linux/block/kyber-iosched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
   4 * scalable techniques.
   5 *
   6 * Copyright (C) 2017 Facebook
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
  12#include <linux/elevator.h>
  13#include <linux/module.h>
  14#include <linux/sbitmap.h>
  15
  16#include "blk.h"
  17#include "blk-mq.h"
  18#include "blk-mq-debugfs.h"
  19#include "blk-mq-sched.h"
  20#include "blk-mq-tag.h"
  21
  22#define CREATE_TRACE_POINTS
  23#include <trace/events/kyber.h>
  24
  25/*
  26 * Scheduling domains: the device is divided into multiple domains based on the
  27 * request type.
  28 */
  29enum {
  30        KYBER_READ,
  31        KYBER_WRITE,
  32        KYBER_DISCARD,
  33        KYBER_OTHER,
  34        KYBER_NUM_DOMAINS,
  35};
  36
  37static const char *kyber_domain_names[] = {
  38        [KYBER_READ] = "READ",
  39        [KYBER_WRITE] = "WRITE",
  40        [KYBER_DISCARD] = "DISCARD",
  41        [KYBER_OTHER] = "OTHER",
  42};
  43
  44enum {
  45        /*
  46         * In order to prevent starvation of synchronous requests by a flood of
  47         * asynchronous requests, we reserve 25% of requests for synchronous
  48         * operations.
  49         */
  50        KYBER_ASYNC_PERCENT = 75,
  51};
  52
  53/*
  54 * Maximum device-wide depth for each scheduling domain.
  55 *
  56 * Even for fast devices with lots of tags like NVMe, you can saturate the
  57 * device with only a fraction of the maximum possible queue depth. So, we cap
  58 * these to a reasonable value.
  59 */
  60static const unsigned int kyber_depth[] = {
  61        [KYBER_READ] = 256,
  62        [KYBER_WRITE] = 128,
  63        [KYBER_DISCARD] = 64,
  64        [KYBER_OTHER] = 16,
  65};
  66
  67/*
  68 * Default latency targets for each scheduling domain.
  69 */
  70static const u64 kyber_latency_targets[] = {
  71        [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
  72        [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
  73        [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
  74};
  75
  76/*
  77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
  78 * domain.
  79 */
  80static const unsigned int kyber_batch_size[] = {
  81        [KYBER_READ] = 16,
  82        [KYBER_WRITE] = 8,
  83        [KYBER_DISCARD] = 1,
  84        [KYBER_OTHER] = 1,
  85};
  86
  87/*
  88 * Requests latencies are recorded in a histogram with buckets defined relative
  89 * to the target latency:
  90 *
  91 * <= 1/4 * target latency
  92 * <= 1/2 * target latency
  93 * <= 3/4 * target latency
  94 * <= target latency
  95 * <= 1 1/4 * target latency
  96 * <= 1 1/2 * target latency
  97 * <= 1 3/4 * target latency
  98 * > 1 3/4 * target latency
  99 */
 100enum {
 101        /*
 102         * The width of the latency histogram buckets is
 103         * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 104         */
 105        KYBER_LATENCY_SHIFT = 2,
 106        /*
 107         * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 108         * thus, "good".
 109         */
 110        KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 111        /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 112        KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 113};
 114
 115/*
 116 * We measure both the total latency and the I/O latency (i.e., latency after
 117 * submitting to the device).
 118 */
 119enum {
 120        KYBER_TOTAL_LATENCY,
 121        KYBER_IO_LATENCY,
 122};
 123
 124static const char *kyber_latency_type_names[] = {
 125        [KYBER_TOTAL_LATENCY] = "total",
 126        [KYBER_IO_LATENCY] = "I/O",
 127};
 128
 129/*
 130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 131 * domain except for KYBER_OTHER.
 132 */
 133struct kyber_cpu_latency {
 134        atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 135};
 136
 137/*
 138 * There is a same mapping between ctx & hctx and kcq & khd,
 139 * we use request->mq_ctx->index_hw to index the kcq in khd.
 140 */
 141struct kyber_ctx_queue {
 142        /*
 143         * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 144         * Also protect the rqs on rq_list when merge.
 145         */
 146        spinlock_t lock;
 147        struct list_head rq_list[KYBER_NUM_DOMAINS];
 148} ____cacheline_aligned_in_smp;
 149
 150struct kyber_queue_data {
 151        struct request_queue *q;
 152
 153        /*
 154         * Each scheduling domain has a limited number of in-flight requests
 155         * device-wide, limited by these tokens.
 156         */
 157        struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 158
 159        /*
 160         * Async request percentage, converted to per-word depth for
 161         * sbitmap_get_shallow().
 162         */
 163        unsigned int async_depth;
 164
 165        struct kyber_cpu_latency __percpu *cpu_latency;
 166
 167        /* Timer for stats aggregation and adjusting domain tokens. */
 168        struct timer_list timer;
 169
 170        unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 171
 172        unsigned long latency_timeout[KYBER_OTHER];
 173
 174        int domain_p99[KYBER_OTHER];
 175
 176        /* Target latencies in nanoseconds. */
 177        u64 latency_targets[KYBER_OTHER];
 178};
 179
 180struct kyber_hctx_data {
 181        spinlock_t lock;
 182        struct list_head rqs[KYBER_NUM_DOMAINS];
 183        unsigned int cur_domain;
 184        unsigned int batching;
 185        struct kyber_ctx_queue *kcqs;
 186        struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 187        struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 188        struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 189        atomic_t wait_index[KYBER_NUM_DOMAINS];
 190};
 191
 192static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 193                             void *key);
 194
 195static unsigned int kyber_sched_domain(unsigned int op)
 196{
 197        switch (op & REQ_OP_MASK) {
 198        case REQ_OP_READ:
 199                return KYBER_READ;
 200        case REQ_OP_WRITE:
 201                return KYBER_WRITE;
 202        case REQ_OP_DISCARD:
 203                return KYBER_DISCARD;
 204        default:
 205                return KYBER_OTHER;
 206        }
 207}
 208
 209static void flush_latency_buckets(struct kyber_queue_data *kqd,
 210                                  struct kyber_cpu_latency *cpu_latency,
 211                                  unsigned int sched_domain, unsigned int type)
 212{
 213        unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 214        atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 215        unsigned int bucket;
 216
 217        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 218                buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 219}
 220
 221/*
 222 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 223 * aren't enough samples yet.
 224 */
 225static int calculate_percentile(struct kyber_queue_data *kqd,
 226                                unsigned int sched_domain, unsigned int type,
 227                                unsigned int percentile)
 228{
 229        unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 230        unsigned int bucket, samples = 0, percentile_samples;
 231
 232        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 233                samples += buckets[bucket];
 234
 235        if (!samples)
 236                return -1;
 237
 238        /*
 239         * We do the calculation once we have 500 samples or one second passes
 240         * since the first sample was recorded, whichever comes first.
 241         */
 242        if (!kqd->latency_timeout[sched_domain])
 243                kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 244        if (samples < 500 &&
 245            time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 246                return -1;
 247        }
 248        kqd->latency_timeout[sched_domain] = 0;
 249
 250        percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 251        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 252                if (buckets[bucket] >= percentile_samples)
 253                        break;
 254                percentile_samples -= buckets[bucket];
 255        }
 256        memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 257
 258        trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
 259                            kyber_latency_type_names[type], percentile,
 260                            bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 261
 262        return bucket;
 263}
 264
 265static void kyber_resize_domain(struct kyber_queue_data *kqd,
 266                                unsigned int sched_domain, unsigned int depth)
 267{
 268        depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 269        if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 270                sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 271                trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
 272                                   depth);
 273        }
 274}
 275
 276static void kyber_timer_fn(struct timer_list *t)
 277{
 278        struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 279        unsigned int sched_domain;
 280        int cpu;
 281        bool bad = false;
 282
 283        /* Sum all of the per-cpu latency histograms. */
 284        for_each_online_cpu(cpu) {
 285                struct kyber_cpu_latency *cpu_latency;
 286
 287                cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 288                for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 289                        flush_latency_buckets(kqd, cpu_latency, sched_domain,
 290                                              KYBER_TOTAL_LATENCY);
 291                        flush_latency_buckets(kqd, cpu_latency, sched_domain,
 292                                              KYBER_IO_LATENCY);
 293                }
 294        }
 295
 296        /*
 297         * Check if any domains have a high I/O latency, which might indicate
 298         * congestion in the device. Note that we use the p90; we don't want to
 299         * be too sensitive to outliers here.
 300         */
 301        for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 302                int p90;
 303
 304                p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 305                                           90);
 306                if (p90 >= KYBER_GOOD_BUCKETS)
 307                        bad = true;
 308        }
 309
 310        /*
 311         * Adjust the scheduling domain depths. If we determined that there was
 312         * congestion, we throttle all domains with good latencies. Either way,
 313         * we ease up on throttling domains with bad latencies.
 314         */
 315        for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 316                unsigned int orig_depth, depth;
 317                int p99;
 318
 319                p99 = calculate_percentile(kqd, sched_domain,
 320                                           KYBER_TOTAL_LATENCY, 99);
 321                /*
 322                 * This is kind of subtle: different domains will not
 323                 * necessarily have enough samples to calculate the latency
 324                 * percentiles during the same window, so we have to remember
 325                 * the p99 for the next time we observe congestion; once we do,
 326                 * we don't want to throttle again until we get more data, so we
 327                 * reset it to -1.
 328                 */
 329                if (bad) {
 330                        if (p99 < 0)
 331                                p99 = kqd->domain_p99[sched_domain];
 332                        kqd->domain_p99[sched_domain] = -1;
 333                } else if (p99 >= 0) {
 334                        kqd->domain_p99[sched_domain] = p99;
 335                }
 336                if (p99 < 0)
 337                        continue;
 338
 339                /*
 340                 * If this domain has bad latency, throttle less. Otherwise,
 341                 * throttle more iff we determined that there is congestion.
 342                 *
 343                 * The new depth is scaled linearly with the p99 latency vs the
 344                 * latency target. E.g., if the p99 is 3/4 of the target, then
 345                 * we throttle down to 3/4 of the current depth, and if the p99
 346                 * is 2x the target, then we double the depth.
 347                 */
 348                if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 349                        orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 350                        depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 351                        kyber_resize_domain(kqd, sched_domain, depth);
 352                }
 353        }
 354}
 355
 356static unsigned int kyber_sched_tags_shift(struct request_queue *q)
 357{
 358        /*
 359         * All of the hardware queues have the same depth, so we can just grab
 360         * the shift of the first one.
 361         */
 362        return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
 363}
 364
 365static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 366{
 367        struct kyber_queue_data *kqd;
 368        unsigned int shift;
 369        int ret = -ENOMEM;
 370        int i;
 371
 372        kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 373        if (!kqd)
 374                goto err;
 375
 376        kqd->q = q;
 377
 378        kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 379                                            GFP_KERNEL | __GFP_ZERO);
 380        if (!kqd->cpu_latency)
 381                goto err_kqd;
 382
 383        timer_setup(&kqd->timer, kyber_timer_fn, 0);
 384
 385        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 386                WARN_ON(!kyber_depth[i]);
 387                WARN_ON(!kyber_batch_size[i]);
 388                ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 389                                              kyber_depth[i], -1, false,
 390                                              GFP_KERNEL, q->node);
 391                if (ret) {
 392                        while (--i >= 0)
 393                                sbitmap_queue_free(&kqd->domain_tokens[i]);
 394                        goto err_buckets;
 395                }
 396        }
 397
 398        for (i = 0; i < KYBER_OTHER; i++) {
 399                kqd->domain_p99[i] = -1;
 400                kqd->latency_targets[i] = kyber_latency_targets[i];
 401        }
 402
 403        shift = kyber_sched_tags_shift(q);
 404        kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 405
 406        return kqd;
 407
 408err_buckets:
 409        free_percpu(kqd->cpu_latency);
 410err_kqd:
 411        kfree(kqd);
 412err:
 413        return ERR_PTR(ret);
 414}
 415
 416static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 417{
 418        struct kyber_queue_data *kqd;
 419        struct elevator_queue *eq;
 420
 421        eq = elevator_alloc(q, e);
 422        if (!eq)
 423                return -ENOMEM;
 424
 425        kqd = kyber_queue_data_alloc(q);
 426        if (IS_ERR(kqd)) {
 427                kobject_put(&eq->kobj);
 428                return PTR_ERR(kqd);
 429        }
 430
 431        blk_stat_enable_accounting(q);
 432
 433        eq->elevator_data = kqd;
 434        q->elevator = eq;
 435
 436        return 0;
 437}
 438
 439static void kyber_exit_sched(struct elevator_queue *e)
 440{
 441        struct kyber_queue_data *kqd = e->elevator_data;
 442        int i;
 443
 444        del_timer_sync(&kqd->timer);
 445
 446        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 447                sbitmap_queue_free(&kqd->domain_tokens[i]);
 448        free_percpu(kqd->cpu_latency);
 449        kfree(kqd);
 450}
 451
 452static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 453{
 454        unsigned int i;
 455
 456        spin_lock_init(&kcq->lock);
 457        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 458                INIT_LIST_HEAD(&kcq->rq_list[i]);
 459}
 460
 461static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 462{
 463        struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 464        struct kyber_hctx_data *khd;
 465        int i;
 466
 467        khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 468        if (!khd)
 469                return -ENOMEM;
 470
 471        khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 472                                       sizeof(struct kyber_ctx_queue),
 473                                       GFP_KERNEL, hctx->numa_node);
 474        if (!khd->kcqs)
 475                goto err_khd;
 476
 477        for (i = 0; i < hctx->nr_ctx; i++)
 478                kyber_ctx_queue_init(&khd->kcqs[i]);
 479
 480        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 481                if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 482                                      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
 483                        while (--i >= 0)
 484                                sbitmap_free(&khd->kcq_map[i]);
 485                        goto err_kcqs;
 486                }
 487        }
 488
 489        spin_lock_init(&khd->lock);
 490
 491        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 492                INIT_LIST_HEAD(&khd->rqs[i]);
 493                khd->domain_wait[i].sbq = NULL;
 494                init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 495                                          kyber_domain_wake);
 496                khd->domain_wait[i].wait.private = hctx;
 497                INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 498                atomic_set(&khd->wait_index[i], 0);
 499        }
 500
 501        khd->cur_domain = 0;
 502        khd->batching = 0;
 503
 504        hctx->sched_data = khd;
 505        sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
 506                                        kqd->async_depth);
 507
 508        return 0;
 509
 510err_kcqs:
 511        kfree(khd->kcqs);
 512err_khd:
 513        kfree(khd);
 514        return -ENOMEM;
 515}
 516
 517static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 518{
 519        struct kyber_hctx_data *khd = hctx->sched_data;
 520        int i;
 521
 522        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 523                sbitmap_free(&khd->kcq_map[i]);
 524        kfree(khd->kcqs);
 525        kfree(hctx->sched_data);
 526}
 527
 528static int rq_get_domain_token(struct request *rq)
 529{
 530        return (long)rq->elv.priv[0];
 531}
 532
 533static void rq_set_domain_token(struct request *rq, int token)
 534{
 535        rq->elv.priv[0] = (void *)(long)token;
 536}
 537
 538static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 539                                  struct request *rq)
 540{
 541        unsigned int sched_domain;
 542        int nr;
 543
 544        nr = rq_get_domain_token(rq);
 545        if (nr != -1) {
 546                sched_domain = kyber_sched_domain(rq->cmd_flags);
 547                sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 548                                    rq->mq_ctx->cpu);
 549        }
 550}
 551
 552static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
 553{
 554        /*
 555         * We use the scheduler tags as per-hardware queue queueing tokens.
 556         * Async requests can be limited at this stage.
 557         */
 558        if (!op_is_sync(op)) {
 559                struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 560
 561                data->shallow_depth = kqd->async_depth;
 562        }
 563}
 564
 565static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
 566                unsigned int nr_segs)
 567{
 568        struct kyber_hctx_data *khd = hctx->sched_data;
 569        struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
 570        struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 571        unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 572        struct list_head *rq_list = &kcq->rq_list[sched_domain];
 573        bool merged;
 574
 575        spin_lock(&kcq->lock);
 576        merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 577        spin_unlock(&kcq->lock);
 578
 579        return merged;
 580}
 581
 582static void kyber_prepare_request(struct request *rq, struct bio *bio)
 583{
 584        rq_set_domain_token(rq, -1);
 585}
 586
 587static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 588                                  struct list_head *rq_list, bool at_head)
 589{
 590        struct kyber_hctx_data *khd = hctx->sched_data;
 591        struct request *rq, *next;
 592
 593        list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 594                unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 595                struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 596                struct list_head *head = &kcq->rq_list[sched_domain];
 597
 598                spin_lock(&kcq->lock);
 599                if (at_head)
 600                        list_move(&rq->queuelist, head);
 601                else
 602                        list_move_tail(&rq->queuelist, head);
 603                sbitmap_set_bit(&khd->kcq_map[sched_domain],
 604                                rq->mq_ctx->index_hw[hctx->type]);
 605                blk_mq_sched_request_inserted(rq);
 606                spin_unlock(&kcq->lock);
 607        }
 608}
 609
 610static void kyber_finish_request(struct request *rq)
 611{
 612        struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 613
 614        rq_clear_domain_token(kqd, rq);
 615}
 616
 617static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 618                               unsigned int sched_domain, unsigned int type,
 619                               u64 target, u64 latency)
 620{
 621        unsigned int bucket;
 622        u64 divisor;
 623
 624        if (latency > 0) {
 625                divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 626                bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 627                               KYBER_LATENCY_BUCKETS - 1);
 628        } else {
 629                bucket = 0;
 630        }
 631
 632        atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 633}
 634
 635static void kyber_completed_request(struct request *rq, u64 now)
 636{
 637        struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 638        struct kyber_cpu_latency *cpu_latency;
 639        unsigned int sched_domain;
 640        u64 target;
 641
 642        sched_domain = kyber_sched_domain(rq->cmd_flags);
 643        if (sched_domain == KYBER_OTHER)
 644                return;
 645
 646        cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 647        target = kqd->latency_targets[sched_domain];
 648        add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 649                           target, now - rq->start_time_ns);
 650        add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 651                           now - rq->io_start_time_ns);
 652        put_cpu_ptr(kqd->cpu_latency);
 653
 654        timer_reduce(&kqd->timer, jiffies + HZ / 10);
 655}
 656
 657struct flush_kcq_data {
 658        struct kyber_hctx_data *khd;
 659        unsigned int sched_domain;
 660        struct list_head *list;
 661};
 662
 663static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 664{
 665        struct flush_kcq_data *flush_data = data;
 666        struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 667
 668        spin_lock(&kcq->lock);
 669        list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 670                              flush_data->list);
 671        sbitmap_clear_bit(sb, bitnr);
 672        spin_unlock(&kcq->lock);
 673
 674        return true;
 675}
 676
 677static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 678                                  unsigned int sched_domain,
 679                                  struct list_head *list)
 680{
 681        struct flush_kcq_data data = {
 682                .khd = khd,
 683                .sched_domain = sched_domain,
 684                .list = list,
 685        };
 686
 687        sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 688                             flush_busy_kcq, &data);
 689}
 690
 691static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 692                             void *key)
 693{
 694        struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 695        struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 696
 697        sbitmap_del_wait_queue(wait);
 698        blk_mq_run_hw_queue(hctx, true);
 699        return 1;
 700}
 701
 702static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 703                                  struct kyber_hctx_data *khd,
 704                                  struct blk_mq_hw_ctx *hctx)
 705{
 706        unsigned int sched_domain = khd->cur_domain;
 707        struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 708        struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 709        struct sbq_wait_state *ws;
 710        int nr;
 711
 712        nr = __sbitmap_queue_get(domain_tokens);
 713
 714        /*
 715         * If we failed to get a domain token, make sure the hardware queue is
 716         * run when one becomes available. Note that this is serialized on
 717         * khd->lock, but we still need to be careful about the waker.
 718         */
 719        if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 720                ws = sbq_wait_ptr(domain_tokens,
 721                                  &khd->wait_index[sched_domain]);
 722                khd->domain_ws[sched_domain] = ws;
 723                sbitmap_add_wait_queue(domain_tokens, ws, wait);
 724
 725                /*
 726                 * Try again in case a token was freed before we got on the wait
 727                 * queue.
 728                 */
 729                nr = __sbitmap_queue_get(domain_tokens);
 730        }
 731
 732        /*
 733         * If we got a token while we were on the wait queue, remove ourselves
 734         * from the wait queue to ensure that all wake ups make forward
 735         * progress. It's possible that the waker already deleted the entry
 736         * between the !list_empty_careful() check and us grabbing the lock, but
 737         * list_del_init() is okay with that.
 738         */
 739        if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 740                ws = khd->domain_ws[sched_domain];
 741                spin_lock_irq(&ws->wait.lock);
 742                sbitmap_del_wait_queue(wait);
 743                spin_unlock_irq(&ws->wait.lock);
 744        }
 745
 746        return nr;
 747}
 748
 749static struct request *
 750kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 751                          struct kyber_hctx_data *khd,
 752                          struct blk_mq_hw_ctx *hctx)
 753{
 754        struct list_head *rqs;
 755        struct request *rq;
 756        int nr;
 757
 758        rqs = &khd->rqs[khd->cur_domain];
 759
 760        /*
 761         * If we already have a flushed request, then we just need to get a
 762         * token for it. Otherwise, if there are pending requests in the kcqs,
 763         * flush the kcqs, but only if we can get a token. If not, we should
 764         * leave the requests in the kcqs so that they can be merged. Note that
 765         * khd->lock serializes the flushes, so if we observed any bit set in
 766         * the kcq_map, we will always get a request.
 767         */
 768        rq = list_first_entry_or_null(rqs, struct request, queuelist);
 769        if (rq) {
 770                nr = kyber_get_domain_token(kqd, khd, hctx);
 771                if (nr >= 0) {
 772                        khd->batching++;
 773                        rq_set_domain_token(rq, nr);
 774                        list_del_init(&rq->queuelist);
 775                        return rq;
 776                } else {
 777                        trace_kyber_throttled(kqd->q,
 778                                              kyber_domain_names[khd->cur_domain]);
 779                }
 780        } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 781                nr = kyber_get_domain_token(kqd, khd, hctx);
 782                if (nr >= 0) {
 783                        kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 784                        rq = list_first_entry(rqs, struct request, queuelist);
 785                        khd->batching++;
 786                        rq_set_domain_token(rq, nr);
 787                        list_del_init(&rq->queuelist);
 788                        return rq;
 789                } else {
 790                        trace_kyber_throttled(kqd->q,
 791                                              kyber_domain_names[khd->cur_domain]);
 792                }
 793        }
 794
 795        /* There were either no pending requests or no tokens. */
 796        return NULL;
 797}
 798
 799static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 800{
 801        struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 802        struct kyber_hctx_data *khd = hctx->sched_data;
 803        struct request *rq;
 804        int i;
 805
 806        spin_lock(&khd->lock);
 807
 808        /*
 809         * First, if we are still entitled to batch, try to dispatch a request
 810         * from the batch.
 811         */
 812        if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 813                rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 814                if (rq)
 815                        goto out;
 816        }
 817
 818        /*
 819         * Either,
 820         * 1. We were no longer entitled to a batch.
 821         * 2. The domain we were batching didn't have any requests.
 822         * 3. The domain we were batching was out of tokens.
 823         *
 824         * Start another batch. Note that this wraps back around to the original
 825         * domain if no other domains have requests or tokens.
 826         */
 827        khd->batching = 0;
 828        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 829                if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 830                        khd->cur_domain = 0;
 831                else
 832                        khd->cur_domain++;
 833
 834                rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 835                if (rq)
 836                        goto out;
 837        }
 838
 839        rq = NULL;
 840out:
 841        spin_unlock(&khd->lock);
 842        return rq;
 843}
 844
 845static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 846{
 847        struct kyber_hctx_data *khd = hctx->sched_data;
 848        int i;
 849
 850        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 851                if (!list_empty_careful(&khd->rqs[i]) ||
 852                    sbitmap_any_bit_set(&khd->kcq_map[i]))
 853                        return true;
 854        }
 855
 856        return false;
 857}
 858
 859#define KYBER_LAT_SHOW_STORE(domain, name)                              \
 860static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,        \
 861                                       char *page)                      \
 862{                                                                       \
 863        struct kyber_queue_data *kqd = e->elevator_data;                \
 864                                                                        \
 865        return sprintf(page, "%llu\n", kqd->latency_targets[domain]);   \
 866}                                                                       \
 867                                                                        \
 868static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,       \
 869                                        const char *page, size_t count) \
 870{                                                                       \
 871        struct kyber_queue_data *kqd = e->elevator_data;                \
 872        unsigned long long nsec;                                        \
 873        int ret;                                                        \
 874                                                                        \
 875        ret = kstrtoull(page, 10, &nsec);                               \
 876        if (ret)                                                        \
 877                return ret;                                             \
 878                                                                        \
 879        kqd->latency_targets[domain] = nsec;                            \
 880                                                                        \
 881        return count;                                                   \
 882}
 883KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 884KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 885#undef KYBER_LAT_SHOW_STORE
 886
 887#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 888static struct elv_fs_entry kyber_sched_attrs[] = {
 889        KYBER_LAT_ATTR(read),
 890        KYBER_LAT_ATTR(write),
 891        __ATTR_NULL
 892};
 893#undef KYBER_LAT_ATTR
 894
 895#ifdef CONFIG_BLK_DEBUG_FS
 896#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
 897static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
 898{                                                                       \
 899        struct request_queue *q = data;                                 \
 900        struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
 901                                                                        \
 902        sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
 903        return 0;                                                       \
 904}                                                                       \
 905                                                                        \
 906static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
 907        __acquires(&khd->lock)                                          \
 908{                                                                       \
 909        struct blk_mq_hw_ctx *hctx = m->private;                        \
 910        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 911                                                                        \
 912        spin_lock(&khd->lock);                                          \
 913        return seq_list_start(&khd->rqs[domain], *pos);                 \
 914}                                                                       \
 915                                                                        \
 916static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
 917                                     loff_t *pos)                       \
 918{                                                                       \
 919        struct blk_mq_hw_ctx *hctx = m->private;                        \
 920        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 921                                                                        \
 922        return seq_list_next(v, &khd->rqs[domain], pos);                \
 923}                                                                       \
 924                                                                        \
 925static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
 926        __releases(&khd->lock)                                          \
 927{                                                                       \
 928        struct blk_mq_hw_ctx *hctx = m->private;                        \
 929        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 930                                                                        \
 931        spin_unlock(&khd->lock);                                        \
 932}                                                                       \
 933                                                                        \
 934static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
 935        .start  = kyber_##name##_rqs_start,                             \
 936        .next   = kyber_##name##_rqs_next,                              \
 937        .stop   = kyber_##name##_rqs_stop,                              \
 938        .show   = blk_mq_debugfs_rq_show,                               \
 939};                                                                      \
 940                                                                        \
 941static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
 942{                                                                       \
 943        struct blk_mq_hw_ctx *hctx = data;                              \
 944        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 945        wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;      \
 946                                                                        \
 947        seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
 948        return 0;                                                       \
 949}
 950KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 951KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 952KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 954#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 955
 956static int kyber_async_depth_show(void *data, struct seq_file *m)
 957{
 958        struct request_queue *q = data;
 959        struct kyber_queue_data *kqd = q->elevator->elevator_data;
 960
 961        seq_printf(m, "%u\n", kqd->async_depth);
 962        return 0;
 963}
 964
 965static int kyber_cur_domain_show(void *data, struct seq_file *m)
 966{
 967        struct blk_mq_hw_ctx *hctx = data;
 968        struct kyber_hctx_data *khd = hctx->sched_data;
 969
 970        seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 971        return 0;
 972}
 973
 974static int kyber_batching_show(void *data, struct seq_file *m)
 975{
 976        struct blk_mq_hw_ctx *hctx = data;
 977        struct kyber_hctx_data *khd = hctx->sched_data;
 978
 979        seq_printf(m, "%u\n", khd->batching);
 980        return 0;
 981}
 982
 983#define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
 984        {#name "_tokens", 0400, kyber_##name##_tokens_show}
 985static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 986        KYBER_QUEUE_DOMAIN_ATTRS(read),
 987        KYBER_QUEUE_DOMAIN_ATTRS(write),
 988        KYBER_QUEUE_DOMAIN_ATTRS(discard),
 989        KYBER_QUEUE_DOMAIN_ATTRS(other),
 990        {"async_depth", 0400, kyber_async_depth_show},
 991        {},
 992};
 993#undef KYBER_QUEUE_DOMAIN_ATTRS
 994
 995#define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
 996        {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
 997        {#name "_waiting", 0400, kyber_##name##_waiting_show}
 998static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
 999        KYBER_HCTX_DOMAIN_ATTRS(read),
1000        KYBER_HCTX_DOMAIN_ATTRS(write),
1001        KYBER_HCTX_DOMAIN_ATTRS(discard),
1002        KYBER_HCTX_DOMAIN_ATTRS(other),
1003        {"cur_domain", 0400, kyber_cur_domain_show},
1004        {"batching", 0400, kyber_batching_show},
1005        {},
1006};
1007#undef KYBER_HCTX_DOMAIN_ATTRS
1008#endif
1009
1010static struct elevator_type kyber_sched = {
1011        .ops = {
1012                .init_sched = kyber_init_sched,
1013                .exit_sched = kyber_exit_sched,
1014                .init_hctx = kyber_init_hctx,
1015                .exit_hctx = kyber_exit_hctx,
1016                .limit_depth = kyber_limit_depth,
1017                .bio_merge = kyber_bio_merge,
1018                .prepare_request = kyber_prepare_request,
1019                .insert_requests = kyber_insert_requests,
1020                .finish_request = kyber_finish_request,
1021                .requeue_request = kyber_finish_request,
1022                .completed_request = kyber_completed_request,
1023                .dispatch_request = kyber_dispatch_request,
1024                .has_work = kyber_has_work,
1025        },
1026#ifdef CONFIG_BLK_DEBUG_FS
1027        .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1028        .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1029#endif
1030        .elevator_attrs = kyber_sched_attrs,
1031        .elevator_name = "kyber",
1032        .elevator_owner = THIS_MODULE,
1033};
1034
1035static int __init kyber_init(void)
1036{
1037        return elv_register(&kyber_sched);
1038}
1039
1040static void __exit kyber_exit(void)
1041{
1042        elv_unregister(&kyber_sched);
1043}
1044
1045module_init(kyber_init);
1046module_exit(kyber_exit);
1047
1048MODULE_AUTHOR("Omar Sandoval");
1049MODULE_LICENSE("GPL");
1050MODULE_DESCRIPTION("Kyber I/O scheduler");
1051