linux/arch/x86/kernel/uprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *      Srikar Dronamraju
   8 *      Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP           0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL         0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF         0x04
  31
  32#define UPROBE_FIX_RIP_SI       0x08
  33#define UPROBE_FIX_RIP_DI       0x10
  34#define UPROBE_FIX_RIP_BX       0x20
  35#define UPROBE_FIX_RIP_MASK     \
  36        (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define UPROBE_TRAP_NR          UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)           ((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)           ((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)           ((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)         X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47        (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48          (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49          (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50          (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51         << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *      (why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *      Normally not used in userspace, but would execute if used.
  73 *      Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *      We hesitate to run them under single step since kernel's handling
  75 *      of userspace single-stepping (TF flag) is fragile.
  76 *      We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *      on the same grounds that they are never used.
  78 * cd - int N.
  79 *      Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *      cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *      Not supported since kernel's handling of userspace single-stepping
  82 *      (TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88        /*      ----------------------------------------------         */
  89        W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90        W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91        W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92        W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97        W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102        W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103        W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104        W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105        /*      ----------------------------------------------         */
 106        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32   NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *      Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *      cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *      Not supported since kernel's handling of userspace single-stepping
 144 *      (TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150        /*      ----------------------------------------------         */
 151        W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152        W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153        W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154        W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157        W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159        W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164        W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165        W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166        W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167        /*      ----------------------------------------------         */
 168        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64   NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *      Also encodes tons of other system insns if mod=11.
 179 *      Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *      Note: with prefixes, these two opcodes are
 193 *      extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *      {rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *      Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200        /*      ----------------------------------------------         */
 201        W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202        W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203        W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204        W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209        W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214        W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215        W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216        W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217        /*      ----------------------------------------------         */
 218        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 220#undef W
 221
 222/*
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *      but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 258        int i;
 259
 260        for (i = 0; i < insn->prefixes.nbytes; i++) {
 261                insn_attr_t attr;
 262
 263                attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
 264                switch (attr) {
 265                case INAT_MAKE_PREFIX(INAT_PFX_ES):
 266                case INAT_MAKE_PREFIX(INAT_PFX_CS):
 267                case INAT_MAKE_PREFIX(INAT_PFX_DS):
 268                case INAT_MAKE_PREFIX(INAT_PFX_SS):
 269                case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 270                        return true;
 271                }
 272        }
 273        return false;
 274}
 275
 276static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 277{
 278        u32 volatile *good_insns;
 279
 280        insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
 281        /* has the side-effect of processing the entire instruction */
 282        insn_get_length(insn);
 283        if (!insn_complete(insn))
 284                return -ENOEXEC;
 285
 286        if (is_prefix_bad(insn))
 287                return -ENOTSUPP;
 288
 289        /* We should not singlestep on the exception masking instructions */
 290        if (insn_masking_exception(insn))
 291                return -ENOTSUPP;
 292
 293        if (x86_64)
 294                good_insns = good_insns_64;
 295        else
 296                good_insns = good_insns_32;
 297
 298        if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 299                return 0;
 300
 301        if (insn->opcode.nbytes == 2) {
 302                if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 303                        return 0;
 304        }
 305
 306        return -ENOTSUPP;
 307}
 308
 309#ifdef CONFIG_X86_64
 310/*
 311 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 312 * immediately.  Otherwise, rewrite the instruction so that it accesses
 313 * its memory operand indirectly through a scratch register.  Set
 314 * defparam->fixups accordingly. (The contents of the scratch register
 315 * will be saved before we single-step the modified instruction,
 316 * and restored afterward).
 317 *
 318 * We do this because a rip-relative instruction can access only a
 319 * relatively small area (+/- 2 GB from the instruction), and the XOL
 320 * area typically lies beyond that area.  At least for instructions
 321 * that store to memory, we can't execute the original instruction
 322 * and "fix things up" later, because the misdirected store could be
 323 * disastrous.
 324 *
 325 * Some useful facts about rip-relative instructions:
 326 *
 327 *  - There's always a modrm byte with bit layout "00 reg 101".
 328 *  - There's never a SIB byte.
 329 *  - The displacement is always 4 bytes.
 330 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 331 *    has no effect on rip-relative mode. It doesn't make modrm byte
 332 *    with r/m=101 refer to register 1101 = R13.
 333 */
 334static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 335{
 336        u8 *cursor;
 337        u8 reg;
 338        u8 reg2;
 339
 340        if (!insn_rip_relative(insn))
 341                return;
 342
 343        /*
 344         * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 345         * Clear REX.b bit (extension of MODRM.rm field):
 346         * we want to encode low numbered reg, not r8+.
 347         */
 348        if (insn->rex_prefix.nbytes) {
 349                cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 350                /* REX byte has 0100wrxb layout, clearing REX.b bit */
 351                *cursor &= 0xfe;
 352        }
 353        /*
 354         * Similar treatment for VEX3/EVEX prefix.
 355         * TODO: add XOP treatment when insn decoder supports them
 356         */
 357        if (insn->vex_prefix.nbytes >= 3) {
 358                /*
 359                 * vex2:     c5    rvvvvLpp   (has no b bit)
 360                 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 361                 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 362                 * Setting VEX3.b (setting because it has inverted meaning).
 363                 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 364                 * is the 4th bit of MODRM.rm, and needs the same treatment.
 365                 * For VEX3-encoded insns, VEX3.x value has no effect in
 366                 * non-SIB encoding, the change is superfluous but harmless.
 367                 */
 368                cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 369                *cursor |= 0x60;
 370        }
 371
 372        /*
 373         * Convert from rip-relative addressing to register-relative addressing
 374         * via a scratch register.
 375         *
 376         * This is tricky since there are insns with modrm byte
 377         * which also use registers not encoded in modrm byte:
 378         * [i]div/[i]mul: implicitly use dx:ax
 379         * shift ops: implicitly use cx
 380         * cmpxchg: implicitly uses ax
 381         * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 382         *   Encoding: 0f c7/1 modrm
 383         *   The code below thinks that reg=1 (cx), chooses si as scratch.
 384         * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 385         *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 386         *   Example where none of bx,cx,dx can be used as scratch reg:
 387         *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 388         * [v]pcmpistri: implicitly uses cx, xmm0
 389         * [v]pcmpistrm: implicitly uses xmm0
 390         * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 391         * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 392         *   Evil SSE4.2 string comparison ops from hell.
 393         * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 394         *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 395         *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 396         *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 397         *   and that it can have only register operands, not mem
 398         *   (its modrm byte must have mode=11).
 399         *   If these restrictions will ever be lifted,
 400         *   we'll need code to prevent selection of di as scratch reg!
 401         *
 402         * Summary: I don't know any insns with modrm byte which
 403         * use SI register implicitly. DI register is used only
 404         * by one insn (maskmovq) and BX register is used
 405         * only by one too (cmpxchg8b).
 406         * BP is stack-segment based (may be a problem?).
 407         * AX, DX, CX are off-limits (many implicit users).
 408         * SP is unusable (it's stack pointer - think about "pop mem";
 409         * also, rsp+disp32 needs sib encoding -> insn length change).
 410         */
 411
 412        reg = MODRM_REG(insn);  /* Fetch modrm.reg */
 413        reg2 = 0xff;            /* Fetch vex.vvvv */
 414        if (insn->vex_prefix.nbytes)
 415                reg2 = insn->vex_prefix.bytes[2];
 416        /*
 417         * TODO: add XOP vvvv reading.
 418         *
 419         * vex.vvvv field is in bits 6-3, bits are inverted.
 420         * But in 32-bit mode, high-order bit may be ignored.
 421         * Therefore, let's consider only 3 low-order bits.
 422         */
 423        reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 424        /*
 425         * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 426         *
 427         * Choose scratch reg. Order is important: must not select bx
 428         * if we can use si (cmpxchg8b case!)
 429         */
 430        if (reg != 6 && reg2 != 6) {
 431                reg2 = 6;
 432                auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 433        } else if (reg != 7 && reg2 != 7) {
 434                reg2 = 7;
 435                auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 436                /* TODO (paranoia): force maskmovq to not use di */
 437        } else {
 438                reg2 = 3;
 439                auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 440        }
 441        /*
 442         * Point cursor at the modrm byte.  The next 4 bytes are the
 443         * displacement.  Beyond the displacement, for some instructions,
 444         * is the immediate operand.
 445         */
 446        cursor = auprobe->insn + insn_offset_modrm(insn);
 447        /*
 448         * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 449         * 89 05 disp32  mov %eax,disp32(%rip) becomes
 450         * 89 86 disp32  mov %eax,disp32(%rsi)
 451         */
 452        *cursor = 0x80 | (reg << 3) | reg2;
 453}
 454
 455static inline unsigned long *
 456scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 457{
 458        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 459                return &regs->si;
 460        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 461                return &regs->di;
 462        return &regs->bx;
 463}
 464
 465/*
 466 * If we're emulating a rip-relative instruction, save the contents
 467 * of the scratch register and store the target address in that register.
 468 */
 469static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 470{
 471        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 472                struct uprobe_task *utask = current->utask;
 473                unsigned long *sr = scratch_reg(auprobe, regs);
 474
 475                utask->autask.saved_scratch_register = *sr;
 476                *sr = utask->vaddr + auprobe->defparam.ilen;
 477        }
 478}
 479
 480static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 481{
 482        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 483                struct uprobe_task *utask = current->utask;
 484                unsigned long *sr = scratch_reg(auprobe, regs);
 485
 486                *sr = utask->autask.saved_scratch_register;
 487        }
 488}
 489#else /* 32-bit: */
 490/*
 491 * No RIP-relative addressing on 32-bit
 492 */
 493static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 494{
 495}
 496static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 497{
 498}
 499static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 500{
 501}
 502#endif /* CONFIG_X86_64 */
 503
 504struct uprobe_xol_ops {
 505        bool    (*emulate)(struct arch_uprobe *, struct pt_regs *);
 506        int     (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 507        int     (*post_xol)(struct arch_uprobe *, struct pt_regs *);
 508        void    (*abort)(struct arch_uprobe *, struct pt_regs *);
 509};
 510
 511static inline int sizeof_long(struct pt_regs *regs)
 512{
 513        /*
 514         * Check registers for mode as in_xxx_syscall() does not apply here.
 515         */
 516        return user_64bit_mode(regs) ? 8 : 4;
 517}
 518
 519static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 520{
 521        riprel_pre_xol(auprobe, regs);
 522        return 0;
 523}
 524
 525static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 526{
 527        unsigned long new_sp = regs->sp - sizeof_long(regs);
 528
 529        if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 530                return -EFAULT;
 531
 532        regs->sp = new_sp;
 533        return 0;
 534}
 535
 536/*
 537 * We have to fix things up as follows:
 538 *
 539 * Typically, the new ip is relative to the copied instruction.  We need
 540 * to make it relative to the original instruction (FIX_IP).  Exceptions
 541 * are return instructions and absolute or indirect jump or call instructions.
 542 *
 543 * If the single-stepped instruction was a call, the return address that
 544 * is atop the stack is the address following the copied instruction.  We
 545 * need to make it the address following the original instruction (FIX_CALL).
 546 *
 547 * If the original instruction was a rip-relative instruction such as
 548 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 549 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 550 * We need to restore the contents of the scratch register
 551 * (FIX_RIP_reg).
 552 */
 553static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 554{
 555        struct uprobe_task *utask = current->utask;
 556
 557        riprel_post_xol(auprobe, regs);
 558        if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 559                long correction = utask->vaddr - utask->xol_vaddr;
 560                regs->ip += correction;
 561        } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 562                regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 563                if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 564                        return -ERESTART;
 565        }
 566        /* popf; tell the caller to not touch TF */
 567        if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 568                utask->autask.saved_tf = true;
 569
 570        return 0;
 571}
 572
 573static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 574{
 575        riprel_post_xol(auprobe, regs);
 576}
 577
 578static const struct uprobe_xol_ops default_xol_ops = {
 579        .pre_xol  = default_pre_xol_op,
 580        .post_xol = default_post_xol_op,
 581        .abort    = default_abort_op,
 582};
 583
 584static bool branch_is_call(struct arch_uprobe *auprobe)
 585{
 586        return auprobe->branch.opc1 == 0xe8;
 587}
 588
 589#define CASE_COND                                       \
 590        COND(70, 71, XF(OF))                            \
 591        COND(72, 73, XF(CF))                            \
 592        COND(74, 75, XF(ZF))                            \
 593        COND(78, 79, XF(SF))                            \
 594        COND(7a, 7b, XF(PF))                            \
 595        COND(76, 77, XF(CF) || XF(ZF))                  \
 596        COND(7c, 7d, XF(SF) != XF(OF))                  \
 597        COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 598
 599#define COND(op_y, op_n, expr)                          \
 600        case 0x ## op_y: DO((expr) != 0)                \
 601        case 0x ## op_n: DO((expr) == 0)
 602
 603#define XF(xf)  (!!(flags & X86_EFLAGS_ ## xf))
 604
 605static bool is_cond_jmp_opcode(u8 opcode)
 606{
 607        switch (opcode) {
 608        #define DO(expr)        \
 609                return true;
 610        CASE_COND
 611        #undef  DO
 612
 613        default:
 614                return false;
 615        }
 616}
 617
 618static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 619{
 620        unsigned long flags = regs->flags;
 621
 622        switch (auprobe->branch.opc1) {
 623        #define DO(expr)        \
 624                return expr;
 625        CASE_COND
 626        #undef  DO
 627
 628        default:        /* not a conditional jmp */
 629                return true;
 630        }
 631}
 632
 633#undef  XF
 634#undef  COND
 635#undef  CASE_COND
 636
 637static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 638{
 639        unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 640        unsigned long offs = (long)auprobe->branch.offs;
 641
 642        if (branch_is_call(auprobe)) {
 643                /*
 644                 * If it fails we execute this (mangled, see the comment in
 645                 * branch_clear_offset) insn out-of-line. In the likely case
 646                 * this should trigger the trap, and the probed application
 647                 * should die or restart the same insn after it handles the
 648                 * signal, arch_uprobe_post_xol() won't be even called.
 649                 *
 650                 * But there is corner case, see the comment in ->post_xol().
 651                 */
 652                if (emulate_push_stack(regs, new_ip))
 653                        return false;
 654        } else if (!check_jmp_cond(auprobe, regs)) {
 655                offs = 0;
 656        }
 657
 658        regs->ip = new_ip + offs;
 659        return true;
 660}
 661
 662static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 663{
 664        unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 665
 666        if (emulate_push_stack(regs, *src_ptr))
 667                return false;
 668        regs->ip += auprobe->push.ilen;
 669        return true;
 670}
 671
 672static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 673{
 674        BUG_ON(!branch_is_call(auprobe));
 675        /*
 676         * We can only get here if branch_emulate_op() failed to push the ret
 677         * address _and_ another thread expanded our stack before the (mangled)
 678         * "call" insn was executed out-of-line. Just restore ->sp and restart.
 679         * We could also restore ->ip and try to call branch_emulate_op() again.
 680         */
 681        regs->sp += sizeof_long(regs);
 682        return -ERESTART;
 683}
 684
 685static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 686{
 687        /*
 688         * Turn this insn into "call 1f; 1:", this is what we will execute
 689         * out-of-line if ->emulate() fails. We only need this to generate
 690         * a trap, so that the probed task receives the correct signal with
 691         * the properly filled siginfo.
 692         *
 693         * But see the comment in ->post_xol(), in the unlikely case it can
 694         * succeed. So we need to ensure that the new ->ip can not fall into
 695         * the non-canonical area and trigger #GP.
 696         *
 697         * We could turn it into (say) "pushf", but then we would need to
 698         * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 699         * of ->insn[] for set_orig_insn().
 700         */
 701        memset(auprobe->insn + insn_offset_immediate(insn),
 702                0, insn->immediate.nbytes);
 703}
 704
 705static const struct uprobe_xol_ops branch_xol_ops = {
 706        .emulate  = branch_emulate_op,
 707        .post_xol = branch_post_xol_op,
 708};
 709
 710static const struct uprobe_xol_ops push_xol_ops = {
 711        .emulate  = push_emulate_op,
 712};
 713
 714/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 715static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 716{
 717        u8 opc1 = OPCODE1(insn);
 718        int i;
 719
 720        switch (opc1) {
 721        case 0xeb:      /* jmp 8 */
 722        case 0xe9:      /* jmp 32 */
 723        case 0x90:      /* prefix* + nop; same as jmp with .offs = 0 */
 724                break;
 725
 726        case 0xe8:      /* call relative */
 727                branch_clear_offset(auprobe, insn);
 728                break;
 729
 730        case 0x0f:
 731                if (insn->opcode.nbytes != 2)
 732                        return -ENOSYS;
 733                /*
 734                 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 735                 * OPCODE1() of the "short" jmp which checks the same condition.
 736                 */
 737                opc1 = OPCODE2(insn) - 0x10;
 738                /* fall through */
 739        default:
 740                if (!is_cond_jmp_opcode(opc1))
 741                        return -ENOSYS;
 742        }
 743
 744        /*
 745         * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 746         * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 747         * No one uses these insns, reject any branch insns with such prefix.
 748         */
 749        for (i = 0; i < insn->prefixes.nbytes; i++) {
 750                if (insn->prefixes.bytes[i] == 0x66)
 751                        return -ENOTSUPP;
 752        }
 753
 754        auprobe->branch.opc1 = opc1;
 755        auprobe->branch.ilen = insn->length;
 756        auprobe->branch.offs = insn->immediate.value;
 757
 758        auprobe->ops = &branch_xol_ops;
 759        return 0;
 760}
 761
 762/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 763static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 764{
 765        u8 opc1 = OPCODE1(insn), reg_offset = 0;
 766
 767        if (opc1 < 0x50 || opc1 > 0x57)
 768                return -ENOSYS;
 769
 770        if (insn->length > 2)
 771                return -ENOSYS;
 772        if (insn->length == 2) {
 773                /* only support rex_prefix 0x41 (x64 only) */
 774#ifdef CONFIG_X86_64
 775                if (insn->rex_prefix.nbytes != 1 ||
 776                    insn->rex_prefix.bytes[0] != 0x41)
 777                        return -ENOSYS;
 778
 779                switch (opc1) {
 780                case 0x50:
 781                        reg_offset = offsetof(struct pt_regs, r8);
 782                        break;
 783                case 0x51:
 784                        reg_offset = offsetof(struct pt_regs, r9);
 785                        break;
 786                case 0x52:
 787                        reg_offset = offsetof(struct pt_regs, r10);
 788                        break;
 789                case 0x53:
 790                        reg_offset = offsetof(struct pt_regs, r11);
 791                        break;
 792                case 0x54:
 793                        reg_offset = offsetof(struct pt_regs, r12);
 794                        break;
 795                case 0x55:
 796                        reg_offset = offsetof(struct pt_regs, r13);
 797                        break;
 798                case 0x56:
 799                        reg_offset = offsetof(struct pt_regs, r14);
 800                        break;
 801                case 0x57:
 802                        reg_offset = offsetof(struct pt_regs, r15);
 803                        break;
 804                }
 805#else
 806                return -ENOSYS;
 807#endif
 808        } else {
 809                switch (opc1) {
 810                case 0x50:
 811                        reg_offset = offsetof(struct pt_regs, ax);
 812                        break;
 813                case 0x51:
 814                        reg_offset = offsetof(struct pt_regs, cx);
 815                        break;
 816                case 0x52:
 817                        reg_offset = offsetof(struct pt_regs, dx);
 818                        break;
 819                case 0x53:
 820                        reg_offset = offsetof(struct pt_regs, bx);
 821                        break;
 822                case 0x54:
 823                        reg_offset = offsetof(struct pt_regs, sp);
 824                        break;
 825                case 0x55:
 826                        reg_offset = offsetof(struct pt_regs, bp);
 827                        break;
 828                case 0x56:
 829                        reg_offset = offsetof(struct pt_regs, si);
 830                        break;
 831                case 0x57:
 832                        reg_offset = offsetof(struct pt_regs, di);
 833                        break;
 834                }
 835        }
 836
 837        auprobe->push.reg_offset = reg_offset;
 838        auprobe->push.ilen = insn->length;
 839        auprobe->ops = &push_xol_ops;
 840        return 0;
 841}
 842
 843/**
 844 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 845 * @auprobe: the probepoint information.
 846 * @mm: the probed address space.
 847 * @addr: virtual address at which to install the probepoint
 848 * Return 0 on success or a -ve number on error.
 849 */
 850int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 851{
 852        struct insn insn;
 853        u8 fix_ip_or_call = UPROBE_FIX_IP;
 854        int ret;
 855
 856        ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 857        if (ret)
 858                return ret;
 859
 860        ret = branch_setup_xol_ops(auprobe, &insn);
 861        if (ret != -ENOSYS)
 862                return ret;
 863
 864        ret = push_setup_xol_ops(auprobe, &insn);
 865        if (ret != -ENOSYS)
 866                return ret;
 867
 868        /*
 869         * Figure out which fixups default_post_xol_op() will need to perform,
 870         * and annotate defparam->fixups accordingly.
 871         */
 872        switch (OPCODE1(&insn)) {
 873        case 0x9d:              /* popf */
 874                auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 875                break;
 876        case 0xc3:              /* ret or lret -- ip is correct */
 877        case 0xcb:
 878        case 0xc2:
 879        case 0xca:
 880        case 0xea:              /* jmp absolute -- ip is correct */
 881                fix_ip_or_call = 0;
 882                break;
 883        case 0x9a:              /* call absolute - Fix return addr, not ip */
 884                fix_ip_or_call = UPROBE_FIX_CALL;
 885                break;
 886        case 0xff:
 887                switch (MODRM_REG(&insn)) {
 888                case 2: case 3:                 /* call or lcall, indirect */
 889                        fix_ip_or_call = UPROBE_FIX_CALL;
 890                        break;
 891                case 4: case 5:                 /* jmp or ljmp, indirect */
 892                        fix_ip_or_call = 0;
 893                        break;
 894                }
 895                /* fall through */
 896        default:
 897                riprel_analyze(auprobe, &insn);
 898        }
 899
 900        auprobe->defparam.ilen = insn.length;
 901        auprobe->defparam.fixups |= fix_ip_or_call;
 902
 903        auprobe->ops = &default_xol_ops;
 904        return 0;
 905}
 906
 907/*
 908 * arch_uprobe_pre_xol - prepare to execute out of line.
 909 * @auprobe: the probepoint information.
 910 * @regs: reflects the saved user state of current task.
 911 */
 912int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 913{
 914        struct uprobe_task *utask = current->utask;
 915
 916        if (auprobe->ops->pre_xol) {
 917                int err = auprobe->ops->pre_xol(auprobe, regs);
 918                if (err)
 919                        return err;
 920        }
 921
 922        regs->ip = utask->xol_vaddr;
 923        utask->autask.saved_trap_nr = current->thread.trap_nr;
 924        current->thread.trap_nr = UPROBE_TRAP_NR;
 925
 926        utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 927        regs->flags |= X86_EFLAGS_TF;
 928        if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 929                set_task_blockstep(current, false);
 930
 931        return 0;
 932}
 933
 934/*
 935 * If xol insn itself traps and generates a signal(Say,
 936 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 937 * instruction jumps back to its own address. It is assumed that anything
 938 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 939 *
 940 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 941 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 942 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 943 */
 944bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 945{
 946        if (t->thread.trap_nr != UPROBE_TRAP_NR)
 947                return true;
 948
 949        return false;
 950}
 951
 952/*
 953 * Called after single-stepping. To avoid the SMP problems that can
 954 * occur when we temporarily put back the original opcode to
 955 * single-step, we single-stepped a copy of the instruction.
 956 *
 957 * This function prepares to resume execution after the single-step.
 958 */
 959int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 960{
 961        struct uprobe_task *utask = current->utask;
 962        bool send_sigtrap = utask->autask.saved_tf;
 963        int err = 0;
 964
 965        WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 966        current->thread.trap_nr = utask->autask.saved_trap_nr;
 967
 968        if (auprobe->ops->post_xol) {
 969                err = auprobe->ops->post_xol(auprobe, regs);
 970                if (err) {
 971                        /*
 972                         * Restore ->ip for restart or post mortem analysis.
 973                         * ->post_xol() must not return -ERESTART unless this
 974                         * is really possible.
 975                         */
 976                        regs->ip = utask->vaddr;
 977                        if (err == -ERESTART)
 978                                err = 0;
 979                        send_sigtrap = false;
 980                }
 981        }
 982        /*
 983         * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 984         * so we can get an extra SIGTRAP if we do not clear TF. We need
 985         * to examine the opcode to make it right.
 986         */
 987        if (send_sigtrap)
 988                send_sig(SIGTRAP, current, 0);
 989
 990        if (!utask->autask.saved_tf)
 991                regs->flags &= ~X86_EFLAGS_TF;
 992
 993        return err;
 994}
 995
 996/* callback routine for handling exceptions. */
 997int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 998{
 999        struct die_args *args = data;
1000        struct pt_regs *regs = args->regs;
1001        int ret = NOTIFY_DONE;
1002
1003        /* We are only interested in userspace traps */
1004        if (regs && !user_mode(regs))
1005                return NOTIFY_DONE;
1006
1007        switch (val) {
1008        case DIE_INT3:
1009                if (uprobe_pre_sstep_notifier(regs))
1010                        ret = NOTIFY_STOP;
1011
1012                break;
1013
1014        case DIE_DEBUG:
1015                if (uprobe_post_sstep_notifier(regs))
1016                        ret = NOTIFY_STOP;
1017
1018        default:
1019                break;
1020        }
1021
1022        return ret;
1023}
1024
1025/*
1026 * This function gets called when XOL instruction either gets trapped or
1027 * the thread has a fatal signal. Reset the instruction pointer to its
1028 * probed address for the potential restart or for post mortem analysis.
1029 */
1030void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1031{
1032        struct uprobe_task *utask = current->utask;
1033
1034        if (auprobe->ops->abort)
1035                auprobe->ops->abort(auprobe, regs);
1036
1037        current->thread.trap_nr = utask->autask.saved_trap_nr;
1038        regs->ip = utask->vaddr;
1039        /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1040        if (!utask->autask.saved_tf)
1041                regs->flags &= ~X86_EFLAGS_TF;
1042}
1043
1044static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1045{
1046        if (auprobe->ops->emulate)
1047                return auprobe->ops->emulate(auprobe, regs);
1048        return false;
1049}
1050
1051bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1052{
1053        bool ret = __skip_sstep(auprobe, regs);
1054        if (ret && (regs->flags & X86_EFLAGS_TF))
1055                send_sig(SIGTRAP, current, 0);
1056        return ret;
1057}
1058
1059unsigned long
1060arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1061{
1062        int rasize = sizeof_long(regs), nleft;
1063        unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1064
1065        if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1066                return -1;
1067
1068        /* check whether address has been already hijacked */
1069        if (orig_ret_vaddr == trampoline_vaddr)
1070                return orig_ret_vaddr;
1071
1072        nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1073        if (likely(!nleft))
1074                return orig_ret_vaddr;
1075
1076        if (nleft != rasize) {
1077                pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1078                       current->pid, regs->sp, regs->ip);
1079
1080                force_sig(SIGSEGV);
1081        }
1082
1083        return -1;
1084}
1085
1086bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1087                                struct pt_regs *regs)
1088{
1089        if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1090                return regs->sp < ret->stack;
1091        else
1092                return regs->sp <= ret->stack;
1093}
1094