
1439
1440static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1441                                        unsigned long opt, unsigned long asce,
1442                                        int local)
1443{
1444        unsigned long r3o;
1445
1446        r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1447        r3o |= _ASCE_TYPE_REGION3;
1448        if (__builtin_constant_p(opt) && opt == 0) {
1449                /* flush without guest asce */
1450                asm volatile(
1451                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1452                        : "+m" (*pudp)
1453                        : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1454                          [m4] "i" (local)
1455                        : "cc");
1456        } else {
1457                /* flush with guest asce */
1458                asm volatile(
1459                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1460                        : "+m" (*pudp)
1461                        : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1462                          [r3] "a" (asce), [m4] "i" (local)
1463                        : "cc" );
1464        }
1465}
1466
1467pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1468pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1469pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1470
1471#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1472
1473#define __HAVE_ARCH_PGTABLE_DEPOSIT
1474void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1475                                pgtable_t pgtable);
1476
1477#define __HAVE_ARCH_PGTABLE_WITHDRAW
1478pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1479
1480#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1481static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1482                                        unsigned long addr, pmd_t *pmdp,
1483                                        pmd_t entry, int dirty)
1484{
1485        VM_BUG_ON(addr & ~HPAGE_MASK);
1486
1487        entry = pmd_mkyoung(entry);
1488        if (dirty)
1489                entry = pmd_mkdirty(entry);
1490        if (pmd_val(*pmdp) == pmd_val(entry))
1491                return 0;
1492        pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1493        return 1;
1494}
1495
1496#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1497static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1498                                            unsigned long addr, pmd_t *pmdp)
1499{
1500        pmd_t pmd = *pmdp;
1501
1502        pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1503        return pmd_young(pmd);
1504}
1505
1506#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1507static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1508                                         unsigned long addr, pmd_t *pmdp)
1509{
1510        VM_BUG_ON(addr & ~HPAGE_MASK);
1511        return pmdp_test_and_clear_young(vma, addr, pmdp);
1512}
1513
1514static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1515                              pmd_t *pmdp, pmd_t entry)
1516{
1517        if (!MACHINE_HAS_NX)
1518                pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1519        *pmdp = entry;
1520}
1521
1522static inline pmd_t pmd_mkhuge(pmd_t pmd)
1523{
1524        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1525        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1526        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1527        return pmd;
1528}
1529
1530#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1531static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1532                                            unsigned long addr, pmd_t *pmdp)
1533{
1534        return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1535}
1536
1537#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1538static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1539                                                 unsigned long addr,
1540                                                 pmd_t *pmdp, int full)
1541{
1542        if (full) {
1543                pmd_t pmd = *pmdp;
1544                *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1545                return pmd;
1546        }
1547        return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1548}
1549
1550#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1551static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1552                                          unsigned long addr, pmd_t *pmdp)
1553{
1554        return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1555}
1556
1557#define __HAVE_ARCH_PMDP_INVALIDATE
1558static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1559                                   unsigned long addr, pmd_t *pmdp)
1560{
1561        pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1562
1563        return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1564}
1565
1566#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1567static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1568                                      unsigned long addr, pmd_t *pmdp)
1569{
1570        pmd_t pmd = *pmdp;
1571
1572        if (pmd_write(pmd))
1573                pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1574}
1575
1576static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1577                                        unsigned long address,
1578                                        pmd_t *pmdp)
1579{
1580        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1581}
1582#define pmdp_collapse_flush pmdp_collapse_flush
1583
1584#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1585#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1586
1587static inline int pmd_trans_huge(pmd_t pmd)
1588{
1589        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1590}
1591
1592#define has_transparent_hugepage has_transparent_hugepage
1593static inline int has_transparent_hugepage(void)
1594{
1595        return MACHINE_HAS_EDAT1 ? 1 : 0;
1596}
1597#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1598
1599/*
1600 * 64 bit swap entry format:
1601 * A page-table entry has some bits we have to treat in a special way.
1602 * Bits 52 and bit 55 have to be zero, otherwise a specification
1603 * exception will occur instead of a page translation exception. The
1604 * specification exception has the bad habit not to store necessary
1605 * information in the lowcore.
1606 * Bits 54 and 63 are used to indicate the page type.
1607 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1608 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1609 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1610 * for the offset.
1611 * |                      offset                        |01100|type |00|
1612 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1613 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1614 */
1615
1616#define __SWP_OFFSET_MASK       ((1UL << 52) - 1)
1617#define __SWP_OFFSET_SHIFT      12
1618#define __SWP_TYPE_MASK         ((1UL << 5) - 1)
1619#define __SWP_TYPE_SHIFT        2
1620
1621static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1622{
1623        pte_t pte;
1624
1625        pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1626        pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1627        pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1628        return pte;
1629}
1630
1631static inline unsigned long __swp_type(swp_entry_t entry)
1632{
1633        return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1634}
1635
1636static inline unsigned long __swp_offset(swp_entry_t entry)
1637{
1638        return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1639}
1640
1641static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1642{
1643        return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1644}
1645
1646#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1647#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1648
1649#define kern_addr_valid(addr)   (1)
1650
1651extern int vmem_add_mapping(unsigned long start, unsigned long size);
1652extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1653extern int s390_enable_sie(void);
1654extern int s390_enable_skey(void);
1655extern void s390_reset_cmma(struct mm_struct *mm);
1656
1657/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1658#define HAVE_ARCH_UNMAPPED_AREA
1659#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1660
1661#include <asm-generic/pgtable.h>
1662
1663#endif /* _S390_PAGE_H */
1664