linux/drivers/clk/bcm/clk-bcm2835.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2010,2015 Broadcom
   4 * Copyright (C) 2012 Stephen Warren
   5 */
   6
   7/**
   8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
   9 *
  10 * The clock tree on the 2835 has several levels.  There's a root
  11 * oscillator running at 19.2Mhz.  After the oscillator there are 5
  12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  13 * and "HDMI displays".  Those 5 PLLs each can divide their output to
  14 * produce up to 4 channels.  Finally, there is the level of clocks to
  15 * be consumed by other hardware components (like "H264" or "HDMI
  16 * state machine"), which divide off of some subset of the PLL
  17 * channels.
  18 *
  19 * All of the clocks in the tree are exposed in the DT, because the DT
  20 * may want to make assignments of the final layer of clocks to the
  21 * PLL channels, and some components of the hardware will actually
  22 * skip layers of the tree (for example, the pixel clock comes
  23 * directly from the PLLH PIX channel without using a CM_*CTL clock
  24 * generator).
  25 */
  26
  27#include <linux/clk-provider.h>
  28#include <linux/clkdev.h>
  29#include <linux/clk.h>
  30#include <linux/debugfs.h>
  31#include <linux/delay.h>
  32#include <linux/io.h>
  33#include <linux/module.h>
  34#include <linux/of_device.h>
  35#include <linux/platform_device.h>
  36#include <linux/slab.h>
  37#include <dt-bindings/clock/bcm2835.h>
  38
  39#define CM_PASSWORD             0x5a000000
  40
  41#define CM_GNRICCTL             0x000
  42#define CM_GNRICDIV             0x004
  43# define CM_DIV_FRAC_BITS       12
  44# define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  45
  46#define CM_VPUCTL               0x008
  47#define CM_VPUDIV               0x00c
  48#define CM_SYSCTL               0x010
  49#define CM_SYSDIV               0x014
  50#define CM_PERIACTL             0x018
  51#define CM_PERIADIV             0x01c
  52#define CM_PERIICTL             0x020
  53#define CM_PERIIDIV             0x024
  54#define CM_H264CTL              0x028
  55#define CM_H264DIV              0x02c
  56#define CM_ISPCTL               0x030
  57#define CM_ISPDIV               0x034
  58#define CM_V3DCTL               0x038
  59#define CM_V3DDIV               0x03c
  60#define CM_CAM0CTL              0x040
  61#define CM_CAM0DIV              0x044
  62#define CM_CAM1CTL              0x048
  63#define CM_CAM1DIV              0x04c
  64#define CM_CCP2CTL              0x050
  65#define CM_CCP2DIV              0x054
  66#define CM_DSI0ECTL             0x058
  67#define CM_DSI0EDIV             0x05c
  68#define CM_DSI0PCTL             0x060
  69#define CM_DSI0PDIV             0x064
  70#define CM_DPICTL               0x068
  71#define CM_DPIDIV               0x06c
  72#define CM_GP0CTL               0x070
  73#define CM_GP0DIV               0x074
  74#define CM_GP1CTL               0x078
  75#define CM_GP1DIV               0x07c
  76#define CM_GP2CTL               0x080
  77#define CM_GP2DIV               0x084
  78#define CM_HSMCTL               0x088
  79#define CM_HSMDIV               0x08c
  80#define CM_OTPCTL               0x090
  81#define CM_OTPDIV               0x094
  82#define CM_PCMCTL               0x098
  83#define CM_PCMDIV               0x09c
  84#define CM_PWMCTL               0x0a0
  85#define CM_PWMDIV               0x0a4
  86#define CM_SLIMCTL              0x0a8
  87#define CM_SLIMDIV              0x0ac
  88#define CM_SMICTL               0x0b0
  89#define CM_SMIDIV               0x0b4
  90/* no definition for 0x0b8  and 0x0bc */
  91#define CM_TCNTCTL              0x0c0
  92# define CM_TCNT_SRC1_SHIFT             12
  93#define CM_TCNTCNT              0x0c4
  94#define CM_TECCTL               0x0c8
  95#define CM_TECDIV               0x0cc
  96#define CM_TD0CTL               0x0d0
  97#define CM_TD0DIV               0x0d4
  98#define CM_TD1CTL               0x0d8
  99#define CM_TD1DIV               0x0dc
 100#define CM_TSENSCTL             0x0e0
 101#define CM_TSENSDIV             0x0e4
 102#define CM_TIMERCTL             0x0e8
 103#define CM_TIMERDIV             0x0ec
 104#define CM_UARTCTL              0x0f0
 105#define CM_UARTDIV              0x0f4
 106#define CM_VECCTL               0x0f8
 107#define CM_VECDIV               0x0fc
 108#define CM_PULSECTL             0x190
 109#define CM_PULSEDIV             0x194
 110#define CM_SDCCTL               0x1a8
 111#define CM_SDCDIV               0x1ac
 112#define CM_ARMCTL               0x1b0
 113#define CM_AVEOCTL              0x1b8
 114#define CM_AVEODIV              0x1bc
 115#define CM_EMMCCTL              0x1c0
 116#define CM_EMMCDIV              0x1c4
 117#define CM_EMMC2CTL             0x1d0
 118#define CM_EMMC2DIV             0x1d4
 119
 120/* General bits for the CM_*CTL regs */
 121# define CM_ENABLE                      BIT(4)
 122# define CM_KILL                        BIT(5)
 123# define CM_GATE_BIT                    6
 124# define CM_GATE                        BIT(CM_GATE_BIT)
 125# define CM_BUSY                        BIT(7)
 126# define CM_BUSYD                       BIT(8)
 127# define CM_FRAC                        BIT(9)
 128# define CM_SRC_SHIFT                   0
 129# define CM_SRC_BITS                    4
 130# define CM_SRC_MASK                    0xf
 131# define CM_SRC_GND                     0
 132# define CM_SRC_OSC                     1
 133# define CM_SRC_TESTDEBUG0              2
 134# define CM_SRC_TESTDEBUG1              3
 135# define CM_SRC_PLLA_CORE               4
 136# define CM_SRC_PLLA_PER                4
 137# define CM_SRC_PLLC_CORE0              5
 138# define CM_SRC_PLLC_PER                5
 139# define CM_SRC_PLLC_CORE1              8
 140# define CM_SRC_PLLD_CORE               6
 141# define CM_SRC_PLLD_PER                6
 142# define CM_SRC_PLLH_AUX                7
 143# define CM_SRC_PLLC_CORE1              8
 144# define CM_SRC_PLLC_CORE2              9
 145
 146#define CM_OSCCOUNT             0x100
 147
 148#define CM_PLLA                 0x104
 149# define CM_PLL_ANARST                  BIT(8)
 150# define CM_PLLA_HOLDPER                BIT(7)
 151# define CM_PLLA_LOADPER                BIT(6)
 152# define CM_PLLA_HOLDCORE               BIT(5)
 153# define CM_PLLA_LOADCORE               BIT(4)
 154# define CM_PLLA_HOLDCCP2               BIT(3)
 155# define CM_PLLA_LOADCCP2               BIT(2)
 156# define CM_PLLA_HOLDDSI0               BIT(1)
 157# define CM_PLLA_LOADDSI0               BIT(0)
 158
 159#define CM_PLLC                 0x108
 160# define CM_PLLC_HOLDPER                BIT(7)
 161# define CM_PLLC_LOADPER                BIT(6)
 162# define CM_PLLC_HOLDCORE2              BIT(5)
 163# define CM_PLLC_LOADCORE2              BIT(4)
 164# define CM_PLLC_HOLDCORE1              BIT(3)
 165# define CM_PLLC_LOADCORE1              BIT(2)
 166# define CM_PLLC_HOLDCORE0              BIT(1)
 167# define CM_PLLC_LOADCORE0              BIT(0)
 168
 169#define CM_PLLD                 0x10c
 170# define CM_PLLD_HOLDPER                BIT(7)
 171# define CM_PLLD_LOADPER                BIT(6)
 172# define CM_PLLD_HOLDCORE               BIT(5)
 173# define CM_PLLD_LOADCORE               BIT(4)
 174# define CM_PLLD_HOLDDSI1               BIT(3)
 175# define CM_PLLD_LOADDSI1               BIT(2)
 176# define CM_PLLD_HOLDDSI0               BIT(1)
 177# define CM_PLLD_LOADDSI0               BIT(0)
 178
 179#define CM_PLLH                 0x110
 180# define CM_PLLH_LOADRCAL               BIT(2)
 181# define CM_PLLH_LOADAUX                BIT(1)
 182# define CM_PLLH_LOADPIX                BIT(0)
 183
 184#define CM_LOCK                 0x114
 185# define CM_LOCK_FLOCKH                 BIT(12)
 186# define CM_LOCK_FLOCKD                 BIT(11)
 187# define CM_LOCK_FLOCKC                 BIT(10)
 188# define CM_LOCK_FLOCKB                 BIT(9)
 189# define CM_LOCK_FLOCKA                 BIT(8)
 190
 191#define CM_EVENT                0x118
 192#define CM_DSI1ECTL             0x158
 193#define CM_DSI1EDIV             0x15c
 194#define CM_DSI1PCTL             0x160
 195#define CM_DSI1PDIV             0x164
 196#define CM_DFTCTL               0x168
 197#define CM_DFTDIV               0x16c
 198
 199#define CM_PLLB                 0x170
 200# define CM_PLLB_HOLDARM                BIT(1)
 201# define CM_PLLB_LOADARM                BIT(0)
 202
 203#define A2W_PLLA_CTRL           0x1100
 204#define A2W_PLLC_CTRL           0x1120
 205#define A2W_PLLD_CTRL           0x1140
 206#define A2W_PLLH_CTRL           0x1160
 207#define A2W_PLLB_CTRL           0x11e0
 208# define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
 209# define A2W_PLL_CTRL_PWRDN             BIT(16)
 210# define A2W_PLL_CTRL_PDIV_MASK         0x000007000
 211# define A2W_PLL_CTRL_PDIV_SHIFT        12
 212# define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
 213# define A2W_PLL_CTRL_NDIV_SHIFT        0
 214
 215#define A2W_PLLA_ANA0           0x1010
 216#define A2W_PLLC_ANA0           0x1030
 217#define A2W_PLLD_ANA0           0x1050
 218#define A2W_PLLH_ANA0           0x1070
 219#define A2W_PLLB_ANA0           0x10f0
 220
 221#define A2W_PLL_KA_SHIFT        7
 222#define A2W_PLL_KA_MASK         GENMASK(9, 7)
 223#define A2W_PLL_KI_SHIFT        19
 224#define A2W_PLL_KI_MASK         GENMASK(21, 19)
 225#define A2W_PLL_KP_SHIFT        15
 226#define A2W_PLL_KP_MASK         GENMASK(18, 15)
 227
 228#define A2W_PLLH_KA_SHIFT       19
 229#define A2W_PLLH_KA_MASK        GENMASK(21, 19)
 230#define A2W_PLLH_KI_LOW_SHIFT   22
 231#define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
 232#define A2W_PLLH_KI_HIGH_SHIFT  0
 233#define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
 234#define A2W_PLLH_KP_SHIFT       1
 235#define A2W_PLLH_KP_MASK        GENMASK(4, 1)
 236
 237#define A2W_XOSC_CTRL           0x1190
 238# define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
 239# define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
 240# define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
 241# define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
 242# define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
 243# define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
 244# define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
 245# define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
 246
 247#define A2W_PLLA_FRAC           0x1200
 248#define A2W_PLLC_FRAC           0x1220
 249#define A2W_PLLD_FRAC           0x1240
 250#define A2W_PLLH_FRAC           0x1260
 251#define A2W_PLLB_FRAC           0x12e0
 252# define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
 253# define A2W_PLL_FRAC_BITS              20
 254
 255#define A2W_PLL_CHANNEL_DISABLE         BIT(8)
 256#define A2W_PLL_DIV_BITS                8
 257#define A2W_PLL_DIV_SHIFT               0
 258
 259#define A2W_PLLA_DSI0           0x1300
 260#define A2W_PLLA_CORE           0x1400
 261#define A2W_PLLA_PER            0x1500
 262#define A2W_PLLA_CCP2           0x1600
 263
 264#define A2W_PLLC_CORE2          0x1320
 265#define A2W_PLLC_CORE1          0x1420
 266#define A2W_PLLC_PER            0x1520
 267#define A2W_PLLC_CORE0          0x1620
 268
 269#define A2W_PLLD_DSI0           0x1340
 270#define A2W_PLLD_CORE           0x1440
 271#define A2W_PLLD_PER            0x1540
 272#define A2W_PLLD_DSI1           0x1640
 273
 274#define A2W_PLLH_AUX            0x1360
 275#define A2W_PLLH_RCAL           0x1460
 276#define A2W_PLLH_PIX            0x1560
 277#define A2W_PLLH_STS            0x1660
 278
 279#define A2W_PLLH_CTRLR          0x1960
 280#define A2W_PLLH_FRACR          0x1a60
 281#define A2W_PLLH_AUXR           0x1b60
 282#define A2W_PLLH_RCALR          0x1c60
 283#define A2W_PLLH_PIXR           0x1d60
 284#define A2W_PLLH_STSR           0x1e60
 285
 286#define A2W_PLLB_ARM            0x13e0
 287#define A2W_PLLB_SP0            0x14e0
 288#define A2W_PLLB_SP1            0x15e0
 289#define A2W_PLLB_SP2            0x16e0
 290
 291#define LOCK_TIMEOUT_NS         100000000
 292#define BCM2835_MAX_FB_RATE     1750000000u
 293
 294#define SOC_BCM2835             BIT(0)
 295#define SOC_BCM2711             BIT(1)
 296#define SOC_ALL                 (SOC_BCM2835 | SOC_BCM2711)
 297
 298/*
 299 * Names of clocks used within the driver that need to be replaced
 300 * with an external parent's name.  This array is in the order that
 301 * the clocks node in the DT references external clocks.
 302 */
 303static const char *const cprman_parent_names[] = {
 304        "xosc",
 305        "dsi0_byte",
 306        "dsi0_ddr2",
 307        "dsi0_ddr",
 308        "dsi1_byte",
 309        "dsi1_ddr2",
 310        "dsi1_ddr",
 311};
 312
 313struct bcm2835_cprman {
 314        struct device *dev;
 315        void __iomem *regs;
 316        spinlock_t regs_lock; /* spinlock for all clocks */
 317
 318        /*
 319         * Real names of cprman clock parents looked up through
 320         * of_clk_get_parent_name(), which will be used in the
 321         * parent_names[] arrays for clock registration.
 322         */
 323        const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
 324
 325        /* Must be last */
 326        struct clk_hw_onecell_data onecell;
 327};
 328
 329struct cprman_plat_data {
 330        unsigned int soc;
 331};
 332
 333static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
 334{
 335        writel(CM_PASSWORD | val, cprman->regs + reg);
 336}
 337
 338static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
 339{
 340        return readl(cprman->regs + reg);
 341}
 342
 343/* Does a cycle of measuring a clock through the TCNT clock, which may
 344 * source from many other clocks in the system.
 345 */
 346static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
 347                                              u32 tcnt_mux)
 348{
 349        u32 osccount = 19200; /* 1ms */
 350        u32 count;
 351        ktime_t timeout;
 352
 353        spin_lock(&cprman->regs_lock);
 354
 355        cprman_write(cprman, CM_TCNTCTL, CM_KILL);
 356
 357        cprman_write(cprman, CM_TCNTCTL,
 358                     (tcnt_mux & CM_SRC_MASK) |
 359                     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
 360
 361        cprman_write(cprman, CM_OSCCOUNT, osccount);
 362
 363        /* do a kind delay at the start */
 364        mdelay(1);
 365
 366        /* Finish off whatever is left of OSCCOUNT */
 367        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 368        while (cprman_read(cprman, CM_OSCCOUNT)) {
 369                if (ktime_after(ktime_get(), timeout)) {
 370                        dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
 371                        count = 0;
 372                        goto out;
 373                }
 374                cpu_relax();
 375        }
 376
 377        /* Wait for BUSY to clear. */
 378        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 379        while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
 380                if (ktime_after(ktime_get(), timeout)) {
 381                        dev_err(cprman->dev, "timeout waiting for !BUSY\n");
 382                        count = 0;
 383                        goto out;
 384                }
 385                cpu_relax();
 386        }
 387
 388        count = cprman_read(cprman, CM_TCNTCNT);
 389
 390        cprman_write(cprman, CM_TCNTCTL, 0);
 391
 392out:
 393        spin_unlock(&cprman->regs_lock);
 394
 395        return count * 1000;
 396}
 397
 398static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
 399                                  struct debugfs_reg32 *regs, size_t nregs,
 400                                  struct dentry *dentry)
 401{
 402        struct debugfs_regset32 *regset;
 403
 404        regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
 405        if (!regset)
 406                return;
 407
 408        regset->regs = regs;
 409        regset->nregs = nregs;
 410        regset->base = cprman->regs + base;
 411
 412        debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
 413}
 414
 415struct bcm2835_pll_data {
 416        const char *name;
 417        u32 cm_ctrl_reg;
 418        u32 a2w_ctrl_reg;
 419        u32 frac_reg;
 420        u32 ana_reg_base;
 421        u32 reference_enable_mask;
 422        /* Bit in CM_LOCK to indicate when the PLL has locked. */
 423        u32 lock_mask;
 424
 425        const struct bcm2835_pll_ana_bits *ana;
 426
 427        unsigned long min_rate;
 428        unsigned long max_rate;
 429        /*
 430         * Highest rate for the VCO before we have to use the
 431         * pre-divide-by-2.
 432         */
 433        unsigned long max_fb_rate;
 434};
 435
 436struct bcm2835_pll_ana_bits {
 437        u32 mask0;
 438        u32 set0;
 439        u32 mask1;
 440        u32 set1;
 441        u32 mask3;
 442        u32 set3;
 443        u32 fb_prediv_mask;
 444};
 445
 446static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
 447        .mask0 = 0,
 448        .set0 = 0,
 449        .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
 450        .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
 451        .mask3 = A2W_PLL_KA_MASK,
 452        .set3 = (2 << A2W_PLL_KA_SHIFT),
 453        .fb_prediv_mask = BIT(14),
 454};
 455
 456static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
 457        .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
 458        .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
 459        .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
 460        .set1 = (6 << A2W_PLLH_KP_SHIFT),
 461        .mask3 = 0,
 462        .set3 = 0,
 463        .fb_prediv_mask = BIT(11),
 464};
 465
 466struct bcm2835_pll_divider_data {
 467        const char *name;
 468        const char *source_pll;
 469
 470        u32 cm_reg;
 471        u32 a2w_reg;
 472
 473        u32 load_mask;
 474        u32 hold_mask;
 475        u32 fixed_divider;
 476        u32 flags;
 477};
 478
 479struct bcm2835_clock_data {
 480        const char *name;
 481
 482        const char *const *parents;
 483        int num_mux_parents;
 484
 485        /* Bitmap encoding which parents accept rate change propagation. */
 486        unsigned int set_rate_parent;
 487
 488        u32 ctl_reg;
 489        u32 div_reg;
 490
 491        /* Number of integer bits in the divider */
 492        u32 int_bits;
 493        /* Number of fractional bits in the divider */
 494        u32 frac_bits;
 495
 496        u32 flags;
 497
 498        bool is_vpu_clock;
 499        bool is_mash_clock;
 500        bool low_jitter;
 501
 502        u32 tcnt_mux;
 503};
 504
 505struct bcm2835_gate_data {
 506        const char *name;
 507        const char *parent;
 508
 509        u32 ctl_reg;
 510};
 511
 512struct bcm2835_pll {
 513        struct clk_hw hw;
 514        struct bcm2835_cprman *cprman;
 515        const struct bcm2835_pll_data *data;
 516};
 517
 518static int bcm2835_pll_is_on(struct clk_hw *hw)
 519{
 520        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 521        struct bcm2835_cprman *cprman = pll->cprman;
 522        const struct bcm2835_pll_data *data = pll->data;
 523
 524        return cprman_read(cprman, data->a2w_ctrl_reg) &
 525                A2W_PLL_CTRL_PRST_DISABLE;
 526}
 527
 528static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
 529                                             unsigned long parent_rate,
 530                                             u32 *ndiv, u32 *fdiv)
 531{
 532        u64 div;
 533
 534        div = (u64)rate << A2W_PLL_FRAC_BITS;
 535        do_div(div, parent_rate);
 536
 537        *ndiv = div >> A2W_PLL_FRAC_BITS;
 538        *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
 539}
 540
 541static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
 542                                           u32 ndiv, u32 fdiv, u32 pdiv)
 543{
 544        u64 rate;
 545
 546        if (pdiv == 0)
 547                return 0;
 548
 549        rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
 550        do_div(rate, pdiv);
 551        return rate >> A2W_PLL_FRAC_BITS;
 552}
 553
 554static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 555                                   unsigned long *parent_rate)
 556{
 557        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 558        const struct bcm2835_pll_data *data = pll->data;
 559        u32 ndiv, fdiv;
 560
 561        rate = clamp(rate, data->min_rate, data->max_rate);
 562
 563        bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
 564
 565        return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
 566}
 567
 568static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
 569                                          unsigned long parent_rate)
 570{
 571        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 572        struct bcm2835_cprman *cprman = pll->cprman;
 573        const struct bcm2835_pll_data *data = pll->data;
 574        u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
 575        u32 ndiv, pdiv, fdiv;
 576        bool using_prediv;
 577
 578        if (parent_rate == 0)
 579                return 0;
 580
 581        fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
 582        ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
 583        pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
 584        using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
 585                data->ana->fb_prediv_mask;
 586
 587        if (using_prediv) {
 588                ndiv *= 2;
 589                fdiv *= 2;
 590        }
 591
 592        return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
 593}
 594
 595static void bcm2835_pll_off(struct clk_hw *hw)
 596{
 597        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 598        struct bcm2835_cprman *cprman = pll->cprman;
 599        const struct bcm2835_pll_data *data = pll->data;
 600
 601        spin_lock(&cprman->regs_lock);
 602        cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
 603        cprman_write(cprman, data->a2w_ctrl_reg,
 604                     cprman_read(cprman, data->a2w_ctrl_reg) |
 605                     A2W_PLL_CTRL_PWRDN);
 606        spin_unlock(&cprman->regs_lock);
 607}
 608
 609static int bcm2835_pll_on(struct clk_hw *hw)
 610{
 611        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 612        struct bcm2835_cprman *cprman = pll->cprman;
 613        const struct bcm2835_pll_data *data = pll->data;
 614        ktime_t timeout;
 615
 616        cprman_write(cprman, data->a2w_ctrl_reg,
 617                     cprman_read(cprman, data->a2w_ctrl_reg) &
 618                     ~A2W_PLL_CTRL_PWRDN);
 619
 620        /* Take the PLL out of reset. */
 621        spin_lock(&cprman->regs_lock);
 622        cprman_write(cprman, data->cm_ctrl_reg,
 623                     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
 624        spin_unlock(&cprman->regs_lock);
 625
 626        /* Wait for the PLL to lock. */
 627        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 628        while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
 629                if (ktime_after(ktime_get(), timeout)) {
 630                        dev_err(cprman->dev, "%s: couldn't lock PLL\n",
 631                                clk_hw_get_name(hw));
 632                        return -ETIMEDOUT;
 633                }
 634
 635                cpu_relax();
 636        }
 637
 638        cprman_write(cprman, data->a2w_ctrl_reg,
 639                     cprman_read(cprman, data->a2w_ctrl_reg) |
 640                     A2W_PLL_CTRL_PRST_DISABLE);
 641
 642        return 0;
 643}
 644
 645static void
 646bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
 647{
 648        int i;
 649
 650        /*
 651         * ANA register setup is done as a series of writes to
 652         * ANA3-ANA0, in that order.  This lets us write all 4
 653         * registers as a single cycle of the serdes interface (taking
 654         * 100 xosc clocks), whereas if we were to update ana0, 1, and
 655         * 3 individually through their partial-write registers, each
 656         * would be their own serdes cycle.
 657         */
 658        for (i = 3; i >= 0; i--)
 659                cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
 660}
 661
 662static int bcm2835_pll_set_rate(struct clk_hw *hw,
 663                                unsigned long rate, unsigned long parent_rate)
 664{
 665        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 666        struct bcm2835_cprman *cprman = pll->cprman;
 667        const struct bcm2835_pll_data *data = pll->data;
 668        bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
 669        u32 ndiv, fdiv, a2w_ctl;
 670        u32 ana[4];
 671        int i;
 672
 673        if (rate > data->max_fb_rate) {
 674                use_fb_prediv = true;
 675                rate /= 2;
 676        } else {
 677                use_fb_prediv = false;
 678        }
 679
 680        bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
 681
 682        for (i = 3; i >= 0; i--)
 683                ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
 684
 685        was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
 686
 687        ana[0] &= ~data->ana->mask0;
 688        ana[0] |= data->ana->set0;
 689        ana[1] &= ~data->ana->mask1;
 690        ana[1] |= data->ana->set1;
 691        ana[3] &= ~data->ana->mask3;
 692        ana[3] |= data->ana->set3;
 693
 694        if (was_using_prediv && !use_fb_prediv) {
 695                ana[1] &= ~data->ana->fb_prediv_mask;
 696                do_ana_setup_first = true;
 697        } else if (!was_using_prediv && use_fb_prediv) {
 698                ana[1] |= data->ana->fb_prediv_mask;
 699                do_ana_setup_first = false;
 700        } else {
 701                do_ana_setup_first = true;
 702        }
 703
 704        /* Unmask the reference clock from the oscillator. */
 705        spin_lock(&cprman->regs_lock);
 706        cprman_write(cprman, A2W_XOSC_CTRL,
 707                     cprman_read(cprman, A2W_XOSC_CTRL) |
 708                     data->reference_enable_mask);
 709        spin_unlock(&cprman->regs_lock);
 710
 711        if (do_ana_setup_first)
 712                bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 713
 714        /* Set the PLL multiplier from the oscillator. */
 715        cprman_write(cprman, data->frac_reg, fdiv);
 716
 717        a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
 718        a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
 719        a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
 720        a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
 721        a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
 722        cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
 723
 724        if (!do_ana_setup_first)
 725                bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 726
 727        return 0;
 728}
 729
 730static void bcm2835_pll_debug_init(struct clk_hw *hw,
 731                                  struct dentry *dentry)
 732{
 733        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 734        struct bcm2835_cprman *cprman = pll->cprman;
 735        const struct bcm2835_pll_data *data = pll->data;
 736        struct debugfs_reg32 *regs;
 737
 738        regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 739        if (!regs)
 740                return;
 741
 742        regs[0].name = "cm_ctrl";
 743        regs[0].offset = data->cm_ctrl_reg;
 744        regs[1].name = "a2w_ctrl";
 745        regs[1].offset = data->a2w_ctrl_reg;
 746        regs[2].name = "frac";
 747        regs[2].offset = data->frac_reg;
 748        regs[3].name = "ana0";
 749        regs[3].offset = data->ana_reg_base + 0 * 4;
 750        regs[4].name = "ana1";
 751        regs[4].offset = data->ana_reg_base + 1 * 4;
 752        regs[5].name = "ana2";
 753        regs[5].offset = data->ana_reg_base + 2 * 4;
 754        regs[6].name = "ana3";
 755        regs[6].offset = data->ana_reg_base + 3 * 4;
 756
 757        bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
 758}
 759
 760static const struct clk_ops bcm2835_pll_clk_ops = {
 761        .is_prepared = bcm2835_pll_is_on,
 762        .prepare = bcm2835_pll_on,
 763        .unprepare = bcm2835_pll_off,
 764        .recalc_rate = bcm2835_pll_get_rate,
 765        .set_rate = bcm2835_pll_set_rate,
 766        .round_rate = bcm2835_pll_round_rate,
 767        .debug_init = bcm2835_pll_debug_init,
 768};
 769
 770struct bcm2835_pll_divider {
 771        struct clk_divider div;
 772        struct bcm2835_cprman *cprman;
 773        const struct bcm2835_pll_divider_data *data;
 774};
 775
 776static struct bcm2835_pll_divider *
 777bcm2835_pll_divider_from_hw(struct clk_hw *hw)
 778{
 779        return container_of(hw, struct bcm2835_pll_divider, div.hw);
 780}
 781
 782static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
 783{
 784        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 785        struct bcm2835_cprman *cprman = divider->cprman;
 786        const struct bcm2835_pll_divider_data *data = divider->data;
 787
 788        return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
 789}
 790
 791static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
 792                                           unsigned long rate,
 793                                           unsigned long *parent_rate)
 794{
 795        return clk_divider_ops.round_rate(hw, rate, parent_rate);
 796}
 797
 798static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
 799                                                  unsigned long parent_rate)
 800{
 801        return clk_divider_ops.recalc_rate(hw, parent_rate);
 802}
 803
 804static void bcm2835_pll_divider_off(struct clk_hw *hw)
 805{
 806        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 807        struct bcm2835_cprman *cprman = divider->cprman;
 808        const struct bcm2835_pll_divider_data *data = divider->data;
 809
 810        spin_lock(&cprman->regs_lock);
 811        cprman_write(cprman, data->cm_reg,
 812                     (cprman_read(cprman, data->cm_reg) &
 813                      ~data->load_mask) | data->hold_mask);
 814        cprman_write(cprman, data->a2w_reg,
 815                     cprman_read(cprman, data->a2w_reg) |
 816                     A2W_PLL_CHANNEL_DISABLE);
 817        spin_unlock(&cprman->regs_lock);
 818}
 819
 820static int bcm2835_pll_divider_on(struct clk_hw *hw)
 821{
 822        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 823        struct bcm2835_cprman *cprman = divider->cprman;
 824        const struct bcm2835_pll_divider_data *data = divider->data;
 825
 826        spin_lock(&cprman->regs_lock);
 827        cprman_write(cprman, data->a2w_reg,
 828                     cprman_read(cprman, data->a2w_reg) &
 829                     ~A2W_PLL_CHANNEL_DISABLE);
 830
 831        cprman_write(cprman, data->cm_reg,
 832                     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
 833        spin_unlock(&cprman->regs_lock);
 834
 835        return 0;
 836}
 837
 838static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
 839                                        unsigned long rate,
 840                                        unsigned long parent_rate)
 841{
 842        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 843        struct bcm2835_cprman *cprman = divider->cprman;
 844        const struct bcm2835_pll_divider_data *data = divider->data;
 845        u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
 846
 847        div = DIV_ROUND_UP_ULL(parent_rate, rate);
 848
 849        div = min(div, max_div);
 850        if (div == max_div)
 851                div = 0;
 852
 853        cprman_write(cprman, data->a2w_reg, div);
 854        cm = cprman_read(cprman, data->cm_reg);
 855        cprman_write(cprman, data->cm_reg, cm | data->load_mask);
 856        cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
 857
 858        return 0;
 859}
 860
 861static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
 862                                           struct dentry *dentry)
 863{
 864        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 865        struct bcm2835_cprman *cprman = divider->cprman;
 866        const struct bcm2835_pll_divider_data *data = divider->data;
 867        struct debugfs_reg32 *regs;
 868
 869        regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 870        if (!regs)
 871                return;
 872
 873        regs[0].name = "cm";
 874        regs[0].offset = data->cm_reg;
 875        regs[1].name = "a2w";
 876        regs[1].offset = data->a2w_reg;
 877
 878        bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
 879}
 880
 881static const struct clk_ops bcm2835_pll_divider_clk_ops = {
 882        .is_prepared = bcm2835_pll_divider_is_on,
 883        .prepare = bcm2835_pll_divider_on,
 884        .unprepare = bcm2835_pll_divider_off,
 885        .recalc_rate = bcm2835_pll_divider_get_rate,
 886        .set_rate = bcm2835_pll_divider_set_rate,
 887        .round_rate = bcm2835_pll_divider_round_rate,
 888        .debug_init = bcm2835_pll_divider_debug_init,
 889};
 890
 891/*
 892 * The CM dividers do fixed-point division, so we can't use the
 893 * generic integer divider code like the PLL dividers do (and we can't
 894 * fake it by having some fixed shifts preceding it in the clock tree,
 895 * because we'd run out of bits in a 32-bit unsigned long).
 896 */
 897struct bcm2835_clock {
 898        struct clk_hw hw;
 899        struct bcm2835_cprman *cprman;
 900        const struct bcm2835_clock_data *data;
 901};
 902
 903static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
 904{
 905        return container_of(hw, struct bcm2835_clock, hw);
 906}
 907
 908static int bcm2835_clock_is_on(struct clk_hw *hw)
 909{
 910        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 911        struct bcm2835_cprman *cprman = clock->cprman;
 912        const struct bcm2835_clock_data *data = clock->data;
 913
 914        return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
 915}
 916
 917static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
 918                                    unsigned long rate,
 919                                    unsigned long parent_rate,
 920                                    bool round_up)
 921{
 922        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 923        const struct bcm2835_clock_data *data = clock->data;
 924        u32 unused_frac_mask =
 925                GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
 926        u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
 927        u64 rem;
 928        u32 div, mindiv, maxdiv;
 929
 930        rem = do_div(temp, rate);
 931        div = temp;
 932
 933        /* Round up and mask off the unused bits */
 934        if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
 935                div += unused_frac_mask + 1;
 936        div &= ~unused_frac_mask;
 937
 938        /* different clamping limits apply for a mash clock */
 939        if (data->is_mash_clock) {
 940                /* clamp to min divider of 2 */
 941                mindiv = 2 << CM_DIV_FRAC_BITS;
 942                /* clamp to the highest possible integer divider */
 943                maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
 944        } else {
 945                /* clamp to min divider of 1 */
 946                mindiv = 1 << CM_DIV_FRAC_BITS;
 947                /* clamp to the highest possible fractional divider */
 948                maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
 949                                 CM_DIV_FRAC_BITS - data->frac_bits);
 950        }
 951
 952        /* apply the clamping  limits */
 953        div = max_t(u32, div, mindiv);
 954        div = min_t(u32, div, maxdiv);
 955
 956        return div;
 957}
 958
 959static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
 960                                            unsigned long parent_rate,
 961                                            u32 div)
 962{
 963        const struct bcm2835_clock_data *data = clock->data;
 964        u64 temp;
 965
 966        if (data->int_bits == 0 && data->frac_bits == 0)
 967                return parent_rate;
 968
 969        /*
 970         * The divisor is a 12.12 fixed point field, but only some of
 971         * the bits are populated in any given clock.
 972         */
 973        div >>= CM_DIV_FRAC_BITS - data->frac_bits;
 974        div &= (1 << (data->int_bits + data->frac_bits)) - 1;
 975
 976        if (div == 0)
 977                return 0;
 978
 979        temp = (u64)parent_rate << data->frac_bits;
 980
 981        do_div(temp, div);
 982
 983        return temp;
 984}
 985
 986static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
 987                                            unsigned long parent_rate)
 988{
 989        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 990        struct bcm2835_cprman *cprman = clock->cprman;
 991        const struct bcm2835_clock_data *data = clock->data;
 992        u32 div;
 993
 994        if (data->int_bits == 0 && data->frac_bits == 0)
 995                return parent_rate;
 996
 997        div = cprman_read(cprman, data->div_reg);
 998
 999        return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1000}
1001
1002static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1003{
1004        struct bcm2835_cprman *cprman = clock->cprman;
1005        const struct bcm2835_clock_data *data = clock->data;
1006        ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1007
1008        while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1009                if (ktime_after(ktime_get(), timeout)) {
1010                        dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1011                                clk_hw_get_name(&clock->hw));
1012                        return;
1013                }
1014                cpu_relax();
1015        }
1016}
1017
1018static void bcm2835_clock_off(struct clk_hw *hw)
1019{
1020        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1021        struct bcm2835_cprman *cprman = clock->cprman;
1022        const struct bcm2835_clock_data *data = clock->data;
1023
1024        spin_lock(&cprman->regs_lock);
1025        cprman_write(cprman, data->ctl_reg,
1026                     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1027        spin_unlock(&cprman->regs_lock);
1028
1029        /* BUSY will remain high until the divider completes its cycle. */
1030        bcm2835_clock_wait_busy(clock);
1031}
1032
1033static int bcm2835_clock_on(struct clk_hw *hw)
1034{
1035        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1036        struct bcm2835_cprman *cprman = clock->cprman;
1037        const struct bcm2835_clock_data *data = clock->data;
1038
1039        spin_lock(&cprman->regs_lock);
1040        cprman_write(cprman, data->ctl_reg,
1041                     cprman_read(cprman, data->ctl_reg) |
1042                     CM_ENABLE |
1043                     CM_GATE);
1044        spin_unlock(&cprman->regs_lock);
1045
1046        /* Debug code to measure the clock once it's turned on to see
1047         * if it's ticking at the rate we expect.
1048         */
1049        if (data->tcnt_mux && false) {
1050                dev_info(cprman->dev,
1051                         "clk %s: rate %ld, measure %ld\n",
1052                         data->name,
1053                         clk_hw_get_rate(hw),
1054                         bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1055        }
1056
1057        return 0;
1058}
1059
1060static int bcm2835_clock_set_rate(struct clk_hw *hw,
1061                                  unsigned long rate, unsigned long parent_rate)
1062{
1063        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1064        struct bcm2835_cprman *cprman = clock->cprman;
1065        const struct bcm2835_clock_data *data = clock->data;
1066        u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1067        u32 ctl;
1068
1069        spin_lock(&cprman->regs_lock);
1070
1071        /*
1072         * Setting up frac support
1073         *
1074         * In principle it is recommended to stop/start the clock first,
1075         * but as we set CLK_SET_RATE_GATE during registration of the
1076         * clock this requirement should be take care of by the
1077         * clk-framework.
1078         */
1079        ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1080        ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1081        cprman_write(cprman, data->ctl_reg, ctl);
1082
1083        cprman_write(cprman, data->div_reg, div);
1084
1085        spin_unlock(&cprman->regs_lock);
1086
1087        return 0;
1088}
1089
1090static bool
1091bcm2835_clk_is_pllc(struct clk_hw *hw)
1092{
1093        if (!hw)
1094                return false;
1095
1096        return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1097}
1098
1099static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1100                                                        int parent_idx,
1101                                                        unsigned long rate,
1102                                                        u32 *div,
1103                                                        unsigned long *prate,
1104                                                        unsigned long *avgrate)
1105{
1106        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1107        struct bcm2835_cprman *cprman = clock->cprman;
1108        const struct bcm2835_clock_data *data = clock->data;
1109        unsigned long best_rate = 0;
1110        u32 curdiv, mindiv, maxdiv;
1111        struct clk_hw *parent;
1112
1113        parent = clk_hw_get_parent_by_index(hw, parent_idx);
1114
1115        if (!(BIT(parent_idx) & data->set_rate_parent)) {
1116                *prate = clk_hw_get_rate(parent);
1117                *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1118
1119                *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1120
1121                if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1122                        unsigned long high, low;
1123                        u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1124
1125                        high = bcm2835_clock_rate_from_divisor(clock, *prate,
1126                                                               int_div);
1127                        int_div += CM_DIV_FRAC_MASK + 1;
1128                        low = bcm2835_clock_rate_from_divisor(clock, *prate,
1129                                                              int_div);
1130
1131                        /*
1132                         * Return a value which is the maximum deviation
1133                         * below the ideal rate, for use as a metric.
1134                         */
1135                        return *avgrate - max(*avgrate - low, high - *avgrate);
1136                }
1137                return *avgrate;
1138        }
1139
1140        if (data->frac_bits)
1141                dev_warn(cprman->dev,
1142                        "frac bits are not used when propagating rate change");
1143
1144        /* clamp to min divider of 2 if we're dealing with a mash clock */
1145        mindiv = data->is_mash_clock ? 2 : 1;
1146        maxdiv = BIT(data->int_bits) - 1;
1147
1148        /* TODO: Be smart, and only test a subset of the available divisors. */
1149        for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1150                unsigned long tmp_rate;
1151
1152                tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1153                tmp_rate /= curdiv;
1154                if (curdiv == mindiv ||
1155                    (tmp_rate > best_rate && tmp_rate <= rate))
1156                        best_rate = tmp_rate;
1157
1158                if (best_rate == rate)
1159                        break;
1160        }
1161
1162        *div = curdiv << CM_DIV_FRAC_BITS;
1163        *prate = curdiv * best_rate;
1164        *avgrate = best_rate;
1165
1166        return best_rate;
1167}
1168
1169static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1170                                        struct clk_rate_request *req)
1171{
1172        struct clk_hw *parent, *best_parent = NULL;
1173        bool current_parent_is_pllc;
1174        unsigned long rate, best_rate = 0;
1175        unsigned long prate, best_prate = 0;
1176        unsigned long avgrate, best_avgrate = 0;
1177        size_t i;
1178        u32 div;
1179
1180        current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1181
1182        /*
1183         * Select parent clock that results in the closest but lower rate
1184         */
1185        for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1186                parent = clk_hw_get_parent_by_index(hw, i);
1187                if (!parent)
1188                        continue;
1189
1190                /*
1191                 * Don't choose a PLLC-derived clock as our parent
1192                 * unless it had been manually set that way.  PLLC's
1193                 * frequency gets adjusted by the firmware due to
1194                 * over-temp or under-voltage conditions, without
1195                 * prior notification to our clock consumer.
1196                 */
1197                if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1198                        continue;
1199
1200                rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1201                                                          &div, &prate,
1202                                                          &avgrate);
1203                if (rate > best_rate && rate <= req->rate) {
1204                        best_parent = parent;
1205                        best_prate = prate;
1206                        best_rate = rate;
1207                        best_avgrate = avgrate;
1208                }
1209        }
1210
1211        if (!best_parent)
1212                return -EINVAL;
1213
1214        req->best_parent_hw = best_parent;
1215        req->best_parent_rate = best_prate;
1216
1217        req->rate = best_avgrate;
1218
1219        return 0;
1220}
1221
1222static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1223{
1224        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1225        struct bcm2835_cprman *cprman = clock->cprman;
1226        const struct bcm2835_clock_data *data = clock->data;
1227        u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1228
1229        cprman_write(cprman, data->ctl_reg, src);
1230        return 0;
1231}
1232
1233static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1234{
1235        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1236        struct bcm2835_cprman *cprman = clock->cprman;
1237        const struct bcm2835_clock_data *data = clock->data;
1238        u32 src = cprman_read(cprman, data->ctl_reg);
1239
1240        return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1241}
1242
1243static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1244        {
1245                .name = "ctl",
1246                .offset = 0,
1247        },
1248        {
1249                .name = "div",
1250                .offset = 4,
1251        },
1252};
1253
1254static void bcm2835_clock_debug_init(struct clk_hw *hw,
1255                                    struct dentry *dentry)
1256{
1257        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1258        struct bcm2835_cprman *cprman = clock->cprman;
1259        const struct bcm2835_clock_data *data = clock->data;
1260
1261        bcm2835_debugfs_regset(cprman, data->ctl_reg,
1262                bcm2835_debugfs_clock_reg32,
1263                ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1264                dentry);
1265}
1266
1267static const struct clk_ops bcm2835_clock_clk_ops = {
1268        .is_prepared = bcm2835_clock_is_on,
1269        .prepare = bcm2835_clock_on,
1270        .unprepare = bcm2835_clock_off,
1271        .recalc_rate = bcm2835_clock_get_rate,
1272        .set_rate = bcm2835_clock_set_rate,
1273        .determine_rate = bcm2835_clock_determine_rate,
1274        .set_parent = bcm2835_clock_set_parent,
1275        .get_parent = bcm2835_clock_get_parent,
1276        .debug_init = bcm2835_clock_debug_init,
1277};
1278
1279static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1280{
1281        return true;
1282}
1283
1284/*
1285 * The VPU clock can never be disabled (it doesn't have an ENABLE
1286 * bit), so it gets its own set of clock ops.
1287 */
1288static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1289        .is_prepared = bcm2835_vpu_clock_is_on,
1290        .recalc_rate = bcm2835_clock_get_rate,
1291        .set_rate = bcm2835_clock_set_rate,
1292        .determine_rate = bcm2835_clock_determine_rate,
1293        .set_parent = bcm2835_clock_set_parent,
1294        .get_parent = bcm2835_clock_get_parent,
1295        .debug_init = bcm2835_clock_debug_init,
1296};
1297
1298static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1299                                           const struct bcm2835_pll_data *data)
1300{
1301        struct bcm2835_pll *pll;
1302        struct clk_init_data init;
1303        int ret;
1304
1305        memset(&init, 0, sizeof(init));
1306
1307        /* All of the PLLs derive from the external oscillator. */
1308        init.parent_names = &cprman->real_parent_names[0];
1309        init.num_parents = 1;
1310        init.name = data->name;
1311        init.ops = &bcm2835_pll_clk_ops;
1312        init.flags = CLK_IGNORE_UNUSED;
1313
1314        pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1315        if (!pll)
1316                return NULL;
1317
1318        pll->cprman = cprman;
1319        pll->data = data;
1320        pll->hw.init = &init;
1321
1322        ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1323        if (ret)
1324                return NULL;
1325        return &pll->hw;
1326}
1327
1328static struct clk_hw *
1329bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1330                             const struct bcm2835_pll_divider_data *data)
1331{
1332        struct bcm2835_pll_divider *divider;
1333        struct clk_init_data init;
1334        const char *divider_name;
1335        int ret;
1336
1337        if (data->fixed_divider != 1) {
1338                divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1339                                              "%s_prediv", data->name);
1340                if (!divider_name)
1341                        return NULL;
1342        } else {
1343                divider_name = data->name;
1344        }
1345
1346        memset(&init, 0, sizeof(init));
1347
1348        init.parent_names = &data->source_pll;
1349        init.num_parents = 1;
1350        init.name = divider_name;
1351        init.ops = &bcm2835_pll_divider_clk_ops;
1352        init.flags = data->flags | CLK_IGNORE_UNUSED;
1353
1354        divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1355        if (!divider)
1356                return NULL;
1357
1358        divider->div.reg = cprman->regs + data->a2w_reg;
1359        divider->div.shift = A2W_PLL_DIV_SHIFT;
1360        divider->div.width = A2W_PLL_DIV_BITS;
1361        divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1362        divider->div.lock = &cprman->regs_lock;
1363        divider->div.hw.init = &init;
1364        divider->div.table = NULL;
1365
1366        divider->cprman = cprman;
1367        divider->data = data;
1368
1369        ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1370        if (ret)
1371                return ERR_PTR(ret);
1372
1373        /*
1374         * PLLH's channels have a fixed divide by 10 afterwards, which
1375         * is what our consumers are actually using.
1376         */
1377        if (data->fixed_divider != 1) {
1378                return clk_hw_register_fixed_factor(cprman->dev, data->name,
1379                                                    divider_name,
1380                                                    CLK_SET_RATE_PARENT,
1381                                                    1,
1382                                                    data->fixed_divider);
1383        }
1384
1385        return &divider->div.hw;
1386}
1387
1388static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1389                                          const struct bcm2835_clock_data *data)
1390{
1391        struct bcm2835_clock *clock;
1392        struct clk_init_data init;
1393        const char *parents[1 << CM_SRC_BITS];
1394        size_t i;
1395        int ret;
1396
1397        /*
1398         * Replace our strings referencing parent clocks with the
1399         * actual clock-output-name of the parent.
1400         */
1401        for (i = 0; i < data->num_mux_parents; i++) {
1402                parents[i] = data->parents[i];
1403
1404                ret = match_string(cprman_parent_names,
1405                                   ARRAY_SIZE(cprman_parent_names),
1406                                   parents[i]);
1407                if (ret >= 0)
1408                        parents[i] = cprman->real_parent_names[ret];
1409        }
1410
1411        memset(&init, 0, sizeof(init));
1412        init.parent_names = parents;
1413        init.num_parents = data->num_mux_parents;
1414        init.name = data->name;
1415        init.flags = data->flags | CLK_IGNORE_UNUSED;
1416
1417        /*
1418         * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1419         * rate changes on at least of the parents.
1420         */
1421        if (data->set_rate_parent)
1422                init.flags |= CLK_SET_RATE_PARENT;
1423
1424        if (data->is_vpu_clock) {
1425                init.ops = &bcm2835_vpu_clock_clk_ops;
1426        } else {
1427                init.ops = &bcm2835_clock_clk_ops;
1428                init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1429
1430                /* If the clock wasn't actually enabled at boot, it's not
1431                 * critical.
1432                 */
1433                if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1434                        init.flags &= ~CLK_IS_CRITICAL;
1435        }
1436
1437        clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1438        if (!clock)
1439                return NULL;
1440
1441        clock->cprman = cprman;
1442        clock->data = data;
1443        clock->hw.init = &init;
1444
1445        ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1446        if (ret)
1447                return ERR_PTR(ret);
1448        return &clock->hw;
1449}
1450
1451static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1452                                         const struct bcm2835_gate_data *data)
1453{
1454        return clk_register_gate(cprman->dev, data->name, data->parent,
1455                                 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1456                                 cprman->regs + data->ctl_reg,
1457                                 CM_GATE_BIT, 0, &cprman->regs_lock);
1458}
1459
1460typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1461                                               const void *data);
1462struct bcm2835_clk_desc {
1463        bcm2835_clk_register clk_register;
1464        unsigned int supported;
1465        const void *data;
1466};
1467
1468/* assignment helper macros for different clock types */
1469#define _REGISTER(f, s, ...) { .clk_register = (bcm2835_clk_register)f, \
1470                               .supported = s,                          \
1471                               .data = __VA_ARGS__ }
1472#define REGISTER_PLL(s, ...)    _REGISTER(&bcm2835_register_pll,        \
1473                                          s,                            \
1474                                          &(struct bcm2835_pll_data)    \
1475                                          {__VA_ARGS__})
1476#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1477                                           s,                             \
1478                                           &(struct bcm2835_pll_divider_data) \
1479                                           {__VA_ARGS__})
1480#define REGISTER_CLK(s, ...)    _REGISTER(&bcm2835_register_clock,      \
1481                                          s,                            \
1482                                          &(struct bcm2835_clock_data)  \
1483                                          {__VA_ARGS__})
1484#define REGISTER_GATE(s, ...)   _REGISTER(&bcm2835_register_gate,       \
1485                                          s,                            \
1486                                          &(struct bcm2835_gate_data)   \
1487                                          {__VA_ARGS__})
1488
1489/* parent mux arrays plus helper macros */
1490
1491/* main oscillator parent mux */
1492static const char *const bcm2835_clock_osc_parents[] = {
1493        "gnd",
1494        "xosc",
1495        "testdebug0",
1496        "testdebug1"
1497};
1498
1499#define REGISTER_OSC_CLK(s, ...)        REGISTER_CLK(                   \
1500        s,                                                              \
1501        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1502        .parents = bcm2835_clock_osc_parents,                           \
1503        __VA_ARGS__)
1504
1505/* main peripherial parent mux */
1506static const char *const bcm2835_clock_per_parents[] = {
1507        "gnd",
1508        "xosc",
1509        "testdebug0",
1510        "testdebug1",
1511        "plla_per",
1512        "pllc_per",
1513        "plld_per",
1514        "pllh_aux",
1515};
1516
1517#define REGISTER_PER_CLK(s, ...)        REGISTER_CLK(                   \
1518        s,                                                              \
1519        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1520        .parents = bcm2835_clock_per_parents,                           \
1521        __VA_ARGS__)
1522
1523/*
1524 * Restrict clock sources for the PCM peripheral to the oscillator and
1525 * PLLD_PER because other source may have varying rates or be switched
1526 * off.
1527 *
1528 * Prevent other sources from being selected by replacing their names in
1529 * the list of potential parents with dummy entries (entry index is
1530 * significant).
1531 */
1532static const char *const bcm2835_pcm_per_parents[] = {
1533        "-",
1534        "xosc",
1535        "-",
1536        "-",
1537        "-",
1538        "-",
1539        "plld_per",
1540        "-",
1541};
1542
1543#define REGISTER_PCM_CLK(s, ...)        REGISTER_CLK(                   \
1544        s,                                                              \
1545        .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1546        .parents = bcm2835_pcm_per_parents,                             \
1547        __VA_ARGS__)
1548
1549/* main vpu parent mux */
1550static const char *const bcm2835_clock_vpu_parents[] = {
1551        "gnd",
1552        "xosc",
1553        "testdebug0",
1554        "testdebug1",
1555        "plla_core",
1556        "pllc_core0",
1557        "plld_core",
1558        "pllh_aux",
1559        "pllc_core1",
1560        "pllc_core2",
1561};
1562
1563#define REGISTER_VPU_CLK(s, ...)        REGISTER_CLK(                   \
1564        s,                                                              \
1565        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1566        .parents = bcm2835_clock_vpu_parents,                           \
1567        __VA_ARGS__)
1568
1569/*
1570 * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1571 * analog PHY.  The _inv variants are generated internally to cprman,
1572 * but we don't use them so they aren't hooked up.
1573 */
1574static const char *const bcm2835_clock_dsi0_parents[] = {
1575        "gnd",
1576        "xosc",
1577        "testdebug0",
1578        "testdebug1",
1579        "dsi0_ddr",
1580        "dsi0_ddr_inv",
1581        "dsi0_ddr2",
1582        "dsi0_ddr2_inv",
1583        "dsi0_byte",
1584        "dsi0_byte_inv",
1585};
1586
1587static const char *const bcm2835_clock_dsi1_parents[] = {
1588        "gnd",
1589        "xosc",
1590        "testdebug0",
1591        "testdebug1",
1592        "dsi1_ddr",
1593        "dsi1_ddr_inv",
1594        "dsi1_ddr2",
1595        "dsi1_ddr2_inv",
1596        "dsi1_byte",
1597        "dsi1_byte_inv",
1598};
1599
1600#define REGISTER_DSI0_CLK(s, ...)       REGISTER_CLK(                   \
1601        s,                                                              \
1602        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1603        .parents = bcm2835_clock_dsi0_parents,                          \
1604        __VA_ARGS__)
1605
1606#define REGISTER_DSI1_CLK(s, ...)       REGISTER_CLK(                   \
1607        s,                                                              \
1608        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1609        .parents = bcm2835_clock_dsi1_parents,                          \
1610        __VA_ARGS__)
1611
1612/*
1613 * the real definition of all the pll, pll_dividers and clocks
1614 * these make use of the above REGISTER_* macros
1615 */
1616static const struct bcm2835_clk_desc clk_desc_array[] = {
1617        /* the PLL + PLL dividers */
1618
1619        /*
1620         * PLLA is the auxiliary PLL, used to drive the CCP2
1621         * (Compact Camera Port 2) transmitter clock.
1622         *
1623         * It is in the PX LDO power domain, which is on when the
1624         * AUDIO domain is on.
1625         */
1626        [BCM2835_PLLA]          = REGISTER_PLL(
1627                SOC_ALL,
1628                .name = "plla",
1629                .cm_ctrl_reg = CM_PLLA,
1630                .a2w_ctrl_reg = A2W_PLLA_CTRL,
1631                .frac_reg = A2W_PLLA_FRAC,
1632                .ana_reg_base = A2W_PLLA_ANA0,
1633                .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1634                .lock_mask = CM_LOCK_FLOCKA,
1635
1636                .ana = &bcm2835_ana_default,
1637
1638                .min_rate = 600000000u,
1639                .max_rate = 2400000000u,
1640                .max_fb_rate = BCM2835_MAX_FB_RATE),
1641        [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1642                SOC_ALL,
1643                .name = "plla_core",
1644                .source_pll = "plla",
1645                .cm_reg = CM_PLLA,
1646                .a2w_reg = A2W_PLLA_CORE,
1647                .load_mask = CM_PLLA_LOADCORE,
1648                .hold_mask = CM_PLLA_HOLDCORE,
1649                .fixed_divider = 1,
1650                .flags = CLK_SET_RATE_PARENT),
1651        [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1652                SOC_ALL,
1653                .name = "plla_per",
1654                .source_pll = "plla",
1655                .cm_reg = CM_PLLA,
1656                .a2w_reg = A2W_PLLA_PER,
1657                .load_mask = CM_PLLA_LOADPER,
1658                .hold_mask = CM_PLLA_HOLDPER,
1659                .fixed_divider = 1,
1660                .flags = CLK_SET_RATE_PARENT),
1661        [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1662                SOC_ALL,
1663                .name = "plla_dsi0",
1664                .source_pll = "plla",
1665                .cm_reg = CM_PLLA,
1666                .a2w_reg = A2W_PLLA_DSI0,
1667                .load_mask = CM_PLLA_LOADDSI0,
1668                .hold_mask = CM_PLLA_HOLDDSI0,
1669                .fixed_divider = 1),
1670        [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1671                SOC_ALL,
1672                .name = "plla_ccp2",
1673                .source_pll = "plla",
1674                .cm_reg = CM_PLLA,
1675                .a2w_reg = A2W_PLLA_CCP2,
1676                .load_mask = CM_PLLA_LOADCCP2,
1677                .hold_mask = CM_PLLA_HOLDCCP2,
1678                .fixed_divider = 1,
1679                .flags = CLK_SET_RATE_PARENT),
1680
1681        /*
1682         * PLLB is used for the ARM's clock. Controlled by firmware, see
1683         * clk-raspberrypi.c.
1684         */
1685
1686        /*
1687         * PLLC is the core PLL, used to drive the core VPU clock.
1688         *
1689         * It is in the PX LDO power domain, which is on when the
1690         * AUDIO domain is on.
1691         */
1692        [BCM2835_PLLC]          = REGISTER_PLL(
1693                SOC_ALL,
1694                .name = "pllc",
1695                .cm_ctrl_reg = CM_PLLC,
1696                .a2w_ctrl_reg = A2W_PLLC_CTRL,
1697                .frac_reg = A2W_PLLC_FRAC,
1698                .ana_reg_base = A2W_PLLC_ANA0,
1699                .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1700                .lock_mask = CM_LOCK_FLOCKC,
1701
1702                .ana = &bcm2835_ana_default,
1703
1704                .min_rate = 600000000u,
1705                .max_rate = 3000000000u,
1706                .max_fb_rate = BCM2835_MAX_FB_RATE),
1707        [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1708                SOC_ALL,
1709                .name = "pllc_core0",
1710                .source_pll = "pllc",
1711                .cm_reg = CM_PLLC,
1712                .a2w_reg = A2W_PLLC_CORE0,
1713                .load_mask = CM_PLLC_LOADCORE0,
1714                .hold_mask = CM_PLLC_HOLDCORE0,
1715                .fixed_divider = 1,
1716                .flags = CLK_SET_RATE_PARENT),
1717        [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1718                SOC_ALL,
1719                .name = "pllc_core1",
1720                .source_pll = "pllc",
1721                .cm_reg = CM_PLLC,
1722                .a2w_reg = A2W_PLLC_CORE1,
1723                .load_mask = CM_PLLC_LOADCORE1,
1724                .hold_mask = CM_PLLC_HOLDCORE1,
1725                .fixed_divider = 1,
1726                .flags = CLK_SET_RATE_PARENT),
1727        [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1728                SOC_ALL,
1729                .name = "pllc_core2",
1730                .source_pll = "pllc",
1731                .cm_reg = CM_PLLC,
1732                .a2w_reg = A2W_PLLC_CORE2,
1733                .load_mask = CM_PLLC_LOADCORE2,
1734                .hold_mask = CM_PLLC_HOLDCORE2,
1735                .fixed_divider = 1,
1736                .flags = CLK_SET_RATE_PARENT),
1737        [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1738                SOC_ALL,
1739                .name = "pllc_per",
1740                .source_pll = "pllc",
1741                .cm_reg = CM_PLLC,
1742                .a2w_reg = A2W_PLLC_PER,
1743                .load_mask = CM_PLLC_LOADPER,
1744                .hold_mask = CM_PLLC_HOLDPER,
1745                .fixed_divider = 1,
1746                .flags = CLK_SET_RATE_PARENT),
1747
1748        /*
1749         * PLLD is the display PLL, used to drive DSI display panels.
1750         *
1751         * It is in the PX LDO power domain, which is on when the
1752         * AUDIO domain is on.
1753         */
1754        [BCM2835_PLLD]          = REGISTER_PLL(
1755                SOC_ALL,
1756                .name = "plld",
1757                .cm_ctrl_reg = CM_PLLD,
1758                .a2w_ctrl_reg = A2W_PLLD_CTRL,
1759                .frac_reg = A2W_PLLD_FRAC,
1760                .ana_reg_base = A2W_PLLD_ANA0,
1761                .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1762                .lock_mask = CM_LOCK_FLOCKD,
1763
1764                .ana = &bcm2835_ana_default,
1765
1766                .min_rate = 600000000u,
1767                .max_rate = 2400000000u,
1768                .max_fb_rate = BCM2835_MAX_FB_RATE),
1769        [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1770                SOC_ALL,
1771                .name = "plld_core",
1772                .source_pll = "plld",
1773                .cm_reg = CM_PLLD,
1774                .a2w_reg = A2W_PLLD_CORE,
1775                .load_mask = CM_PLLD_LOADCORE,
1776                .hold_mask = CM_PLLD_HOLDCORE,
1777                .fixed_divider = 1,
1778                .flags = CLK_SET_RATE_PARENT),
1779        /*
1780         * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1781         * Otherwise this could cause firmware lookups. That's why we mark
1782         * it as critical.
1783         */
1784        [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1785                SOC_ALL,
1786                .name = "plld_per",
1787                .source_pll = "plld",
1788                .cm_reg = CM_PLLD,
1789                .a2w_reg = A2W_PLLD_PER,
1790                .load_mask = CM_PLLD_LOADPER,
1791                .hold_mask = CM_PLLD_HOLDPER,
1792                .fixed_divider = 1,
1793                .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1794        [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1795                SOC_ALL,
1796                .name = "plld_dsi0",
1797                .source_pll = "plld",
1798                .cm_reg = CM_PLLD,
1799                .a2w_reg = A2W_PLLD_DSI0,
1800                .load_mask = CM_PLLD_LOADDSI0,
1801                .hold_mask = CM_PLLD_HOLDDSI0,
1802                .fixed_divider = 1),
1803        [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1804                SOC_ALL,
1805                .name = "plld_dsi1",
1806                .source_pll = "plld",
1807                .cm_reg = CM_PLLD,
1808                .a2w_reg = A2W_PLLD_DSI1,
1809                .load_mask = CM_PLLD_LOADDSI1,
1810                .hold_mask = CM_PLLD_HOLDDSI1,
1811                .fixed_divider = 1),
1812
1813        /*
1814         * PLLH is used to supply the pixel clock or the AUX clock for the
1815         * TV encoder.
1816         *
1817         * It is in the HDMI power domain.
1818         */
1819        [BCM2835_PLLH]          = REGISTER_PLL(
1820                SOC_BCM2835,
1821                "pllh",
1822                .cm_ctrl_reg = CM_PLLH,
1823                .a2w_ctrl_reg = A2W_PLLH_CTRL,
1824                .frac_reg = A2W_PLLH_FRAC,
1825                .ana_reg_base = A2W_PLLH_ANA0,
1826                .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1827                .lock_mask = CM_LOCK_FLOCKH,
1828
1829                .ana = &bcm2835_ana_pllh,
1830
1831                .min_rate = 600000000u,
1832                .max_rate = 3000000000u,
1833                .max_fb_rate = BCM2835_MAX_FB_RATE),
1834        [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1835                SOC_BCM2835,
1836                .name = "pllh_rcal",
1837                .source_pll = "pllh",
1838                .cm_reg = CM_PLLH,
1839                .a2w_reg = A2W_PLLH_RCAL,
1840                .load_mask = CM_PLLH_LOADRCAL,
1841                .hold_mask = 0,
1842                .fixed_divider = 10,
1843                .flags = CLK_SET_RATE_PARENT),
1844        [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1845                SOC_BCM2835,
1846                .name = "pllh_aux",
1847                .source_pll = "pllh",
1848                .cm_reg = CM_PLLH,
1849                .a2w_reg = A2W_PLLH_AUX,
1850                .load_mask = CM_PLLH_LOADAUX,
1851                .hold_mask = 0,
1852                .fixed_divider = 1,
1853                .flags = CLK_SET_RATE_PARENT),
1854        [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1855                SOC_BCM2835,
1856                .name = "pllh_pix",
1857                .source_pll = "pllh",
1858                .cm_reg = CM_PLLH,
1859                .a2w_reg = A2W_PLLH_PIX,
1860                .load_mask = CM_PLLH_LOADPIX,
1861                .hold_mask = 0,
1862                .fixed_divider = 10,
1863                .flags = CLK_SET_RATE_PARENT),
1864
1865        /* the clocks */
1866
1867        /* clocks with oscillator parent mux */
1868
1869        /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1870        [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1871                SOC_ALL,
1872                .name = "otp",
1873                .ctl_reg = CM_OTPCTL,
1874                .div_reg = CM_OTPDIV,
1875                .int_bits = 4,
1876                .frac_bits = 0,
1877                .tcnt_mux = 6),
1878        /*
1879         * Used for a 1Mhz clock for the system clocksource, and also used
1880         * bythe watchdog timer and the camera pulse generator.
1881         */
1882        [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1883                SOC_ALL,
1884                .name = "timer",
1885                .ctl_reg = CM_TIMERCTL,
1886                .div_reg = CM_TIMERDIV,
1887                .int_bits = 6,
1888                .frac_bits = 12),
1889        /*
1890         * Clock for the temperature sensor.
1891         * Generally run at 2Mhz, max 5Mhz.
1892         */
1893        [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1894                SOC_ALL,
1895                .name = "tsens",
1896                .ctl_reg = CM_TSENSCTL,
1897                .div_reg = CM_TSENSDIV,
1898                .int_bits = 5,
1899                .frac_bits = 0),
1900        [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1901                SOC_ALL,
1902                .name = "tec",
1903                .ctl_reg = CM_TECCTL,
1904                .div_reg = CM_TECDIV,
1905                .int_bits = 6,
1906                .frac_bits = 0),
1907
1908        /* clocks with vpu parent mux */
1909        [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1910                SOC_ALL,
1911                .name = "h264",
1912                .ctl_reg = CM_H264CTL,
1913                .div_reg = CM_H264DIV,
1914                .int_bits = 4,
1915                .frac_bits = 8,
1916                .tcnt_mux = 1),
1917        [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1918                SOC_ALL,
1919                .name = "isp",
1920                .ctl_reg = CM_ISPCTL,
1921                .div_reg = CM_ISPDIV,
1922                .int_bits = 4,
1923                .frac_bits = 8,
1924                .tcnt_mux = 2),
1925
1926        /*
1927         * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1928         * in the SDRAM controller can't be used.
1929         */
1930        [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1931                SOC_ALL,
1932                .name = "sdram",
1933                .ctl_reg = CM_SDCCTL,
1934                .div_reg = CM_SDCDIV,
1935                .int_bits = 6,
1936                .frac_bits = 0,
1937                .tcnt_mux = 3),
1938        [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1939                SOC_ALL,
1940                .name = "v3d",
1941                .ctl_reg = CM_V3DCTL,
1942                .div_reg = CM_V3DDIV,
1943                .int_bits = 4,
1944                .frac_bits = 8,
1945                .tcnt_mux = 4),
1946        /*
1947         * VPU clock.  This doesn't have an enable bit, since it drives
1948         * the bus for everything else, and is special so it doesn't need
1949         * to be gated for rate changes.  It is also known as "clk_audio"
1950         * in various hardware documentation.
1951         */
1952        [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
1953                SOC_ALL,
1954                .name = "vpu",
1955                .ctl_reg = CM_VPUCTL,
1956                .div_reg = CM_VPUDIV,
1957                .int_bits = 12,
1958                .frac_bits = 8,
1959                .flags = CLK_IS_CRITICAL,
1960                .is_vpu_clock = true,
1961                .tcnt_mux = 5),
1962
1963        /* clocks with per parent mux */
1964        [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
1965                SOC_ALL,
1966                .name = "aveo",
1967                .ctl_reg = CM_AVEOCTL,
1968                .div_reg = CM_AVEODIV,
1969                .int_bits = 4,
1970                .frac_bits = 0,
1971                .tcnt_mux = 38),
1972        [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
1973                SOC_ALL,
1974                .name = "cam0",
1975                .ctl_reg = CM_CAM0CTL,
1976                .div_reg = CM_CAM0DIV,
1977                .int_bits = 4,
1978                .frac_bits = 8,
1979                .tcnt_mux = 14),
1980        [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
1981                SOC_ALL,
1982                .name = "cam1",
1983                .ctl_reg = CM_CAM1CTL,
1984                .div_reg = CM_CAM1DIV,
1985                .int_bits = 4,
1986                .frac_bits = 8,
1987                .tcnt_mux = 15),
1988        [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
1989                SOC_ALL,
1990                .name = "dft",
1991                .ctl_reg = CM_DFTCTL,
1992                .div_reg = CM_DFTDIV,
1993                .int_bits = 5,
1994                .frac_bits = 0),
1995        [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
1996                SOC_ALL,
1997                .name = "dpi",
1998                .ctl_reg = CM_DPICTL,
1999                .div_reg = CM_DPIDIV,
2000                .int_bits = 4,
2001                .frac_bits = 8,
2002                .tcnt_mux = 17),
2003
2004        /* Arasan EMMC clock */
2005        [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
2006                SOC_ALL,
2007                .name = "emmc",
2008                .ctl_reg = CM_EMMCCTL,
2009                .div_reg = CM_EMMCDIV,
2010                .int_bits = 4,
2011                .frac_bits = 8,
2012                .tcnt_mux = 39),
2013
2014        /* EMMC2 clock (only available for BCM2711) */
2015        [BCM2711_CLOCK_EMMC2]   = REGISTER_PER_CLK(
2016                SOC_BCM2711,
2017                .name = "emmc2",
2018                .ctl_reg = CM_EMMC2CTL,
2019                .div_reg = CM_EMMC2DIV,
2020                .int_bits = 4,
2021                .frac_bits = 8,
2022                .tcnt_mux = 42),
2023
2024        /* General purpose (GPIO) clocks */
2025        [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
2026                SOC_ALL,
2027                .name = "gp0",
2028                .ctl_reg = CM_GP0CTL,
2029                .div_reg = CM_GP0DIV,
2030                .int_bits = 12,
2031                .frac_bits = 12,
2032                .is_mash_clock = true,
2033                .tcnt_mux = 20),
2034        [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
2035                SOC_ALL,
2036                .name = "gp1",
2037                .ctl_reg = CM_GP1CTL,
2038                .div_reg = CM_GP1DIV,
2039                .int_bits = 12,
2040                .frac_bits = 12,
2041                .flags = CLK_IS_CRITICAL,
2042                .is_mash_clock = true,
2043                .tcnt_mux = 21),
2044        [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2045                SOC_ALL,
2046                .name = "gp2",
2047                .ctl_reg = CM_GP2CTL,
2048                .div_reg = CM_GP2DIV,
2049                .int_bits = 12,
2050                .frac_bits = 12,
2051                .flags = CLK_IS_CRITICAL),
2052
2053        /* HDMI state machine */
2054        [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2055                SOC_ALL,
2056                .name = "hsm",
2057                .ctl_reg = CM_HSMCTL,
2058                .div_reg = CM_HSMDIV,
2059                .int_bits = 4,
2060                .frac_bits = 8,
2061                .tcnt_mux = 22),
2062        [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2063                SOC_ALL,
2064                .name = "pcm",
2065                .ctl_reg = CM_PCMCTL,
2066                .div_reg = CM_PCMDIV,
2067                .int_bits = 12,
2068                .frac_bits = 12,
2069                .is_mash_clock = true,
2070                .low_jitter = true,
2071                .tcnt_mux = 23),
2072        [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2073                SOC_ALL,
2074                .name = "pwm",
2075                .ctl_reg = CM_PWMCTL,
2076                .div_reg = CM_PWMDIV,
2077                .int_bits = 12,
2078                .frac_bits = 12,
2079                .is_mash_clock = true,
2080                .tcnt_mux = 24),
2081        [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2082                SOC_ALL,
2083                .name = "slim",
2084                .ctl_reg = CM_SLIMCTL,
2085                .div_reg = CM_SLIMDIV,
2086                .int_bits = 12,
2087                .frac_bits = 12,
2088                .is_mash_clock = true,
2089                .tcnt_mux = 25),
2090        [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2091                SOC_ALL,
2092                .name = "smi",
2093                .ctl_reg = CM_SMICTL,
2094                .div_reg = CM_SMIDIV,
2095                .int_bits = 4,
2096                .frac_bits = 8,
2097                .tcnt_mux = 27),
2098        [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2099                SOC_ALL,
2100                .name = "uart",
2101                .ctl_reg = CM_UARTCTL,
2102                .div_reg = CM_UARTDIV,
2103                .int_bits = 10,
2104                .frac_bits = 12,
2105                .tcnt_mux = 28),
2106
2107        /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2108        [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2109                SOC_ALL,
2110                .name = "vec",
2111                .ctl_reg = CM_VECCTL,
2112                .div_reg = CM_VECDIV,
2113                .int_bits = 4,
2114                .frac_bits = 0,
2115                /*
2116                 * Allow rate change propagation only on PLLH_AUX which is
2117                 * assigned index 7 in the parent array.
2118                 */
2119                .set_rate_parent = BIT(7),
2120                .tcnt_mux = 29),
2121
2122        /* dsi clocks */
2123        [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2124                SOC_ALL,
2125                .name = "dsi0e",
2126                .ctl_reg = CM_DSI0ECTL,
2127                .div_reg = CM_DSI0EDIV,
2128                .int_bits = 4,
2129                .frac_bits = 8,
2130                .tcnt_mux = 18),
2131        [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2132                SOC_ALL,
2133                .name = "dsi1e",
2134                .ctl_reg = CM_DSI1ECTL,
2135                .div_reg = CM_DSI1EDIV,
2136                .int_bits = 4,
2137                .frac_bits = 8,
2138                .tcnt_mux = 19),
2139        [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2140                SOC_ALL,
2141                .name = "dsi0p",
2142                .ctl_reg = CM_DSI0PCTL,
2143                .div_reg = CM_DSI0PDIV,
2144                .int_bits = 0,
2145                .frac_bits = 0,
2146                .tcnt_mux = 12),
2147        [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2148                SOC_ALL,
2149                .name = "dsi1p",
2150                .ctl_reg = CM_DSI1PCTL,
2151                .div_reg = CM_DSI1PDIV,
2152                .int_bits = 0,
2153                .frac_bits = 0,
2154                .tcnt_mux = 13),
2155
2156        /* the gates */
2157
2158        /*
2159         * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2160         * you have the debug bit set in the power manager, which we
2161         * don't bother exposing) are individual gates off of the
2162         * non-stop vpu clock.
2163         */
2164        [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2165                SOC_ALL,
2166                .name = "peri_image",
2167                .parent = "vpu",
2168                .ctl_reg = CM_PERIICTL),
2169};
2170
2171/*
2172 * Permanently take a reference on the parent of the SDRAM clock.
2173 *
2174 * While the SDRAM is being driven by its dedicated PLL most of the
2175 * time, there is a little loop running in the firmware that
2176 * periodically switches the SDRAM to using our CM clock to do PVT
2177 * recalibration, with the assumption that the previously configured
2178 * SDRAM parent is still enabled and running.
2179 */
2180static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2181{
2182        struct clk *parent = clk_get_parent(sdc);
2183
2184        if (IS_ERR(parent))
2185                return PTR_ERR(parent);
2186
2187        return clk_prepare_enable(parent);
2188}
2189
2190static int bcm2835_clk_probe(struct platform_device *pdev)
2191{
2192        struct device *dev = &pdev->dev;
2193        struct clk_hw **hws;
2194        struct bcm2835_cprman *cprman;
2195        const struct bcm2835_clk_desc *desc;
2196        const size_t asize = ARRAY_SIZE(clk_desc_array);
2197        const struct cprman_plat_data *pdata;
2198        size_t i;
2199        int ret;
2200
2201        pdata = of_device_get_match_data(&pdev->dev);
2202        if (!pdata)
2203                return -ENODEV;
2204
2205        cprman = devm_kzalloc(dev,
2206                              struct_size(cprman, onecell.hws, asize),
2207                              GFP_KERNEL);
2208        if (!cprman)
2209                return -ENOMEM;
2210
2211        spin_lock_init(&cprman->regs_lock);
2212        cprman->dev = dev;
2213        cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2214        if (IS_ERR(cprman->regs))
2215                return PTR_ERR(cprman->regs);
2216
2217        memcpy(cprman->real_parent_names, cprman_parent_names,
2218               sizeof(cprman_parent_names));
2219        of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2220                           ARRAY_SIZE(cprman_parent_names));
2221
2222        /*
2223         * Make sure the external oscillator has been registered.
2224         *
2225         * The other (DSI) clocks are not present on older device
2226         * trees, which we still need to support for backwards
2227         * compatibility.
2228         */
2229        if (!cprman->real_parent_names[0])
2230                return -ENODEV;
2231
2232        platform_set_drvdata(pdev, cprman);
2233
2234        cprman->onecell.num = asize;
2235        hws = cprman->onecell.hws;
2236
2237        for (i = 0; i < asize; i++) {
2238                desc = &clk_desc_array[i];
2239                if (desc->clk_register && desc->data &&
2240                    (desc->supported & pdata->soc)) {
2241                        hws[i] = desc->clk_register(cprman, desc->data);
2242                }
2243        }
2244
2245        ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2246        if (ret)
2247                return ret;
2248
2249        return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2250                                      &cprman->onecell);
2251}
2252
2253static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2254        .soc = SOC_BCM2835,
2255};
2256
2257static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2258        .soc = SOC_BCM2711,
2259};
2260
2261static const struct of_device_id bcm2835_clk_of_match[] = {
2262        { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2263        { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2264        {}
2265};
2266MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2267
2268static struct platform_driver bcm2835_clk_driver = {
2269        .driver = {
2270                .name = "bcm2835-clk",
2271                .of_match_table = bcm2835_clk_of_match,
2272        },
2273        .probe          = bcm2835_clk_probe,
2274};
2275
2276builtin_platform_driver(bcm2835_clk_driver);
2277
2278MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2279MODULE_DESCRIPTION("BCM2835 clock driver");
2280MODULE_LICENSE("GPL");
2281