linux/drivers/char/rtc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Real Time Clock interface for Linux
   4 *
   5 *      Copyright (C) 1996 Paul Gortmaker
   6 *
   7 *      This driver allows use of the real time clock (built into
   8 *      nearly all computers) from user space. It exports the /dev/rtc
   9 *      interface supporting various ioctl() and also the
  10 *      /proc/driver/rtc pseudo-file for status information.
  11 *
  12 *      The ioctls can be used to set the interrupt behaviour and
  13 *      generation rate from the RTC via IRQ 8. Then the /dev/rtc
  14 *      interface can be used to make use of these timer interrupts,
  15 *      be they interval or alarm based.
  16 *
  17 *      The /dev/rtc interface will block on reads until an interrupt
  18 *      has been received. If a RTC interrupt has already happened,
  19 *      it will output an unsigned long and then block. The output value
  20 *      contains the interrupt status in the low byte and the number of
  21 *      interrupts since the last read in the remaining high bytes. The
  22 *      /dev/rtc interface can also be used with the select(2) call.
  23 *
  24 *      Based on other minimal char device drivers, like Alan's
  25 *      watchdog, Ted's random, etc. etc.
  26 *
  27 *      1.07    Paul Gortmaker.
  28 *      1.08    Miquel van Smoorenburg: disallow certain things on the
  29 *              DEC Alpha as the CMOS clock is also used for other things.
  30 *      1.09    Nikita Schmidt: epoch support and some Alpha cleanup.
  31 *      1.09a   Pete Zaitcev: Sun SPARC
  32 *      1.09b   Jeff Garzik: Modularize, init cleanup
  33 *      1.09c   Jeff Garzik: SMP cleanup
  34 *      1.10    Paul Barton-Davis: add support for async I/O
  35 *      1.10a   Andrea Arcangeli: Alpha updates
  36 *      1.10b   Andrew Morton: SMP lock fix
  37 *      1.10c   Cesar Barros: SMP locking fixes and cleanup
  38 *      1.10d   Paul Gortmaker: delete paranoia check in rtc_exit
  39 *      1.10e   Maciej W. Rozycki: Handle DECstation's year weirdness.
  40 *      1.11    Takashi Iwai: Kernel access functions
  41 *                            rtc_register/rtc_unregister/rtc_control
  42 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
  43 *      1.12    Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
  44 *              CONFIG_HPET_EMULATE_RTC
  45 *      1.12a   Maciej W. Rozycki: Handle memory-mapped chips properly.
  46 *      1.12ac  Alan Cox: Allow read access to the day of week register
  47 *      1.12b   David John: Remove calls to the BKL.
  48 */
  49
  50#define RTC_VERSION             "1.12b"
  51
  52/*
  53 *      Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
  54 *      interrupts disabled. Due to the index-port/data-port (0x70/0x71)
  55 *      design of the RTC, we don't want two different things trying to
  56 *      get to it at once. (e.g. the periodic 11 min sync from
  57 *      kernel/time/ntp.c vs. this driver.)
  58 */
  59
  60#include <linux/interrupt.h>
  61#include <linux/module.h>
  62#include <linux/kernel.h>
  63#include <linux/types.h>
  64#include <linux/miscdevice.h>
  65#include <linux/ioport.h>
  66#include <linux/fcntl.h>
  67#include <linux/mc146818rtc.h>
  68#include <linux/init.h>
  69#include <linux/poll.h>
  70#include <linux/proc_fs.h>
  71#include <linux/seq_file.h>
  72#include <linux/spinlock.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sysctl.h>
  75#include <linux/wait.h>
  76#include <linux/bcd.h>
  77#include <linux/delay.h>
  78#include <linux/uaccess.h>
  79#include <linux/ratelimit.h>
  80
  81#include <asm/current.h>
  82
  83#ifdef CONFIG_X86
  84#include <asm/hpet.h>
  85#endif
  86
  87#ifdef CONFIG_SPARC32
  88#include <linux/of.h>
  89#include <linux/of_device.h>
  90#include <asm/io.h>
  91
  92static unsigned long rtc_port;
  93static int rtc_irq;
  94#endif
  95
  96#ifdef  CONFIG_HPET_EMULATE_RTC
  97#undef  RTC_IRQ
  98#endif
  99
 100#ifdef RTC_IRQ
 101static int rtc_has_irq = 1;
 102#endif
 103
 104#ifndef CONFIG_HPET_EMULATE_RTC
 105#define is_hpet_enabled()                       0
 106#define hpet_set_alarm_time(hrs, min, sec)      0
 107#define hpet_set_periodic_freq(arg)             0
 108#define hpet_mask_rtc_irq_bit(arg)              0
 109#define hpet_set_rtc_irq_bit(arg)               0
 110#define hpet_rtc_timer_init()                   do { } while (0)
 111#define hpet_rtc_dropped_irq()                  0
 112#define hpet_register_irq_handler(h)            ({ 0; })
 113#define hpet_unregister_irq_handler(h)          ({ 0; })
 114#ifdef RTC_IRQ
 115static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
 116{
 117        return 0;
 118}
 119#endif
 120#endif
 121
 122/*
 123 *      We sponge a minor off of the misc major. No need slurping
 124 *      up another valuable major dev number for this. If you add
 125 *      an ioctl, make sure you don't conflict with SPARC's RTC
 126 *      ioctls.
 127 */
 128
 129static struct fasync_struct *rtc_async_queue;
 130
 131static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
 132
 133#ifdef RTC_IRQ
 134static void rtc_dropped_irq(struct timer_list *unused);
 135
 136static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq);
 137#endif
 138
 139static ssize_t rtc_read(struct file *file, char __user *buf,
 140                        size_t count, loff_t *ppos);
 141
 142static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 143static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
 144
 145#ifdef RTC_IRQ
 146static __poll_t rtc_poll(struct file *file, poll_table *wait);
 147#endif
 148
 149static void get_rtc_alm_time(struct rtc_time *alm_tm);
 150#ifdef RTC_IRQ
 151static void set_rtc_irq_bit_locked(unsigned char bit);
 152static void mask_rtc_irq_bit_locked(unsigned char bit);
 153
 154static inline void set_rtc_irq_bit(unsigned char bit)
 155{
 156        spin_lock_irq(&rtc_lock);
 157        set_rtc_irq_bit_locked(bit);
 158        spin_unlock_irq(&rtc_lock);
 159}
 160
 161static void mask_rtc_irq_bit(unsigned char bit)
 162{
 163        spin_lock_irq(&rtc_lock);
 164        mask_rtc_irq_bit_locked(bit);
 165        spin_unlock_irq(&rtc_lock);
 166}
 167#endif
 168
 169#ifdef CONFIG_PROC_FS
 170static int rtc_proc_show(struct seq_file *seq, void *v);
 171#endif
 172
 173/*
 174 *      Bits in rtc_status. (6 bits of room for future expansion)
 175 */
 176
 177#define RTC_IS_OPEN             0x01    /* means /dev/rtc is in use     */
 178#define RTC_TIMER_ON            0x02    /* missed irq timer active      */
 179
 180/*
 181 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
 182 * protected by the spin lock rtc_lock. However, ioctl can still disable the
 183 * timer in rtc_status and then with del_timer after the interrupt has read
 184 * rtc_status but before mod_timer is called, which would then reenable the
 185 * timer (but you would need to have an awful timing before you'd trip on it)
 186 */
 187static unsigned long rtc_status;        /* bitmapped status byte.       */
 188static unsigned long rtc_freq;          /* Current periodic IRQ rate    */
 189static unsigned long rtc_irq_data;      /* our output to the world      */
 190static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
 191
 192/*
 193 *      If this driver ever becomes modularised, it will be really nice
 194 *      to make the epoch retain its value across module reload...
 195 */
 196
 197static unsigned long epoch = 1900;      /* year corresponding to 0x00   */
 198
 199static const unsigned char days_in_mo[] =
 200{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 201
 202/*
 203 * Returns true if a clock update is in progress
 204 */
 205static inline unsigned char rtc_is_updating(void)
 206{
 207        unsigned long flags;
 208        unsigned char uip;
 209
 210        spin_lock_irqsave(&rtc_lock, flags);
 211        uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 212        spin_unlock_irqrestore(&rtc_lock, flags);
 213        return uip;
 214}
 215
 216#ifdef RTC_IRQ
 217/*
 218 *      A very tiny interrupt handler. It runs with interrupts disabled,
 219 *      but there is possibility of conflicting with the set_rtc_mmss()
 220 *      call (the rtc irq and the timer irq can easily run at the same
 221 *      time in two different CPUs). So we need to serialize
 222 *      accesses to the chip with the rtc_lock spinlock that each
 223 *      architecture should implement in the timer code.
 224 *      (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 225 */
 226
 227static irqreturn_t rtc_interrupt(int irq, void *dev_id)
 228{
 229        /*
 230         *      Can be an alarm interrupt, update complete interrupt,
 231         *      or a periodic interrupt. We store the status in the
 232         *      low byte and the number of interrupts received since
 233         *      the last read in the remainder of rtc_irq_data.
 234         */
 235
 236        spin_lock(&rtc_lock);
 237        rtc_irq_data += 0x100;
 238        rtc_irq_data &= ~0xff;
 239        if (is_hpet_enabled()) {
 240                /*
 241                 * In this case it is HPET RTC interrupt handler
 242                 * calling us, with the interrupt information
 243                 * passed as arg1, instead of irq.
 244                 */
 245                rtc_irq_data |= (unsigned long)irq & 0xF0;
 246        } else {
 247                rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
 248        }
 249
 250        if (rtc_status & RTC_TIMER_ON)
 251                mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 252
 253        spin_unlock(&rtc_lock);
 254
 255        wake_up_interruptible(&rtc_wait);
 256
 257        kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 258
 259        return IRQ_HANDLED;
 260}
 261#endif
 262
 263/*
 264 * sysctl-tuning infrastructure.
 265 */
 266static struct ctl_table rtc_table[] = {
 267        {
 268                .procname       = "max-user-freq",
 269                .data           = &rtc_max_user_freq,
 270                .maxlen         = sizeof(int),
 271                .mode           = 0644,
 272                .proc_handler   = proc_dointvec,
 273        },
 274        { }
 275};
 276
 277static struct ctl_table rtc_root[] = {
 278        {
 279                .procname       = "rtc",
 280                .mode           = 0555,
 281                .child          = rtc_table,
 282        },
 283        { }
 284};
 285
 286static struct ctl_table dev_root[] = {
 287        {
 288                .procname       = "dev",
 289                .mode           = 0555,
 290                .child          = rtc_root,
 291        },
 292        { }
 293};
 294
 295static struct ctl_table_header *sysctl_header;
 296
 297static int __init init_sysctl(void)
 298{
 299    sysctl_header = register_sysctl_table(dev_root);
 300    return 0;
 301}
 302
 303static void __exit cleanup_sysctl(void)
 304{
 305    unregister_sysctl_table(sysctl_header);
 306}
 307
 308/*
 309 *      Now all the various file operations that we export.
 310 */
 311
 312static ssize_t rtc_read(struct file *file, char __user *buf,
 313                        size_t count, loff_t *ppos)
 314{
 315#ifndef RTC_IRQ
 316        return -EIO;
 317#else
 318        DECLARE_WAITQUEUE(wait, current);
 319        unsigned long data;
 320        ssize_t retval;
 321
 322        if (rtc_has_irq == 0)
 323                return -EIO;
 324
 325        /*
 326         * Historically this function used to assume that sizeof(unsigned long)
 327         * is the same in userspace and kernelspace.  This lead to problems
 328         * for configurations with multiple ABIs such a the MIPS o32 and 64
 329         * ABIs supported on the same kernel.  So now we support read of both
 330         * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
 331         * userspace ABI.
 332         */
 333        if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
 334                return -EINVAL;
 335
 336        add_wait_queue(&rtc_wait, &wait);
 337
 338        do {
 339                /* First make it right. Then make it fast. Putting this whole
 340                 * block within the parentheses of a while would be too
 341                 * confusing. And no, xchg() is not the answer. */
 342
 343                __set_current_state(TASK_INTERRUPTIBLE);
 344
 345                spin_lock_irq(&rtc_lock);
 346                data = rtc_irq_data;
 347                rtc_irq_data = 0;
 348                spin_unlock_irq(&rtc_lock);
 349
 350                if (data != 0)
 351                        break;
 352
 353                if (file->f_flags & O_NONBLOCK) {
 354                        retval = -EAGAIN;
 355                        goto out;
 356                }
 357                if (signal_pending(current)) {
 358                        retval = -ERESTARTSYS;
 359                        goto out;
 360                }
 361                schedule();
 362        } while (1);
 363
 364        if (count == sizeof(unsigned int)) {
 365                retval = put_user(data,
 366                                  (unsigned int __user *)buf) ?: sizeof(int);
 367        } else {
 368                retval = put_user(data,
 369                                  (unsigned long __user *)buf) ?: sizeof(long);
 370        }
 371        if (!retval)
 372                retval = count;
 373 out:
 374        __set_current_state(TASK_RUNNING);
 375        remove_wait_queue(&rtc_wait, &wait);
 376
 377        return retval;
 378#endif
 379}
 380
 381static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 382{
 383        struct rtc_time wtime;
 384
 385#ifdef RTC_IRQ
 386        if (rtc_has_irq == 0) {
 387                switch (cmd) {
 388                case RTC_AIE_OFF:
 389                case RTC_AIE_ON:
 390                case RTC_PIE_OFF:
 391                case RTC_PIE_ON:
 392                case RTC_UIE_OFF:
 393                case RTC_UIE_ON:
 394                case RTC_IRQP_READ:
 395                case RTC_IRQP_SET:
 396                        return -EINVAL;
 397                }
 398        }
 399#endif
 400
 401        switch (cmd) {
 402#ifdef RTC_IRQ
 403        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
 404        {
 405                mask_rtc_irq_bit(RTC_AIE);
 406                return 0;
 407        }
 408        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
 409        {
 410                set_rtc_irq_bit(RTC_AIE);
 411                return 0;
 412        }
 413        case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
 414        {
 415                /* can be called from isr via rtc_control() */
 416                unsigned long flags;
 417
 418                spin_lock_irqsave(&rtc_lock, flags);
 419                mask_rtc_irq_bit_locked(RTC_PIE);
 420                if (rtc_status & RTC_TIMER_ON) {
 421                        rtc_status &= ~RTC_TIMER_ON;
 422                        del_timer(&rtc_irq_timer);
 423                }
 424                spin_unlock_irqrestore(&rtc_lock, flags);
 425
 426                return 0;
 427        }
 428        case RTC_PIE_ON:        /* Allow periodic ints          */
 429        {
 430                /* can be called from isr via rtc_control() */
 431                unsigned long flags;
 432
 433                /*
 434                 * We don't really want Joe User enabling more
 435                 * than 64Hz of interrupts on a multi-user machine.
 436                 */
 437                if (!kernel && (rtc_freq > rtc_max_user_freq) &&
 438                                                (!capable(CAP_SYS_RESOURCE)))
 439                        return -EACCES;
 440
 441                spin_lock_irqsave(&rtc_lock, flags);
 442                if (!(rtc_status & RTC_TIMER_ON)) {
 443                        mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
 444                                        2*HZ/100);
 445                        rtc_status |= RTC_TIMER_ON;
 446                }
 447                set_rtc_irq_bit_locked(RTC_PIE);
 448                spin_unlock_irqrestore(&rtc_lock, flags);
 449
 450                return 0;
 451        }
 452        case RTC_UIE_OFF:       /* Mask ints from RTC updates.  */
 453        {
 454                mask_rtc_irq_bit(RTC_UIE);
 455                return 0;
 456        }
 457        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
 458        {
 459                set_rtc_irq_bit(RTC_UIE);
 460                return 0;
 461        }
 462#endif
 463        case RTC_ALM_READ:      /* Read the present alarm time */
 464        {
 465                /*
 466                 * This returns a struct rtc_time. Reading >= 0xc0
 467                 * means "don't care" or "match all". Only the tm_hour,
 468                 * tm_min, and tm_sec values are filled in.
 469                 */
 470                memset(&wtime, 0, sizeof(struct rtc_time));
 471                get_rtc_alm_time(&wtime);
 472                break;
 473        }
 474        case RTC_ALM_SET:       /* Store a time into the alarm */
 475        {
 476                /*
 477                 * This expects a struct rtc_time. Writing 0xff means
 478                 * "don't care" or "match all". Only the tm_hour,
 479                 * tm_min and tm_sec are used.
 480                 */
 481                unsigned char hrs, min, sec;
 482                struct rtc_time alm_tm;
 483
 484                if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
 485                                   sizeof(struct rtc_time)))
 486                        return -EFAULT;
 487
 488                hrs = alm_tm.tm_hour;
 489                min = alm_tm.tm_min;
 490                sec = alm_tm.tm_sec;
 491
 492                spin_lock_irq(&rtc_lock);
 493                if (hpet_set_alarm_time(hrs, min, sec)) {
 494                        /*
 495                         * Fallthru and set alarm time in CMOS too,
 496                         * so that we will get proper value in RTC_ALM_READ
 497                         */
 498                }
 499                if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
 500                                                        RTC_ALWAYS_BCD) {
 501                        if (sec < 60)
 502                                sec = bin2bcd(sec);
 503                        else
 504                                sec = 0xff;
 505
 506                        if (min < 60)
 507                                min = bin2bcd(min);
 508                        else
 509                                min = 0xff;
 510
 511                        if (hrs < 24)
 512                                hrs = bin2bcd(hrs);
 513                        else
 514                                hrs = 0xff;
 515                }
 516                CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 517                CMOS_WRITE(min, RTC_MINUTES_ALARM);
 518                CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 519                spin_unlock_irq(&rtc_lock);
 520
 521                return 0;
 522        }
 523        case RTC_RD_TIME:       /* Read the time/date from RTC  */
 524        {
 525                memset(&wtime, 0, sizeof(struct rtc_time));
 526                rtc_get_rtc_time(&wtime);
 527                break;
 528        }
 529        case RTC_SET_TIME:      /* Set the RTC */
 530        {
 531                struct rtc_time rtc_tm;
 532                unsigned char mon, day, hrs, min, sec, leap_yr;
 533                unsigned char save_control, save_freq_select;
 534                unsigned int yrs;
 535#ifdef CONFIG_MACH_DECSTATION
 536                unsigned int real_yrs;
 537#endif
 538
 539                if (!capable(CAP_SYS_TIME))
 540                        return -EACCES;
 541
 542                if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
 543                                   sizeof(struct rtc_time)))
 544                        return -EFAULT;
 545
 546                yrs = rtc_tm.tm_year + 1900;
 547                mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
 548                day = rtc_tm.tm_mday;
 549                hrs = rtc_tm.tm_hour;
 550                min = rtc_tm.tm_min;
 551                sec = rtc_tm.tm_sec;
 552
 553                if (yrs < 1970)
 554                        return -EINVAL;
 555
 556                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
 557
 558                if ((mon > 12) || (day == 0))
 559                        return -EINVAL;
 560
 561                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
 562                        return -EINVAL;
 563
 564                if ((hrs >= 24) || (min >= 60) || (sec >= 60))
 565                        return -EINVAL;
 566
 567                yrs -= epoch;
 568                if (yrs > 255)          /* They are unsigned */
 569                        return -EINVAL;
 570
 571                spin_lock_irq(&rtc_lock);
 572#ifdef CONFIG_MACH_DECSTATION
 573                real_yrs = yrs;
 574                yrs = 72;
 575
 576                /*
 577                 * We want to keep the year set to 73 until March
 578                 * for non-leap years, so that Feb, 29th is handled
 579                 * correctly.
 580                 */
 581                if (!leap_yr && mon < 3) {
 582                        real_yrs--;
 583                        yrs = 73;
 584                }
 585#endif
 586                /* These limits and adjustments are independent of
 587                 * whether the chip is in binary mode or not.
 588                 */
 589                if (yrs > 169) {
 590                        spin_unlock_irq(&rtc_lock);
 591                        return -EINVAL;
 592                }
 593                if (yrs >= 100)
 594                        yrs -= 100;
 595
 596                if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
 597                    || RTC_ALWAYS_BCD) {
 598                        sec = bin2bcd(sec);
 599                        min = bin2bcd(min);
 600                        hrs = bin2bcd(hrs);
 601                        day = bin2bcd(day);
 602                        mon = bin2bcd(mon);
 603                        yrs = bin2bcd(yrs);
 604                }
 605
 606                save_control = CMOS_READ(RTC_CONTROL);
 607                CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 608                save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 609                CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 610
 611#ifdef CONFIG_MACH_DECSTATION
 612                CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
 613#endif
 614                CMOS_WRITE(yrs, RTC_YEAR);
 615                CMOS_WRITE(mon, RTC_MONTH);
 616                CMOS_WRITE(day, RTC_DAY_OF_MONTH);
 617                CMOS_WRITE(hrs, RTC_HOURS);
 618                CMOS_WRITE(min, RTC_MINUTES);
 619                CMOS_WRITE(sec, RTC_SECONDS);
 620
 621                CMOS_WRITE(save_control, RTC_CONTROL);
 622                CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 623
 624                spin_unlock_irq(&rtc_lock);
 625                return 0;
 626        }
 627#ifdef RTC_IRQ
 628        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
 629        {
 630                return put_user(rtc_freq, (unsigned long __user *)arg);
 631        }
 632        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
 633        {
 634                int tmp = 0;
 635                unsigned char val;
 636                /* can be called from isr via rtc_control() */
 637                unsigned long flags;
 638
 639                /*
 640                 * The max we can do is 8192Hz.
 641                 */
 642                if ((arg < 2) || (arg > 8192))
 643                        return -EINVAL;
 644                /*
 645                 * We don't really want Joe User generating more
 646                 * than 64Hz of interrupts on a multi-user machine.
 647                 */
 648                if (!kernel && (arg > rtc_max_user_freq) &&
 649                                        !capable(CAP_SYS_RESOURCE))
 650                        return -EACCES;
 651
 652                while (arg > (1<<tmp))
 653                        tmp++;
 654
 655                /*
 656                 * Check that the input was really a power of 2.
 657                 */
 658                if (arg != (1<<tmp))
 659                        return -EINVAL;
 660
 661                rtc_freq = arg;
 662
 663                spin_lock_irqsave(&rtc_lock, flags);
 664                if (hpet_set_periodic_freq(arg)) {
 665                        spin_unlock_irqrestore(&rtc_lock, flags);
 666                        return 0;
 667                }
 668
 669                val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
 670                val |= (16 - tmp);
 671                CMOS_WRITE(val, RTC_FREQ_SELECT);
 672                spin_unlock_irqrestore(&rtc_lock, flags);
 673                return 0;
 674        }
 675#endif
 676        case RTC_EPOCH_READ:    /* Read the epoch.      */
 677        {
 678                return put_user(epoch, (unsigned long __user *)arg);
 679        }
 680        case RTC_EPOCH_SET:     /* Set the epoch.       */
 681        {
 682                /*
 683                 * There were no RTC clocks before 1900.
 684                 */
 685                if (arg < 1900)
 686                        return -EINVAL;
 687
 688                if (!capable(CAP_SYS_TIME))
 689                        return -EACCES;
 690
 691                epoch = arg;
 692                return 0;
 693        }
 694        default:
 695                return -ENOTTY;
 696        }
 697        return copy_to_user((void __user *)arg,
 698                            &wtime, sizeof wtime) ? -EFAULT : 0;
 699}
 700
 701static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 702{
 703        long ret;
 704        ret = rtc_do_ioctl(cmd, arg, 0);
 705        return ret;
 706}
 707
 708/*
 709 *      We enforce only one user at a time here with the open/close.
 710 *      Also clear the previous interrupt data on an open, and clean
 711 *      up things on a close.
 712 */
 713static int rtc_open(struct inode *inode, struct file *file)
 714{
 715        spin_lock_irq(&rtc_lock);
 716
 717        if (rtc_status & RTC_IS_OPEN)
 718                goto out_busy;
 719
 720        rtc_status |= RTC_IS_OPEN;
 721
 722        rtc_irq_data = 0;
 723        spin_unlock_irq(&rtc_lock);
 724        return 0;
 725
 726out_busy:
 727        spin_unlock_irq(&rtc_lock);
 728        return -EBUSY;
 729}
 730
 731static int rtc_fasync(int fd, struct file *filp, int on)
 732{
 733        return fasync_helper(fd, filp, on, &rtc_async_queue);
 734}
 735
 736static int rtc_release(struct inode *inode, struct file *file)
 737{
 738#ifdef RTC_IRQ
 739        unsigned char tmp;
 740
 741        if (rtc_has_irq == 0)
 742                goto no_irq;
 743
 744        /*
 745         * Turn off all interrupts once the device is no longer
 746         * in use, and clear the data.
 747         */
 748
 749        spin_lock_irq(&rtc_lock);
 750        if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 751                tmp = CMOS_READ(RTC_CONTROL);
 752                tmp &=  ~RTC_PIE;
 753                tmp &=  ~RTC_AIE;
 754                tmp &=  ~RTC_UIE;
 755                CMOS_WRITE(tmp, RTC_CONTROL);
 756                CMOS_READ(RTC_INTR_FLAGS);
 757        }
 758        if (rtc_status & RTC_TIMER_ON) {
 759                rtc_status &= ~RTC_TIMER_ON;
 760                del_timer(&rtc_irq_timer);
 761        }
 762        spin_unlock_irq(&rtc_lock);
 763
 764no_irq:
 765#endif
 766
 767        spin_lock_irq(&rtc_lock);
 768        rtc_irq_data = 0;
 769        rtc_status &= ~RTC_IS_OPEN;
 770        spin_unlock_irq(&rtc_lock);
 771
 772        return 0;
 773}
 774
 775#ifdef RTC_IRQ
 776static __poll_t rtc_poll(struct file *file, poll_table *wait)
 777{
 778        unsigned long l;
 779
 780        if (rtc_has_irq == 0)
 781                return 0;
 782
 783        poll_wait(file, &rtc_wait, wait);
 784
 785        spin_lock_irq(&rtc_lock);
 786        l = rtc_irq_data;
 787        spin_unlock_irq(&rtc_lock);
 788
 789        if (l != 0)
 790                return EPOLLIN | EPOLLRDNORM;
 791        return 0;
 792}
 793#endif
 794
 795/*
 796 *      The various file operations we support.
 797 */
 798
 799static const struct file_operations rtc_fops = {
 800        .owner          = THIS_MODULE,
 801        .llseek         = no_llseek,
 802        .read           = rtc_read,
 803#ifdef RTC_IRQ
 804        .poll           = rtc_poll,
 805#endif
 806        .unlocked_ioctl = rtc_ioctl,
 807        .open           = rtc_open,
 808        .release        = rtc_release,
 809        .fasync         = rtc_fasync,
 810};
 811
 812static struct miscdevice rtc_dev = {
 813        .minor          = RTC_MINOR,
 814        .name           = "rtc",
 815        .fops           = &rtc_fops,
 816};
 817
 818static resource_size_t rtc_size;
 819
 820static struct resource * __init rtc_request_region(resource_size_t size)
 821{
 822        struct resource *r;
 823
 824        if (RTC_IOMAPPED)
 825                r = request_region(RTC_PORT(0), size, "rtc");
 826        else
 827                r = request_mem_region(RTC_PORT(0), size, "rtc");
 828
 829        if (r)
 830                rtc_size = size;
 831
 832        return r;
 833}
 834
 835static void rtc_release_region(void)
 836{
 837        if (RTC_IOMAPPED)
 838                release_region(RTC_PORT(0), rtc_size);
 839        else
 840                release_mem_region(RTC_PORT(0), rtc_size);
 841}
 842
 843static int __init rtc_init(void)
 844{
 845#ifdef CONFIG_PROC_FS
 846        struct proc_dir_entry *ent;
 847#endif
 848#if defined(__alpha__) || defined(__mips__)
 849        unsigned int year, ctrl;
 850        char *guess = NULL;
 851#endif
 852#ifdef CONFIG_SPARC32
 853        struct device_node *ebus_dp;
 854        struct platform_device *op;
 855#else
 856        void *r;
 857#ifdef RTC_IRQ
 858        irq_handler_t rtc_int_handler_ptr;
 859#endif
 860#endif
 861
 862#ifdef CONFIG_SPARC32
 863        for_each_node_by_name(ebus_dp, "ebus") {
 864                struct device_node *dp;
 865                for_each_child_of_node(ebus_dp, dp) {
 866                        if (of_node_name_eq(dp, "rtc")) {
 867                                op = of_find_device_by_node(dp);
 868                                if (op) {
 869                                        rtc_port = op->resource[0].start;
 870                                        rtc_irq = op->irqs[0];
 871                                        goto found;
 872                                }
 873                        }
 874                }
 875        }
 876        rtc_has_irq = 0;
 877        printk(KERN_ERR "rtc_init: no PC rtc found\n");
 878        return -EIO;
 879
 880found:
 881        if (!rtc_irq) {
 882                rtc_has_irq = 0;
 883                goto no_irq;
 884        }
 885
 886        /*
 887         * XXX Interrupt pin #7 in Espresso is shared between RTC and
 888         * PCI Slot 2 INTA# (and some INTx# in Slot 1).
 889         */
 890        if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
 891                        (void *)&rtc_port)) {
 892                rtc_has_irq = 0;
 893                printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
 894                return -EIO;
 895        }
 896no_irq:
 897#else
 898        r = rtc_request_region(RTC_IO_EXTENT);
 899
 900        /*
 901         * If we've already requested a smaller range (for example, because
 902         * PNPBIOS or ACPI told us how the device is configured), the request
 903         * above might fail because it's too big.
 904         *
 905         * If so, request just the range we actually use.
 906         */
 907        if (!r)
 908                r = rtc_request_region(RTC_IO_EXTENT_USED);
 909        if (!r) {
 910#ifdef RTC_IRQ
 911                rtc_has_irq = 0;
 912#endif
 913                printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
 914                       (long)(RTC_PORT(0)));
 915                return -EIO;
 916        }
 917
 918#ifdef RTC_IRQ
 919        if (is_hpet_enabled()) {
 920                int err;
 921
 922                rtc_int_handler_ptr = hpet_rtc_interrupt;
 923                err = hpet_register_irq_handler(rtc_interrupt);
 924                if (err != 0) {
 925                        printk(KERN_WARNING "hpet_register_irq_handler failed "
 926                                        "in rtc_init().");
 927                        return err;
 928                }
 929        } else {
 930                rtc_int_handler_ptr = rtc_interrupt;
 931        }
 932
 933        if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
 934                /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
 935                rtc_has_irq = 0;
 936                printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
 937                rtc_release_region();
 938
 939                return -EIO;
 940        }
 941        hpet_rtc_timer_init();
 942
 943#endif
 944
 945#endif /* CONFIG_SPARC32 vs. others */
 946
 947        if (misc_register(&rtc_dev)) {
 948#ifdef RTC_IRQ
 949                free_irq(RTC_IRQ, NULL);
 950                hpet_unregister_irq_handler(rtc_interrupt);
 951                rtc_has_irq = 0;
 952#endif
 953                rtc_release_region();
 954                return -ENODEV;
 955        }
 956
 957#ifdef CONFIG_PROC_FS
 958        ent = proc_create_single("driver/rtc", 0, NULL, rtc_proc_show);
 959        if (!ent)
 960                printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
 961#endif
 962
 963#if defined(__alpha__) || defined(__mips__)
 964        rtc_freq = HZ;
 965
 966        /* Each operating system on an Alpha uses its own epoch.
 967           Let's try to guess which one we are using now. */
 968
 969        if (rtc_is_updating() != 0)
 970                msleep(20);
 971
 972        spin_lock_irq(&rtc_lock);
 973        year = CMOS_READ(RTC_YEAR);
 974        ctrl = CMOS_READ(RTC_CONTROL);
 975        spin_unlock_irq(&rtc_lock);
 976
 977        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 978                year = bcd2bin(year);       /* This should never happen... */
 979
 980        if (year < 20) {
 981                epoch = 2000;
 982                guess = "SRM (post-2000)";
 983        } else if (year >= 20 && year < 48) {
 984                epoch = 1980;
 985                guess = "ARC console";
 986        } else if (year >= 48 && year < 72) {
 987                epoch = 1952;
 988                guess = "Digital UNIX";
 989#if defined(__mips__)
 990        } else if (year >= 72 && year < 74) {
 991                epoch = 2000;
 992                guess = "Digital DECstation";
 993#else
 994        } else if (year >= 70) {
 995                epoch = 1900;
 996                guess = "Standard PC (1900)";
 997#endif
 998        }
 999        if (guess)
1000                printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1001                        guess, epoch);
1002#endif
1003#ifdef RTC_IRQ
1004        if (rtc_has_irq == 0)
1005                goto no_irq2;
1006
1007        spin_lock_irq(&rtc_lock);
1008        rtc_freq = 1024;
1009        if (!hpet_set_periodic_freq(rtc_freq)) {
1010                /*
1011                 * Initialize periodic frequency to CMOS reset default,
1012                 * which is 1024Hz
1013                 */
1014                CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1015                           RTC_FREQ_SELECT);
1016        }
1017        spin_unlock_irq(&rtc_lock);
1018no_irq2:
1019#endif
1020
1021        (void) init_sysctl();
1022
1023        printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1024
1025        return 0;
1026}
1027
1028static void __exit rtc_exit(void)
1029{
1030        cleanup_sysctl();
1031        remove_proc_entry("driver/rtc", NULL);
1032        misc_deregister(&rtc_dev);
1033
1034#ifdef CONFIG_SPARC32
1035        if (rtc_has_irq)
1036                free_irq(rtc_irq, &rtc_port);
1037#else
1038        rtc_release_region();
1039#ifdef RTC_IRQ
1040        if (rtc_has_irq) {
1041                free_irq(RTC_IRQ, NULL);
1042                hpet_unregister_irq_handler(hpet_rtc_interrupt);
1043        }
1044#endif
1045#endif /* CONFIG_SPARC32 */
1046}
1047
1048module_init(rtc_init);
1049module_exit(rtc_exit);
1050
1051#ifdef RTC_IRQ
1052/*
1053 *      At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1054 *      (usually during an IDE disk interrupt, with IRQ unmasking off)
1055 *      Since the interrupt handler doesn't get called, the IRQ status
1056 *      byte doesn't get read, and the RTC stops generating interrupts.
1057 *      A timer is set, and will call this function if/when that happens.
1058 *      To get it out of this stalled state, we just read the status.
1059 *      At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1060 *      (You *really* shouldn't be trying to use a non-realtime system
1061 *      for something that requires a steady > 1KHz signal anyways.)
1062 */
1063
1064static void rtc_dropped_irq(struct timer_list *unused)
1065{
1066        unsigned long freq;
1067
1068        spin_lock_irq(&rtc_lock);
1069
1070        if (hpet_rtc_dropped_irq()) {
1071                spin_unlock_irq(&rtc_lock);
1072                return;
1073        }
1074
1075        /* Just in case someone disabled the timer from behind our back... */
1076        if (rtc_status & RTC_TIMER_ON)
1077                mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1078
1079        rtc_irq_data += ((rtc_freq/HZ)<<8);
1080        rtc_irq_data &= ~0xff;
1081        rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);     /* restart */
1082
1083        freq = rtc_freq;
1084
1085        spin_unlock_irq(&rtc_lock);
1086
1087        printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1088                           freq);
1089
1090        /* Now we have new data */
1091        wake_up_interruptible(&rtc_wait);
1092
1093        kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1094}
1095#endif
1096
1097#ifdef CONFIG_PROC_FS
1098/*
1099 *      Info exported via "/proc/driver/rtc".
1100 */
1101
1102static int rtc_proc_show(struct seq_file *seq, void *v)
1103{
1104#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1105#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1106        struct rtc_time tm;
1107        unsigned char batt, ctrl;
1108        unsigned long freq;
1109
1110        spin_lock_irq(&rtc_lock);
1111        batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1112        ctrl = CMOS_READ(RTC_CONTROL);
1113        freq = rtc_freq;
1114        spin_unlock_irq(&rtc_lock);
1115
1116
1117        rtc_get_rtc_time(&tm);
1118
1119        /*
1120         * There is no way to tell if the luser has the RTC set for local
1121         * time or for Universal Standard Time (GMT). Probably local though.
1122         */
1123        seq_printf(seq,
1124                   "rtc_time\t: %ptRt\n"
1125                   "rtc_date\t: %ptRd\n"
1126                   "rtc_epoch\t: %04lu\n",
1127                   &tm, &tm, epoch);
1128
1129        get_rtc_alm_time(&tm);
1130
1131        /*
1132         * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1133         * match any value for that particular field. Values that are
1134         * greater than a valid time, but less than 0xc0 shouldn't appear.
1135         */
1136        seq_puts(seq, "alarm\t\t: ");
1137        if (tm.tm_hour <= 24)
1138                seq_printf(seq, "%02d:", tm.tm_hour);
1139        else
1140                seq_puts(seq, "**:");
1141
1142        if (tm.tm_min <= 59)
1143                seq_printf(seq, "%02d:", tm.tm_min);
1144        else
1145                seq_puts(seq, "**:");
1146
1147        if (tm.tm_sec <= 59)
1148                seq_printf(seq, "%02d\n", tm.tm_sec);
1149        else
1150                seq_puts(seq, "**\n");
1151
1152        seq_printf(seq,
1153                   "DST_enable\t: %s\n"
1154                   "BCD\t\t: %s\n"
1155                   "24hr\t\t: %s\n"
1156                   "square_wave\t: %s\n"
1157                   "alarm_IRQ\t: %s\n"
1158                   "update_IRQ\t: %s\n"
1159                   "periodic_IRQ\t: %s\n"
1160                   "periodic_freq\t: %ld\n"
1161                   "batt_status\t: %s\n",
1162                   YN(RTC_DST_EN),
1163                   NY(RTC_DM_BINARY),
1164                   YN(RTC_24H),
1165                   YN(RTC_SQWE),
1166                   YN(RTC_AIE),
1167                   YN(RTC_UIE),
1168                   YN(RTC_PIE),
1169                   freq,
1170                   batt ? "okay" : "dead");
1171
1172        return  0;
1173#undef YN
1174#undef NY
1175}
1176#endif
1177
1178static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1179{
1180        unsigned long uip_watchdog = jiffies, flags;
1181        unsigned char ctrl;
1182#ifdef CONFIG_MACH_DECSTATION
1183        unsigned int real_year;
1184#endif
1185
1186        /*
1187         * read RTC once any update in progress is done. The update
1188         * can take just over 2ms. We wait 20ms. There is no need to
1189         * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1190         * If you need to know *exactly* when a second has started, enable
1191         * periodic update complete interrupts, (via ioctl) and then
1192         * immediately read /dev/rtc which will block until you get the IRQ.
1193         * Once the read clears, read the RTC time (again via ioctl). Easy.
1194         */
1195
1196        while (rtc_is_updating() != 0 &&
1197               time_before(jiffies, uip_watchdog + 2*HZ/100))
1198                cpu_relax();
1199
1200        /*
1201         * Only the values that we read from the RTC are set. We leave
1202         * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1203         * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1204         * only updated by the RTC when initially set to a non-zero value.
1205         */
1206        spin_lock_irqsave(&rtc_lock, flags);
1207        rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1208        rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1209        rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1210        rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1211        rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1212        rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1213        /* Only set from 2.6.16 onwards */
1214        rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1215
1216#ifdef CONFIG_MACH_DECSTATION
1217        real_year = CMOS_READ(RTC_DEC_YEAR);
1218#endif
1219        ctrl = CMOS_READ(RTC_CONTROL);
1220        spin_unlock_irqrestore(&rtc_lock, flags);
1221
1222        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1223                rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1224                rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1225                rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1226                rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1227                rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1228                rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1229                rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1230        }
1231
1232#ifdef CONFIG_MACH_DECSTATION
1233        rtc_tm->tm_year += real_year - 72;
1234#endif
1235
1236        /*
1237         * Account for differences between how the RTC uses the values
1238         * and how they are defined in a struct rtc_time;
1239         */
1240        rtc_tm->tm_year += epoch - 1900;
1241        if (rtc_tm->tm_year <= 69)
1242                rtc_tm->tm_year += 100;
1243
1244        rtc_tm->tm_mon--;
1245}
1246
1247static void get_rtc_alm_time(struct rtc_time *alm_tm)
1248{
1249        unsigned char ctrl;
1250
1251        /*
1252         * Only the values that we read from the RTC are set. That
1253         * means only tm_hour, tm_min, and tm_sec.
1254         */
1255        spin_lock_irq(&rtc_lock);
1256        alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1257        alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1258        alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1259        ctrl = CMOS_READ(RTC_CONTROL);
1260        spin_unlock_irq(&rtc_lock);
1261
1262        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1263                alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1264                alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1265                alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1266        }
1267}
1268
1269#ifdef RTC_IRQ
1270/*
1271 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1272 * Rumour has it that if you frob the interrupt enable/disable
1273 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1274 * ensure you actually start getting interrupts. Probably for
1275 * compatibility with older/broken chipset RTC implementations.
1276 * We also clear out any old irq data after an ioctl() that
1277 * meddles with the interrupt enable/disable bits.
1278 */
1279
1280static void mask_rtc_irq_bit_locked(unsigned char bit)
1281{
1282        unsigned char val;
1283
1284        if (hpet_mask_rtc_irq_bit(bit))
1285                return;
1286        val = CMOS_READ(RTC_CONTROL);
1287        val &=  ~bit;
1288        CMOS_WRITE(val, RTC_CONTROL);
1289        CMOS_READ(RTC_INTR_FLAGS);
1290
1291        rtc_irq_data = 0;
1292}
1293
1294static void set_rtc_irq_bit_locked(unsigned char bit)
1295{
1296        unsigned char val;
1297
1298        if (hpet_set_rtc_irq_bit(bit))
1299                return;
1300        val = CMOS_READ(RTC_CONTROL);
1301        val |= bit;
1302        CMOS_WRITE(val, RTC_CONTROL);
1303        CMOS_READ(RTC_INTR_FLAGS);
1304
1305        rtc_irq_data = 0;
1306}
1307#endif
1308
1309MODULE_AUTHOR("Paul Gortmaker");
1310MODULE_LICENSE("GPL");
1311MODULE_ALIAS_MISCDEV(RTC_MINOR);
1312