linux/drivers/clocksource/arm_arch_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
   7 */
   8
   9#define pr_fmt(fmt)     "arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/interrupt.h>
  20#include <linux/of_irq.h>
  21#include <linux/of_address.h>
  22#include <linux/io.h>
  23#include <linux/slab.h>
  24#include <linux/sched/clock.h>
  25#include <linux/sched_clock.h>
  26#include <linux/acpi.h>
  27
  28#include <asm/arch_timer.h>
  29#include <asm/virt.h>
  30
  31#include <clocksource/arm_arch_timer.h>
  32
  33#define CNTTIDR         0x08
  34#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  35
  36#define CNTACR(n)       (0x40 + ((n) * 4))
  37#define CNTACR_RPCT     BIT(0)
  38#define CNTACR_RVCT     BIT(1)
  39#define CNTACR_RFRQ     BIT(2)
  40#define CNTACR_RVOFF    BIT(3)
  41#define CNTACR_RWVT     BIT(4)
  42#define CNTACR_RWPT     BIT(5)
  43
  44#define CNTVCT_LO       0x08
  45#define CNTVCT_HI       0x0c
  46#define CNTFRQ          0x10
  47#define CNTP_TVAL       0x28
  48#define CNTP_CTL        0x2c
  49#define CNTV_TVAL       0x38
  50#define CNTV_CTL        0x3c
  51
  52static unsigned arch_timers_present __initdata;
  53
  54static void __iomem *arch_counter_base;
  55
  56struct arch_timer {
  57        void __iomem *base;
  58        struct clock_event_device evt;
  59};
  60
  61#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  62
  63static u32 arch_timer_rate;
  64static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
  65
  66static struct clock_event_device __percpu *arch_timer_evt;
  67
  68static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
  69static bool arch_timer_c3stop;
  70static bool arch_timer_mem_use_virtual;
  71static bool arch_counter_suspend_stop;
  72static bool vdso_default = true;
  73
  74static cpumask_t evtstrm_available = CPU_MASK_NONE;
  75static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  76
  77static int __init early_evtstrm_cfg(char *buf)
  78{
  79        return strtobool(buf, &evtstrm_enable);
  80}
  81early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  82
  83/*
  84 * Architected system timer support.
  85 */
  86
  87static __always_inline
  88void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  89                          struct clock_event_device *clk)
  90{
  91        if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  92                struct arch_timer *timer = to_arch_timer(clk);
  93                switch (reg) {
  94                case ARCH_TIMER_REG_CTRL:
  95                        writel_relaxed(val, timer->base + CNTP_CTL);
  96                        break;
  97                case ARCH_TIMER_REG_TVAL:
  98                        writel_relaxed(val, timer->base + CNTP_TVAL);
  99                        break;
 100                }
 101        } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 102                struct arch_timer *timer = to_arch_timer(clk);
 103                switch (reg) {
 104                case ARCH_TIMER_REG_CTRL:
 105                        writel_relaxed(val, timer->base + CNTV_CTL);
 106                        break;
 107                case ARCH_TIMER_REG_TVAL:
 108                        writel_relaxed(val, timer->base + CNTV_TVAL);
 109                        break;
 110                }
 111        } else {
 112                arch_timer_reg_write_cp15(access, reg, val);
 113        }
 114}
 115
 116static __always_inline
 117u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 118                        struct clock_event_device *clk)
 119{
 120        u32 val;
 121
 122        if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 123                struct arch_timer *timer = to_arch_timer(clk);
 124                switch (reg) {
 125                case ARCH_TIMER_REG_CTRL:
 126                        val = readl_relaxed(timer->base + CNTP_CTL);
 127                        break;
 128                case ARCH_TIMER_REG_TVAL:
 129                        val = readl_relaxed(timer->base + CNTP_TVAL);
 130                        break;
 131                }
 132        } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 133                struct arch_timer *timer = to_arch_timer(clk);
 134                switch (reg) {
 135                case ARCH_TIMER_REG_CTRL:
 136                        val = readl_relaxed(timer->base + CNTV_CTL);
 137                        break;
 138                case ARCH_TIMER_REG_TVAL:
 139                        val = readl_relaxed(timer->base + CNTV_TVAL);
 140                        break;
 141                }
 142        } else {
 143                val = arch_timer_reg_read_cp15(access, reg);
 144        }
 145
 146        return val;
 147}
 148
 149static notrace u64 arch_counter_get_cntpct_stable(void)
 150{
 151        return __arch_counter_get_cntpct_stable();
 152}
 153
 154static notrace u64 arch_counter_get_cntpct(void)
 155{
 156        return __arch_counter_get_cntpct();
 157}
 158
 159static notrace u64 arch_counter_get_cntvct_stable(void)
 160{
 161        return __arch_counter_get_cntvct_stable();
 162}
 163
 164static notrace u64 arch_counter_get_cntvct(void)
 165{
 166        return __arch_counter_get_cntvct();
 167}
 168
 169/*
 170 * Default to cp15 based access because arm64 uses this function for
 171 * sched_clock() before DT is probed and the cp15 method is guaranteed
 172 * to exist on arm64. arm doesn't use this before DT is probed so even
 173 * if we don't have the cp15 accessors we won't have a problem.
 174 */
 175u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
 176EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 177
 178static u64 arch_counter_read(struct clocksource *cs)
 179{
 180        return arch_timer_read_counter();
 181}
 182
 183static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 184{
 185        return arch_timer_read_counter();
 186}
 187
 188static struct clocksource clocksource_counter = {
 189        .name   = "arch_sys_counter",
 190        .rating = 400,
 191        .read   = arch_counter_read,
 192        .mask   = CLOCKSOURCE_MASK(56),
 193        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 194};
 195
 196static struct cyclecounter cyclecounter __ro_after_init = {
 197        .read   = arch_counter_read_cc,
 198        .mask   = CLOCKSOURCE_MASK(56),
 199};
 200
 201struct ate_acpi_oem_info {
 202        char oem_id[ACPI_OEM_ID_SIZE + 1];
 203        char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 204        u32 oem_revision;
 205};
 206
 207#ifdef CONFIG_FSL_ERRATUM_A008585
 208/*
 209 * The number of retries is an arbitrary value well beyond the highest number
 210 * of iterations the loop has been observed to take.
 211 */
 212#define __fsl_a008585_read_reg(reg) ({                  \
 213        u64 _old, _new;                                 \
 214        int _retries = 200;                             \
 215                                                        \
 216        do {                                            \
 217                _old = read_sysreg(reg);                \
 218                _new = read_sysreg(reg);                \
 219                _retries--;                             \
 220        } while (unlikely(_old != _new) && _retries);   \
 221                                                        \
 222        WARN_ON_ONCE(!_retries);                        \
 223        _new;                                           \
 224})
 225
 226static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 227{
 228        return __fsl_a008585_read_reg(cntp_tval_el0);
 229}
 230
 231static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 232{
 233        return __fsl_a008585_read_reg(cntv_tval_el0);
 234}
 235
 236static u64 notrace fsl_a008585_read_cntpct_el0(void)
 237{
 238        return __fsl_a008585_read_reg(cntpct_el0);
 239}
 240
 241static u64 notrace fsl_a008585_read_cntvct_el0(void)
 242{
 243        return __fsl_a008585_read_reg(cntvct_el0);
 244}
 245#endif
 246
 247#ifdef CONFIG_HISILICON_ERRATUM_161010101
 248/*
 249 * Verify whether the value of the second read is larger than the first by
 250 * less than 32 is the only way to confirm the value is correct, so clear the
 251 * lower 5 bits to check whether the difference is greater than 32 or not.
 252 * Theoretically the erratum should not occur more than twice in succession
 253 * when reading the system counter, but it is possible that some interrupts
 254 * may lead to more than twice read errors, triggering the warning, so setting
 255 * the number of retries far beyond the number of iterations the loop has been
 256 * observed to take.
 257 */
 258#define __hisi_161010101_read_reg(reg) ({                               \
 259        u64 _old, _new;                                         \
 260        int _retries = 50;                                      \
 261                                                                \
 262        do {                                                    \
 263                _old = read_sysreg(reg);                        \
 264                _new = read_sysreg(reg);                        \
 265                _retries--;                                     \
 266        } while (unlikely((_new - _old) >> 5) && _retries);     \
 267                                                                \
 268        WARN_ON_ONCE(!_retries);                                \
 269        _new;                                                   \
 270})
 271
 272static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 273{
 274        return __hisi_161010101_read_reg(cntp_tval_el0);
 275}
 276
 277static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 278{
 279        return __hisi_161010101_read_reg(cntv_tval_el0);
 280}
 281
 282static u64 notrace hisi_161010101_read_cntpct_el0(void)
 283{
 284        return __hisi_161010101_read_reg(cntpct_el0);
 285}
 286
 287static u64 notrace hisi_161010101_read_cntvct_el0(void)
 288{
 289        return __hisi_161010101_read_reg(cntvct_el0);
 290}
 291
 292static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 293        /*
 294         * Note that trailing spaces are required to properly match
 295         * the OEM table information.
 296         */
 297        {
 298                .oem_id         = "HISI  ",
 299                .oem_table_id   = "HIP05   ",
 300                .oem_revision   = 0,
 301        },
 302        {
 303                .oem_id         = "HISI  ",
 304                .oem_table_id   = "HIP06   ",
 305                .oem_revision   = 0,
 306        },
 307        {
 308                .oem_id         = "HISI  ",
 309                .oem_table_id   = "HIP07   ",
 310                .oem_revision   = 0,
 311        },
 312        { /* Sentinel indicating the end of the OEM array */ },
 313};
 314#endif
 315
 316#ifdef CONFIG_ARM64_ERRATUM_858921
 317static u64 notrace arm64_858921_read_cntpct_el0(void)
 318{
 319        u64 old, new;
 320
 321        old = read_sysreg(cntpct_el0);
 322        new = read_sysreg(cntpct_el0);
 323        return (((old ^ new) >> 32) & 1) ? old : new;
 324}
 325
 326static u64 notrace arm64_858921_read_cntvct_el0(void)
 327{
 328        u64 old, new;
 329
 330        old = read_sysreg(cntvct_el0);
 331        new = read_sysreg(cntvct_el0);
 332        return (((old ^ new) >> 32) & 1) ? old : new;
 333}
 334#endif
 335
 336#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 337/*
 338 * The low bits of the counter registers are indeterminate while bit 10 or
 339 * greater is rolling over. Since the counter value can jump both backward
 340 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 341 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 342 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 343 */
 344#define __sun50i_a64_read_reg(reg) ({                                   \
 345        u64 _val;                                                       \
 346        int _retries = 150;                                             \
 347                                                                        \
 348        do {                                                            \
 349                _val = read_sysreg(reg);                                \
 350                _retries--;                                             \
 351        } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
 352                                                                        \
 353        WARN_ON_ONCE(!_retries);                                        \
 354        _val;                                                           \
 355})
 356
 357static u64 notrace sun50i_a64_read_cntpct_el0(void)
 358{
 359        return __sun50i_a64_read_reg(cntpct_el0);
 360}
 361
 362static u64 notrace sun50i_a64_read_cntvct_el0(void)
 363{
 364        return __sun50i_a64_read_reg(cntvct_el0);
 365}
 366
 367static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 368{
 369        return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 370}
 371
 372static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 373{
 374        return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 375}
 376#endif
 377
 378#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 379DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 380EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 381
 382static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 383
 384static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 385                                                struct clock_event_device *clk)
 386{
 387        unsigned long ctrl;
 388        u64 cval;
 389
 390        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 391        ctrl |= ARCH_TIMER_CTRL_ENABLE;
 392        ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 393
 394        if (access == ARCH_TIMER_PHYS_ACCESS) {
 395                cval = evt + arch_counter_get_cntpct();
 396                write_sysreg(cval, cntp_cval_el0);
 397        } else {
 398                cval = evt + arch_counter_get_cntvct();
 399                write_sysreg(cval, cntv_cval_el0);
 400        }
 401
 402        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 403}
 404
 405static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 406                                            struct clock_event_device *clk)
 407{
 408        erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 409        return 0;
 410}
 411
 412static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 413                                            struct clock_event_device *clk)
 414{
 415        erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 416        return 0;
 417}
 418
 419static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 420#ifdef CONFIG_FSL_ERRATUM_A008585
 421        {
 422                .match_type = ate_match_dt,
 423                .id = "fsl,erratum-a008585",
 424                .desc = "Freescale erratum a005858",
 425                .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 426                .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 427                .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 428                .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 429                .set_next_event_phys = erratum_set_next_event_tval_phys,
 430                .set_next_event_virt = erratum_set_next_event_tval_virt,
 431        },
 432#endif
 433#ifdef CONFIG_HISILICON_ERRATUM_161010101
 434        {
 435                .match_type = ate_match_dt,
 436                .id = "hisilicon,erratum-161010101",
 437                .desc = "HiSilicon erratum 161010101",
 438                .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 439                .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 440                .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 441                .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 442                .set_next_event_phys = erratum_set_next_event_tval_phys,
 443                .set_next_event_virt = erratum_set_next_event_tval_virt,
 444        },
 445        {
 446                .match_type = ate_match_acpi_oem_info,
 447                .id = hisi_161010101_oem_info,
 448                .desc = "HiSilicon erratum 161010101",
 449                .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 450                .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 451                .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 452                .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 453                .set_next_event_phys = erratum_set_next_event_tval_phys,
 454                .set_next_event_virt = erratum_set_next_event_tval_virt,
 455        },
 456#endif
 457#ifdef CONFIG_ARM64_ERRATUM_858921
 458        {
 459                .match_type = ate_match_local_cap_id,
 460                .id = (void *)ARM64_WORKAROUND_858921,
 461                .desc = "ARM erratum 858921",
 462                .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 463                .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 464        },
 465#endif
 466#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 467        {
 468                .match_type = ate_match_dt,
 469                .id = "allwinner,erratum-unknown1",
 470                .desc = "Allwinner erratum UNKNOWN1",
 471                .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 472                .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 473                .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 474                .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 475                .set_next_event_phys = erratum_set_next_event_tval_phys,
 476                .set_next_event_virt = erratum_set_next_event_tval_virt,
 477        },
 478#endif
 479};
 480
 481typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 482                               const void *);
 483
 484static
 485bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 486                                 const void *arg)
 487{
 488        const struct device_node *np = arg;
 489
 490        return of_property_read_bool(np, wa->id);
 491}
 492
 493static
 494bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 495                                        const void *arg)
 496{
 497        return this_cpu_has_cap((uintptr_t)wa->id);
 498}
 499
 500
 501static
 502bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 503                                       const void *arg)
 504{
 505        static const struct ate_acpi_oem_info empty_oem_info = {};
 506        const struct ate_acpi_oem_info *info = wa->id;
 507        const struct acpi_table_header *table = arg;
 508
 509        /* Iterate over the ACPI OEM info array, looking for a match */
 510        while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 511                if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 512                    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 513                    info->oem_revision == table->oem_revision)
 514                        return true;
 515
 516                info++;
 517        }
 518
 519        return false;
 520}
 521
 522static const struct arch_timer_erratum_workaround *
 523arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 524                          ate_match_fn_t match_fn,
 525                          void *arg)
 526{
 527        int i;
 528
 529        for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 530                if (ool_workarounds[i].match_type != type)
 531                        continue;
 532
 533                if (match_fn(&ool_workarounds[i], arg))
 534                        return &ool_workarounds[i];
 535        }
 536
 537        return NULL;
 538}
 539
 540static
 541void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 542                                  bool local)
 543{
 544        int i;
 545
 546        if (local) {
 547                __this_cpu_write(timer_unstable_counter_workaround, wa);
 548        } else {
 549                for_each_possible_cpu(i)
 550                        per_cpu(timer_unstable_counter_workaround, i) = wa;
 551        }
 552
 553        if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 554                atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 555
 556        /*
 557         * Don't use the vdso fastpath if errata require using the
 558         * out-of-line counter accessor. We may change our mind pretty
 559         * late in the game (with a per-CPU erratum, for example), so
 560         * change both the default value and the vdso itself.
 561         */
 562        if (wa->read_cntvct_el0) {
 563                clocksource_counter.archdata.vdso_direct = false;
 564                vdso_default = false;
 565        }
 566}
 567
 568static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 569                                            void *arg)
 570{
 571        const struct arch_timer_erratum_workaround *wa, *__wa;
 572        ate_match_fn_t match_fn = NULL;
 573        bool local = false;
 574
 575        switch (type) {
 576        case ate_match_dt:
 577                match_fn = arch_timer_check_dt_erratum;
 578                break;
 579        case ate_match_local_cap_id:
 580                match_fn = arch_timer_check_local_cap_erratum;
 581                local = true;
 582                break;
 583        case ate_match_acpi_oem_info:
 584                match_fn = arch_timer_check_acpi_oem_erratum;
 585                break;
 586        default:
 587                WARN_ON(1);
 588                return;
 589        }
 590
 591        wa = arch_timer_iterate_errata(type, match_fn, arg);
 592        if (!wa)
 593                return;
 594
 595        __wa = __this_cpu_read(timer_unstable_counter_workaround);
 596        if (__wa && wa != __wa)
 597                pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 598                        wa->desc, __wa->desc);
 599
 600        if (__wa)
 601                return;
 602
 603        arch_timer_enable_workaround(wa, local);
 604        pr_info("Enabling %s workaround for %s\n",
 605                local ? "local" : "global", wa->desc);
 606}
 607
 608static bool arch_timer_this_cpu_has_cntvct_wa(void)
 609{
 610        return has_erratum_handler(read_cntvct_el0);
 611}
 612
 613static bool arch_timer_counter_has_wa(void)
 614{
 615        return atomic_read(&timer_unstable_counter_workaround_in_use);
 616}
 617#else
 618#define arch_timer_check_ool_workaround(t,a)            do { } while(0)
 619#define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
 620#define arch_timer_counter_has_wa()                     ({false;})
 621#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 622
 623static __always_inline irqreturn_t timer_handler(const int access,
 624                                        struct clock_event_device *evt)
 625{
 626        unsigned long ctrl;
 627
 628        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 629        if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 630                ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 631                arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 632                evt->event_handler(evt);
 633                return IRQ_HANDLED;
 634        }
 635
 636        return IRQ_NONE;
 637}
 638
 639static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 640{
 641        struct clock_event_device *evt = dev_id;
 642
 643        return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 644}
 645
 646static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 647{
 648        struct clock_event_device *evt = dev_id;
 649
 650        return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 651}
 652
 653static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 654{
 655        struct clock_event_device *evt = dev_id;
 656
 657        return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 658}
 659
 660static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 661{
 662        struct clock_event_device *evt = dev_id;
 663
 664        return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 665}
 666
 667static __always_inline int timer_shutdown(const int access,
 668                                          struct clock_event_device *clk)
 669{
 670        unsigned long ctrl;
 671
 672        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 673        ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 674        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 675
 676        return 0;
 677}
 678
 679static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 680{
 681        return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 682}
 683
 684static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 685{
 686        return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 687}
 688
 689static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 690{
 691        return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 692}
 693
 694static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 695{
 696        return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 697}
 698
 699static __always_inline void set_next_event(const int access, unsigned long evt,
 700                                           struct clock_event_device *clk)
 701{
 702        unsigned long ctrl;
 703        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 704        ctrl |= ARCH_TIMER_CTRL_ENABLE;
 705        ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 706        arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 707        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 708}
 709
 710static int arch_timer_set_next_event_virt(unsigned long evt,
 711                                          struct clock_event_device *clk)
 712{
 713        set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 714        return 0;
 715}
 716
 717static int arch_timer_set_next_event_phys(unsigned long evt,
 718                                          struct clock_event_device *clk)
 719{
 720        set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 721        return 0;
 722}
 723
 724static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 725                                              struct clock_event_device *clk)
 726{
 727        set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 728        return 0;
 729}
 730
 731static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 732                                              struct clock_event_device *clk)
 733{
 734        set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 735        return 0;
 736}
 737
 738static void __arch_timer_setup(unsigned type,
 739                               struct clock_event_device *clk)
 740{
 741        clk->features = CLOCK_EVT_FEAT_ONESHOT;
 742
 743        if (type == ARCH_TIMER_TYPE_CP15) {
 744                typeof(clk->set_next_event) sne;
 745
 746                arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 747
 748                if (arch_timer_c3stop)
 749                        clk->features |= CLOCK_EVT_FEAT_C3STOP;
 750                clk->name = "arch_sys_timer";
 751                clk->rating = 450;
 752                clk->cpumask = cpumask_of(smp_processor_id());
 753                clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 754                switch (arch_timer_uses_ppi) {
 755                case ARCH_TIMER_VIRT_PPI:
 756                        clk->set_state_shutdown = arch_timer_shutdown_virt;
 757                        clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 758                        sne = erratum_handler(set_next_event_virt);
 759                        break;
 760                case ARCH_TIMER_PHYS_SECURE_PPI:
 761                case ARCH_TIMER_PHYS_NONSECURE_PPI:
 762                case ARCH_TIMER_HYP_PPI:
 763                        clk->set_state_shutdown = arch_timer_shutdown_phys;
 764                        clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 765                        sne = erratum_handler(set_next_event_phys);
 766                        break;
 767                default:
 768                        BUG();
 769                }
 770
 771                clk->set_next_event = sne;
 772        } else {
 773                clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 774                clk->name = "arch_mem_timer";
 775                clk->rating = 400;
 776                clk->cpumask = cpu_possible_mask;
 777                if (arch_timer_mem_use_virtual) {
 778                        clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 779                        clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 780                        clk->set_next_event =
 781                                arch_timer_set_next_event_virt_mem;
 782                } else {
 783                        clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 784                        clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 785                        clk->set_next_event =
 786                                arch_timer_set_next_event_phys_mem;
 787                }
 788        }
 789
 790        clk->set_state_shutdown(clk);
 791
 792        clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 793}
 794
 795static void arch_timer_evtstrm_enable(int divider)
 796{
 797        u32 cntkctl = arch_timer_get_cntkctl();
 798
 799        cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 800        /* Set the divider and enable virtual event stream */
 801        cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 802                        | ARCH_TIMER_VIRT_EVT_EN;
 803        arch_timer_set_cntkctl(cntkctl);
 804        arch_timer_set_evtstrm_feature();
 805        cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 806}
 807
 808static void arch_timer_configure_evtstream(void)
 809{
 810        int evt_stream_div, pos;
 811
 812        /* Find the closest power of two to the divisor */
 813        evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
 814        pos = fls(evt_stream_div);
 815        if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
 816                pos--;
 817        /* enable event stream */
 818        arch_timer_evtstrm_enable(min(pos, 15));
 819}
 820
 821static void arch_counter_set_user_access(void)
 822{
 823        u32 cntkctl = arch_timer_get_cntkctl();
 824
 825        /* Disable user access to the timers and both counters */
 826        /* Also disable virtual event stream */
 827        cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 828                        | ARCH_TIMER_USR_VT_ACCESS_EN
 829                        | ARCH_TIMER_USR_VCT_ACCESS_EN
 830                        | ARCH_TIMER_VIRT_EVT_EN
 831                        | ARCH_TIMER_USR_PCT_ACCESS_EN);
 832
 833        /*
 834         * Enable user access to the virtual counter if it doesn't
 835         * need to be workaround. The vdso may have been already
 836         * disabled though.
 837         */
 838        if (arch_timer_this_cpu_has_cntvct_wa())
 839                pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 840        else
 841                cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 842
 843        arch_timer_set_cntkctl(cntkctl);
 844}
 845
 846static bool arch_timer_has_nonsecure_ppi(void)
 847{
 848        return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 849                arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 850}
 851
 852static u32 check_ppi_trigger(int irq)
 853{
 854        u32 flags = irq_get_trigger_type(irq);
 855
 856        if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 857                pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 858                pr_warn("WARNING: Please fix your firmware\n");
 859                flags = IRQF_TRIGGER_LOW;
 860        }
 861
 862        return flags;
 863}
 864
 865static int arch_timer_starting_cpu(unsigned int cpu)
 866{
 867        struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 868        u32 flags;
 869
 870        __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 871
 872        flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 873        enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 874
 875        if (arch_timer_has_nonsecure_ppi()) {
 876                flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 877                enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 878                                  flags);
 879        }
 880
 881        arch_counter_set_user_access();
 882        if (evtstrm_enable)
 883                arch_timer_configure_evtstream();
 884
 885        return 0;
 886}
 887
 888/*
 889 * For historical reasons, when probing with DT we use whichever (non-zero)
 890 * rate was probed first, and don't verify that others match. If the first node
 891 * probed has a clock-frequency property, this overrides the HW register.
 892 */
 893static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 894{
 895        /* Who has more than one independent system counter? */
 896        if (arch_timer_rate)
 897                return;
 898
 899        if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 900                arch_timer_rate = rate;
 901
 902        /* Check the timer frequency. */
 903        if (arch_timer_rate == 0)
 904                pr_warn("frequency not available\n");
 905}
 906
 907static void arch_timer_banner(unsigned type)
 908{
 909        pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 910                type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 911                type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 912                        " and " : "",
 913                type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 914                (unsigned long)arch_timer_rate / 1000000,
 915                (unsigned long)(arch_timer_rate / 10000) % 100,
 916                type & ARCH_TIMER_TYPE_CP15 ?
 917                        (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 918                        "",
 919                type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 920                type & ARCH_TIMER_TYPE_MEM ?
 921                        arch_timer_mem_use_virtual ? "virt" : "phys" :
 922                        "");
 923}
 924
 925u32 arch_timer_get_rate(void)
 926{
 927        return arch_timer_rate;
 928}
 929
 930bool arch_timer_evtstrm_available(void)
 931{
 932        /*
 933         * We might get called from a preemptible context. This is fine
 934         * because availability of the event stream should be always the same
 935         * for a preemptible context and context where we might resume a task.
 936         */
 937        return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 938}
 939
 940static u64 arch_counter_get_cntvct_mem(void)
 941{
 942        u32 vct_lo, vct_hi, tmp_hi;
 943
 944        do {
 945                vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 946                vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 947                tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 948        } while (vct_hi != tmp_hi);
 949
 950        return ((u64) vct_hi << 32) | vct_lo;
 951}
 952
 953static struct arch_timer_kvm_info arch_timer_kvm_info;
 954
 955struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
 956{
 957        return &arch_timer_kvm_info;
 958}
 959
 960static void __init arch_counter_register(unsigned type)
 961{
 962        u64 start_count;
 963
 964        /* Register the CP15 based counter if we have one */
 965        if (type & ARCH_TIMER_TYPE_CP15) {
 966                u64 (*rd)(void);
 967
 968                if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
 969                    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
 970                        if (arch_timer_counter_has_wa())
 971                                rd = arch_counter_get_cntvct_stable;
 972                        else
 973                                rd = arch_counter_get_cntvct;
 974                } else {
 975                        if (arch_timer_counter_has_wa())
 976                                rd = arch_counter_get_cntpct_stable;
 977                        else
 978                                rd = arch_counter_get_cntpct;
 979                }
 980
 981                arch_timer_read_counter = rd;
 982                clocksource_counter.archdata.vdso_direct = vdso_default;
 983        } else {
 984                arch_timer_read_counter = arch_counter_get_cntvct_mem;
 985        }
 986
 987        if (!arch_counter_suspend_stop)
 988                clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
 989        start_count = arch_timer_read_counter();
 990        clocksource_register_hz(&clocksource_counter, arch_timer_rate);
 991        cyclecounter.mult = clocksource_counter.mult;
 992        cyclecounter.shift = clocksource_counter.shift;
 993        timecounter_init(&arch_timer_kvm_info.timecounter,
 994                         &cyclecounter, start_count);
 995
 996        /* 56 bits minimum, so we assume worst case rollover */
 997        sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
 998}
 999
1000static void arch_timer_stop(struct clock_event_device *clk)
1001{
1002        pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1003
1004        disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1005        if (arch_timer_has_nonsecure_ppi())
1006                disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1007
1008        clk->set_state_shutdown(clk);
1009}
1010
1011static int arch_timer_dying_cpu(unsigned int cpu)
1012{
1013        struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1014
1015        cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1016
1017        arch_timer_stop(clk);
1018        return 0;
1019}
1020
1021#ifdef CONFIG_CPU_PM
1022static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1023static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1024                                    unsigned long action, void *hcpu)
1025{
1026        if (action == CPU_PM_ENTER) {
1027                __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1028
1029                cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1030        } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1031                arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1032
1033                if (arch_timer_have_evtstrm_feature())
1034                        cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1035        }
1036        return NOTIFY_OK;
1037}
1038
1039static struct notifier_block arch_timer_cpu_pm_notifier = {
1040        .notifier_call = arch_timer_cpu_pm_notify,
1041};
1042
1043static int __init arch_timer_cpu_pm_init(void)
1044{
1045        return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1046}
1047
1048static void __init arch_timer_cpu_pm_deinit(void)
1049{
1050        WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1051}
1052
1053#else
1054static int __init arch_timer_cpu_pm_init(void)
1055{
1056        return 0;
1057}
1058
1059static void __init arch_timer_cpu_pm_deinit(void)
1060{
1061}
1062#endif
1063
1064static int __init arch_timer_register(void)
1065{
1066        int err;
1067        int ppi;
1068
1069        arch_timer_evt = alloc_percpu(struct clock_event_device);
1070        if (!arch_timer_evt) {
1071                err = -ENOMEM;
1072                goto out;
1073        }
1074
1075        ppi = arch_timer_ppi[arch_timer_uses_ppi];
1076        switch (arch_timer_uses_ppi) {
1077        case ARCH_TIMER_VIRT_PPI:
1078                err = request_percpu_irq(ppi, arch_timer_handler_virt,
1079                                         "arch_timer", arch_timer_evt);
1080                break;
1081        case ARCH_TIMER_PHYS_SECURE_PPI:
1082        case ARCH_TIMER_PHYS_NONSECURE_PPI:
1083                err = request_percpu_irq(ppi, arch_timer_handler_phys,
1084                                         "arch_timer", arch_timer_evt);
1085                if (!err && arch_timer_has_nonsecure_ppi()) {
1086                        ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1087                        err = request_percpu_irq(ppi, arch_timer_handler_phys,
1088                                                 "arch_timer", arch_timer_evt);
1089                        if (err)
1090                                free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1091                                                arch_timer_evt);
1092                }
1093                break;
1094        case ARCH_TIMER_HYP_PPI:
1095                err = request_percpu_irq(ppi, arch_timer_handler_phys,
1096                                         "arch_timer", arch_timer_evt);
1097                break;
1098        default:
1099                BUG();
1100        }
1101
1102        if (err) {
1103                pr_err("can't register interrupt %d (%d)\n", ppi, err);
1104                goto out_free;
1105        }
1106
1107        err = arch_timer_cpu_pm_init();
1108        if (err)
1109                goto out_unreg_notify;
1110
1111        /* Register and immediately configure the timer on the boot CPU */
1112        err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1113                                "clockevents/arm/arch_timer:starting",
1114                                arch_timer_starting_cpu, arch_timer_dying_cpu);
1115        if (err)
1116                goto out_unreg_cpupm;
1117        return 0;
1118
1119out_unreg_cpupm:
1120        arch_timer_cpu_pm_deinit();
1121
1122out_unreg_notify:
1123        free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1124        if (arch_timer_has_nonsecure_ppi())
1125                free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1126                                arch_timer_evt);
1127
1128out_free:
1129        free_percpu(arch_timer_evt);
1130out:
1131        return err;
1132}
1133
1134static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1135{
1136        int ret;
1137        irq_handler_t func;
1138        struct arch_timer *t;
1139
1140        t = kzalloc(sizeof(*t), GFP_KERNEL);
1141        if (!t)
1142                return -ENOMEM;
1143
1144        t->base = base;
1145        t->evt.irq = irq;
1146        __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1147
1148        if (arch_timer_mem_use_virtual)
1149                func = arch_timer_handler_virt_mem;
1150        else
1151                func = arch_timer_handler_phys_mem;
1152
1153        ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1154        if (ret) {
1155                pr_err("Failed to request mem timer irq\n");
1156                kfree(t);
1157        }
1158
1159        return ret;
1160}
1161
1162static const struct of_device_id arch_timer_of_match[] __initconst = {
1163        { .compatible   = "arm,armv7-timer",    },
1164        { .compatible   = "arm,armv8-timer",    },
1165        {},
1166};
1167
1168static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1169        { .compatible   = "arm,armv7-timer-mem", },
1170        {},
1171};
1172
1173static bool __init arch_timer_needs_of_probing(void)
1174{
1175        struct device_node *dn;
1176        bool needs_probing = false;
1177        unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1178
1179        /* We have two timers, and both device-tree nodes are probed. */
1180        if ((arch_timers_present & mask) == mask)
1181                return false;
1182
1183        /*
1184         * Only one type of timer is probed,
1185         * check if we have another type of timer node in device-tree.
1186         */
1187        if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1188                dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1189        else
1190                dn = of_find_matching_node(NULL, arch_timer_of_match);
1191
1192        if (dn && of_device_is_available(dn))
1193                needs_probing = true;
1194
1195        of_node_put(dn);
1196
1197        return needs_probing;
1198}
1199
1200static int __init arch_timer_common_init(void)
1201{
1202        arch_timer_banner(arch_timers_present);
1203        arch_counter_register(arch_timers_present);
1204        return arch_timer_arch_init();
1205}
1206
1207/**
1208 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1209 *
1210 * If HYP mode is available, we know that the physical timer
1211 * has been configured to be accessible from PL1. Use it, so
1212 * that a guest can use the virtual timer instead.
1213 *
1214 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1215 * accesses to CNTP_*_EL1 registers are silently redirected to
1216 * their CNTHP_*_EL2 counterparts, and use a different PPI
1217 * number.
1218 *
1219 * If no interrupt provided for virtual timer, we'll have to
1220 * stick to the physical timer. It'd better be accessible...
1221 * For arm64 we never use the secure interrupt.
1222 *
1223 * Return: a suitable PPI type for the current system.
1224 */
1225static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1226{
1227        if (is_kernel_in_hyp_mode())
1228                return ARCH_TIMER_HYP_PPI;
1229
1230        if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1231                return ARCH_TIMER_VIRT_PPI;
1232
1233        if (IS_ENABLED(CONFIG_ARM64))
1234                return ARCH_TIMER_PHYS_NONSECURE_PPI;
1235
1236        return ARCH_TIMER_PHYS_SECURE_PPI;
1237}
1238
1239static void __init arch_timer_populate_kvm_info(void)
1240{
1241        arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1242        if (is_kernel_in_hyp_mode())
1243                arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1244}
1245
1246static int __init arch_timer_of_init(struct device_node *np)
1247{
1248        int i, ret;
1249        u32 rate;
1250
1251        if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1252                pr_warn("multiple nodes in dt, skipping\n");
1253                return 0;
1254        }
1255
1256        arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1257        for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1258                arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1259
1260        arch_timer_populate_kvm_info();
1261
1262        rate = arch_timer_get_cntfrq();
1263        arch_timer_of_configure_rate(rate, np);
1264
1265        arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1266
1267        /* Check for globally applicable workarounds */
1268        arch_timer_check_ool_workaround(ate_match_dt, np);
1269
1270        /*
1271         * If we cannot rely on firmware initializing the timer registers then
1272         * we should use the physical timers instead.
1273         */
1274        if (IS_ENABLED(CONFIG_ARM) &&
1275            of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1276                arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1277        else
1278                arch_timer_uses_ppi = arch_timer_select_ppi();
1279
1280        if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1281                pr_err("No interrupt available, giving up\n");
1282                return -EINVAL;
1283        }
1284
1285        /* On some systems, the counter stops ticking when in suspend. */
1286        arch_counter_suspend_stop = of_property_read_bool(np,
1287                                                         "arm,no-tick-in-suspend");
1288
1289        ret = arch_timer_register();
1290        if (ret)
1291                return ret;
1292
1293        if (arch_timer_needs_of_probing())
1294                return 0;
1295
1296        return arch_timer_common_init();
1297}
1298TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1299TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1300
1301static u32 __init
1302arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1303{
1304        void __iomem *base;
1305        u32 rate;
1306
1307        base = ioremap(frame->cntbase, frame->size);
1308        if (!base) {
1309                pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1310                return 0;
1311        }
1312
1313        rate = readl_relaxed(base + CNTFRQ);
1314
1315        iounmap(base);
1316
1317        return rate;
1318}
1319
1320static struct arch_timer_mem_frame * __init
1321arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1322{
1323        struct arch_timer_mem_frame *frame, *best_frame = NULL;
1324        void __iomem *cntctlbase;
1325        u32 cnttidr;
1326        int i;
1327
1328        cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1329        if (!cntctlbase) {
1330                pr_err("Can't map CNTCTLBase @ %pa\n",
1331                        &timer_mem->cntctlbase);
1332                return NULL;
1333        }
1334
1335        cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1336
1337        /*
1338         * Try to find a virtual capable frame. Otherwise fall back to a
1339         * physical capable frame.
1340         */
1341        for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1342                u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1343                             CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1344
1345                frame = &timer_mem->frame[i];
1346                if (!frame->valid)
1347                        continue;
1348
1349                /* Try enabling everything, and see what sticks */
1350                writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1351                cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1352
1353                if ((cnttidr & CNTTIDR_VIRT(i)) &&
1354                    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1355                        best_frame = frame;
1356                        arch_timer_mem_use_virtual = true;
1357                        break;
1358                }
1359
1360                if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1361                        continue;
1362
1363                best_frame = frame;
1364        }
1365
1366        iounmap(cntctlbase);
1367
1368        return best_frame;
1369}
1370
1371static int __init
1372arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1373{
1374        void __iomem *base;
1375        int ret, irq = 0;
1376
1377        if (arch_timer_mem_use_virtual)
1378                irq = frame->virt_irq;
1379        else
1380                irq = frame->phys_irq;
1381
1382        if (!irq) {
1383                pr_err("Frame missing %s irq.\n",
1384                       arch_timer_mem_use_virtual ? "virt" : "phys");
1385                return -EINVAL;
1386        }
1387
1388        if (!request_mem_region(frame->cntbase, frame->size,
1389                                "arch_mem_timer"))
1390                return -EBUSY;
1391
1392        base = ioremap(frame->cntbase, frame->size);
1393        if (!base) {
1394                pr_err("Can't map frame's registers\n");
1395                return -ENXIO;
1396        }
1397
1398        ret = arch_timer_mem_register(base, irq);
1399        if (ret) {
1400                iounmap(base);
1401                return ret;
1402        }
1403
1404        arch_counter_base = base;
1405        arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1406
1407        return 0;
1408}
1409
1410static int __init arch_timer_mem_of_init(struct device_node *np)
1411{
1412        struct arch_timer_mem *timer_mem;
1413        struct arch_timer_mem_frame *frame;
1414        struct device_node *frame_node;
1415        struct resource res;
1416        int ret = -EINVAL;
1417        u32 rate;
1418
1419        timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1420        if (!timer_mem)
1421                return -ENOMEM;
1422
1423        if (of_address_to_resource(np, 0, &res))
1424                goto out;
1425        timer_mem->cntctlbase = res.start;
1426        timer_mem->size = resource_size(&res);
1427
1428        for_each_available_child_of_node(np, frame_node) {
1429                u32 n;
1430                struct arch_timer_mem_frame *frame;
1431
1432                if (of_property_read_u32(frame_node, "frame-number", &n)) {
1433                        pr_err(FW_BUG "Missing frame-number.\n");
1434                        of_node_put(frame_node);
1435                        goto out;
1436                }
1437                if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1438                        pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1439                               ARCH_TIMER_MEM_MAX_FRAMES - 1);
1440                        of_node_put(frame_node);
1441                        goto out;
1442                }
1443                frame = &timer_mem->frame[n];
1444
1445                if (frame->valid) {
1446                        pr_err(FW_BUG "Duplicated frame-number.\n");
1447                        of_node_put(frame_node);
1448                        goto out;
1449                }
1450
1451                if (of_address_to_resource(frame_node, 0, &res)) {
1452                        of_node_put(frame_node);
1453                        goto out;
1454                }
1455                frame->cntbase = res.start;
1456                frame->size = resource_size(&res);
1457
1458                frame->virt_irq = irq_of_parse_and_map(frame_node,
1459                                                       ARCH_TIMER_VIRT_SPI);
1460                frame->phys_irq = irq_of_parse_and_map(frame_node,
1461                                                       ARCH_TIMER_PHYS_SPI);
1462
1463                frame->valid = true;
1464        }
1465
1466        frame = arch_timer_mem_find_best_frame(timer_mem);
1467        if (!frame) {
1468                pr_err("Unable to find a suitable frame in timer @ %pa\n",
1469                        &timer_mem->cntctlbase);
1470                ret = -EINVAL;
1471                goto out;
1472        }
1473
1474        rate = arch_timer_mem_frame_get_cntfrq(frame);
1475        arch_timer_of_configure_rate(rate, np);
1476
1477        ret = arch_timer_mem_frame_register(frame);
1478        if (!ret && !arch_timer_needs_of_probing())
1479                ret = arch_timer_common_init();
1480out:
1481        kfree(timer_mem);
1482        return ret;
1483}
1484TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1485                       arch_timer_mem_of_init);
1486
1487#ifdef CONFIG_ACPI_GTDT
1488static int __init
1489arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1490{
1491        struct arch_timer_mem_frame *frame;
1492        u32 rate;
1493        int i;
1494
1495        for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1496                frame = &timer_mem->frame[i];
1497
1498                if (!frame->valid)
1499                        continue;
1500
1501                rate = arch_timer_mem_frame_get_cntfrq(frame);
1502                if (rate == arch_timer_rate)
1503                        continue;
1504
1505                pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1506                        &frame->cntbase,
1507                        (unsigned long)rate, (unsigned long)arch_timer_rate);
1508
1509                return -EINVAL;
1510        }
1511
1512        return 0;
1513}
1514
1515static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1516{
1517        struct arch_timer_mem *timers, *timer;
1518        struct arch_timer_mem_frame *frame, *best_frame = NULL;
1519        int timer_count, i, ret = 0;
1520
1521        timers = kcalloc(platform_timer_count, sizeof(*timers),
1522                            GFP_KERNEL);
1523        if (!timers)
1524                return -ENOMEM;
1525
1526        ret = acpi_arch_timer_mem_init(timers, &timer_count);
1527        if (ret || !timer_count)
1528                goto out;
1529
1530        /*
1531         * While unlikely, it's theoretically possible that none of the frames
1532         * in a timer expose the combination of feature we want.
1533         */
1534        for (i = 0; i < timer_count; i++) {
1535                timer = &timers[i];
1536
1537                frame = arch_timer_mem_find_best_frame(timer);
1538                if (!best_frame)
1539                        best_frame = frame;
1540
1541                ret = arch_timer_mem_verify_cntfrq(timer);
1542                if (ret) {
1543                        pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1544                        goto out;
1545                }
1546
1547                if (!best_frame) /* implies !frame */
1548                        /*
1549                         * Only complain about missing suitable frames if we
1550                         * haven't already found one in a previous iteration.
1551                         */
1552                        pr_err("Unable to find a suitable frame in timer @ %pa\n",
1553                                &timer->cntctlbase);
1554        }
1555
1556        if (best_frame)
1557                ret = arch_timer_mem_frame_register(best_frame);
1558out:
1559        kfree(timers);
1560        return ret;
1561}
1562
1563/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1564static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1565{
1566        int ret, platform_timer_count;
1567
1568        if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1569                pr_warn("already initialized, skipping\n");
1570                return -EINVAL;
1571        }
1572
1573        arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1574
1575        ret = acpi_gtdt_init(table, &platform_timer_count);
1576        if (ret) {
1577                pr_err("Failed to init GTDT table.\n");
1578                return ret;
1579        }
1580
1581        arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1582                acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1583
1584        arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1585                acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1586
1587        arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1588                acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1589
1590        arch_timer_populate_kvm_info();
1591
1592        /*
1593         * When probing via ACPI, we have no mechanism to override the sysreg
1594         * CNTFRQ value. This *must* be correct.
1595         */
1596        arch_timer_rate = arch_timer_get_cntfrq();
1597        if (!arch_timer_rate) {
1598                pr_err(FW_BUG "frequency not available.\n");
1599                return -EINVAL;
1600        }
1601
1602        arch_timer_uses_ppi = arch_timer_select_ppi();
1603        if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1604                pr_err("No interrupt available, giving up\n");
1605                return -EINVAL;
1606        }
1607
1608        /* Always-on capability */
1609        arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1610
1611        /* Check for globally applicable workarounds */
1612        arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1613
1614        ret = arch_timer_register();
1615        if (ret)
1616                return ret;
1617
1618        if (platform_timer_count &&
1619            arch_timer_mem_acpi_init(platform_timer_count))
1620                pr_err("Failed to initialize memory-mapped timer.\n");
1621
1622        return arch_timer_common_init();
1623}
1624TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1625#endif
1626