linux/arch/s390/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *               Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/memblock.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
  40#include <asm/diag.h>
  41#include <asm/switch_to.h>
  42#include <asm/facility.h>
  43#include <asm/ipl.h>
  44#include <asm/setup.h>
  45#include <asm/irq.h>
  46#include <asm/tlbflush.h>
  47#include <asm/vtimer.h>
  48#include <asm/lowcore.h>
  49#include <asm/sclp.h>
  50#include <asm/vdso.h>
  51#include <asm/debug.h>
  52#include <asm/os_info.h>
  53#include <asm/sigp.h>
  54#include <asm/idle.h>
  55#include <asm/nmi.h>
  56#include <asm/stacktrace.h>
  57#include <asm/topology.h>
  58#include "entry.h"
  59
  60enum {
  61        ec_schedule = 0,
  62        ec_call_function_single,
  63        ec_stop_cpu,
  64};
  65
  66enum {
  67        CPU_STATE_STANDBY,
  68        CPU_STATE_CONFIGURED,
  69};
  70
  71static DEFINE_PER_CPU(struct cpu *, cpu_device);
  72
  73struct pcpu {
  74        struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
  75        unsigned long ec_mask;          /* bit mask for ec_xxx functions */
  76        unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
  77        signed char state;              /* physical cpu state */
  78        signed char polarization;       /* physical polarization */
  79        u16 address;                    /* physical cpu address */
  80};
  81
  82static u8 boot_core_type;
  83static struct pcpu pcpu_devices[NR_CPUS];
  84
  85unsigned int smp_cpu_mt_shift;
  86EXPORT_SYMBOL(smp_cpu_mt_shift);
  87
  88unsigned int smp_cpu_mtid;
  89EXPORT_SYMBOL(smp_cpu_mtid);
  90
  91#ifdef CONFIG_CRASH_DUMP
  92__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  93#endif
  94
  95static unsigned int smp_max_threads __initdata = -1U;
  96
  97static int __init early_nosmt(char *s)
  98{
  99        smp_max_threads = 1;
 100        return 0;
 101}
 102early_param("nosmt", early_nosmt);
 103
 104static int __init early_smt(char *s)
 105{
 106        get_option(&s, &smp_max_threads);
 107        return 0;
 108}
 109early_param("smt", early_smt);
 110
 111/*
 112 * The smp_cpu_state_mutex must be held when changing the state or polarization
 113 * member of a pcpu data structure within the pcpu_devices arreay.
 114 */
 115DEFINE_MUTEX(smp_cpu_state_mutex);
 116
 117/*
 118 * Signal processor helper functions.
 119 */
 120static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 121{
 122        int cc;
 123
 124        while (1) {
 125                cc = __pcpu_sigp(addr, order, parm, NULL);
 126                if (cc != SIGP_CC_BUSY)
 127                        return cc;
 128                cpu_relax();
 129        }
 130}
 131
 132static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 133{
 134        int cc, retry;
 135
 136        for (retry = 0; ; retry++) {
 137                cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 138                if (cc != SIGP_CC_BUSY)
 139                        break;
 140                if (retry >= 3)
 141                        udelay(10);
 142        }
 143        return cc;
 144}
 145
 146static inline int pcpu_stopped(struct pcpu *pcpu)
 147{
 148        u32 uninitialized_var(status);
 149
 150        if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 151                        0, &status) != SIGP_CC_STATUS_STORED)
 152                return 0;
 153        return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 154}
 155
 156static inline int pcpu_running(struct pcpu *pcpu)
 157{
 158        if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 159                        0, NULL) != SIGP_CC_STATUS_STORED)
 160                return 1;
 161        /* Status stored condition code is equivalent to cpu not running. */
 162        return 0;
 163}
 164
 165/*
 166 * Find struct pcpu by cpu address.
 167 */
 168static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 169{
 170        int cpu;
 171
 172        for_each_cpu(cpu, mask)
 173                if (pcpu_devices[cpu].address == address)
 174                        return pcpu_devices + cpu;
 175        return NULL;
 176}
 177
 178static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 179{
 180        int order;
 181
 182        if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 183                return;
 184        order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 185        pcpu->ec_clk = get_tod_clock_fast();
 186        pcpu_sigp_retry(pcpu, order, 0);
 187}
 188
 189static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 190{
 191        unsigned long async_stack, nodat_stack;
 192        struct lowcore *lc;
 193
 194        if (pcpu != &pcpu_devices[0]) {
 195                pcpu->lowcore = (struct lowcore *)
 196                        __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 197                nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 198                if (!pcpu->lowcore || !nodat_stack)
 199                        goto out;
 200        } else {
 201                nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 202        }
 203        async_stack = stack_alloc();
 204        if (!async_stack)
 205                goto out;
 206        lc = pcpu->lowcore;
 207        memcpy(lc, &S390_lowcore, 512);
 208        memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 209        lc->async_stack = async_stack + STACK_INIT_OFFSET;
 210        lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 211        lc->cpu_nr = cpu;
 212        lc->spinlock_lockval = arch_spin_lockval(cpu);
 213        lc->spinlock_index = 0;
 214        lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
 215        if (nmi_alloc_per_cpu(lc))
 216                goto out_async;
 217        if (vdso_alloc_per_cpu(lc))
 218                goto out_mcesa;
 219        lowcore_ptr[cpu] = lc;
 220        pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 221        return 0;
 222
 223out_mcesa:
 224        nmi_free_per_cpu(lc);
 225out_async:
 226        stack_free(async_stack);
 227out:
 228        if (pcpu != &pcpu_devices[0]) {
 229                free_pages(nodat_stack, THREAD_SIZE_ORDER);
 230                free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 231        }
 232        return -ENOMEM;
 233}
 234
 235static void pcpu_free_lowcore(struct pcpu *pcpu)
 236{
 237        unsigned long async_stack, nodat_stack, lowcore;
 238
 239        nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 240        async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
 241        lowcore = (unsigned long) pcpu->lowcore;
 242
 243        pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 244        lowcore_ptr[pcpu - pcpu_devices] = NULL;
 245        vdso_free_per_cpu(pcpu->lowcore);
 246        nmi_free_per_cpu(pcpu->lowcore);
 247        stack_free(async_stack);
 248        if (pcpu == &pcpu_devices[0])
 249                return;
 250        free_pages(nodat_stack, THREAD_SIZE_ORDER);
 251        free_pages(lowcore, LC_ORDER);
 252}
 253
 254static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 255{
 256        struct lowcore *lc = pcpu->lowcore;
 257
 258        cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 259        cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 260        lc->cpu_nr = cpu;
 261        lc->spinlock_lockval = arch_spin_lockval(cpu);
 262        lc->spinlock_index = 0;
 263        lc->percpu_offset = __per_cpu_offset[cpu];
 264        lc->kernel_asce = S390_lowcore.kernel_asce;
 265        lc->user_asce = S390_lowcore.kernel_asce;
 266        lc->machine_flags = S390_lowcore.machine_flags;
 267        lc->user_timer = lc->system_timer =
 268                lc->steal_timer = lc->avg_steal_timer = 0;
 269        __ctl_store(lc->cregs_save_area, 0, 15);
 270        lc->cregs_save_area[1] = lc->kernel_asce;
 271        lc->cregs_save_area[7] = lc->vdso_asce;
 272        save_access_regs((unsigned int *) lc->access_regs_save_area);
 273        memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 274               sizeof(lc->stfle_fac_list));
 275        memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
 276               sizeof(lc->alt_stfle_fac_list));
 277        arch_spin_lock_setup(cpu);
 278}
 279
 280static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 281{
 282        struct lowcore *lc = pcpu->lowcore;
 283
 284        lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 285                + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 286        lc->current_task = (unsigned long) tsk;
 287        lc->lpp = LPP_MAGIC;
 288        lc->current_pid = tsk->pid;
 289        lc->user_timer = tsk->thread.user_timer;
 290        lc->guest_timer = tsk->thread.guest_timer;
 291        lc->system_timer = tsk->thread.system_timer;
 292        lc->hardirq_timer = tsk->thread.hardirq_timer;
 293        lc->softirq_timer = tsk->thread.softirq_timer;
 294        lc->steal_timer = 0;
 295}
 296
 297static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 298{
 299        struct lowcore *lc = pcpu->lowcore;
 300
 301        lc->restart_stack = lc->nodat_stack;
 302        lc->restart_fn = (unsigned long) func;
 303        lc->restart_data = (unsigned long) data;
 304        lc->restart_source = -1UL;
 305        pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 306}
 307
 308/*
 309 * Call function via PSW restart on pcpu and stop the current cpu.
 310 */
 311static void __pcpu_delegate(void (*func)(void*), void *data)
 312{
 313        func(data);     /* should not return */
 314}
 315
 316static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
 317                                                void (*func)(void *),
 318                                                void *data, unsigned long stack)
 319{
 320        struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 321        unsigned long source_cpu = stap();
 322
 323        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 324        if (pcpu->address == source_cpu)
 325                CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
 326        /* Stop target cpu (if func returns this stops the current cpu). */
 327        pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 328        /* Restart func on the target cpu and stop the current cpu. */
 329        mem_assign_absolute(lc->restart_stack, stack);
 330        mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 331        mem_assign_absolute(lc->restart_data, (unsigned long) data);
 332        mem_assign_absolute(lc->restart_source, source_cpu);
 333        __bpon();
 334        asm volatile(
 335                "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
 336                "       brc     2,0b    # busy, try again\n"
 337                "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
 338                "       brc     2,1b    # busy, try again\n"
 339                : : "d" (pcpu->address), "d" (source_cpu),
 340                    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 341                : "0", "1", "cc");
 342        for (;;) ;
 343}
 344
 345/*
 346 * Enable additional logical cpus for multi-threading.
 347 */
 348static int pcpu_set_smt(unsigned int mtid)
 349{
 350        int cc;
 351
 352        if (smp_cpu_mtid == mtid)
 353                return 0;
 354        cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 355        if (cc == 0) {
 356                smp_cpu_mtid = mtid;
 357                smp_cpu_mt_shift = 0;
 358                while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 359                        smp_cpu_mt_shift++;
 360                pcpu_devices[0].address = stap();
 361        }
 362        return cc;
 363}
 364
 365/*
 366 * Call function on an online CPU.
 367 */
 368void smp_call_online_cpu(void (*func)(void *), void *data)
 369{
 370        struct pcpu *pcpu;
 371
 372        /* Use the current cpu if it is online. */
 373        pcpu = pcpu_find_address(cpu_online_mask, stap());
 374        if (!pcpu)
 375                /* Use the first online cpu. */
 376                pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 377        pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 378}
 379
 380/*
 381 * Call function on the ipl CPU.
 382 */
 383void smp_call_ipl_cpu(void (*func)(void *), void *data)
 384{
 385        struct lowcore *lc = pcpu_devices->lowcore;
 386
 387        if (pcpu_devices[0].address == stap())
 388                lc = &S390_lowcore;
 389
 390        pcpu_delegate(&pcpu_devices[0], func, data,
 391                      lc->nodat_stack);
 392}
 393
 394int smp_find_processor_id(u16 address)
 395{
 396        int cpu;
 397
 398        for_each_present_cpu(cpu)
 399                if (pcpu_devices[cpu].address == address)
 400                        return cpu;
 401        return -1;
 402}
 403
 404bool arch_vcpu_is_preempted(int cpu)
 405{
 406        if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 407                return false;
 408        if (pcpu_running(pcpu_devices + cpu))
 409                return false;
 410        return true;
 411}
 412EXPORT_SYMBOL(arch_vcpu_is_preempted);
 413
 414void smp_yield_cpu(int cpu)
 415{
 416        if (!MACHINE_HAS_DIAG9C)
 417                return;
 418        diag_stat_inc_norecursion(DIAG_STAT_X09C);
 419        asm volatile("diag %0,0,0x9c"
 420                     : : "d" (pcpu_devices[cpu].address));
 421}
 422
 423/*
 424 * Send cpus emergency shutdown signal. This gives the cpus the
 425 * opportunity to complete outstanding interrupts.
 426 */
 427void notrace smp_emergency_stop(void)
 428{
 429        cpumask_t cpumask;
 430        u64 end;
 431        int cpu;
 432
 433        cpumask_copy(&cpumask, cpu_online_mask);
 434        cpumask_clear_cpu(smp_processor_id(), &cpumask);
 435
 436        end = get_tod_clock() + (1000000UL << 12);
 437        for_each_cpu(cpu, &cpumask) {
 438                struct pcpu *pcpu = pcpu_devices + cpu;
 439                set_bit(ec_stop_cpu, &pcpu->ec_mask);
 440                while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 441                                   0, NULL) == SIGP_CC_BUSY &&
 442                       get_tod_clock() < end)
 443                        cpu_relax();
 444        }
 445        while (get_tod_clock() < end) {
 446                for_each_cpu(cpu, &cpumask)
 447                        if (pcpu_stopped(pcpu_devices + cpu))
 448                                cpumask_clear_cpu(cpu, &cpumask);
 449                if (cpumask_empty(&cpumask))
 450                        break;
 451                cpu_relax();
 452        }
 453}
 454NOKPROBE_SYMBOL(smp_emergency_stop);
 455
 456/*
 457 * Stop all cpus but the current one.
 458 */
 459void smp_send_stop(void)
 460{
 461        int cpu;
 462
 463        /* Disable all interrupts/machine checks */
 464        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 465        trace_hardirqs_off();
 466
 467        debug_set_critical();
 468
 469        if (oops_in_progress)
 470                smp_emergency_stop();
 471
 472        /* stop all processors */
 473        for_each_online_cpu(cpu) {
 474                if (cpu == smp_processor_id())
 475                        continue;
 476                pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 477                while (!pcpu_stopped(pcpu_devices + cpu))
 478                        cpu_relax();
 479        }
 480}
 481
 482/*
 483 * This is the main routine where commands issued by other
 484 * cpus are handled.
 485 */
 486static void smp_handle_ext_call(void)
 487{
 488        unsigned long bits;
 489
 490        /* handle bit signal external calls */
 491        bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 492        if (test_bit(ec_stop_cpu, &bits))
 493                smp_stop_cpu();
 494        if (test_bit(ec_schedule, &bits))
 495                scheduler_ipi();
 496        if (test_bit(ec_call_function_single, &bits))
 497                generic_smp_call_function_single_interrupt();
 498}
 499
 500static void do_ext_call_interrupt(struct ext_code ext_code,
 501                                  unsigned int param32, unsigned long param64)
 502{
 503        inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 504        smp_handle_ext_call();
 505}
 506
 507void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 508{
 509        int cpu;
 510
 511        for_each_cpu(cpu, mask)
 512                pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 513}
 514
 515void arch_send_call_function_single_ipi(int cpu)
 516{
 517        pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 518}
 519
 520/*
 521 * this function sends a 'reschedule' IPI to another CPU.
 522 * it goes straight through and wastes no time serializing
 523 * anything. Worst case is that we lose a reschedule ...
 524 */
 525void smp_send_reschedule(int cpu)
 526{
 527        pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 528}
 529
 530/*
 531 * parameter area for the set/clear control bit callbacks
 532 */
 533struct ec_creg_mask_parms {
 534        unsigned long orval;
 535        unsigned long andval;
 536        int cr;
 537};
 538
 539/*
 540 * callback for setting/clearing control bits
 541 */
 542static void smp_ctl_bit_callback(void *info)
 543{
 544        struct ec_creg_mask_parms *pp = info;
 545        unsigned long cregs[16];
 546
 547        __ctl_store(cregs, 0, 15);
 548        cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 549        __ctl_load(cregs, 0, 15);
 550}
 551
 552/*
 553 * Set a bit in a control register of all cpus
 554 */
 555void smp_ctl_set_bit(int cr, int bit)
 556{
 557        struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 558
 559        on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 560}
 561EXPORT_SYMBOL(smp_ctl_set_bit);
 562
 563/*
 564 * Clear a bit in a control register of all cpus
 565 */
 566void smp_ctl_clear_bit(int cr, int bit)
 567{
 568        struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 569
 570        on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 571}
 572EXPORT_SYMBOL(smp_ctl_clear_bit);
 573
 574#ifdef CONFIG_CRASH_DUMP
 575
 576int smp_store_status(int cpu)
 577{
 578        struct pcpu *pcpu = pcpu_devices + cpu;
 579        unsigned long pa;
 580
 581        pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 582        if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 583                              pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 584                return -EIO;
 585        if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 586                return 0;
 587        pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
 588        if (MACHINE_HAS_GS)
 589                pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
 590        if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 591                              pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 592                return -EIO;
 593        return 0;
 594}
 595
 596/*
 597 * Collect CPU state of the previous, crashed system.
 598 * There are four cases:
 599 * 1) standard zfcp dump
 600 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 601 *    The state for all CPUs except the boot CPU needs to be collected
 602 *    with sigp stop-and-store-status. The boot CPU state is located in
 603 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 604 *    will copy the boot CPU state from the HSA.
 605 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 606 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 607 *    The state for all CPUs except the boot CPU needs to be collected
 608 *    with sigp stop-and-store-status. The firmware or the boot-loader
 609 *    stored the registers of the boot CPU in the absolute lowcore in the
 610 *    memory of the old system.
 611 * 3) kdump and the old kernel did not store the CPU state,
 612 *    or stand-alone kdump for DASD
 613 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 614 *    The state for all CPUs except the boot CPU needs to be collected
 615 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 616 *    stored the registers of the boot CPU in the memory of the old system.
 617 * 4) kdump and the old kernel stored the CPU state
 618 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 619 *    This case does not exist for s390 anymore, setup_arch explicitly
 620 *    deactivates the elfcorehdr= kernel parameter
 621 */
 622static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 623                                     bool is_boot_cpu, unsigned long page)
 624{
 625        __vector128 *vxrs = (__vector128 *) page;
 626
 627        if (is_boot_cpu)
 628                vxrs = boot_cpu_vector_save_area;
 629        else
 630                __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 631        save_area_add_vxrs(sa, vxrs);
 632}
 633
 634static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 635                                     bool is_boot_cpu, unsigned long page)
 636{
 637        void *regs = (void *) page;
 638
 639        if (is_boot_cpu)
 640                copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 641        else
 642                __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 643        save_area_add_regs(sa, regs);
 644}
 645
 646void __init smp_save_dump_cpus(void)
 647{
 648        int addr, boot_cpu_addr, max_cpu_addr;
 649        struct save_area *sa;
 650        unsigned long page;
 651        bool is_boot_cpu;
 652
 653        if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 654                /* No previous system present, normal boot. */
 655                return;
 656        /* Allocate a page as dumping area for the store status sigps */
 657        page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
 658        if (!page)
 659                panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 660                      PAGE_SIZE, 1UL << 31);
 661
 662        /* Set multi-threading state to the previous system. */
 663        pcpu_set_smt(sclp.mtid_prev);
 664        boot_cpu_addr = stap();
 665        max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 666        for (addr = 0; addr <= max_cpu_addr; addr++) {
 667                if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 668                    SIGP_CC_NOT_OPERATIONAL)
 669                        continue;
 670                is_boot_cpu = (addr == boot_cpu_addr);
 671                /* Allocate save area */
 672                sa = save_area_alloc(is_boot_cpu);
 673                if (!sa)
 674                        panic("could not allocate memory for save area\n");
 675                if (MACHINE_HAS_VX)
 676                        /* Get the vector registers */
 677                        smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 678                /*
 679                 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 680                 * of the boot CPU are stored in the HSA. To retrieve
 681                 * these registers an SCLP request is required which is
 682                 * done by drivers/s390/char/zcore.c:init_cpu_info()
 683                 */
 684                if (!is_boot_cpu || OLDMEM_BASE)
 685                        /* Get the CPU registers */
 686                        smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 687        }
 688        memblock_free(page, PAGE_SIZE);
 689        diag_dma_ops.diag308_reset();
 690        pcpu_set_smt(0);
 691}
 692#endif /* CONFIG_CRASH_DUMP */
 693
 694void smp_cpu_set_polarization(int cpu, int val)
 695{
 696        pcpu_devices[cpu].polarization = val;
 697}
 698
 699int smp_cpu_get_polarization(int cpu)
 700{
 701        return pcpu_devices[cpu].polarization;
 702}
 703
 704static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 705{
 706        static int use_sigp_detection;
 707        int address;
 708
 709        if (use_sigp_detection || sclp_get_core_info(info, early)) {
 710                use_sigp_detection = 1;
 711                for (address = 0;
 712                     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 713                     address += (1U << smp_cpu_mt_shift)) {
 714                        if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 715                            SIGP_CC_NOT_OPERATIONAL)
 716                                continue;
 717                        info->core[info->configured].core_id =
 718                                address >> smp_cpu_mt_shift;
 719                        info->configured++;
 720                }
 721                info->combined = info->configured;
 722        }
 723}
 724
 725static int smp_add_present_cpu(int cpu);
 726
 727static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 728                        bool configured, bool early)
 729{
 730        struct pcpu *pcpu;
 731        int cpu, nr, i;
 732        u16 address;
 733
 734        nr = 0;
 735        if (sclp.has_core_type && core->type != boot_core_type)
 736                return nr;
 737        cpu = cpumask_first(avail);
 738        address = core->core_id << smp_cpu_mt_shift;
 739        for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 740                if (pcpu_find_address(cpu_present_mask, address + i))
 741                        continue;
 742                pcpu = pcpu_devices + cpu;
 743                pcpu->address = address + i;
 744                if (configured)
 745                        pcpu->state = CPU_STATE_CONFIGURED;
 746                else
 747                        pcpu->state = CPU_STATE_STANDBY;
 748                smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 749                set_cpu_present(cpu, true);
 750                if (!early && smp_add_present_cpu(cpu) != 0)
 751                        set_cpu_present(cpu, false);
 752                else
 753                        nr++;
 754                cpumask_clear_cpu(cpu, avail);
 755                cpu = cpumask_next(cpu, avail);
 756        }
 757        return nr;
 758}
 759
 760static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 761{
 762        struct sclp_core_entry *core;
 763        cpumask_t avail;
 764        bool configured;
 765        u16 core_id;
 766        int nr, i;
 767
 768        nr = 0;
 769        cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 770        /*
 771         * Add IPL core first (which got logical CPU number 0) to make sure
 772         * that all SMT threads get subsequent logical CPU numbers.
 773         */
 774        if (early) {
 775                core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 776                for (i = 0; i < info->configured; i++) {
 777                        core = &info->core[i];
 778                        if (core->core_id == core_id) {
 779                                nr += smp_add_core(core, &avail, true, early);
 780                                break;
 781                        }
 782                }
 783        }
 784        for (i = 0; i < info->combined; i++) {
 785                configured = i < info->configured;
 786                nr += smp_add_core(&info->core[i], &avail, configured, early);
 787        }
 788        return nr;
 789}
 790
 791void __init smp_detect_cpus(void)
 792{
 793        unsigned int cpu, mtid, c_cpus, s_cpus;
 794        struct sclp_core_info *info;
 795        u16 address;
 796
 797        /* Get CPU information */
 798        info = memblock_alloc(sizeof(*info), 8);
 799        if (!info)
 800                panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 801                      __func__, sizeof(*info), 8);
 802        smp_get_core_info(info, 1);
 803        /* Find boot CPU type */
 804        if (sclp.has_core_type) {
 805                address = stap();
 806                for (cpu = 0; cpu < info->combined; cpu++)
 807                        if (info->core[cpu].core_id == address) {
 808                                /* The boot cpu dictates the cpu type. */
 809                                boot_core_type = info->core[cpu].type;
 810                                break;
 811                        }
 812                if (cpu >= info->combined)
 813                        panic("Could not find boot CPU type");
 814        }
 815
 816        /* Set multi-threading state for the current system */
 817        mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 818        mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 819        pcpu_set_smt(mtid);
 820
 821        /* Print number of CPUs */
 822        c_cpus = s_cpus = 0;
 823        for (cpu = 0; cpu < info->combined; cpu++) {
 824                if (sclp.has_core_type &&
 825                    info->core[cpu].type != boot_core_type)
 826                        continue;
 827                if (cpu < info->configured)
 828                        c_cpus += smp_cpu_mtid + 1;
 829                else
 830                        s_cpus += smp_cpu_mtid + 1;
 831        }
 832        pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 833
 834        /* Add CPUs present at boot */
 835        get_online_cpus();
 836        __smp_rescan_cpus(info, true);
 837        put_online_cpus();
 838        memblock_free_early((unsigned long)info, sizeof(*info));
 839}
 840
 841static void smp_init_secondary(void)
 842{
 843        int cpu = smp_processor_id();
 844
 845        S390_lowcore.last_update_clock = get_tod_clock();
 846        restore_access_regs(S390_lowcore.access_regs_save_area);
 847        set_cpu_flag(CIF_ASCE_PRIMARY);
 848        set_cpu_flag(CIF_ASCE_SECONDARY);
 849        cpu_init();
 850        preempt_disable();
 851        init_cpu_timer();
 852        vtime_init();
 853        pfault_init();
 854        notify_cpu_starting(smp_processor_id());
 855        if (topology_cpu_dedicated(cpu))
 856                set_cpu_flag(CIF_DEDICATED_CPU);
 857        else
 858                clear_cpu_flag(CIF_DEDICATED_CPU);
 859        set_cpu_online(smp_processor_id(), true);
 860        inc_irq_stat(CPU_RST);
 861        local_irq_enable();
 862        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 863}
 864
 865/*
 866 *      Activate a secondary processor.
 867 */
 868static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
 869{
 870        S390_lowcore.restart_stack = (unsigned long) restart_stack;
 871        S390_lowcore.restart_fn = (unsigned long) do_restart;
 872        S390_lowcore.restart_data = 0;
 873        S390_lowcore.restart_source = -1UL;
 874        __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 875        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 876        CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
 877}
 878
 879/* Upping and downing of CPUs */
 880int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 881{
 882        struct pcpu *pcpu;
 883        int base, i, rc;
 884
 885        pcpu = pcpu_devices + cpu;
 886        if (pcpu->state != CPU_STATE_CONFIGURED)
 887                return -EIO;
 888        base = smp_get_base_cpu(cpu);
 889        for (i = 0; i <= smp_cpu_mtid; i++) {
 890                if (base + i < nr_cpu_ids)
 891                        if (cpu_online(base + i))
 892                                break;
 893        }
 894        /*
 895         * If this is the first CPU of the core to get online
 896         * do an initial CPU reset.
 897         */
 898        if (i > smp_cpu_mtid &&
 899            pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 900            SIGP_CC_ORDER_CODE_ACCEPTED)
 901                return -EIO;
 902
 903        rc = pcpu_alloc_lowcore(pcpu, cpu);
 904        if (rc)
 905                return rc;
 906        pcpu_prepare_secondary(pcpu, cpu);
 907        pcpu_attach_task(pcpu, tidle);
 908        pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 909        /* Wait until cpu puts itself in the online & active maps */
 910        while (!cpu_online(cpu))
 911                cpu_relax();
 912        return 0;
 913}
 914
 915static unsigned int setup_possible_cpus __initdata;
 916
 917static int __init _setup_possible_cpus(char *s)
 918{
 919        get_option(&s, &setup_possible_cpus);
 920        return 0;
 921}
 922early_param("possible_cpus", _setup_possible_cpus);
 923
 924int __cpu_disable(void)
 925{
 926        unsigned long cregs[16];
 927
 928        /* Handle possible pending IPIs */
 929        smp_handle_ext_call();
 930        set_cpu_online(smp_processor_id(), false);
 931        /* Disable pseudo page faults on this cpu. */
 932        pfault_fini();
 933        /* Disable interrupt sources via control register. */
 934        __ctl_store(cregs, 0, 15);
 935        cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
 936        cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
 937        cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
 938        __ctl_load(cregs, 0, 15);
 939        clear_cpu_flag(CIF_NOHZ_DELAY);
 940        return 0;
 941}
 942
 943void __cpu_die(unsigned int cpu)
 944{
 945        struct pcpu *pcpu;
 946
 947        /* Wait until target cpu is down */
 948        pcpu = pcpu_devices + cpu;
 949        while (!pcpu_stopped(pcpu))
 950                cpu_relax();
 951        pcpu_free_lowcore(pcpu);
 952        cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 953        cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 954}
 955
 956void __noreturn cpu_die(void)
 957{
 958        idle_task_exit();
 959        __bpon();
 960        pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 961        for (;;) ;
 962}
 963
 964void __init smp_fill_possible_mask(void)
 965{
 966        unsigned int possible, sclp_max, cpu;
 967
 968        sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 969        sclp_max = min(smp_max_threads, sclp_max);
 970        sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 971        possible = setup_possible_cpus ?: nr_cpu_ids;
 972        possible = min(possible, sclp_max);
 973        for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 974                set_cpu_possible(cpu, true);
 975}
 976
 977void __init smp_prepare_cpus(unsigned int max_cpus)
 978{
 979        /* request the 0x1201 emergency signal external interrupt */
 980        if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 981                panic("Couldn't request external interrupt 0x1201");
 982        /* request the 0x1202 external call external interrupt */
 983        if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 984                panic("Couldn't request external interrupt 0x1202");
 985}
 986
 987void __init smp_prepare_boot_cpu(void)
 988{
 989        struct pcpu *pcpu = pcpu_devices;
 990
 991        WARN_ON(!cpu_present(0) || !cpu_online(0));
 992        pcpu->state = CPU_STATE_CONFIGURED;
 993        pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
 994        S390_lowcore.percpu_offset = __per_cpu_offset[0];
 995        smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 996}
 997
 998void __init smp_cpus_done(unsigned int max_cpus)
 999{
1000}
1001
1002void __init smp_setup_processor_id(void)
1003{
1004        pcpu_devices[0].address = stap();
1005        S390_lowcore.cpu_nr = 0;
1006        S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1007        S390_lowcore.spinlock_index = 0;
1008}
1009
1010/*
1011 * the frequency of the profiling timer can be changed
1012 * by writing a multiplier value into /proc/profile.
1013 *
1014 * usually you want to run this on all CPUs ;)
1015 */
1016int setup_profiling_timer(unsigned int multiplier)
1017{
1018        return 0;
1019}
1020
1021static ssize_t cpu_configure_show(struct device *dev,
1022                                  struct device_attribute *attr, char *buf)
1023{
1024        ssize_t count;
1025
1026        mutex_lock(&smp_cpu_state_mutex);
1027        count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1028        mutex_unlock(&smp_cpu_state_mutex);
1029        return count;
1030}
1031
1032static ssize_t cpu_configure_store(struct device *dev,
1033                                   struct device_attribute *attr,
1034                                   const char *buf, size_t count)
1035{
1036        struct pcpu *pcpu;
1037        int cpu, val, rc, i;
1038        char delim;
1039
1040        if (sscanf(buf, "%d %c", &val, &delim) != 1)
1041                return -EINVAL;
1042        if (val != 0 && val != 1)
1043                return -EINVAL;
1044        get_online_cpus();
1045        mutex_lock(&smp_cpu_state_mutex);
1046        rc = -EBUSY;
1047        /* disallow configuration changes of online cpus and cpu 0 */
1048        cpu = dev->id;
1049        cpu = smp_get_base_cpu(cpu);
1050        if (cpu == 0)
1051                goto out;
1052        for (i = 0; i <= smp_cpu_mtid; i++)
1053                if (cpu_online(cpu + i))
1054                        goto out;
1055        pcpu = pcpu_devices + cpu;
1056        rc = 0;
1057        switch (val) {
1058        case 0:
1059                if (pcpu->state != CPU_STATE_CONFIGURED)
1060                        break;
1061                rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1062                if (rc)
1063                        break;
1064                for (i = 0; i <= smp_cpu_mtid; i++) {
1065                        if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1066                                continue;
1067                        pcpu[i].state = CPU_STATE_STANDBY;
1068                        smp_cpu_set_polarization(cpu + i,
1069                                                 POLARIZATION_UNKNOWN);
1070                }
1071                topology_expect_change();
1072                break;
1073        case 1:
1074                if (pcpu->state != CPU_STATE_STANDBY)
1075                        break;
1076                rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1077                if (rc)
1078                        break;
1079                for (i = 0; i <= smp_cpu_mtid; i++) {
1080                        if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1081                                continue;
1082                        pcpu[i].state = CPU_STATE_CONFIGURED;
1083                        smp_cpu_set_polarization(cpu + i,
1084                                                 POLARIZATION_UNKNOWN);
1085                }
1086                topology_expect_change();
1087                break;
1088        default:
1089                break;
1090        }
1091out:
1092        mutex_unlock(&smp_cpu_state_mutex);
1093        put_online_cpus();
1094        return rc ? rc : count;
1095}
1096static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1097
1098static ssize_t show_cpu_address(struct device *dev,
1099                                struct device_attribute *attr, char *buf)
1100{
1101        return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1102}
1103static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1104
1105static struct attribute *cpu_common_attrs[] = {
1106        &dev_attr_configure.attr,
1107        &dev_attr_address.attr,
1108        NULL,
1109};
1110
1111static struct attribute_group cpu_common_attr_group = {
1112        .attrs = cpu_common_attrs,
1113};
1114
1115static struct attribute *cpu_online_attrs[] = {
1116        &dev_attr_idle_count.attr,
1117        &dev_attr_idle_time_us.attr,
1118        NULL,
1119};
1120
1121static struct attribute_group cpu_online_attr_group = {
1122        .attrs = cpu_online_attrs,
1123};
1124
1125static int smp_cpu_online(unsigned int cpu)
1126{
1127        struct device *s = &per_cpu(cpu_device, cpu)->dev;
1128
1129        return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1130}
1131static int smp_cpu_pre_down(unsigned int cpu)
1132{
1133        struct device *s = &per_cpu(cpu_device, cpu)->dev;
1134
1135        sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1136        return 0;
1137}
1138
1139static int smp_add_present_cpu(int cpu)
1140{
1141        struct device *s;
1142        struct cpu *c;
1143        int rc;
1144
1145        c = kzalloc(sizeof(*c), GFP_KERNEL);
1146        if (!c)
1147                return -ENOMEM;
1148        per_cpu(cpu_device, cpu) = c;
1149        s = &c->dev;
1150        c->hotpluggable = 1;
1151        rc = register_cpu(c, cpu);
1152        if (rc)
1153                goto out;
1154        rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1155        if (rc)
1156                goto out_cpu;
1157        rc = topology_cpu_init(c);
1158        if (rc)
1159                goto out_topology;
1160        return 0;
1161
1162out_topology:
1163        sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1164out_cpu:
1165        unregister_cpu(c);
1166out:
1167        return rc;
1168}
1169
1170int __ref smp_rescan_cpus(void)
1171{
1172        struct sclp_core_info *info;
1173        int nr;
1174
1175        info = kzalloc(sizeof(*info), GFP_KERNEL);
1176        if (!info)
1177                return -ENOMEM;
1178        smp_get_core_info(info, 0);
1179        get_online_cpus();
1180        mutex_lock(&smp_cpu_state_mutex);
1181        nr = __smp_rescan_cpus(info, false);
1182        mutex_unlock(&smp_cpu_state_mutex);
1183        put_online_cpus();
1184        kfree(info);
1185        if (nr)
1186                topology_schedule_update();
1187        return 0;
1188}
1189
1190static ssize_t __ref rescan_store(struct device *dev,
1191                                  struct device_attribute *attr,
1192                                  const char *buf,
1193                                  size_t count)
1194{
1195        int rc;
1196
1197        rc = lock_device_hotplug_sysfs();
1198        if (rc)
1199                return rc;
1200        rc = smp_rescan_cpus();
1201        unlock_device_hotplug();
1202        return rc ? rc : count;
1203}
1204static DEVICE_ATTR_WO(rescan);
1205
1206static int __init s390_smp_init(void)
1207{
1208        int cpu, rc = 0;
1209
1210        rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1211        if (rc)
1212                return rc;
1213        for_each_present_cpu(cpu) {
1214                rc = smp_add_present_cpu(cpu);
1215                if (rc)
1216                        goto out;
1217        }
1218
1219        rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1220                               smp_cpu_online, smp_cpu_pre_down);
1221        rc = rc <= 0 ? rc : 0;
1222out:
1223        return rc;
1224}
1225subsys_initcall(s390_smp_init);
1226