linux/arch/x86/kvm/cpuid.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include "cpuid.h"
  22#include "lapic.h"
  23#include "mmu.h"
  24#include "trace.h"
  25#include "pmu.h"
  26
  27static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  28{
  29        int feature_bit = 0;
  30        u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  31
  32        xstate_bv &= XFEATURE_MASK_EXTEND;
  33        while (xstate_bv) {
  34                if (xstate_bv & 0x1) {
  35                        u32 eax, ebx, ecx, edx, offset;
  36                        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  37                        offset = compacted ? ret : ebx;
  38                        ret = max(ret, offset + eax);
  39                }
  40
  41                xstate_bv >>= 1;
  42                feature_bit++;
  43        }
  44
  45        return ret;
  46}
  47
  48bool kvm_mpx_supported(void)
  49{
  50        return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
  51                 && kvm_x86_ops->mpx_supported());
  52}
  53EXPORT_SYMBOL_GPL(kvm_mpx_supported);
  54
  55u64 kvm_supported_xcr0(void)
  56{
  57        u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
  58
  59        if (!kvm_mpx_supported())
  60                xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
  61
  62        return xcr0;
  63}
  64
  65#define F feature_bit
  66
  67int kvm_update_cpuid(struct kvm_vcpu *vcpu)
  68{
  69        struct kvm_cpuid_entry2 *best;
  70        struct kvm_lapic *apic = vcpu->arch.apic;
  71
  72        best = kvm_find_cpuid_entry(vcpu, 1, 0);
  73        if (!best)
  74                return 0;
  75
  76        /* Update OSXSAVE bit */
  77        if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
  78                best->ecx &= ~F(OSXSAVE);
  79                if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  80                        best->ecx |= F(OSXSAVE);
  81        }
  82
  83        best->edx &= ~F(APIC);
  84        if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
  85                best->edx |= F(APIC);
  86
  87        if (apic) {
  88                if (best->ecx & F(TSC_DEADLINE_TIMER))
  89                        apic->lapic_timer.timer_mode_mask = 3 << 17;
  90                else
  91                        apic->lapic_timer.timer_mode_mask = 1 << 17;
  92        }
  93
  94        best = kvm_find_cpuid_entry(vcpu, 7, 0);
  95        if (best) {
  96                /* Update OSPKE bit */
  97                if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
  98                        best->ecx &= ~F(OSPKE);
  99                        if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
 100                                best->ecx |= F(OSPKE);
 101                }
 102        }
 103
 104        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 105        if (!best) {
 106                vcpu->arch.guest_supported_xcr0 = 0;
 107                vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 108        } else {
 109                vcpu->arch.guest_supported_xcr0 =
 110                        (best->eax | ((u64)best->edx << 32)) &
 111                        kvm_supported_xcr0();
 112                vcpu->arch.guest_xstate_size = best->ebx =
 113                        xstate_required_size(vcpu->arch.xcr0, false);
 114        }
 115
 116        best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 117        if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
 118                best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 119
 120        /*
 121         * The existing code assumes virtual address is 48-bit or 57-bit in the
 122         * canonical address checks; exit if it is ever changed.
 123         */
 124        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 125        if (best) {
 126                int vaddr_bits = (best->eax & 0xff00) >> 8;
 127
 128                if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 129                        return -EINVAL;
 130        }
 131
 132        best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 133        if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 134                (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 135                best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 136
 137        if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 138                best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 139                if (best) {
 140                        if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
 141                                best->ecx |= F(MWAIT);
 142                        else
 143                                best->ecx &= ~F(MWAIT);
 144                }
 145        }
 146
 147        /* Update physical-address width */
 148        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 149        kvm_mmu_reset_context(vcpu);
 150
 151        kvm_pmu_refresh(vcpu);
 152        return 0;
 153}
 154
 155static int is_efer_nx(void)
 156{
 157        unsigned long long efer = 0;
 158
 159        rdmsrl_safe(MSR_EFER, &efer);
 160        return efer & EFER_NX;
 161}
 162
 163static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 164{
 165        int i;
 166        struct kvm_cpuid_entry2 *e, *entry;
 167
 168        entry = NULL;
 169        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 170                e = &vcpu->arch.cpuid_entries[i];
 171                if (e->function == 0x80000001) {
 172                        entry = e;
 173                        break;
 174                }
 175        }
 176        if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
 177                entry->edx &= ~F(NX);
 178                printk(KERN_INFO "kvm: guest NX capability removed\n");
 179        }
 180}
 181
 182int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 183{
 184        struct kvm_cpuid_entry2 *best;
 185
 186        best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 187        if (!best || best->eax < 0x80000008)
 188                goto not_found;
 189        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 190        if (best)
 191                return best->eax & 0xff;
 192not_found:
 193        return 36;
 194}
 195EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 196
 197/* when an old userspace process fills a new kernel module */
 198int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 199                             struct kvm_cpuid *cpuid,
 200                             struct kvm_cpuid_entry __user *entries)
 201{
 202        int r, i;
 203        struct kvm_cpuid_entry *cpuid_entries = NULL;
 204
 205        r = -E2BIG;
 206        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 207                goto out;
 208        r = -ENOMEM;
 209        if (cpuid->nent) {
 210                cpuid_entries =
 211                        vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
 212                                           cpuid->nent));
 213                if (!cpuid_entries)
 214                        goto out;
 215                r = -EFAULT;
 216                if (copy_from_user(cpuid_entries, entries,
 217                                   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
 218                        goto out;
 219        }
 220        for (i = 0; i < cpuid->nent; i++) {
 221                vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 222                vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 223                vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 224                vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 225                vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 226                vcpu->arch.cpuid_entries[i].index = 0;
 227                vcpu->arch.cpuid_entries[i].flags = 0;
 228                vcpu->arch.cpuid_entries[i].padding[0] = 0;
 229                vcpu->arch.cpuid_entries[i].padding[1] = 0;
 230                vcpu->arch.cpuid_entries[i].padding[2] = 0;
 231        }
 232        vcpu->arch.cpuid_nent = cpuid->nent;
 233        cpuid_fix_nx_cap(vcpu);
 234        kvm_apic_set_version(vcpu);
 235        kvm_x86_ops->cpuid_update(vcpu);
 236        r = kvm_update_cpuid(vcpu);
 237
 238out:
 239        vfree(cpuid_entries);
 240        return r;
 241}
 242
 243int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 244                              struct kvm_cpuid2 *cpuid,
 245                              struct kvm_cpuid_entry2 __user *entries)
 246{
 247        int r;
 248
 249        r = -E2BIG;
 250        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 251                goto out;
 252        r = -EFAULT;
 253        if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 254                           cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 255                goto out;
 256        vcpu->arch.cpuid_nent = cpuid->nent;
 257        kvm_apic_set_version(vcpu);
 258        kvm_x86_ops->cpuid_update(vcpu);
 259        r = kvm_update_cpuid(vcpu);
 260out:
 261        return r;
 262}
 263
 264int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 265                              struct kvm_cpuid2 *cpuid,
 266                              struct kvm_cpuid_entry2 __user *entries)
 267{
 268        int r;
 269
 270        r = -E2BIG;
 271        if (cpuid->nent < vcpu->arch.cpuid_nent)
 272                goto out;
 273        r = -EFAULT;
 274        if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 275                         vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 276                goto out;
 277        return 0;
 278
 279out:
 280        cpuid->nent = vcpu->arch.cpuid_nent;
 281        return r;
 282}
 283
 284static __always_inline void cpuid_mask(u32 *word, int wordnum)
 285{
 286        reverse_cpuid_check(wordnum);
 287        *word &= boot_cpu_data.x86_capability[wordnum];
 288}
 289
 290static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
 291                           u32 index)
 292{
 293        entry->function = function;
 294        entry->index = index;
 295        entry->flags = 0;
 296
 297        cpuid_count(entry->function, entry->index,
 298                    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 299
 300        switch (function) {
 301        case 2:
 302                entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 303                break;
 304        case 4:
 305        case 7:
 306        case 0xb:
 307        case 0xd:
 308        case 0xf:
 309        case 0x10:
 310        case 0x12:
 311        case 0x14:
 312        case 0x17:
 313        case 0x18:
 314        case 0x1f:
 315        case 0x8000001d:
 316                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 317                break;
 318        }
 319}
 320
 321static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
 322                                    u32 func, int *nent, int maxnent)
 323{
 324        entry->function = func;
 325        entry->index = 0;
 326        entry->flags = 0;
 327
 328        switch (func) {
 329        case 0:
 330                entry->eax = 7;
 331                ++*nent;
 332                break;
 333        case 1:
 334                entry->ecx = F(MOVBE);
 335                ++*nent;
 336                break;
 337        case 7:
 338                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 339                entry->eax = 0;
 340                entry->ecx = F(RDPID);
 341                ++*nent;
 342        default:
 343                break;
 344        }
 345
 346        return 0;
 347}
 348
 349static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
 350{
 351        unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
 352        unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
 353        unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
 354        unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
 355        unsigned f_la57;
 356        unsigned f_pku = kvm_x86_ops->pku_supported() ? F(PKU) : 0;
 357
 358        /* cpuid 7.0.ebx */
 359        const u32 kvm_cpuid_7_0_ebx_x86_features =
 360                F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 361                F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
 362                F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 363                F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 364                F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
 365
 366        /* cpuid 7.0.ecx*/
 367        const u32 kvm_cpuid_7_0_ecx_x86_features =
 368                F(AVX512VBMI) | F(LA57) | 0 /*PKU*/ | 0 /*OSPKE*/ | F(RDPID) |
 369                F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 370                F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 371                F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
 372
 373        /* cpuid 7.0.edx*/
 374        const u32 kvm_cpuid_7_0_edx_x86_features =
 375                F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 376                F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 377                F(MD_CLEAR);
 378
 379        /* cpuid 7.1.eax */
 380        const u32 kvm_cpuid_7_1_eax_x86_features =
 381                F(AVX512_BF16);
 382
 383        switch (index) {
 384        case 0:
 385                entry->eax = min(entry->eax, 1u);
 386                entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
 387                cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
 388                /* TSC_ADJUST is emulated */
 389                entry->ebx |= F(TSC_ADJUST);
 390
 391                entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
 392                f_la57 = entry->ecx & F(LA57);
 393                cpuid_mask(&entry->ecx, CPUID_7_ECX);
 394                /* Set LA57 based on hardware capability. */
 395                entry->ecx |= f_la57;
 396                entry->ecx |= f_umip;
 397                entry->ecx |= f_pku;
 398                /* PKU is not yet implemented for shadow paging. */
 399                if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 400                        entry->ecx &= ~F(PKU);
 401
 402                entry->edx &= kvm_cpuid_7_0_edx_x86_features;
 403                cpuid_mask(&entry->edx, CPUID_7_EDX);
 404                if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 405                        entry->edx |= F(SPEC_CTRL);
 406                if (boot_cpu_has(X86_FEATURE_STIBP))
 407                        entry->edx |= F(INTEL_STIBP);
 408                if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 409                    boot_cpu_has(X86_FEATURE_AMD_SSBD))
 410                        entry->edx |= F(SPEC_CTRL_SSBD);
 411                /*
 412                 * We emulate ARCH_CAPABILITIES in software even
 413                 * if the host doesn't support it.
 414                 */
 415                entry->edx |= F(ARCH_CAPABILITIES);
 416                break;
 417        case 1:
 418                entry->eax &= kvm_cpuid_7_1_eax_x86_features;
 419                entry->ebx = 0;
 420                entry->ecx = 0;
 421                entry->edx = 0;
 422                break;
 423        default:
 424                WARN_ON_ONCE(1);
 425                entry->eax = 0;
 426                entry->ebx = 0;
 427                entry->ecx = 0;
 428                entry->edx = 0;
 429                break;
 430        }
 431}
 432
 433static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
 434                                  int *nent, int maxnent)
 435{
 436        int r;
 437        unsigned f_nx = is_efer_nx() ? F(NX) : 0;
 438#ifdef CONFIG_X86_64
 439        unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
 440                                ? F(GBPAGES) : 0;
 441        unsigned f_lm = F(LM);
 442#else
 443        unsigned f_gbpages = 0;
 444        unsigned f_lm = 0;
 445#endif
 446        unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
 447        unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
 448        unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
 449
 450        /* cpuid 1.edx */
 451        const u32 kvm_cpuid_1_edx_x86_features =
 452                F(FPU) | F(VME) | F(DE) | F(PSE) |
 453                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 454                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 455                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 456                F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 457                0 /* Reserved, DS, ACPI */ | F(MMX) |
 458                F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 459                0 /* HTT, TM, Reserved, PBE */;
 460        /* cpuid 0x80000001.edx */
 461        const u32 kvm_cpuid_8000_0001_edx_x86_features =
 462                F(FPU) | F(VME) | F(DE) | F(PSE) |
 463                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 464                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 465                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 466                F(PAT) | F(PSE36) | 0 /* Reserved */ |
 467                f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 468                F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
 469                0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
 470        /* cpuid 1.ecx */
 471        const u32 kvm_cpuid_1_ecx_x86_features =
 472                /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
 473                 * but *not* advertised to guests via CPUID ! */
 474                F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 475                0 /* DS-CPL, VMX, SMX, EST */ |
 476                0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 477                F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
 478                F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 479                F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 480                0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 481                F(F16C) | F(RDRAND);
 482        /* cpuid 0x80000001.ecx */
 483        const u32 kvm_cpuid_8000_0001_ecx_x86_features =
 484                F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 485                F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 486                F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 487                0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 488                F(TOPOEXT) | F(PERFCTR_CORE);
 489
 490        /* cpuid 0x80000008.ebx */
 491        const u32 kvm_cpuid_8000_0008_ebx_x86_features =
 492                F(CLZERO) | F(XSAVEERPTR) |
 493                F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 494                F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
 495
 496        /* cpuid 0xC0000001.edx */
 497        const u32 kvm_cpuid_C000_0001_edx_x86_features =
 498                F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 499                F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 500                F(PMM) | F(PMM_EN);
 501
 502        /* cpuid 0xD.1.eax */
 503        const u32 kvm_cpuid_D_1_eax_x86_features =
 504                F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
 505
 506        /* all calls to cpuid_count() should be made on the same cpu */
 507        get_cpu();
 508
 509        r = -E2BIG;
 510
 511        if (WARN_ON(*nent >= maxnent))
 512                goto out;
 513
 514        do_host_cpuid(entry, function, 0);
 515        ++*nent;
 516
 517        switch (function) {
 518        case 0:
 519                /* Limited to the highest leaf implemented in KVM. */
 520                entry->eax = min(entry->eax, 0x1fU);
 521                break;
 522        case 1:
 523                entry->edx &= kvm_cpuid_1_edx_x86_features;
 524                cpuid_mask(&entry->edx, CPUID_1_EDX);
 525                entry->ecx &= kvm_cpuid_1_ecx_x86_features;
 526                cpuid_mask(&entry->ecx, CPUID_1_ECX);
 527                /* we support x2apic emulation even if host does not support
 528                 * it since we emulate x2apic in software */
 529                entry->ecx |= F(X2APIC);
 530                break;
 531        /* function 2 entries are STATEFUL. That is, repeated cpuid commands
 532         * may return different values. This forces us to get_cpu() before
 533         * issuing the first command, and also to emulate this annoying behavior
 534         * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
 535        case 2: {
 536                int t, times = entry->eax & 0xff;
 537
 538                entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 539                for (t = 1; t < times; ++t) {
 540                        if (*nent >= maxnent)
 541                                goto out;
 542
 543                        do_host_cpuid(&entry[t], function, 0);
 544                        ++*nent;
 545                }
 546                break;
 547        }
 548        /* functions 4 and 0x8000001d have additional index. */
 549        case 4:
 550        case 0x8000001d: {
 551                int i, cache_type;
 552
 553                /* read more entries until cache_type is zero */
 554                for (i = 1; ; ++i) {
 555                        if (*nent >= maxnent)
 556                                goto out;
 557
 558                        cache_type = entry[i - 1].eax & 0x1f;
 559                        if (!cache_type)
 560                                break;
 561                        do_host_cpuid(&entry[i], function, i);
 562                        ++*nent;
 563                }
 564                break;
 565        }
 566        case 6: /* Thermal management */
 567                entry->eax = 0x4; /* allow ARAT */
 568                entry->ebx = 0;
 569                entry->ecx = 0;
 570                entry->edx = 0;
 571                break;
 572        /* function 7 has additional index. */
 573        case 7: {
 574                int i;
 575
 576                for (i = 0; ; ) {
 577                        do_cpuid_7_mask(&entry[i], i);
 578                        if (i == entry->eax)
 579                                break;
 580                        if (*nent >= maxnent)
 581                                goto out;
 582
 583                        ++i;
 584                        do_host_cpuid(&entry[i], function, i);
 585                        ++*nent;
 586                }
 587                break;
 588        }
 589        case 9:
 590                break;
 591        case 0xa: { /* Architectural Performance Monitoring */
 592                struct x86_pmu_capability cap;
 593                union cpuid10_eax eax;
 594                union cpuid10_edx edx;
 595
 596                perf_get_x86_pmu_capability(&cap);
 597
 598                /*
 599                 * Only support guest architectural pmu on a host
 600                 * with architectural pmu.
 601                 */
 602                if (!cap.version)
 603                        memset(&cap, 0, sizeof(cap));
 604
 605                eax.split.version_id = min(cap.version, 2);
 606                eax.split.num_counters = cap.num_counters_gp;
 607                eax.split.bit_width = cap.bit_width_gp;
 608                eax.split.mask_length = cap.events_mask_len;
 609
 610                edx.split.num_counters_fixed = cap.num_counters_fixed;
 611                edx.split.bit_width_fixed = cap.bit_width_fixed;
 612                edx.split.reserved = 0;
 613
 614                entry->eax = eax.full;
 615                entry->ebx = cap.events_mask;
 616                entry->ecx = 0;
 617                entry->edx = edx.full;
 618                break;
 619        }
 620        /*
 621         * Per Intel's SDM, the 0x1f is a superset of 0xb,
 622         * thus they can be handled by common code.
 623         */
 624        case 0x1f:
 625        case 0xb: {
 626                int i;
 627
 628                /*
 629                 * We filled in entry[0] for CPUID(EAX=<function>,
 630                 * ECX=00H) above.  If its level type (ECX[15:8]) is
 631                 * zero, then the leaf is unimplemented, and we're
 632                 * done.  Otherwise, continue to populate entries
 633                 * until the level type (ECX[15:8]) of the previously
 634                 * added entry is zero.
 635                 */
 636                for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
 637                        if (*nent >= maxnent)
 638                                goto out;
 639
 640                        do_host_cpuid(&entry[i], function, i);
 641                        ++*nent;
 642                }
 643                break;
 644        }
 645        case 0xd: {
 646                int idx, i;
 647                u64 supported = kvm_supported_xcr0();
 648
 649                entry->eax &= supported;
 650                entry->ebx = xstate_required_size(supported, false);
 651                entry->ecx = entry->ebx;
 652                entry->edx &= supported >> 32;
 653                if (!supported)
 654                        break;
 655
 656                for (idx = 1, i = 1; idx < 64; ++idx) {
 657                        u64 mask = ((u64)1 << idx);
 658                        if (*nent >= maxnent)
 659                                goto out;
 660
 661                        do_host_cpuid(&entry[i], function, idx);
 662                        if (idx == 1) {
 663                                entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
 664                                cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
 665                                entry[i].ebx = 0;
 666                                if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
 667                                        entry[i].ebx =
 668                                                xstate_required_size(supported,
 669                                                                     true);
 670                        } else {
 671                                if (entry[i].eax == 0 || !(supported & mask))
 672                                        continue;
 673                                if (WARN_ON_ONCE(entry[i].ecx & 1))
 674                                        continue;
 675                        }
 676                        entry[i].ecx = 0;
 677                        entry[i].edx = 0;
 678                        ++*nent;
 679                        ++i;
 680                }
 681                break;
 682        }
 683        /* Intel PT */
 684        case 0x14: {
 685                int t, times = entry->eax;
 686
 687                if (!f_intel_pt)
 688                        break;
 689
 690                for (t = 1; t <= times; ++t) {
 691                        if (*nent >= maxnent)
 692                                goto out;
 693                        do_host_cpuid(&entry[t], function, t);
 694                        ++*nent;
 695                }
 696                break;
 697        }
 698        case KVM_CPUID_SIGNATURE: {
 699                static const char signature[12] = "KVMKVMKVM\0\0";
 700                const u32 *sigptr = (const u32 *)signature;
 701                entry->eax = KVM_CPUID_FEATURES;
 702                entry->ebx = sigptr[0];
 703                entry->ecx = sigptr[1];
 704                entry->edx = sigptr[2];
 705                break;
 706        }
 707        case KVM_CPUID_FEATURES:
 708                entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 709                             (1 << KVM_FEATURE_NOP_IO_DELAY) |
 710                             (1 << KVM_FEATURE_CLOCKSOURCE2) |
 711                             (1 << KVM_FEATURE_ASYNC_PF) |
 712                             (1 << KVM_FEATURE_PV_EOI) |
 713                             (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 714                             (1 << KVM_FEATURE_PV_UNHALT) |
 715                             (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 716                             (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 717                             (1 << KVM_FEATURE_PV_SEND_IPI) |
 718                             (1 << KVM_FEATURE_POLL_CONTROL) |
 719                             (1 << KVM_FEATURE_PV_SCHED_YIELD);
 720
 721                if (sched_info_on())
 722                        entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 723
 724                entry->ebx = 0;
 725                entry->ecx = 0;
 726                entry->edx = 0;
 727                break;
 728        case 0x80000000:
 729                entry->eax = min(entry->eax, 0x8000001f);
 730                break;
 731        case 0x80000001:
 732                entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
 733                cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
 734                entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
 735                cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
 736                break;
 737        case 0x80000007: /* Advanced power management */
 738                /* invariant TSC is CPUID.80000007H:EDX[8] */
 739                entry->edx &= (1 << 8);
 740                /* mask against host */
 741                entry->edx &= boot_cpu_data.x86_power;
 742                entry->eax = entry->ebx = entry->ecx = 0;
 743                break;
 744        case 0x80000008: {
 745                unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 746                unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 747                unsigned phys_as = entry->eax & 0xff;
 748
 749                if (!g_phys_as)
 750                        g_phys_as = phys_as;
 751                entry->eax = g_phys_as | (virt_as << 8);
 752                entry->edx = 0;
 753                entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
 754                cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
 755                /*
 756                 * AMD has separate bits for each SPEC_CTRL bit.
 757                 * arch/x86/kernel/cpu/bugs.c is kind enough to
 758                 * record that in cpufeatures so use them.
 759                 */
 760                if (boot_cpu_has(X86_FEATURE_IBPB))
 761                        entry->ebx |= F(AMD_IBPB);
 762                if (boot_cpu_has(X86_FEATURE_IBRS))
 763                        entry->ebx |= F(AMD_IBRS);
 764                if (boot_cpu_has(X86_FEATURE_STIBP))
 765                        entry->ebx |= F(AMD_STIBP);
 766                if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 767                    boot_cpu_has(X86_FEATURE_AMD_SSBD))
 768                        entry->ebx |= F(AMD_SSBD);
 769                if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 770                        entry->ebx |= F(AMD_SSB_NO);
 771                /*
 772                 * The preference is to use SPEC CTRL MSR instead of the
 773                 * VIRT_SPEC MSR.
 774                 */
 775                if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 776                    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 777                        entry->ebx |= F(VIRT_SSBD);
 778                break;
 779        }
 780        case 0x80000019:
 781                entry->ecx = entry->edx = 0;
 782                break;
 783        case 0x8000001a:
 784        case 0x8000001e:
 785                break;
 786        /* Support memory encryption cpuid if host supports it */
 787        case 0x8000001F:
 788                if (!boot_cpu_has(X86_FEATURE_SEV))
 789                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 790                break;
 791        /*Add support for Centaur's CPUID instruction*/
 792        case 0xC0000000:
 793                /*Just support up to 0xC0000004 now*/
 794                entry->eax = min(entry->eax, 0xC0000004);
 795                break;
 796        case 0xC0000001:
 797                entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
 798                cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
 799                break;
 800        case 3: /* Processor serial number */
 801        case 5: /* MONITOR/MWAIT */
 802        case 0xC0000002:
 803        case 0xC0000003:
 804        case 0xC0000004:
 805        default:
 806                entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 807                break;
 808        }
 809
 810        kvm_x86_ops->set_supported_cpuid(function, entry);
 811
 812        r = 0;
 813
 814out:
 815        put_cpu();
 816
 817        return r;
 818}
 819
 820static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
 821                         int *nent, int maxnent, unsigned int type)
 822{
 823        if (*nent >= maxnent)
 824                return -E2BIG;
 825
 826        if (type == KVM_GET_EMULATED_CPUID)
 827                return __do_cpuid_func_emulated(entry, func, nent, maxnent);
 828
 829        return __do_cpuid_func(entry, func, nent, maxnent);
 830}
 831
 832struct kvm_cpuid_param {
 833        u32 func;
 834        bool (*qualifier)(const struct kvm_cpuid_param *param);
 835};
 836
 837static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
 838{
 839        return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
 840}
 841
 842static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 843                                 __u32 num_entries, unsigned int ioctl_type)
 844{
 845        int i;
 846        __u32 pad[3];
 847
 848        if (ioctl_type != KVM_GET_EMULATED_CPUID)
 849                return false;
 850
 851        /*
 852         * We want to make sure that ->padding is being passed clean from
 853         * userspace in case we want to use it for something in the future.
 854         *
 855         * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 856         * have to give ourselves satisfied only with the emulated side. /me
 857         * sheds a tear.
 858         */
 859        for (i = 0; i < num_entries; i++) {
 860                if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 861                        return true;
 862
 863                if (pad[0] || pad[1] || pad[2])
 864                        return true;
 865        }
 866        return false;
 867}
 868
 869int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 870                            struct kvm_cpuid_entry2 __user *entries,
 871                            unsigned int type)
 872{
 873        struct kvm_cpuid_entry2 *cpuid_entries;
 874        int limit, nent = 0, r = -E2BIG, i;
 875        u32 func;
 876        static const struct kvm_cpuid_param param[] = {
 877                { .func = 0 },
 878                { .func = 0x80000000 },
 879                { .func = 0xC0000000, .qualifier = is_centaur_cpu },
 880                { .func = KVM_CPUID_SIGNATURE },
 881        };
 882
 883        if (cpuid->nent < 1)
 884                goto out;
 885        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 886                cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 887
 888        if (sanity_check_entries(entries, cpuid->nent, type))
 889                return -EINVAL;
 890
 891        r = -ENOMEM;
 892        cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
 893                                           cpuid->nent));
 894        if (!cpuid_entries)
 895                goto out;
 896
 897        r = 0;
 898        for (i = 0; i < ARRAY_SIZE(param); i++) {
 899                const struct kvm_cpuid_param *ent = &param[i];
 900
 901                if (ent->qualifier && !ent->qualifier(ent))
 902                        continue;
 903
 904                r = do_cpuid_func(&cpuid_entries[nent], ent->func,
 905                                  &nent, cpuid->nent, type);
 906
 907                if (r)
 908                        goto out_free;
 909
 910                limit = cpuid_entries[nent - 1].eax;
 911                for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
 912                        r = do_cpuid_func(&cpuid_entries[nent], func,
 913                                          &nent, cpuid->nent, type);
 914
 915                if (r)
 916                        goto out_free;
 917        }
 918
 919        r = -EFAULT;
 920        if (copy_to_user(entries, cpuid_entries,
 921                         nent * sizeof(struct kvm_cpuid_entry2)))
 922                goto out_free;
 923        cpuid->nent = nent;
 924        r = 0;
 925
 926out_free:
 927        vfree(cpuid_entries);
 928out:
 929        return r;
 930}
 931
 932static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
 933{
 934        struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
 935        struct kvm_cpuid_entry2 *ej;
 936        int j = i;
 937        int nent = vcpu->arch.cpuid_nent;
 938
 939        e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
 940        /* when no next entry is found, the current entry[i] is reselected */
 941        do {
 942                j = (j + 1) % nent;
 943                ej = &vcpu->arch.cpuid_entries[j];
 944        } while (ej->function != e->function);
 945
 946        ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 947
 948        return j;
 949}
 950
 951/* find an entry with matching function, matching index (if needed), and that
 952 * should be read next (if it's stateful) */
 953static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
 954        u32 function, u32 index)
 955{
 956        if (e->function != function)
 957                return 0;
 958        if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
 959                return 0;
 960        if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
 961            !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
 962                return 0;
 963        return 1;
 964}
 965
 966struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 967                                              u32 function, u32 index)
 968{
 969        int i;
 970        struct kvm_cpuid_entry2 *best = NULL;
 971
 972        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 973                struct kvm_cpuid_entry2 *e;
 974
 975                e = &vcpu->arch.cpuid_entries[i];
 976                if (is_matching_cpuid_entry(e, function, index)) {
 977                        if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
 978                                move_to_next_stateful_cpuid_entry(vcpu, i);
 979                        best = e;
 980                        break;
 981                }
 982        }
 983        return best;
 984}
 985EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 986
 987/*
 988 * If the basic or extended CPUID leaf requested is higher than the
 989 * maximum supported basic or extended leaf, respectively, then it is
 990 * out of range.
 991 */
 992static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
 993{
 994        struct kvm_cpuid_entry2 *max;
 995
 996        max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
 997        return max && function <= max->eax;
 998}
 999
1000bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1001               u32 *ecx, u32 *edx, bool check_limit)
1002{
1003        u32 function = *eax, index = *ecx;
1004        struct kvm_cpuid_entry2 *entry;
1005        struct kvm_cpuid_entry2 *max;
1006        bool found;
1007
1008        entry = kvm_find_cpuid_entry(vcpu, function, index);
1009        found = entry;
1010        /*
1011         * Intel CPUID semantics treats any query for an out-of-range
1012         * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
1013         * requested. AMD CPUID semantics returns all zeroes for any
1014         * undefined leaf, whether or not the leaf is in range.
1015         */
1016        if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
1017            !cpuid_function_in_range(vcpu, function)) {
1018                max = kvm_find_cpuid_entry(vcpu, 0, 0);
1019                if (max) {
1020                        function = max->eax;
1021                        entry = kvm_find_cpuid_entry(vcpu, function, index);
1022                }
1023        }
1024        if (entry) {
1025                *eax = entry->eax;
1026                *ebx = entry->ebx;
1027                *ecx = entry->ecx;
1028                *edx = entry->edx;
1029                if (function == 7 && index == 0) {
1030                        u64 data;
1031                        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1032                            (data & TSX_CTRL_CPUID_CLEAR))
1033                                *ebx &= ~(F(RTM) | F(HLE));
1034                }
1035        } else {
1036                *eax = *ebx = *ecx = *edx = 0;
1037                /*
1038                 * When leaf 0BH or 1FH is defined, CL is pass-through
1039                 * and EDX is always the x2APIC ID, even for undefined
1040                 * subleaves. Index 1 will exist iff the leaf is
1041                 * implemented, so we pass through CL iff leaf 1
1042                 * exists. EDX can be copied from any existing index.
1043                 */
1044                if (function == 0xb || function == 0x1f) {
1045                        entry = kvm_find_cpuid_entry(vcpu, function, 1);
1046                        if (entry) {
1047                                *ecx = index & 0xff;
1048                                *edx = entry->edx;
1049                        }
1050                }
1051        }
1052        trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
1053        return found;
1054}
1055EXPORT_SYMBOL_GPL(kvm_cpuid);
1056
1057int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1058{
1059        u32 eax, ebx, ecx, edx;
1060
1061        if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1062                return 1;
1063
1064        eax = kvm_rax_read(vcpu);
1065        ecx = kvm_rcx_read(vcpu);
1066        kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1067        kvm_rax_write(vcpu, eax);
1068        kvm_rbx_write(vcpu, ebx);
1069        kvm_rcx_write(vcpu, ecx);
1070        kvm_rdx_write(vcpu, edx);
1071        return kvm_skip_emulated_instruction(vcpu);
1072}
1073EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1074