linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/swapfile.h>
   7#include <linux/swapops.h>
   8#include <linux/kmemleak.h>
   9#include <linux/sched/task.h>
  10
  11#include <asm/set_memory.h>
  12#include <asm/e820/api.h>
  13#include <asm/init.h>
  14#include <asm/page.h>
  15#include <asm/page_types.h>
  16#include <asm/sections.h>
  17#include <asm/setup.h>
  18#include <asm/tlbflush.h>
  19#include <asm/tlb.h>
  20#include <asm/proto.h>
  21#include <asm/dma.h>            /* for MAX_DMA_PFN */
  22#include <asm/microcode.h>
  23#include <asm/kaslr.h>
  24#include <asm/hypervisor.h>
  25#include <asm/cpufeature.h>
  26#include <asm/pti.h>
  27#include <asm/text-patching.h>
  28
  29/*
  30 * We need to define the tracepoints somewhere, and tlb.c
  31 * is only compied when SMP=y.
  32 */
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/tlb.h>
  35
  36#include "mm_internal.h"
  37
  38/*
  39 * Tables translating between page_cache_type_t and pte encoding.
  40 *
  41 * The default values are defined statically as minimal supported mode;
  42 * WC and WT fall back to UC-.  pat_init() updates these values to support
  43 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
  44 * for the details.  Note, __early_ioremap() used during early boot-time
  45 * takes pgprot_t (pte encoding) and does not use these tables.
  46 *
  47 *   Index into __cachemode2pte_tbl[] is the cachemode.
  48 *
  49 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  50 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  51 */
  52uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  53        [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
  54        [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
  55        [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
  56        [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
  57        [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
  58        [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
  59};
  60EXPORT_SYMBOL(__cachemode2pte_tbl);
  61
  62uint8_t __pte2cachemode_tbl[8] = {
  63        [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
  64        [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  65        [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  66        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
  67        [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  68        [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  69        [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  70        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  71};
  72EXPORT_SYMBOL(__pte2cachemode_tbl);
  73
  74static unsigned long __initdata pgt_buf_start;
  75static unsigned long __initdata pgt_buf_end;
  76static unsigned long __initdata pgt_buf_top;
  77
  78static unsigned long min_pfn_mapped;
  79
  80static bool __initdata can_use_brk_pgt = true;
  81
  82/*
  83 * Pages returned are already directly mapped.
  84 *
  85 * Changing that is likely to break Xen, see commit:
  86 *
  87 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  88 *
  89 * for detailed information.
  90 */
  91__ref void *alloc_low_pages(unsigned int num)
  92{
  93        unsigned long pfn;
  94        int i;
  95
  96        if (after_bootmem) {
  97                unsigned int order;
  98
  99                order = get_order((unsigned long)num << PAGE_SHIFT);
 100                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 101        }
 102
 103        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 104                unsigned long ret = 0;
 105
 106                if (min_pfn_mapped < max_pfn_mapped) {
 107                        ret = memblock_find_in_range(
 108                                        min_pfn_mapped << PAGE_SHIFT,
 109                                        max_pfn_mapped << PAGE_SHIFT,
 110                                        PAGE_SIZE * num , PAGE_SIZE);
 111                }
 112                if (ret)
 113                        memblock_reserve(ret, PAGE_SIZE * num);
 114                else if (can_use_brk_pgt)
 115                        ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
 116
 117                if (!ret)
 118                        panic("alloc_low_pages: can not alloc memory");
 119
 120                pfn = ret >> PAGE_SHIFT;
 121        } else {
 122                pfn = pgt_buf_end;
 123                pgt_buf_end += num;
 124                printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 125                        pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 126        }
 127
 128        for (i = 0; i < num; i++) {
 129                void *adr;
 130
 131                adr = __va((pfn + i) << PAGE_SHIFT);
 132                clear_page(adr);
 133        }
 134
 135        return __va(pfn << PAGE_SHIFT);
 136}
 137
 138/*
 139 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
 140 * With KASLR memory randomization, depending on the machine e820 memory
 141 * and the PUD alignment. We may need twice more pages when KASLR memory
 142 * randomization is enabled.
 143 */
 144#ifndef CONFIG_RANDOMIZE_MEMORY
 145#define INIT_PGD_PAGE_COUNT      6
 146#else
 147#define INIT_PGD_PAGE_COUNT      12
 148#endif
 149#define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
 150RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 151void  __init early_alloc_pgt_buf(void)
 152{
 153        unsigned long tables = INIT_PGT_BUF_SIZE;
 154        phys_addr_t base;
 155
 156        base = __pa(extend_brk(tables, PAGE_SIZE));
 157
 158        pgt_buf_start = base >> PAGE_SHIFT;
 159        pgt_buf_end = pgt_buf_start;
 160        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 161}
 162
 163int after_bootmem;
 164
 165early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 166
 167struct map_range {
 168        unsigned long start;
 169        unsigned long end;
 170        unsigned page_size_mask;
 171};
 172
 173static int page_size_mask;
 174
 175static void __init probe_page_size_mask(void)
 176{
 177        /*
 178         * For pagealloc debugging, identity mapping will use small pages.
 179         * This will simplify cpa(), which otherwise needs to support splitting
 180         * large pages into small in interrupt context, etc.
 181         */
 182        if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
 183                page_size_mask |= 1 << PG_LEVEL_2M;
 184        else
 185                direct_gbpages = 0;
 186
 187        /* Enable PSE if available */
 188        if (boot_cpu_has(X86_FEATURE_PSE))
 189                cr4_set_bits_and_update_boot(X86_CR4_PSE);
 190
 191        /* Enable PGE if available */
 192        __supported_pte_mask &= ~_PAGE_GLOBAL;
 193        if (boot_cpu_has(X86_FEATURE_PGE)) {
 194                cr4_set_bits_and_update_boot(X86_CR4_PGE);
 195                __supported_pte_mask |= _PAGE_GLOBAL;
 196        }
 197
 198        /* By the default is everything supported: */
 199        __default_kernel_pte_mask = __supported_pte_mask;
 200        /* Except when with PTI where the kernel is mostly non-Global: */
 201        if (cpu_feature_enabled(X86_FEATURE_PTI))
 202                __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
 203
 204        /* Enable 1 GB linear kernel mappings if available: */
 205        if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
 206                printk(KERN_INFO "Using GB pages for direct mapping\n");
 207                page_size_mask |= 1 << PG_LEVEL_1G;
 208        } else {
 209                direct_gbpages = 0;
 210        }
 211}
 212
 213static void setup_pcid(void)
 214{
 215        if (!IS_ENABLED(CONFIG_X86_64))
 216                return;
 217
 218        if (!boot_cpu_has(X86_FEATURE_PCID))
 219                return;
 220
 221        if (boot_cpu_has(X86_FEATURE_PGE)) {
 222                /*
 223                 * This can't be cr4_set_bits_and_update_boot() -- the
 224                 * trampoline code can't handle CR4.PCIDE and it wouldn't
 225                 * do any good anyway.  Despite the name,
 226                 * cr4_set_bits_and_update_boot() doesn't actually cause
 227                 * the bits in question to remain set all the way through
 228                 * the secondary boot asm.
 229                 *
 230                 * Instead, we brute-force it and set CR4.PCIDE manually in
 231                 * start_secondary().
 232                 */
 233                cr4_set_bits(X86_CR4_PCIDE);
 234
 235                /*
 236                 * INVPCID's single-context modes (2/3) only work if we set
 237                 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
 238                 * on systems that have X86_CR4_PCIDE clear, or that have
 239                 * no INVPCID support at all.
 240                 */
 241                if (boot_cpu_has(X86_FEATURE_INVPCID))
 242                        setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
 243        } else {
 244                /*
 245                 * flush_tlb_all(), as currently implemented, won't work if
 246                 * PCID is on but PGE is not.  Since that combination
 247                 * doesn't exist on real hardware, there's no reason to try
 248                 * to fully support it, but it's polite to avoid corrupting
 249                 * data if we're on an improperly configured VM.
 250                 */
 251                setup_clear_cpu_cap(X86_FEATURE_PCID);
 252        }
 253}
 254
 255#ifdef CONFIG_X86_32
 256#define NR_RANGE_MR 3
 257#else /* CONFIG_X86_64 */
 258#define NR_RANGE_MR 5
 259#endif
 260
 261static int __meminit save_mr(struct map_range *mr, int nr_range,
 262                             unsigned long start_pfn, unsigned long end_pfn,
 263                             unsigned long page_size_mask)
 264{
 265        if (start_pfn < end_pfn) {
 266                if (nr_range >= NR_RANGE_MR)
 267                        panic("run out of range for init_memory_mapping\n");
 268                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 269                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 270                mr[nr_range].page_size_mask = page_size_mask;
 271                nr_range++;
 272        }
 273
 274        return nr_range;
 275}
 276
 277/*
 278 * adjust the page_size_mask for small range to go with
 279 *      big page size instead small one if nearby are ram too.
 280 */
 281static void __ref adjust_range_page_size_mask(struct map_range *mr,
 282                                                         int nr_range)
 283{
 284        int i;
 285
 286        for (i = 0; i < nr_range; i++) {
 287                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 288                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 289                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 290                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 291
 292#ifdef CONFIG_X86_32
 293                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 294                                continue;
 295#endif
 296
 297                        if (memblock_is_region_memory(start, end - start))
 298                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 299                }
 300                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 301                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 302                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 303                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 304
 305                        if (memblock_is_region_memory(start, end - start))
 306                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 307                }
 308        }
 309}
 310
 311static const char *page_size_string(struct map_range *mr)
 312{
 313        static const char str_1g[] = "1G";
 314        static const char str_2m[] = "2M";
 315        static const char str_4m[] = "4M";
 316        static const char str_4k[] = "4k";
 317
 318        if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 319                return str_1g;
 320        /*
 321         * 32-bit without PAE has a 4M large page size.
 322         * PG_LEVEL_2M is misnamed, but we can at least
 323         * print out the right size in the string.
 324         */
 325        if (IS_ENABLED(CONFIG_X86_32) &&
 326            !IS_ENABLED(CONFIG_X86_PAE) &&
 327            mr->page_size_mask & (1<<PG_LEVEL_2M))
 328                return str_4m;
 329
 330        if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 331                return str_2m;
 332
 333        return str_4k;
 334}
 335
 336static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 337                                     unsigned long start,
 338                                     unsigned long end)
 339{
 340        unsigned long start_pfn, end_pfn, limit_pfn;
 341        unsigned long pfn;
 342        int i;
 343
 344        limit_pfn = PFN_DOWN(end);
 345
 346        /* head if not big page alignment ? */
 347        pfn = start_pfn = PFN_DOWN(start);
 348#ifdef CONFIG_X86_32
 349        /*
 350         * Don't use a large page for the first 2/4MB of memory
 351         * because there are often fixed size MTRRs in there
 352         * and overlapping MTRRs into large pages can cause
 353         * slowdowns.
 354         */
 355        if (pfn == 0)
 356                end_pfn = PFN_DOWN(PMD_SIZE);
 357        else
 358                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 359#else /* CONFIG_X86_64 */
 360        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 361#endif
 362        if (end_pfn > limit_pfn)
 363                end_pfn = limit_pfn;
 364        if (start_pfn < end_pfn) {
 365                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 366                pfn = end_pfn;
 367        }
 368
 369        /* big page (2M) range */
 370        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 371#ifdef CONFIG_X86_32
 372        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 373#else /* CONFIG_X86_64 */
 374        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 375        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 376                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 377#endif
 378
 379        if (start_pfn < end_pfn) {
 380                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 381                                page_size_mask & (1<<PG_LEVEL_2M));
 382                pfn = end_pfn;
 383        }
 384
 385#ifdef CONFIG_X86_64
 386        /* big page (1G) range */
 387        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 388        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 389        if (start_pfn < end_pfn) {
 390                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 391                                page_size_mask &
 392                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 393                pfn = end_pfn;
 394        }
 395
 396        /* tail is not big page (1G) alignment */
 397        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 398        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 399        if (start_pfn < end_pfn) {
 400                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 401                                page_size_mask & (1<<PG_LEVEL_2M));
 402                pfn = end_pfn;
 403        }
 404#endif
 405
 406        /* tail is not big page (2M) alignment */
 407        start_pfn = pfn;
 408        end_pfn = limit_pfn;
 409        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 410
 411        if (!after_bootmem)
 412                adjust_range_page_size_mask(mr, nr_range);
 413
 414        /* try to merge same page size and continuous */
 415        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 416                unsigned long old_start;
 417                if (mr[i].end != mr[i+1].start ||
 418                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 419                        continue;
 420                /* move it */
 421                old_start = mr[i].start;
 422                memmove(&mr[i], &mr[i+1],
 423                        (nr_range - 1 - i) * sizeof(struct map_range));
 424                mr[i--].start = old_start;
 425                nr_range--;
 426        }
 427
 428        for (i = 0; i < nr_range; i++)
 429                pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 430                                mr[i].start, mr[i].end - 1,
 431                                page_size_string(&mr[i]));
 432
 433        return nr_range;
 434}
 435
 436struct range pfn_mapped[E820_MAX_ENTRIES];
 437int nr_pfn_mapped;
 438
 439static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 440{
 441        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
 442                                             nr_pfn_mapped, start_pfn, end_pfn);
 443        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
 444
 445        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 446
 447        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 448                max_low_pfn_mapped = max(max_low_pfn_mapped,
 449                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 450}
 451
 452bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 453{
 454        int i;
 455
 456        for (i = 0; i < nr_pfn_mapped; i++)
 457                if ((start_pfn >= pfn_mapped[i].start) &&
 458                    (end_pfn <= pfn_mapped[i].end))
 459                        return true;
 460
 461        return false;
 462}
 463
 464/*
 465 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 466 * This runs before bootmem is initialized and gets pages directly from
 467 * the physical memory. To access them they are temporarily mapped.
 468 */
 469unsigned long __ref init_memory_mapping(unsigned long start,
 470                                               unsigned long end)
 471{
 472        struct map_range mr[NR_RANGE_MR];
 473        unsigned long ret = 0;
 474        int nr_range, i;
 475
 476        pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 477               start, end - 1);
 478
 479        memset(mr, 0, sizeof(mr));
 480        nr_range = split_mem_range(mr, 0, start, end);
 481
 482        for (i = 0; i < nr_range; i++)
 483                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 484                                                   mr[i].page_size_mask);
 485
 486        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 487
 488        return ret >> PAGE_SHIFT;
 489}
 490
 491/*
 492 * We need to iterate through the E820 memory map and create direct mappings
 493 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
 494 * create direct mappings for all pfns from [0 to max_low_pfn) and
 495 * [4GB to max_pfn) because of possible memory holes in high addresses
 496 * that cannot be marked as UC by fixed/variable range MTRRs.
 497 * Depending on the alignment of E820 ranges, this may possibly result
 498 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 499 *
 500 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 501 * That range would have hole in the middle or ends, and only ram parts
 502 * will be mapped in init_range_memory_mapping().
 503 */
 504static unsigned long __init init_range_memory_mapping(
 505                                           unsigned long r_start,
 506                                           unsigned long r_end)
 507{
 508        unsigned long start_pfn, end_pfn;
 509        unsigned long mapped_ram_size = 0;
 510        int i;
 511
 512        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 513                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 514                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 515                if (start >= end)
 516                        continue;
 517
 518                /*
 519                 * if it is overlapping with brk pgt, we need to
 520                 * alloc pgt buf from memblock instead.
 521                 */
 522                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 523                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 524                init_memory_mapping(start, end);
 525                mapped_ram_size += end - start;
 526                can_use_brk_pgt = true;
 527        }
 528
 529        return mapped_ram_size;
 530}
 531
 532static unsigned long __init get_new_step_size(unsigned long step_size)
 533{
 534        /*
 535         * Initial mapped size is PMD_SIZE (2M).
 536         * We can not set step_size to be PUD_SIZE (1G) yet.
 537         * In worse case, when we cross the 1G boundary, and
 538         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 539         * to map 1G range with PTE. Hence we use one less than the
 540         * difference of page table level shifts.
 541         *
 542         * Don't need to worry about overflow in the top-down case, on 32bit,
 543         * when step_size is 0, round_down() returns 0 for start, and that
 544         * turns it into 0x100000000ULL.
 545         * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 546         * needs to be taken into consideration by the code below.
 547         */
 548        return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 549}
 550
 551/**
 552 * memory_map_top_down - Map [map_start, map_end) top down
 553 * @map_start: start address of the target memory range
 554 * @map_end: end address of the target memory range
 555 *
 556 * This function will setup direct mapping for memory range
 557 * [map_start, map_end) in top-down. That said, the page tables
 558 * will be allocated at the end of the memory, and we map the
 559 * memory in top-down.
 560 */
 561static void __init memory_map_top_down(unsigned long map_start,
 562                                       unsigned long map_end)
 563{
 564        unsigned long real_end, start, last_start;
 565        unsigned long step_size;
 566        unsigned long addr;
 567        unsigned long mapped_ram_size = 0;
 568
 569        /* xen has big range in reserved near end of ram, skip it at first.*/
 570        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 571        real_end = addr + PMD_SIZE;
 572
 573        /* step_size need to be small so pgt_buf from BRK could cover it */
 574        step_size = PMD_SIZE;
 575        max_pfn_mapped = 0; /* will get exact value next */
 576        min_pfn_mapped = real_end >> PAGE_SHIFT;
 577        last_start = start = real_end;
 578
 579        /*
 580         * We start from the top (end of memory) and go to the bottom.
 581         * The memblock_find_in_range() gets us a block of RAM from the
 582         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 583         * for page table.
 584         */
 585        while (last_start > map_start) {
 586                if (last_start > step_size) {
 587                        start = round_down(last_start - 1, step_size);
 588                        if (start < map_start)
 589                                start = map_start;
 590                } else
 591                        start = map_start;
 592                mapped_ram_size += init_range_memory_mapping(start,
 593                                                        last_start);
 594                last_start = start;
 595                min_pfn_mapped = last_start >> PAGE_SHIFT;
 596                if (mapped_ram_size >= step_size)
 597                        step_size = get_new_step_size(step_size);
 598        }
 599
 600        if (real_end < map_end)
 601                init_range_memory_mapping(real_end, map_end);
 602}
 603
 604/**
 605 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 606 * @map_start: start address of the target memory range
 607 * @map_end: end address of the target memory range
 608 *
 609 * This function will setup direct mapping for memory range
 610 * [map_start, map_end) in bottom-up. Since we have limited the
 611 * bottom-up allocation above the kernel, the page tables will
 612 * be allocated just above the kernel and we map the memory
 613 * in [map_start, map_end) in bottom-up.
 614 */
 615static void __init memory_map_bottom_up(unsigned long map_start,
 616                                        unsigned long map_end)
 617{
 618        unsigned long next, start;
 619        unsigned long mapped_ram_size = 0;
 620        /* step_size need to be small so pgt_buf from BRK could cover it */
 621        unsigned long step_size = PMD_SIZE;
 622
 623        start = map_start;
 624        min_pfn_mapped = start >> PAGE_SHIFT;
 625
 626        /*
 627         * We start from the bottom (@map_start) and go to the top (@map_end).
 628         * The memblock_find_in_range() gets us a block of RAM from the
 629         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 630         * for page table.
 631         */
 632        while (start < map_end) {
 633                if (step_size && map_end - start > step_size) {
 634                        next = round_up(start + 1, step_size);
 635                        if (next > map_end)
 636                                next = map_end;
 637                } else {
 638                        next = map_end;
 639                }
 640
 641                mapped_ram_size += init_range_memory_mapping(start, next);
 642                start = next;
 643
 644                if (mapped_ram_size >= step_size)
 645                        step_size = get_new_step_size(step_size);
 646        }
 647}
 648
 649void __init init_mem_mapping(void)
 650{
 651        unsigned long end;
 652
 653        pti_check_boottime_disable();
 654        probe_page_size_mask();
 655        setup_pcid();
 656
 657#ifdef CONFIG_X86_64
 658        end = max_pfn << PAGE_SHIFT;
 659#else
 660        end = max_low_pfn << PAGE_SHIFT;
 661#endif
 662
 663        /* the ISA range is always mapped regardless of memory holes */
 664        init_memory_mapping(0, ISA_END_ADDRESS);
 665
 666        /* Init the trampoline, possibly with KASLR memory offset */
 667        init_trampoline();
 668
 669        /*
 670         * If the allocation is in bottom-up direction, we setup direct mapping
 671         * in bottom-up, otherwise we setup direct mapping in top-down.
 672         */
 673        if (memblock_bottom_up()) {
 674                unsigned long kernel_end = __pa_symbol(_end);
 675
 676                /*
 677                 * we need two separate calls here. This is because we want to
 678                 * allocate page tables above the kernel. So we first map
 679                 * [kernel_end, end) to make memory above the kernel be mapped
 680                 * as soon as possible. And then use page tables allocated above
 681                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 682                 */
 683                memory_map_bottom_up(kernel_end, end);
 684                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 685        } else {
 686                memory_map_top_down(ISA_END_ADDRESS, end);
 687        }
 688
 689#ifdef CONFIG_X86_64
 690        if (max_pfn > max_low_pfn) {
 691                /* can we preseve max_low_pfn ?*/
 692                max_low_pfn = max_pfn;
 693        }
 694#else
 695        early_ioremap_page_table_range_init();
 696#endif
 697
 698        load_cr3(swapper_pg_dir);
 699        __flush_tlb_all();
 700
 701        x86_init.hyper.init_mem_mapping();
 702
 703        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 704}
 705
 706/*
 707 * Initialize an mm_struct to be used during poking and a pointer to be used
 708 * during patching.
 709 */
 710void __init poking_init(void)
 711{
 712        spinlock_t *ptl;
 713        pte_t *ptep;
 714
 715        poking_mm = copy_init_mm();
 716        BUG_ON(!poking_mm);
 717
 718        /*
 719         * Randomize the poking address, but make sure that the following page
 720         * will be mapped at the same PMD. We need 2 pages, so find space for 3,
 721         * and adjust the address if the PMD ends after the first one.
 722         */
 723        poking_addr = TASK_UNMAPPED_BASE;
 724        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
 725                poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
 726                        (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
 727
 728        if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
 729                poking_addr += PAGE_SIZE;
 730
 731        /*
 732         * We need to trigger the allocation of the page-tables that will be
 733         * needed for poking now. Later, poking may be performed in an atomic
 734         * section, which might cause allocation to fail.
 735         */
 736        ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 737        BUG_ON(!ptep);
 738        pte_unmap_unlock(ptep, ptl);
 739}
 740
 741/*
 742 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 743 * is valid. The argument is a physical page number.
 744 *
 745 * On x86, access has to be given to the first megabyte of RAM because that
 746 * area traditionally contains BIOS code and data regions used by X, dosemu,
 747 * and similar apps. Since they map the entire memory range, the whole range
 748 * must be allowed (for mapping), but any areas that would otherwise be
 749 * disallowed are flagged as being "zero filled" instead of rejected.
 750 * Access has to be given to non-kernel-ram areas as well, these contain the
 751 * PCI mmio resources as well as potential bios/acpi data regions.
 752 */
 753int devmem_is_allowed(unsigned long pagenr)
 754{
 755        if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
 756                                IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
 757                        != REGION_DISJOINT) {
 758                /*
 759                 * For disallowed memory regions in the low 1MB range,
 760                 * request that the page be shown as all zeros.
 761                 */
 762                if (pagenr < 256)
 763                        return 2;
 764
 765                return 0;
 766        }
 767
 768        /*
 769         * This must follow RAM test, since System RAM is considered a
 770         * restricted resource under CONFIG_STRICT_IOMEM.
 771         */
 772        if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
 773                /* Low 1MB bypasses iomem restrictions. */
 774                if (pagenr < 256)
 775                        return 1;
 776
 777                return 0;
 778        }
 779
 780        return 1;
 781}
 782
 783void free_init_pages(const char *what, unsigned long begin, unsigned long end)
 784{
 785        unsigned long begin_aligned, end_aligned;
 786
 787        /* Make sure boundaries are page aligned */
 788        begin_aligned = PAGE_ALIGN(begin);
 789        end_aligned   = end & PAGE_MASK;
 790
 791        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 792                begin = begin_aligned;
 793                end   = end_aligned;
 794        }
 795
 796        if (begin >= end)
 797                return;
 798
 799        /*
 800         * If debugging page accesses then do not free this memory but
 801         * mark them not present - any buggy init-section access will
 802         * create a kernel page fault:
 803         */
 804        if (debug_pagealloc_enabled()) {
 805                pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 806                        begin, end - 1);
 807                /*
 808                 * Inform kmemleak about the hole in the memory since the
 809                 * corresponding pages will be unmapped.
 810                 */
 811                kmemleak_free_part((void *)begin, end - begin);
 812                set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 813        } else {
 814                /*
 815                 * We just marked the kernel text read only above, now that
 816                 * we are going to free part of that, we need to make that
 817                 * writeable and non-executable first.
 818                 */
 819                set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 820                set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 821
 822                free_reserved_area((void *)begin, (void *)end,
 823                                   POISON_FREE_INITMEM, what);
 824        }
 825}
 826
 827/*
 828 * begin/end can be in the direct map or the "high kernel mapping"
 829 * used for the kernel image only.  free_init_pages() will do the
 830 * right thing for either kind of address.
 831 */
 832void free_kernel_image_pages(const char *what, void *begin, void *end)
 833{
 834        unsigned long begin_ul = (unsigned long)begin;
 835        unsigned long end_ul = (unsigned long)end;
 836        unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
 837
 838        free_init_pages(what, begin_ul, end_ul);
 839
 840        /*
 841         * PTI maps some of the kernel into userspace.  For performance,
 842         * this includes some kernel areas that do not contain secrets.
 843         * Those areas might be adjacent to the parts of the kernel image
 844         * being freed, which may contain secrets.  Remove the "high kernel
 845         * image mapping" for these freed areas, ensuring they are not even
 846         * potentially vulnerable to Meltdown regardless of the specific
 847         * optimizations PTI is currently using.
 848         *
 849         * The "noalias" prevents unmapping the direct map alias which is
 850         * needed to access the freed pages.
 851         *
 852         * This is only valid for 64bit kernels. 32bit has only one mapping
 853         * which can't be treated in this way for obvious reasons.
 854         */
 855        if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
 856                set_memory_np_noalias(begin_ul, len_pages);
 857}
 858
 859void __weak mem_encrypt_free_decrypted_mem(void) { }
 860
 861void __ref free_initmem(void)
 862{
 863        e820__reallocate_tables();
 864
 865        mem_encrypt_free_decrypted_mem();
 866
 867        free_kernel_image_pages("unused kernel image (initmem)",
 868                                &__init_begin, &__init_end);
 869}
 870
 871#ifdef CONFIG_BLK_DEV_INITRD
 872void __init free_initrd_mem(unsigned long start, unsigned long end)
 873{
 874        /*
 875         * end could be not aligned, and We can not align that,
 876         * decompresser could be confused by aligned initrd_end
 877         * We already reserve the end partial page before in
 878         *   - i386_start_kernel()
 879         *   - x86_64_start_kernel()
 880         *   - relocate_initrd()
 881         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 882         */
 883        free_init_pages("initrd", start, PAGE_ALIGN(end));
 884}
 885#endif
 886
 887/*
 888 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 889 * and pass it to the MM layer - to help it set zone watermarks more
 890 * accurately.
 891 *
 892 * Done on 64-bit systems only for the time being, although 32-bit systems
 893 * might benefit from this as well.
 894 */
 895void __init memblock_find_dma_reserve(void)
 896{
 897#ifdef CONFIG_X86_64
 898        u64 nr_pages = 0, nr_free_pages = 0;
 899        unsigned long start_pfn, end_pfn;
 900        phys_addr_t start_addr, end_addr;
 901        int i;
 902        u64 u;
 903
 904        /*
 905         * Iterate over all memory ranges (free and reserved ones alike),
 906         * to calculate the total number of pages in the first 16 MB of RAM:
 907         */
 908        nr_pages = 0;
 909        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 910                start_pfn = min(start_pfn, MAX_DMA_PFN);
 911                end_pfn   = min(end_pfn,   MAX_DMA_PFN);
 912
 913                nr_pages += end_pfn - start_pfn;
 914        }
 915
 916        /*
 917         * Iterate over free memory ranges to calculate the number of free
 918         * pages in the DMA zone, while not counting potential partial
 919         * pages at the beginning or the end of the range:
 920         */
 921        nr_free_pages = 0;
 922        for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
 923                start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
 924                end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
 925
 926                if (start_pfn < end_pfn)
 927                        nr_free_pages += end_pfn - start_pfn;
 928        }
 929
 930        set_dma_reserve(nr_pages - nr_free_pages);
 931#endif
 932}
 933
 934void __init zone_sizes_init(void)
 935{
 936        unsigned long max_zone_pfns[MAX_NR_ZONES];
 937
 938        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 939
 940#ifdef CONFIG_ZONE_DMA
 941        max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
 942#endif
 943#ifdef CONFIG_ZONE_DMA32
 944        max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
 945#endif
 946        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
 947#ifdef CONFIG_HIGHMEM
 948        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
 949#endif
 950
 951        free_area_init_nodes(max_zone_pfns);
 952}
 953
 954__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
 955        .loaded_mm = &init_mm,
 956        .next_asid = 1,
 957        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
 958};
 959EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
 960
 961void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
 962{
 963        /* entry 0 MUST be WB (hardwired to speed up translations) */
 964        BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
 965
 966        __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
 967        __pte2cachemode_tbl[entry] = cache;
 968}
 969
 970#ifdef CONFIG_SWAP
 971unsigned long max_swapfile_size(void)
 972{
 973        unsigned long pages;
 974
 975        pages = generic_max_swapfile_size();
 976
 977        if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
 978                /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
 979                unsigned long long l1tf_limit = l1tf_pfn_limit();
 980                /*
 981                 * We encode swap offsets also with 3 bits below those for pfn
 982                 * which makes the usable limit higher.
 983                 */
 984#if CONFIG_PGTABLE_LEVELS > 2
 985                l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
 986#endif
 987                pages = min_t(unsigned long long, l1tf_limit, pages);
 988        }
 989        return pages;
 990}
 991#endif
 992