linux/drivers/cpufreq/intel_pstate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pstate.c: Native P state management for Intel processors
   4 *
   5 * (C) Copyright 2012 Intel Corporation
   6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/module.h>
  14#include <linux/ktime.h>
  15#include <linux/hrtimer.h>
  16#include <linux/tick.h>
  17#include <linux/slab.h>
  18#include <linux/sched/cpufreq.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
  22#include <linux/sysfs.h>
  23#include <linux/types.h>
  24#include <linux/fs.h>
  25#include <linux/acpi.h>
  26#include <linux/vmalloc.h>
  27#include <linux/pm_qos.h>
  28#include <trace/events/power.h>
  29
  30#include <asm/div64.h>
  31#include <asm/msr.h>
  32#include <asm/cpu_device_id.h>
  33#include <asm/cpufeature.h>
  34#include <asm/intel-family.h>
  35
  36#define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
  37
  38#define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
  39#define INTEL_CPUFREQ_TRANSITION_DELAY          500
  40
  41#ifdef CONFIG_ACPI
  42#include <acpi/processor.h>
  43#include <acpi/cppc_acpi.h>
  44#endif
  45
  46#define FRAC_BITS 8
  47#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  48#define fp_toint(X) ((X) >> FRAC_BITS)
  49
  50#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
  51
  52#define EXT_BITS 6
  53#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  54#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  55#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  56
  57static inline int32_t mul_fp(int32_t x, int32_t y)
  58{
  59        return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  60}
  61
  62static inline int32_t div_fp(s64 x, s64 y)
  63{
  64        return div64_s64((int64_t)x << FRAC_BITS, y);
  65}
  66
  67static inline int ceiling_fp(int32_t x)
  68{
  69        int mask, ret;
  70
  71        ret = fp_toint(x);
  72        mask = (1 << FRAC_BITS) - 1;
  73        if (x & mask)
  74                ret += 1;
  75        return ret;
  76}
  77
  78static inline int32_t percent_fp(int percent)
  79{
  80        return div_fp(percent, 100);
  81}
  82
  83static inline u64 mul_ext_fp(u64 x, u64 y)
  84{
  85        return (x * y) >> EXT_FRAC_BITS;
  86}
  87
  88static inline u64 div_ext_fp(u64 x, u64 y)
  89{
  90        return div64_u64(x << EXT_FRAC_BITS, y);
  91}
  92
  93static inline int32_t percent_ext_fp(int percent)
  94{
  95        return div_ext_fp(percent, 100);
  96}
  97
  98/**
  99 * struct sample -      Store performance sample
 100 * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
 101 *                      performance during last sample period
 102 * @busy_scaled:        Scaled busy value which is used to calculate next
 103 *                      P state. This can be different than core_avg_perf
 104 *                      to account for cpu idle period
 105 * @aperf:              Difference of actual performance frequency clock count
 106 *                      read from APERF MSR between last and current sample
 107 * @mperf:              Difference of maximum performance frequency clock count
 108 *                      read from MPERF MSR between last and current sample
 109 * @tsc:                Difference of time stamp counter between last and
 110 *                      current sample
 111 * @time:               Current time from scheduler
 112 *
 113 * This structure is used in the cpudata structure to store performance sample
 114 * data for choosing next P State.
 115 */
 116struct sample {
 117        int32_t core_avg_perf;
 118        int32_t busy_scaled;
 119        u64 aperf;
 120        u64 mperf;
 121        u64 tsc;
 122        u64 time;
 123};
 124
 125/**
 126 * struct pstate_data - Store P state data
 127 * @current_pstate:     Current requested P state
 128 * @min_pstate:         Min P state possible for this platform
 129 * @max_pstate:         Max P state possible for this platform
 130 * @max_pstate_physical:This is physical Max P state for a processor
 131 *                      This can be higher than the max_pstate which can
 132 *                      be limited by platform thermal design power limits
 133 * @scaling:            Scaling factor to  convert frequency to cpufreq
 134 *                      frequency units
 135 * @turbo_pstate:       Max Turbo P state possible for this platform
 136 * @max_freq:           @max_pstate frequency in cpufreq units
 137 * @turbo_freq:         @turbo_pstate frequency in cpufreq units
 138 *
 139 * Stores the per cpu model P state limits and current P state.
 140 */
 141struct pstate_data {
 142        int     current_pstate;
 143        int     min_pstate;
 144        int     max_pstate;
 145        int     max_pstate_physical;
 146        int     scaling;
 147        int     turbo_pstate;
 148        unsigned int max_freq;
 149        unsigned int turbo_freq;
 150};
 151
 152/**
 153 * struct vid_data -    Stores voltage information data
 154 * @min:                VID data for this platform corresponding to
 155 *                      the lowest P state
 156 * @max:                VID data corresponding to the highest P State.
 157 * @turbo:              VID data for turbo P state
 158 * @ratio:              Ratio of (vid max - vid min) /
 159 *                      (max P state - Min P State)
 160 *
 161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 162 * This data is used in Atom platforms, where in addition to target P state,
 163 * the voltage data needs to be specified to select next P State.
 164 */
 165struct vid_data {
 166        int min;
 167        int max;
 168        int turbo;
 169        int32_t ratio;
 170};
 171
 172/**
 173 * struct global_params - Global parameters, mostly tunable via sysfs.
 174 * @no_turbo:           Whether or not to use turbo P-states.
 175 * @turbo_disabled:     Whether or not turbo P-states are available at all,
 176 *                      based on the MSR_IA32_MISC_ENABLE value and whether or
 177 *                      not the maximum reported turbo P-state is different from
 178 *                      the maximum reported non-turbo one.
 179 * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
 180 * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
 181 *                      P-state capacity.
 182 * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
 183 *                      P-state capacity.
 184 */
 185struct global_params {
 186        bool no_turbo;
 187        bool turbo_disabled;
 188        bool turbo_disabled_mf;
 189        int max_perf_pct;
 190        int min_perf_pct;
 191};
 192
 193/**
 194 * struct cpudata -     Per CPU instance data storage
 195 * @cpu:                CPU number for this instance data
 196 * @policy:             CPUFreq policy value
 197 * @update_util:        CPUFreq utility callback information
 198 * @update_util_set:    CPUFreq utility callback is set
 199 * @iowait_boost:       iowait-related boost fraction
 200 * @last_update:        Time of the last update.
 201 * @pstate:             Stores P state limits for this CPU
 202 * @vid:                Stores VID limits for this CPU
 203 * @last_sample_time:   Last Sample time
 204 * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
 205 *                      This shift is a multiplier to mperf delta to
 206 *                      calculate CPU busy.
 207 * @prev_aperf:         Last APERF value read from APERF MSR
 208 * @prev_mperf:         Last MPERF value read from MPERF MSR
 209 * @prev_tsc:           Last timestamp counter (TSC) value
 210 * @prev_cummulative_iowait: IO Wait time difference from last and
 211 *                      current sample
 212 * @sample:             Storage for storing last Sample data
 213 * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
 214 * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
 215 * @acpi_perf_data:     Stores ACPI perf information read from _PSS
 216 * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
 217 * @epp_powersave:      Last saved HWP energy performance preference
 218 *                      (EPP) or energy performance bias (EPB),
 219 *                      when policy switched to performance
 220 * @epp_policy:         Last saved policy used to set EPP/EPB
 221 * @epp_default:        Power on default HWP energy performance
 222 *                      preference/bias
 223 * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
 224 *                      operation
 225 * @hwp_req_cached:     Cached value of the last HWP Request MSR
 226 * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
 227 * @last_io_update:     Last time when IO wake flag was set
 228 * @sched_flags:        Store scheduler flags for possible cross CPU update
 229 * @hwp_boost_min:      Last HWP boosted min performance
 230 *
 231 * This structure stores per CPU instance data for all CPUs.
 232 */
 233struct cpudata {
 234        int cpu;
 235
 236        unsigned int policy;
 237        struct update_util_data update_util;
 238        bool   update_util_set;
 239
 240        struct pstate_data pstate;
 241        struct vid_data vid;
 242
 243        u64     last_update;
 244        u64     last_sample_time;
 245        u64     aperf_mperf_shift;
 246        u64     prev_aperf;
 247        u64     prev_mperf;
 248        u64     prev_tsc;
 249        u64     prev_cummulative_iowait;
 250        struct sample sample;
 251        int32_t min_perf_ratio;
 252        int32_t max_perf_ratio;
 253#ifdef CONFIG_ACPI
 254        struct acpi_processor_performance acpi_perf_data;
 255        bool valid_pss_table;
 256#endif
 257        unsigned int iowait_boost;
 258        s16 epp_powersave;
 259        s16 epp_policy;
 260        s16 epp_default;
 261        s16 epp_saved;
 262        u64 hwp_req_cached;
 263        u64 hwp_cap_cached;
 264        u64 last_io_update;
 265        unsigned int sched_flags;
 266        u32 hwp_boost_min;
 267};
 268
 269static struct cpudata **all_cpu_data;
 270
 271/**
 272 * struct pstate_funcs - Per CPU model specific callbacks
 273 * @get_max:            Callback to get maximum non turbo effective P state
 274 * @get_max_physical:   Callback to get maximum non turbo physical P state
 275 * @get_min:            Callback to get minimum P state
 276 * @get_turbo:          Callback to get turbo P state
 277 * @get_scaling:        Callback to get frequency scaling factor
 278 * @get_val:            Callback to convert P state to actual MSR write value
 279 * @get_vid:            Callback to get VID data for Atom platforms
 280 *
 281 * Core and Atom CPU models have different way to get P State limits. This
 282 * structure is used to store those callbacks.
 283 */
 284struct pstate_funcs {
 285        int (*get_max)(void);
 286        int (*get_max_physical)(void);
 287        int (*get_min)(void);
 288        int (*get_turbo)(void);
 289        int (*get_scaling)(void);
 290        int (*get_aperf_mperf_shift)(void);
 291        u64 (*get_val)(struct cpudata*, int pstate);
 292        void (*get_vid)(struct cpudata *);
 293};
 294
 295static struct pstate_funcs pstate_funcs __read_mostly;
 296
 297static int hwp_active __read_mostly;
 298static int hwp_mode_bdw __read_mostly;
 299static bool per_cpu_limits __read_mostly;
 300static bool hwp_boost __read_mostly;
 301
 302static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 303
 304#ifdef CONFIG_ACPI
 305static bool acpi_ppc;
 306#endif
 307
 308static struct global_params global;
 309
 310static DEFINE_MUTEX(intel_pstate_driver_lock);
 311static DEFINE_MUTEX(intel_pstate_limits_lock);
 312
 313#ifdef CONFIG_ACPI
 314
 315static bool intel_pstate_acpi_pm_profile_server(void)
 316{
 317        if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 318            acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 319                return true;
 320
 321        return false;
 322}
 323
 324static bool intel_pstate_get_ppc_enable_status(void)
 325{
 326        if (intel_pstate_acpi_pm_profile_server())
 327                return true;
 328
 329        return acpi_ppc;
 330}
 331
 332#ifdef CONFIG_ACPI_CPPC_LIB
 333
 334/* The work item is needed to avoid CPU hotplug locking issues */
 335static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 336{
 337        sched_set_itmt_support();
 338}
 339
 340static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 341
 342static void intel_pstate_set_itmt_prio(int cpu)
 343{
 344        struct cppc_perf_caps cppc_perf;
 345        static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 346        int ret;
 347
 348        ret = cppc_get_perf_caps(cpu, &cppc_perf);
 349        if (ret)
 350                return;
 351
 352        /*
 353         * The priorities can be set regardless of whether or not
 354         * sched_set_itmt_support(true) has been called and it is valid to
 355         * update them at any time after it has been called.
 356         */
 357        sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 358
 359        if (max_highest_perf <= min_highest_perf) {
 360                if (cppc_perf.highest_perf > max_highest_perf)
 361                        max_highest_perf = cppc_perf.highest_perf;
 362
 363                if (cppc_perf.highest_perf < min_highest_perf)
 364                        min_highest_perf = cppc_perf.highest_perf;
 365
 366                if (max_highest_perf > min_highest_perf) {
 367                        /*
 368                         * This code can be run during CPU online under the
 369                         * CPU hotplug locks, so sched_set_itmt_support()
 370                         * cannot be called from here.  Queue up a work item
 371                         * to invoke it.
 372                         */
 373                        schedule_work(&sched_itmt_work);
 374                }
 375        }
 376}
 377
 378static int intel_pstate_get_cppc_guranteed(int cpu)
 379{
 380        struct cppc_perf_caps cppc_perf;
 381        int ret;
 382
 383        ret = cppc_get_perf_caps(cpu, &cppc_perf);
 384        if (ret)
 385                return ret;
 386
 387        if (cppc_perf.guaranteed_perf)
 388                return cppc_perf.guaranteed_perf;
 389
 390        return cppc_perf.nominal_perf;
 391}
 392
 393#else /* CONFIG_ACPI_CPPC_LIB */
 394static void intel_pstate_set_itmt_prio(int cpu)
 395{
 396}
 397#endif /* CONFIG_ACPI_CPPC_LIB */
 398
 399static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 400{
 401        struct cpudata *cpu;
 402        int ret;
 403        int i;
 404
 405        if (hwp_active) {
 406                intel_pstate_set_itmt_prio(policy->cpu);
 407                return;
 408        }
 409
 410        if (!intel_pstate_get_ppc_enable_status())
 411                return;
 412
 413        cpu = all_cpu_data[policy->cpu];
 414
 415        ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 416                                                  policy->cpu);
 417        if (ret)
 418                return;
 419
 420        /*
 421         * Check if the control value in _PSS is for PERF_CTL MSR, which should
 422         * guarantee that the states returned by it map to the states in our
 423         * list directly.
 424         */
 425        if (cpu->acpi_perf_data.control_register.space_id !=
 426                                                ACPI_ADR_SPACE_FIXED_HARDWARE)
 427                goto err;
 428
 429        /*
 430         * If there is only one entry _PSS, simply ignore _PSS and continue as
 431         * usual without taking _PSS into account
 432         */
 433        if (cpu->acpi_perf_data.state_count < 2)
 434                goto err;
 435
 436        pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 437        for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 438                pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 439                         (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 440                         (u32) cpu->acpi_perf_data.states[i].core_frequency,
 441                         (u32) cpu->acpi_perf_data.states[i].power,
 442                         (u32) cpu->acpi_perf_data.states[i].control);
 443        }
 444
 445        /*
 446         * The _PSS table doesn't contain whole turbo frequency range.
 447         * This just contains +1 MHZ above the max non turbo frequency,
 448         * with control value corresponding to max turbo ratio. But
 449         * when cpufreq set policy is called, it will call with this
 450         * max frequency, which will cause a reduced performance as
 451         * this driver uses real max turbo frequency as the max
 452         * frequency. So correct this frequency in _PSS table to
 453         * correct max turbo frequency based on the turbo state.
 454         * Also need to convert to MHz as _PSS freq is in MHz.
 455         */
 456        if (!global.turbo_disabled)
 457                cpu->acpi_perf_data.states[0].core_frequency =
 458                                        policy->cpuinfo.max_freq / 1000;
 459        cpu->valid_pss_table = true;
 460        pr_debug("_PPC limits will be enforced\n");
 461
 462        return;
 463
 464 err:
 465        cpu->valid_pss_table = false;
 466        acpi_processor_unregister_performance(policy->cpu);
 467}
 468
 469static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 470{
 471        struct cpudata *cpu;
 472
 473        cpu = all_cpu_data[policy->cpu];
 474        if (!cpu->valid_pss_table)
 475                return;
 476
 477        acpi_processor_unregister_performance(policy->cpu);
 478}
 479#else /* CONFIG_ACPI */
 480static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 481{
 482}
 483
 484static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 485{
 486}
 487
 488static inline bool intel_pstate_acpi_pm_profile_server(void)
 489{
 490        return false;
 491}
 492#endif /* CONFIG_ACPI */
 493
 494#ifndef CONFIG_ACPI_CPPC_LIB
 495static int intel_pstate_get_cppc_guranteed(int cpu)
 496{
 497        return -ENOTSUPP;
 498}
 499#endif /* CONFIG_ACPI_CPPC_LIB */
 500
 501static inline void update_turbo_state(void)
 502{
 503        u64 misc_en;
 504        struct cpudata *cpu;
 505
 506        cpu = all_cpu_data[0];
 507        rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 508        global.turbo_disabled =
 509                (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 510                 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 511}
 512
 513static int min_perf_pct_min(void)
 514{
 515        struct cpudata *cpu = all_cpu_data[0];
 516        int turbo_pstate = cpu->pstate.turbo_pstate;
 517
 518        return turbo_pstate ?
 519                (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 520}
 521
 522static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 523{
 524        u64 epb;
 525        int ret;
 526
 527        if (!boot_cpu_has(X86_FEATURE_EPB))
 528                return -ENXIO;
 529
 530        ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 531        if (ret)
 532                return (s16)ret;
 533
 534        return (s16)(epb & 0x0f);
 535}
 536
 537static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 538{
 539        s16 epp;
 540
 541        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 542                /*
 543                 * When hwp_req_data is 0, means that caller didn't read
 544                 * MSR_HWP_REQUEST, so need to read and get EPP.
 545                 */
 546                if (!hwp_req_data) {
 547                        epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 548                                            &hwp_req_data);
 549                        if (epp)
 550                                return epp;
 551                }
 552                epp = (hwp_req_data >> 24) & 0xff;
 553        } else {
 554                /* When there is no EPP present, HWP uses EPB settings */
 555                epp = intel_pstate_get_epb(cpu_data);
 556        }
 557
 558        return epp;
 559}
 560
 561static int intel_pstate_set_epb(int cpu, s16 pref)
 562{
 563        u64 epb;
 564        int ret;
 565
 566        if (!boot_cpu_has(X86_FEATURE_EPB))
 567                return -ENXIO;
 568
 569        ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 570        if (ret)
 571                return ret;
 572
 573        epb = (epb & ~0x0f) | pref;
 574        wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 575
 576        return 0;
 577}
 578
 579/*
 580 * EPP/EPB display strings corresponding to EPP index in the
 581 * energy_perf_strings[]
 582 *      index           String
 583 *-------------------------------------
 584 *      0               default
 585 *      1               performance
 586 *      2               balance_performance
 587 *      3               balance_power
 588 *      4               power
 589 */
 590static const char * const energy_perf_strings[] = {
 591        "default",
 592        "performance",
 593        "balance_performance",
 594        "balance_power",
 595        "power",
 596        NULL
 597};
 598static const unsigned int epp_values[] = {
 599        HWP_EPP_PERFORMANCE,
 600        HWP_EPP_BALANCE_PERFORMANCE,
 601        HWP_EPP_BALANCE_POWERSAVE,
 602        HWP_EPP_POWERSAVE
 603};
 604
 605static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
 606{
 607        s16 epp;
 608        int index = -EINVAL;
 609
 610        epp = intel_pstate_get_epp(cpu_data, 0);
 611        if (epp < 0)
 612                return epp;
 613
 614        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 615                if (epp == HWP_EPP_PERFORMANCE)
 616                        return 1;
 617                if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
 618                        return 2;
 619                if (epp <= HWP_EPP_BALANCE_POWERSAVE)
 620                        return 3;
 621                else
 622                        return 4;
 623        } else if (boot_cpu_has(X86_FEATURE_EPB)) {
 624                /*
 625                 * Range:
 626                 *      0x00-0x03       :       Performance
 627                 *      0x04-0x07       :       Balance performance
 628                 *      0x08-0x0B       :       Balance power
 629                 *      0x0C-0x0F       :       Power
 630                 * The EPB is a 4 bit value, but our ranges restrict the
 631                 * value which can be set. Here only using top two bits
 632                 * effectively.
 633                 */
 634                index = (epp >> 2) + 1;
 635        }
 636
 637        return index;
 638}
 639
 640static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 641                                              int pref_index)
 642{
 643        int epp = -EINVAL;
 644        int ret;
 645
 646        if (!pref_index)
 647                epp = cpu_data->epp_default;
 648
 649        mutex_lock(&intel_pstate_limits_lock);
 650
 651        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 652                u64 value;
 653
 654                ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
 655                if (ret)
 656                        goto return_pref;
 657
 658                value &= ~GENMASK_ULL(31, 24);
 659
 660                if (epp == -EINVAL)
 661                        epp = epp_values[pref_index - 1];
 662
 663                value |= (u64)epp << 24;
 664                ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
 665        } else {
 666                if (epp == -EINVAL)
 667                        epp = (pref_index - 1) << 2;
 668                ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 669        }
 670return_pref:
 671        mutex_unlock(&intel_pstate_limits_lock);
 672
 673        return ret;
 674}
 675
 676static ssize_t show_energy_performance_available_preferences(
 677                                struct cpufreq_policy *policy, char *buf)
 678{
 679        int i = 0;
 680        int ret = 0;
 681
 682        while (energy_perf_strings[i] != NULL)
 683                ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 684
 685        ret += sprintf(&buf[ret], "\n");
 686
 687        return ret;
 688}
 689
 690cpufreq_freq_attr_ro(energy_performance_available_preferences);
 691
 692static ssize_t store_energy_performance_preference(
 693                struct cpufreq_policy *policy, const char *buf, size_t count)
 694{
 695        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 696        char str_preference[21];
 697        int ret;
 698
 699        ret = sscanf(buf, "%20s", str_preference);
 700        if (ret != 1)
 701                return -EINVAL;
 702
 703        ret = match_string(energy_perf_strings, -1, str_preference);
 704        if (ret < 0)
 705                return ret;
 706
 707        intel_pstate_set_energy_pref_index(cpu_data, ret);
 708        return count;
 709}
 710
 711static ssize_t show_energy_performance_preference(
 712                                struct cpufreq_policy *policy, char *buf)
 713{
 714        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 715        int preference;
 716
 717        preference = intel_pstate_get_energy_pref_index(cpu_data);
 718        if (preference < 0)
 719                return preference;
 720
 721        return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 722}
 723
 724cpufreq_freq_attr_rw(energy_performance_preference);
 725
 726static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
 727{
 728        struct cpudata *cpu;
 729        u64 cap;
 730        int ratio;
 731
 732        ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
 733        if (ratio <= 0) {
 734                rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
 735                ratio = HWP_GUARANTEED_PERF(cap);
 736        }
 737
 738        cpu = all_cpu_data[policy->cpu];
 739
 740        return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
 741}
 742
 743cpufreq_freq_attr_ro(base_frequency);
 744
 745static struct freq_attr *hwp_cpufreq_attrs[] = {
 746        &energy_performance_preference,
 747        &energy_performance_available_preferences,
 748        &base_frequency,
 749        NULL,
 750};
 751
 752static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
 753                                     int *current_max)
 754{
 755        u64 cap;
 756
 757        rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 758        WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
 759        if (global.no_turbo)
 760                *current_max = HWP_GUARANTEED_PERF(cap);
 761        else
 762                *current_max = HWP_HIGHEST_PERF(cap);
 763
 764        *phy_max = HWP_HIGHEST_PERF(cap);
 765}
 766
 767static void intel_pstate_hwp_set(unsigned int cpu)
 768{
 769        struct cpudata *cpu_data = all_cpu_data[cpu];
 770        int max, min;
 771        u64 value;
 772        s16 epp;
 773
 774        max = cpu_data->max_perf_ratio;
 775        min = cpu_data->min_perf_ratio;
 776
 777        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 778                min = max;
 779
 780        rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 781
 782        value &= ~HWP_MIN_PERF(~0L);
 783        value |= HWP_MIN_PERF(min);
 784
 785        value &= ~HWP_MAX_PERF(~0L);
 786        value |= HWP_MAX_PERF(max);
 787
 788        if (cpu_data->epp_policy == cpu_data->policy)
 789                goto skip_epp;
 790
 791        cpu_data->epp_policy = cpu_data->policy;
 792
 793        if (cpu_data->epp_saved >= 0) {
 794                epp = cpu_data->epp_saved;
 795                cpu_data->epp_saved = -EINVAL;
 796                goto update_epp;
 797        }
 798
 799        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 800                epp = intel_pstate_get_epp(cpu_data, value);
 801                cpu_data->epp_powersave = epp;
 802                /* If EPP read was failed, then don't try to write */
 803                if (epp < 0)
 804                        goto skip_epp;
 805
 806                epp = 0;
 807        } else {
 808                /* skip setting EPP, when saved value is invalid */
 809                if (cpu_data->epp_powersave < 0)
 810                        goto skip_epp;
 811
 812                /*
 813                 * No need to restore EPP when it is not zero. This
 814                 * means:
 815                 *  - Policy is not changed
 816                 *  - user has manually changed
 817                 *  - Error reading EPB
 818                 */
 819                epp = intel_pstate_get_epp(cpu_data, value);
 820                if (epp)
 821                        goto skip_epp;
 822
 823                epp = cpu_data->epp_powersave;
 824        }
 825update_epp:
 826        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 827                value &= ~GENMASK_ULL(31, 24);
 828                value |= (u64)epp << 24;
 829        } else {
 830                intel_pstate_set_epb(cpu, epp);
 831        }
 832skip_epp:
 833        WRITE_ONCE(cpu_data->hwp_req_cached, value);
 834        wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 835}
 836
 837static void intel_pstate_hwp_force_min_perf(int cpu)
 838{
 839        u64 value;
 840        int min_perf;
 841
 842        value = all_cpu_data[cpu]->hwp_req_cached;
 843        value &= ~GENMASK_ULL(31, 0);
 844        min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
 845
 846        /* Set hwp_max = hwp_min */
 847        value |= HWP_MAX_PERF(min_perf);
 848        value |= HWP_MIN_PERF(min_perf);
 849
 850        /* Set EPP to min */
 851        if (boot_cpu_has(X86_FEATURE_HWP_EPP))
 852                value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
 853
 854        wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 855}
 856
 857static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
 858{
 859        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 860
 861        if (!hwp_active)
 862                return 0;
 863
 864        cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
 865
 866        return 0;
 867}
 868
 869static void intel_pstate_hwp_enable(struct cpudata *cpudata);
 870
 871static int intel_pstate_resume(struct cpufreq_policy *policy)
 872{
 873        if (!hwp_active)
 874                return 0;
 875
 876        mutex_lock(&intel_pstate_limits_lock);
 877
 878        if (policy->cpu == 0)
 879                intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
 880
 881        all_cpu_data[policy->cpu]->epp_policy = 0;
 882        intel_pstate_hwp_set(policy->cpu);
 883
 884        mutex_unlock(&intel_pstate_limits_lock);
 885
 886        return 0;
 887}
 888
 889static void intel_pstate_update_policies(void)
 890{
 891        int cpu;
 892
 893        for_each_possible_cpu(cpu)
 894                cpufreq_update_policy(cpu);
 895}
 896
 897static void intel_pstate_update_max_freq(unsigned int cpu)
 898{
 899        struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 900        struct cpudata *cpudata;
 901
 902        if (!policy)
 903                return;
 904
 905        cpudata = all_cpu_data[cpu];
 906        policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
 907                        cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
 908
 909        refresh_frequency_limits(policy);
 910
 911        cpufreq_cpu_release(policy);
 912}
 913
 914static void intel_pstate_update_limits(unsigned int cpu)
 915{
 916        mutex_lock(&intel_pstate_driver_lock);
 917
 918        update_turbo_state();
 919        /*
 920         * If turbo has been turned on or off globally, policy limits for
 921         * all CPUs need to be updated to reflect that.
 922         */
 923        if (global.turbo_disabled_mf != global.turbo_disabled) {
 924                global.turbo_disabled_mf = global.turbo_disabled;
 925                for_each_possible_cpu(cpu)
 926                        intel_pstate_update_max_freq(cpu);
 927        } else {
 928                cpufreq_update_policy(cpu);
 929        }
 930
 931        mutex_unlock(&intel_pstate_driver_lock);
 932}
 933
 934/************************** sysfs begin ************************/
 935#define show_one(file_name, object)                                     \
 936        static ssize_t show_##file_name                                 \
 937        (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
 938        {                                                               \
 939                return sprintf(buf, "%u\n", global.object);             \
 940        }
 941
 942static ssize_t intel_pstate_show_status(char *buf);
 943static int intel_pstate_update_status(const char *buf, size_t size);
 944
 945static ssize_t show_status(struct kobject *kobj,
 946                           struct kobj_attribute *attr, char *buf)
 947{
 948        ssize_t ret;
 949
 950        mutex_lock(&intel_pstate_driver_lock);
 951        ret = intel_pstate_show_status(buf);
 952        mutex_unlock(&intel_pstate_driver_lock);
 953
 954        return ret;
 955}
 956
 957static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
 958                            const char *buf, size_t count)
 959{
 960        char *p = memchr(buf, '\n', count);
 961        int ret;
 962
 963        mutex_lock(&intel_pstate_driver_lock);
 964        ret = intel_pstate_update_status(buf, p ? p - buf : count);
 965        mutex_unlock(&intel_pstate_driver_lock);
 966
 967        return ret < 0 ? ret : count;
 968}
 969
 970static ssize_t show_turbo_pct(struct kobject *kobj,
 971                                struct kobj_attribute *attr, char *buf)
 972{
 973        struct cpudata *cpu;
 974        int total, no_turbo, turbo_pct;
 975        uint32_t turbo_fp;
 976
 977        mutex_lock(&intel_pstate_driver_lock);
 978
 979        if (!intel_pstate_driver) {
 980                mutex_unlock(&intel_pstate_driver_lock);
 981                return -EAGAIN;
 982        }
 983
 984        cpu = all_cpu_data[0];
 985
 986        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 987        no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 988        turbo_fp = div_fp(no_turbo, total);
 989        turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 990
 991        mutex_unlock(&intel_pstate_driver_lock);
 992
 993        return sprintf(buf, "%u\n", turbo_pct);
 994}
 995
 996static ssize_t show_num_pstates(struct kobject *kobj,
 997                                struct kobj_attribute *attr, char *buf)
 998{
 999        struct cpudata *cpu;
1000        int total;
1001
1002        mutex_lock(&intel_pstate_driver_lock);
1003
1004        if (!intel_pstate_driver) {
1005                mutex_unlock(&intel_pstate_driver_lock);
1006                return -EAGAIN;
1007        }
1008
1009        cpu = all_cpu_data[0];
1010        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1011
1012        mutex_unlock(&intel_pstate_driver_lock);
1013
1014        return sprintf(buf, "%u\n", total);
1015}
1016
1017static ssize_t show_no_turbo(struct kobject *kobj,
1018                             struct kobj_attribute *attr, char *buf)
1019{
1020        ssize_t ret;
1021
1022        mutex_lock(&intel_pstate_driver_lock);
1023
1024        if (!intel_pstate_driver) {
1025                mutex_unlock(&intel_pstate_driver_lock);
1026                return -EAGAIN;
1027        }
1028
1029        update_turbo_state();
1030        if (global.turbo_disabled)
1031                ret = sprintf(buf, "%u\n", global.turbo_disabled);
1032        else
1033                ret = sprintf(buf, "%u\n", global.no_turbo);
1034
1035        mutex_unlock(&intel_pstate_driver_lock);
1036
1037        return ret;
1038}
1039
1040static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1041                              const char *buf, size_t count)
1042{
1043        unsigned int input;
1044        int ret;
1045
1046        ret = sscanf(buf, "%u", &input);
1047        if (ret != 1)
1048                return -EINVAL;
1049
1050        mutex_lock(&intel_pstate_driver_lock);
1051
1052        if (!intel_pstate_driver) {
1053                mutex_unlock(&intel_pstate_driver_lock);
1054                return -EAGAIN;
1055        }
1056
1057        mutex_lock(&intel_pstate_limits_lock);
1058
1059        update_turbo_state();
1060        if (global.turbo_disabled) {
1061                pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1062                mutex_unlock(&intel_pstate_limits_lock);
1063                mutex_unlock(&intel_pstate_driver_lock);
1064                return -EPERM;
1065        }
1066
1067        global.no_turbo = clamp_t(int, input, 0, 1);
1068
1069        if (global.no_turbo) {
1070                struct cpudata *cpu = all_cpu_data[0];
1071                int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1072
1073                /* Squash the global minimum into the permitted range. */
1074                if (global.min_perf_pct > pct)
1075                        global.min_perf_pct = pct;
1076        }
1077
1078        mutex_unlock(&intel_pstate_limits_lock);
1079
1080        intel_pstate_update_policies();
1081
1082        mutex_unlock(&intel_pstate_driver_lock);
1083
1084        return count;
1085}
1086
1087static struct cpufreq_driver intel_pstate;
1088
1089static void update_qos_request(enum freq_qos_req_type type)
1090{
1091        int max_state, turbo_max, freq, i, perf_pct;
1092        struct freq_qos_request *req;
1093        struct cpufreq_policy *policy;
1094
1095        for_each_possible_cpu(i) {
1096                struct cpudata *cpu = all_cpu_data[i];
1097
1098                policy = cpufreq_cpu_get(i);
1099                if (!policy)
1100                        continue;
1101
1102                req = policy->driver_data;
1103                cpufreq_cpu_put(policy);
1104
1105                if (!req)
1106                        continue;
1107
1108                if (hwp_active)
1109                        intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1110                else
1111                        turbo_max = cpu->pstate.turbo_pstate;
1112
1113                if (type == FREQ_QOS_MIN) {
1114                        perf_pct = global.min_perf_pct;
1115                } else {
1116                        req++;
1117                        perf_pct = global.max_perf_pct;
1118                }
1119
1120                freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1121                freq *= cpu->pstate.scaling;
1122
1123                if (freq_qos_update_request(req, freq) < 0)
1124                        pr_warn("Failed to update freq constraint: CPU%d\n", i);
1125        }
1126}
1127
1128static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1129                                  const char *buf, size_t count)
1130{
1131        unsigned int input;
1132        int ret;
1133
1134        ret = sscanf(buf, "%u", &input);
1135        if (ret != 1)
1136                return -EINVAL;
1137
1138        mutex_lock(&intel_pstate_driver_lock);
1139
1140        if (!intel_pstate_driver) {
1141                mutex_unlock(&intel_pstate_driver_lock);
1142                return -EAGAIN;
1143        }
1144
1145        mutex_lock(&intel_pstate_limits_lock);
1146
1147        global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1148
1149        mutex_unlock(&intel_pstate_limits_lock);
1150
1151        if (intel_pstate_driver == &intel_pstate)
1152                intel_pstate_update_policies();
1153        else
1154                update_qos_request(FREQ_QOS_MAX);
1155
1156        mutex_unlock(&intel_pstate_driver_lock);
1157
1158        return count;
1159}
1160
1161static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1162                                  const char *buf, size_t count)
1163{
1164        unsigned int input;
1165        int ret;
1166
1167        ret = sscanf(buf, "%u", &input);
1168        if (ret != 1)
1169                return -EINVAL;
1170
1171        mutex_lock(&intel_pstate_driver_lock);
1172
1173        if (!intel_pstate_driver) {
1174                mutex_unlock(&intel_pstate_driver_lock);
1175                return -EAGAIN;
1176        }
1177
1178        mutex_lock(&intel_pstate_limits_lock);
1179
1180        global.min_perf_pct = clamp_t(int, input,
1181                                      min_perf_pct_min(), global.max_perf_pct);
1182
1183        mutex_unlock(&intel_pstate_limits_lock);
1184
1185        if (intel_pstate_driver == &intel_pstate)
1186                intel_pstate_update_policies();
1187        else
1188                update_qos_request(FREQ_QOS_MIN);
1189
1190        mutex_unlock(&intel_pstate_driver_lock);
1191
1192        return count;
1193}
1194
1195static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1196                                struct kobj_attribute *attr, char *buf)
1197{
1198        return sprintf(buf, "%u\n", hwp_boost);
1199}
1200
1201static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1202                                       struct kobj_attribute *b,
1203                                       const char *buf, size_t count)
1204{
1205        unsigned int input;
1206        int ret;
1207
1208        ret = kstrtouint(buf, 10, &input);
1209        if (ret)
1210                return ret;
1211
1212        mutex_lock(&intel_pstate_driver_lock);
1213        hwp_boost = !!input;
1214        intel_pstate_update_policies();
1215        mutex_unlock(&intel_pstate_driver_lock);
1216
1217        return count;
1218}
1219
1220show_one(max_perf_pct, max_perf_pct);
1221show_one(min_perf_pct, min_perf_pct);
1222
1223define_one_global_rw(status);
1224define_one_global_rw(no_turbo);
1225define_one_global_rw(max_perf_pct);
1226define_one_global_rw(min_perf_pct);
1227define_one_global_ro(turbo_pct);
1228define_one_global_ro(num_pstates);
1229define_one_global_rw(hwp_dynamic_boost);
1230
1231static struct attribute *intel_pstate_attributes[] = {
1232        &status.attr,
1233        &no_turbo.attr,
1234        &turbo_pct.attr,
1235        &num_pstates.attr,
1236        NULL
1237};
1238
1239static const struct attribute_group intel_pstate_attr_group = {
1240        .attrs = intel_pstate_attributes,
1241};
1242
1243static void __init intel_pstate_sysfs_expose_params(void)
1244{
1245        struct kobject *intel_pstate_kobject;
1246        int rc;
1247
1248        intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1249                                                &cpu_subsys.dev_root->kobj);
1250        if (WARN_ON(!intel_pstate_kobject))
1251                return;
1252
1253        rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1254        if (WARN_ON(rc))
1255                return;
1256
1257        /*
1258         * If per cpu limits are enforced there are no global limits, so
1259         * return without creating max/min_perf_pct attributes
1260         */
1261        if (per_cpu_limits)
1262                return;
1263
1264        rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1265        WARN_ON(rc);
1266
1267        rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1268        WARN_ON(rc);
1269
1270        if (hwp_active) {
1271                rc = sysfs_create_file(intel_pstate_kobject,
1272                                       &hwp_dynamic_boost.attr);
1273                WARN_ON(rc);
1274        }
1275}
1276/************************** sysfs end ************************/
1277
1278static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1279{
1280        /* First disable HWP notification interrupt as we don't process them */
1281        if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1282                wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1283
1284        wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1285        cpudata->epp_policy = 0;
1286        if (cpudata->epp_default == -EINVAL)
1287                cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1288}
1289
1290#define MSR_IA32_POWER_CTL_BIT_EE       19
1291
1292/* Disable energy efficiency optimization */
1293static void intel_pstate_disable_ee(int cpu)
1294{
1295        u64 power_ctl;
1296        int ret;
1297
1298        ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1299        if (ret)
1300                return;
1301
1302        if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1303                pr_info("Disabling energy efficiency optimization\n");
1304                power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1305                wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1306        }
1307}
1308
1309static int atom_get_min_pstate(void)
1310{
1311        u64 value;
1312
1313        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1314        return (value >> 8) & 0x7F;
1315}
1316
1317static int atom_get_max_pstate(void)
1318{
1319        u64 value;
1320
1321        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1322        return (value >> 16) & 0x7F;
1323}
1324
1325static int atom_get_turbo_pstate(void)
1326{
1327        u64 value;
1328
1329        rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1330        return value & 0x7F;
1331}
1332
1333static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1334{
1335        u64 val;
1336        int32_t vid_fp;
1337        u32 vid;
1338
1339        val = (u64)pstate << 8;
1340        if (global.no_turbo && !global.turbo_disabled)
1341                val |= (u64)1 << 32;
1342
1343        vid_fp = cpudata->vid.min + mul_fp(
1344                int_tofp(pstate - cpudata->pstate.min_pstate),
1345                cpudata->vid.ratio);
1346
1347        vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1348        vid = ceiling_fp(vid_fp);
1349
1350        if (pstate > cpudata->pstate.max_pstate)
1351                vid = cpudata->vid.turbo;
1352
1353        return val | vid;
1354}
1355
1356static int silvermont_get_scaling(void)
1357{
1358        u64 value;
1359        int i;
1360        /* Defined in Table 35-6 from SDM (Sept 2015) */
1361        static int silvermont_freq_table[] = {
1362                83300, 100000, 133300, 116700, 80000};
1363
1364        rdmsrl(MSR_FSB_FREQ, value);
1365        i = value & 0x7;
1366        WARN_ON(i > 4);
1367
1368        return silvermont_freq_table[i];
1369}
1370
1371static int airmont_get_scaling(void)
1372{
1373        u64 value;
1374        int i;
1375        /* Defined in Table 35-10 from SDM (Sept 2015) */
1376        static int airmont_freq_table[] = {
1377                83300, 100000, 133300, 116700, 80000,
1378                93300, 90000, 88900, 87500};
1379
1380        rdmsrl(MSR_FSB_FREQ, value);
1381        i = value & 0xF;
1382        WARN_ON(i > 8);
1383
1384        return airmont_freq_table[i];
1385}
1386
1387static void atom_get_vid(struct cpudata *cpudata)
1388{
1389        u64 value;
1390
1391        rdmsrl(MSR_ATOM_CORE_VIDS, value);
1392        cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1393        cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1394        cpudata->vid.ratio = div_fp(
1395                cpudata->vid.max - cpudata->vid.min,
1396                int_tofp(cpudata->pstate.max_pstate -
1397                        cpudata->pstate.min_pstate));
1398
1399        rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1400        cpudata->vid.turbo = value & 0x7f;
1401}
1402
1403static int core_get_min_pstate(void)
1404{
1405        u64 value;
1406
1407        rdmsrl(MSR_PLATFORM_INFO, value);
1408        return (value >> 40) & 0xFF;
1409}
1410
1411static int core_get_max_pstate_physical(void)
1412{
1413        u64 value;
1414
1415        rdmsrl(MSR_PLATFORM_INFO, value);
1416        return (value >> 8) & 0xFF;
1417}
1418
1419static int core_get_tdp_ratio(u64 plat_info)
1420{
1421        /* Check how many TDP levels present */
1422        if (plat_info & 0x600000000) {
1423                u64 tdp_ctrl;
1424                u64 tdp_ratio;
1425                int tdp_msr;
1426                int err;
1427
1428                /* Get the TDP level (0, 1, 2) to get ratios */
1429                err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1430                if (err)
1431                        return err;
1432
1433                /* TDP MSR are continuous starting at 0x648 */
1434                tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1435                err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1436                if (err)
1437                        return err;
1438
1439                /* For level 1 and 2, bits[23:16] contain the ratio */
1440                if (tdp_ctrl & 0x03)
1441                        tdp_ratio >>= 16;
1442
1443                tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1444                pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1445
1446                return (int)tdp_ratio;
1447        }
1448
1449        return -ENXIO;
1450}
1451
1452static int core_get_max_pstate(void)
1453{
1454        u64 tar;
1455        u64 plat_info;
1456        int max_pstate;
1457        int tdp_ratio;
1458        int err;
1459
1460        rdmsrl(MSR_PLATFORM_INFO, plat_info);
1461        max_pstate = (plat_info >> 8) & 0xFF;
1462
1463        tdp_ratio = core_get_tdp_ratio(plat_info);
1464        if (tdp_ratio <= 0)
1465                return max_pstate;
1466
1467        if (hwp_active) {
1468                /* Turbo activation ratio is not used on HWP platforms */
1469                return tdp_ratio;
1470        }
1471
1472        err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1473        if (!err) {
1474                int tar_levels;
1475
1476                /* Do some sanity checking for safety */
1477                tar_levels = tar & 0xff;
1478                if (tdp_ratio - 1 == tar_levels) {
1479                        max_pstate = tar_levels;
1480                        pr_debug("max_pstate=TAC %x\n", max_pstate);
1481                }
1482        }
1483
1484        return max_pstate;
1485}
1486
1487static int core_get_turbo_pstate(void)
1488{
1489        u64 value;
1490        int nont, ret;
1491
1492        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493        nont = core_get_max_pstate();
1494        ret = (value) & 255;
1495        if (ret <= nont)
1496                ret = nont;
1497        return ret;
1498}
1499
1500static inline int core_get_scaling(void)
1501{
1502        return 100000;
1503}
1504
1505static u64 core_get_val(struct cpudata *cpudata, int pstate)
1506{
1507        u64 val;
1508
1509        val = (u64)pstate << 8;
1510        if (global.no_turbo && !global.turbo_disabled)
1511                val |= (u64)1 << 32;
1512
1513        return val;
1514}
1515
1516static int knl_get_aperf_mperf_shift(void)
1517{
1518        return 10;
1519}
1520
1521static int knl_get_turbo_pstate(void)
1522{
1523        u64 value;
1524        int nont, ret;
1525
1526        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1527        nont = core_get_max_pstate();
1528        ret = (((value) >> 8) & 0xFF);
1529        if (ret <= nont)
1530                ret = nont;
1531        return ret;
1532}
1533
1534static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1535{
1536        trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1537        cpu->pstate.current_pstate = pstate;
1538        /*
1539         * Generally, there is no guarantee that this code will always run on
1540         * the CPU being updated, so force the register update to run on the
1541         * right CPU.
1542         */
1543        wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1544                      pstate_funcs.get_val(cpu, pstate));
1545}
1546
1547static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1548{
1549        intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1550}
1551
1552static void intel_pstate_max_within_limits(struct cpudata *cpu)
1553{
1554        int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1555
1556        update_turbo_state();
1557        intel_pstate_set_pstate(cpu, pstate);
1558}
1559
1560static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1561{
1562        cpu->pstate.min_pstate = pstate_funcs.get_min();
1563        cpu->pstate.max_pstate = pstate_funcs.get_max();
1564        cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1565        cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1566        cpu->pstate.scaling = pstate_funcs.get_scaling();
1567        cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1568
1569        if (hwp_active && !hwp_mode_bdw) {
1570                unsigned int phy_max, current_max;
1571
1572                intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1573                cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1574        } else {
1575                cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1576        }
1577
1578        if (pstate_funcs.get_aperf_mperf_shift)
1579                cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1580
1581        if (pstate_funcs.get_vid)
1582                pstate_funcs.get_vid(cpu);
1583
1584        intel_pstate_set_min_pstate(cpu);
1585}
1586
1587/*
1588 * Long hold time will keep high perf limits for long time,
1589 * which negatively impacts perf/watt for some workloads,
1590 * like specpower. 3ms is based on experiements on some
1591 * workoads.
1592 */
1593static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1594
1595static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1596{
1597        u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1598        u32 max_limit = (hwp_req & 0xff00) >> 8;
1599        u32 min_limit = (hwp_req & 0xff);
1600        u32 boost_level1;
1601
1602        /*
1603         * Cases to consider (User changes via sysfs or boot time):
1604         * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1605         *      No boost, return.
1606         * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1607         *     Should result in one level boost only for P0.
1608         * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1609         *     Should result in two level boost:
1610         *         (min + p1)/2 and P1.
1611         * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1612         *     Should result in three level boost:
1613         *        (min + p1)/2, P1 and P0.
1614         */
1615
1616        /* If max and min are equal or already at max, nothing to boost */
1617        if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1618                return;
1619
1620        if (!cpu->hwp_boost_min)
1621                cpu->hwp_boost_min = min_limit;
1622
1623        /* level at half way mark between min and guranteed */
1624        boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1625
1626        if (cpu->hwp_boost_min < boost_level1)
1627                cpu->hwp_boost_min = boost_level1;
1628        else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1629                cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1630        else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1631                 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1632                cpu->hwp_boost_min = max_limit;
1633        else
1634                return;
1635
1636        hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1637        wrmsrl(MSR_HWP_REQUEST, hwp_req);
1638        cpu->last_update = cpu->sample.time;
1639}
1640
1641static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1642{
1643        if (cpu->hwp_boost_min) {
1644                bool expired;
1645
1646                /* Check if we are idle for hold time to boost down */
1647                expired = time_after64(cpu->sample.time, cpu->last_update +
1648                                       hwp_boost_hold_time_ns);
1649                if (expired) {
1650                        wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1651                        cpu->hwp_boost_min = 0;
1652                }
1653        }
1654        cpu->last_update = cpu->sample.time;
1655}
1656
1657static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1658                                                      u64 time)
1659{
1660        cpu->sample.time = time;
1661
1662        if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1663                bool do_io = false;
1664
1665                cpu->sched_flags = 0;
1666                /*
1667                 * Set iowait_boost flag and update time. Since IO WAIT flag
1668                 * is set all the time, we can't just conclude that there is
1669                 * some IO bound activity is scheduled on this CPU with just
1670                 * one occurrence. If we receive at least two in two
1671                 * consecutive ticks, then we treat as boost candidate.
1672                 */
1673                if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1674                        do_io = true;
1675
1676                cpu->last_io_update = time;
1677
1678                if (do_io)
1679                        intel_pstate_hwp_boost_up(cpu);
1680
1681        } else {
1682                intel_pstate_hwp_boost_down(cpu);
1683        }
1684}
1685
1686static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1687                                                u64 time, unsigned int flags)
1688{
1689        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1690
1691        cpu->sched_flags |= flags;
1692
1693        if (smp_processor_id() == cpu->cpu)
1694                intel_pstate_update_util_hwp_local(cpu, time);
1695}
1696
1697static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1698{
1699        struct sample *sample = &cpu->sample;
1700
1701        sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1702}
1703
1704static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1705{
1706        u64 aperf, mperf;
1707        unsigned long flags;
1708        u64 tsc;
1709
1710        local_irq_save(flags);
1711        rdmsrl(MSR_IA32_APERF, aperf);
1712        rdmsrl(MSR_IA32_MPERF, mperf);
1713        tsc = rdtsc();
1714        if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1715                local_irq_restore(flags);
1716                return false;
1717        }
1718        local_irq_restore(flags);
1719
1720        cpu->last_sample_time = cpu->sample.time;
1721        cpu->sample.time = time;
1722        cpu->sample.aperf = aperf;
1723        cpu->sample.mperf = mperf;
1724        cpu->sample.tsc =  tsc;
1725        cpu->sample.aperf -= cpu->prev_aperf;
1726        cpu->sample.mperf -= cpu->prev_mperf;
1727        cpu->sample.tsc -= cpu->prev_tsc;
1728
1729        cpu->prev_aperf = aperf;
1730        cpu->prev_mperf = mperf;
1731        cpu->prev_tsc = tsc;
1732        /*
1733         * First time this function is invoked in a given cycle, all of the
1734         * previous sample data fields are equal to zero or stale and they must
1735         * be populated with meaningful numbers for things to work, so assume
1736         * that sample.time will always be reset before setting the utilization
1737         * update hook and make the caller skip the sample then.
1738         */
1739        if (cpu->last_sample_time) {
1740                intel_pstate_calc_avg_perf(cpu);
1741                return true;
1742        }
1743        return false;
1744}
1745
1746static inline int32_t get_avg_frequency(struct cpudata *cpu)
1747{
1748        return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1749}
1750
1751static inline int32_t get_avg_pstate(struct cpudata *cpu)
1752{
1753        return mul_ext_fp(cpu->pstate.max_pstate_physical,
1754                          cpu->sample.core_avg_perf);
1755}
1756
1757static inline int32_t get_target_pstate(struct cpudata *cpu)
1758{
1759        struct sample *sample = &cpu->sample;
1760        int32_t busy_frac;
1761        int target, avg_pstate;
1762
1763        busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1764                           sample->tsc);
1765
1766        if (busy_frac < cpu->iowait_boost)
1767                busy_frac = cpu->iowait_boost;
1768
1769        sample->busy_scaled = busy_frac * 100;
1770
1771        target = global.no_turbo || global.turbo_disabled ?
1772                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1773        target += target >> 2;
1774        target = mul_fp(target, busy_frac);
1775        if (target < cpu->pstate.min_pstate)
1776                target = cpu->pstate.min_pstate;
1777
1778        /*
1779         * If the average P-state during the previous cycle was higher than the
1780         * current target, add 50% of the difference to the target to reduce
1781         * possible performance oscillations and offset possible performance
1782         * loss related to moving the workload from one CPU to another within
1783         * a package/module.
1784         */
1785        avg_pstate = get_avg_pstate(cpu);
1786        if (avg_pstate > target)
1787                target += (avg_pstate - target) >> 1;
1788
1789        return target;
1790}
1791
1792static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1793{
1794        int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1795        int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1796
1797        return clamp_t(int, pstate, min_pstate, max_pstate);
1798}
1799
1800static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1801{
1802        if (pstate == cpu->pstate.current_pstate)
1803                return;
1804
1805        cpu->pstate.current_pstate = pstate;
1806        wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1807}
1808
1809static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1810{
1811        int from = cpu->pstate.current_pstate;
1812        struct sample *sample;
1813        int target_pstate;
1814
1815        update_turbo_state();
1816
1817        target_pstate = get_target_pstate(cpu);
1818        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1819        trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1820        intel_pstate_update_pstate(cpu, target_pstate);
1821
1822        sample = &cpu->sample;
1823        trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1824                fp_toint(sample->busy_scaled),
1825                from,
1826                cpu->pstate.current_pstate,
1827                sample->mperf,
1828                sample->aperf,
1829                sample->tsc,
1830                get_avg_frequency(cpu),
1831                fp_toint(cpu->iowait_boost * 100));
1832}
1833
1834static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1835                                     unsigned int flags)
1836{
1837        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1838        u64 delta_ns;
1839
1840        /* Don't allow remote callbacks */
1841        if (smp_processor_id() != cpu->cpu)
1842                return;
1843
1844        delta_ns = time - cpu->last_update;
1845        if (flags & SCHED_CPUFREQ_IOWAIT) {
1846                /* Start over if the CPU may have been idle. */
1847                if (delta_ns > TICK_NSEC) {
1848                        cpu->iowait_boost = ONE_EIGHTH_FP;
1849                } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1850                        cpu->iowait_boost <<= 1;
1851                        if (cpu->iowait_boost > int_tofp(1))
1852                                cpu->iowait_boost = int_tofp(1);
1853                } else {
1854                        cpu->iowait_boost = ONE_EIGHTH_FP;
1855                }
1856        } else if (cpu->iowait_boost) {
1857                /* Clear iowait_boost if the CPU may have been idle. */
1858                if (delta_ns > TICK_NSEC)
1859                        cpu->iowait_boost = 0;
1860                else
1861                        cpu->iowait_boost >>= 1;
1862        }
1863        cpu->last_update = time;
1864        delta_ns = time - cpu->sample.time;
1865        if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1866                return;
1867
1868        if (intel_pstate_sample(cpu, time))
1869                intel_pstate_adjust_pstate(cpu);
1870}
1871
1872static struct pstate_funcs core_funcs = {
1873        .get_max = core_get_max_pstate,
1874        .get_max_physical = core_get_max_pstate_physical,
1875        .get_min = core_get_min_pstate,
1876        .get_turbo = core_get_turbo_pstate,
1877        .get_scaling = core_get_scaling,
1878        .get_val = core_get_val,
1879};
1880
1881static const struct pstate_funcs silvermont_funcs = {
1882        .get_max = atom_get_max_pstate,
1883        .get_max_physical = atom_get_max_pstate,
1884        .get_min = atom_get_min_pstate,
1885        .get_turbo = atom_get_turbo_pstate,
1886        .get_val = atom_get_val,
1887        .get_scaling = silvermont_get_scaling,
1888        .get_vid = atom_get_vid,
1889};
1890
1891static const struct pstate_funcs airmont_funcs = {
1892        .get_max = atom_get_max_pstate,
1893        .get_max_physical = atom_get_max_pstate,
1894        .get_min = atom_get_min_pstate,
1895        .get_turbo = atom_get_turbo_pstate,
1896        .get_val = atom_get_val,
1897        .get_scaling = airmont_get_scaling,
1898        .get_vid = atom_get_vid,
1899};
1900
1901static const struct pstate_funcs knl_funcs = {
1902        .get_max = core_get_max_pstate,
1903        .get_max_physical = core_get_max_pstate_physical,
1904        .get_min = core_get_min_pstate,
1905        .get_turbo = knl_get_turbo_pstate,
1906        .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1907        .get_scaling = core_get_scaling,
1908        .get_val = core_get_val,
1909};
1910
1911#define ICPU(model, policy) \
1912        { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1913                        (unsigned long)&policy }
1914
1915static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1916        ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1917        ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1918        ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1919        ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1920        ICPU(INTEL_FAM6_HASWELL,                core_funcs),
1921        ICPU(INTEL_FAM6_BROADWELL,              core_funcs),
1922        ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1923        ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1924        ICPU(INTEL_FAM6_HASWELL_L,              core_funcs),
1925        ICPU(INTEL_FAM6_HASWELL_G,              core_funcs),
1926        ICPU(INTEL_FAM6_BROADWELL_G,            core_funcs),
1927        ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1928        ICPU(INTEL_FAM6_SKYLAKE_L,              core_funcs),
1929        ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1930        ICPU(INTEL_FAM6_SKYLAKE,                core_funcs),
1931        ICPU(INTEL_FAM6_BROADWELL_D,            core_funcs),
1932        ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1933        ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1934        ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1935        ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1936        ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1937        {}
1938};
1939MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1940
1941static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1942        ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1943        ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1944        ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1945        {}
1946};
1947
1948static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1949        ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1950        {}
1951};
1952
1953static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1954        ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1955        ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1956        {}
1957};
1958
1959static int intel_pstate_init_cpu(unsigned int cpunum)
1960{
1961        struct cpudata *cpu;
1962
1963        cpu = all_cpu_data[cpunum];
1964
1965        if (!cpu) {
1966                cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1967                if (!cpu)
1968                        return -ENOMEM;
1969
1970                all_cpu_data[cpunum] = cpu;
1971
1972                cpu->epp_default = -EINVAL;
1973                cpu->epp_powersave = -EINVAL;
1974                cpu->epp_saved = -EINVAL;
1975        }
1976
1977        cpu = all_cpu_data[cpunum];
1978
1979        cpu->cpu = cpunum;
1980
1981        if (hwp_active) {
1982                const struct x86_cpu_id *id;
1983
1984                id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1985                if (id)
1986                        intel_pstate_disable_ee(cpunum);
1987
1988                intel_pstate_hwp_enable(cpu);
1989
1990                id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1991                if (id && intel_pstate_acpi_pm_profile_server())
1992                        hwp_boost = true;
1993        }
1994
1995        intel_pstate_get_cpu_pstates(cpu);
1996
1997        pr_debug("controlling: cpu %d\n", cpunum);
1998
1999        return 0;
2000}
2001
2002static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2003{
2004        struct cpudata *cpu = all_cpu_data[cpu_num];
2005
2006        if (hwp_active && !hwp_boost)
2007                return;
2008
2009        if (cpu->update_util_set)
2010                return;
2011
2012        /* Prevent intel_pstate_update_util() from using stale data. */
2013        cpu->sample.time = 0;
2014        cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2015                                     (hwp_active ?
2016                                      intel_pstate_update_util_hwp :
2017                                      intel_pstate_update_util));
2018        cpu->update_util_set = true;
2019}
2020
2021static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2022{
2023        struct cpudata *cpu_data = all_cpu_data[cpu];
2024
2025        if (!cpu_data->update_util_set)
2026                return;
2027
2028        cpufreq_remove_update_util_hook(cpu);
2029        cpu_data->update_util_set = false;
2030        synchronize_rcu();
2031}
2032
2033static int intel_pstate_get_max_freq(struct cpudata *cpu)
2034{
2035        return global.turbo_disabled || global.no_turbo ?
2036                        cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2037}
2038
2039static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2040                                            unsigned int policy_min,
2041                                            unsigned int policy_max)
2042{
2043        int max_freq = intel_pstate_get_max_freq(cpu);
2044        int32_t max_policy_perf, min_policy_perf;
2045        int max_state, turbo_max;
2046
2047        /*
2048         * HWP needs some special consideration, because on BDX the
2049         * HWP_REQUEST uses abstract value to represent performance
2050         * rather than pure ratios.
2051         */
2052        if (hwp_active) {
2053                intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2054        } else {
2055                max_state = global.no_turbo || global.turbo_disabled ?
2056                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2057                turbo_max = cpu->pstate.turbo_pstate;
2058        }
2059
2060        max_policy_perf = max_state * policy_max / max_freq;
2061        if (policy_max == policy_min) {
2062                min_policy_perf = max_policy_perf;
2063        } else {
2064                min_policy_perf = max_state * policy_min / max_freq;
2065                min_policy_perf = clamp_t(int32_t, min_policy_perf,
2066                                          0, max_policy_perf);
2067        }
2068
2069        pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2070                 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2071
2072        /* Normalize user input to [min_perf, max_perf] */
2073        if (per_cpu_limits) {
2074                cpu->min_perf_ratio = min_policy_perf;
2075                cpu->max_perf_ratio = max_policy_perf;
2076        } else {
2077                int32_t global_min, global_max;
2078
2079                /* Global limits are in percent of the maximum turbo P-state. */
2080                global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2081                global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2082                global_min = clamp_t(int32_t, global_min, 0, global_max);
2083
2084                pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2085                         global_min, global_max);
2086
2087                cpu->min_perf_ratio = max(min_policy_perf, global_min);
2088                cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2089                cpu->max_perf_ratio = min(max_policy_perf, global_max);
2090                cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2091
2092                /* Make sure min_perf <= max_perf */
2093                cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2094                                          cpu->max_perf_ratio);
2095
2096        }
2097        pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2098                 cpu->max_perf_ratio,
2099                 cpu->min_perf_ratio);
2100}
2101
2102static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2103{
2104        struct cpudata *cpu;
2105
2106        if (!policy->cpuinfo.max_freq)
2107                return -ENODEV;
2108
2109        pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2110                 policy->cpuinfo.max_freq, policy->max);
2111
2112        cpu = all_cpu_data[policy->cpu];
2113        cpu->policy = policy->policy;
2114
2115        mutex_lock(&intel_pstate_limits_lock);
2116
2117        intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2118
2119        if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2120                /*
2121                 * NOHZ_FULL CPUs need this as the governor callback may not
2122                 * be invoked on them.
2123                 */
2124                intel_pstate_clear_update_util_hook(policy->cpu);
2125                intel_pstate_max_within_limits(cpu);
2126        } else {
2127                intel_pstate_set_update_util_hook(policy->cpu);
2128        }
2129
2130        if (hwp_active) {
2131                /*
2132                 * When hwp_boost was active before and dynamically it
2133                 * was turned off, in that case we need to clear the
2134                 * update util hook.
2135                 */
2136                if (!hwp_boost)
2137                        intel_pstate_clear_update_util_hook(policy->cpu);
2138                intel_pstate_hwp_set(policy->cpu);
2139        }
2140
2141        mutex_unlock(&intel_pstate_limits_lock);
2142
2143        return 0;
2144}
2145
2146static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2147                                           struct cpufreq_policy_data *policy)
2148{
2149        if (!hwp_active &&
2150            cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2151            policy->max < policy->cpuinfo.max_freq &&
2152            policy->max > cpu->pstate.max_freq) {
2153                pr_debug("policy->max > max non turbo frequency\n");
2154                policy->max = policy->cpuinfo.max_freq;
2155        }
2156}
2157
2158static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2159{
2160        struct cpudata *cpu = all_cpu_data[policy->cpu];
2161
2162        update_turbo_state();
2163        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2164                                     intel_pstate_get_max_freq(cpu));
2165
2166        intel_pstate_adjust_policy_max(cpu, policy);
2167
2168        return 0;
2169}
2170
2171static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2172{
2173        intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2174}
2175
2176static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2177{
2178        pr_debug("CPU %d exiting\n", policy->cpu);
2179
2180        intel_pstate_clear_update_util_hook(policy->cpu);
2181        if (hwp_active) {
2182                intel_pstate_hwp_save_state(policy);
2183                intel_pstate_hwp_force_min_perf(policy->cpu);
2184        } else {
2185                intel_cpufreq_stop_cpu(policy);
2186        }
2187}
2188
2189static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2190{
2191        intel_pstate_exit_perf_limits(policy);
2192
2193        policy->fast_switch_possible = false;
2194
2195        return 0;
2196}
2197
2198static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2199{
2200        struct cpudata *cpu;
2201        int rc;
2202
2203        rc = intel_pstate_init_cpu(policy->cpu);
2204        if (rc)
2205                return rc;
2206
2207        cpu = all_cpu_data[policy->cpu];
2208
2209        cpu->max_perf_ratio = 0xFF;
2210        cpu->min_perf_ratio = 0;
2211
2212        policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2213        policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2214
2215        /* cpuinfo and default policy values */
2216        policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2217        update_turbo_state();
2218        global.turbo_disabled_mf = global.turbo_disabled;
2219        policy->cpuinfo.max_freq = global.turbo_disabled ?
2220                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2221        policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2222
2223        if (hwp_active) {
2224                unsigned int max_freq;
2225
2226                max_freq = global.turbo_disabled ?
2227                        cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2228                if (max_freq < policy->cpuinfo.max_freq)
2229                        policy->cpuinfo.max_freq = max_freq;
2230        }
2231
2232        intel_pstate_init_acpi_perf_limits(policy);
2233
2234        policy->fast_switch_possible = true;
2235
2236        return 0;
2237}
2238
2239static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2240{
2241        int ret = __intel_pstate_cpu_init(policy);
2242
2243        if (ret)
2244                return ret;
2245
2246        if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2247                policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2248        else
2249                policy->policy = CPUFREQ_POLICY_POWERSAVE;
2250
2251        return 0;
2252}
2253
2254static struct cpufreq_driver intel_pstate = {
2255        .flags          = CPUFREQ_CONST_LOOPS,
2256        .verify         = intel_pstate_verify_policy,
2257        .setpolicy      = intel_pstate_set_policy,
2258        .suspend        = intel_pstate_hwp_save_state,
2259        .resume         = intel_pstate_resume,
2260        .init           = intel_pstate_cpu_init,
2261        .exit           = intel_pstate_cpu_exit,
2262        .stop_cpu       = intel_pstate_stop_cpu,
2263        .update_limits  = intel_pstate_update_limits,
2264        .name           = "intel_pstate",
2265};
2266
2267static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2268{
2269        struct cpudata *cpu = all_cpu_data[policy->cpu];
2270
2271        update_turbo_state();
2272        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2273                                     intel_pstate_get_max_freq(cpu));
2274
2275        intel_pstate_adjust_policy_max(cpu, policy);
2276
2277        intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2278
2279        return 0;
2280}
2281
2282/* Use of trace in passive mode:
2283 *
2284 * In passive mode the trace core_busy field (also known as the
2285 * performance field, and lablelled as such on the graphs; also known as
2286 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2287 * driver call was via the normal or fast switch path. Various graphs
2288 * output from the intel_pstate_tracer.py utility that include core_busy
2289 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2290 * so we use 10 to indicate the the normal path through the driver, and
2291 * 90 to indicate the fast switch path through the driver.
2292 * The scaled_busy field is not used, and is set to 0.
2293 */
2294
2295#define INTEL_PSTATE_TRACE_TARGET 10
2296#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2297
2298static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2299{
2300        struct sample *sample;
2301
2302        if (!trace_pstate_sample_enabled())
2303                return;
2304
2305        if (!intel_pstate_sample(cpu, ktime_get()))
2306                return;
2307
2308        sample = &cpu->sample;
2309        trace_pstate_sample(trace_type,
2310                0,
2311                old_pstate,
2312                cpu->pstate.current_pstate,
2313                sample->mperf,
2314                sample->aperf,
2315                sample->tsc,
2316                get_avg_frequency(cpu),
2317                fp_toint(cpu->iowait_boost * 100));
2318}
2319
2320static int intel_cpufreq_target(struct cpufreq_policy *policy,
2321                                unsigned int target_freq,
2322                                unsigned int relation)
2323{
2324        struct cpudata *cpu = all_cpu_data[policy->cpu];
2325        struct cpufreq_freqs freqs;
2326        int target_pstate, old_pstate;
2327
2328        update_turbo_state();
2329
2330        freqs.old = policy->cur;
2331        freqs.new = target_freq;
2332
2333        cpufreq_freq_transition_begin(policy, &freqs);
2334        switch (relation) {
2335        case CPUFREQ_RELATION_L:
2336                target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2337                break;
2338        case CPUFREQ_RELATION_H:
2339                target_pstate = freqs.new / cpu->pstate.scaling;
2340                break;
2341        default:
2342                target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2343                break;
2344        }
2345        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2346        old_pstate = cpu->pstate.current_pstate;
2347        if (target_pstate != cpu->pstate.current_pstate) {
2348                cpu->pstate.current_pstate = target_pstate;
2349                wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2350                              pstate_funcs.get_val(cpu, target_pstate));
2351        }
2352        freqs.new = target_pstate * cpu->pstate.scaling;
2353        intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2354        cpufreq_freq_transition_end(policy, &freqs, false);
2355
2356        return 0;
2357}
2358
2359static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2360                                              unsigned int target_freq)
2361{
2362        struct cpudata *cpu = all_cpu_data[policy->cpu];
2363        int target_pstate, old_pstate;
2364
2365        update_turbo_state();
2366
2367        target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2368        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2369        old_pstate = cpu->pstate.current_pstate;
2370        intel_pstate_update_pstate(cpu, target_pstate);
2371        intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2372        return target_pstate * cpu->pstate.scaling;
2373}
2374
2375static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2376{
2377        int max_state, turbo_max, min_freq, max_freq, ret;
2378        struct freq_qos_request *req;
2379        struct cpudata *cpu;
2380        struct device *dev;
2381
2382        dev = get_cpu_device(policy->cpu);
2383        if (!dev)
2384                return -ENODEV;
2385
2386        ret = __intel_pstate_cpu_init(policy);
2387        if (ret)
2388                return ret;
2389
2390        policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2391        policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2392        /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2393        policy->cur = policy->cpuinfo.min_freq;
2394
2395        req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2396        if (!req) {
2397                ret = -ENOMEM;
2398                goto pstate_exit;
2399        }
2400
2401        cpu = all_cpu_data[policy->cpu];
2402
2403        if (hwp_active)
2404                intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2405        else
2406                turbo_max = cpu->pstate.turbo_pstate;
2407
2408        min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2409        min_freq *= cpu->pstate.scaling;
2410        max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2411        max_freq *= cpu->pstate.scaling;
2412
2413        ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2414                                   min_freq);
2415        if (ret < 0) {
2416                dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2417                goto free_req;
2418        }
2419
2420        ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2421                                   max_freq);
2422        if (ret < 0) {
2423                dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2424                goto remove_min_req;
2425        }
2426
2427        policy->driver_data = req;
2428
2429        return 0;
2430
2431remove_min_req:
2432        freq_qos_remove_request(req);
2433free_req:
2434        kfree(req);
2435pstate_exit:
2436        intel_pstate_exit_perf_limits(policy);
2437
2438        return ret;
2439}
2440
2441static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2442{
2443        struct freq_qos_request *req;
2444
2445        req = policy->driver_data;
2446
2447        freq_qos_remove_request(req + 1);
2448        freq_qos_remove_request(req);
2449        kfree(req);
2450
2451        return intel_pstate_cpu_exit(policy);
2452}
2453
2454static struct cpufreq_driver intel_cpufreq = {
2455        .flags          = CPUFREQ_CONST_LOOPS,
2456        .verify         = intel_cpufreq_verify_policy,
2457        .target         = intel_cpufreq_target,
2458        .fast_switch    = intel_cpufreq_fast_switch,
2459        .init           = intel_cpufreq_cpu_init,
2460        .exit           = intel_cpufreq_cpu_exit,
2461        .stop_cpu       = intel_cpufreq_stop_cpu,
2462        .update_limits  = intel_pstate_update_limits,
2463        .name           = "intel_cpufreq",
2464};
2465
2466static struct cpufreq_driver *default_driver = &intel_pstate;
2467
2468static void intel_pstate_driver_cleanup(void)
2469{
2470        unsigned int cpu;
2471
2472        get_online_cpus();
2473        for_each_online_cpu(cpu) {
2474                if (all_cpu_data[cpu]) {
2475                        if (intel_pstate_driver == &intel_pstate)
2476                                intel_pstate_clear_update_util_hook(cpu);
2477
2478                        kfree(all_cpu_data[cpu]);
2479                        all_cpu_data[cpu] = NULL;
2480                }
2481        }
2482        put_online_cpus();
2483        intel_pstate_driver = NULL;
2484}
2485
2486static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2487{
2488        int ret;
2489
2490        memset(&global, 0, sizeof(global));
2491        global.max_perf_pct = 100;
2492
2493        intel_pstate_driver = driver;
2494        ret = cpufreq_register_driver(intel_pstate_driver);
2495        if (ret) {
2496                intel_pstate_driver_cleanup();
2497                return ret;
2498        }
2499
2500        global.min_perf_pct = min_perf_pct_min();
2501
2502        return 0;
2503}
2504
2505static int intel_pstate_unregister_driver(void)
2506{
2507        if (hwp_active)
2508                return -EBUSY;
2509
2510        cpufreq_unregister_driver(intel_pstate_driver);
2511        intel_pstate_driver_cleanup();
2512
2513        return 0;
2514}
2515
2516static ssize_t intel_pstate_show_status(char *buf)
2517{
2518        if (!intel_pstate_driver)
2519                return sprintf(buf, "off\n");
2520
2521        return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2522                                        "active" : "passive");
2523}
2524
2525static int intel_pstate_update_status(const char *buf, size_t size)
2526{
2527        int ret;
2528
2529        if (size == 3 && !strncmp(buf, "off", size))
2530                return intel_pstate_driver ?
2531                        intel_pstate_unregister_driver() : -EINVAL;
2532
2533        if (size == 6 && !strncmp(buf, "active", size)) {
2534                if (intel_pstate_driver) {
2535                        if (intel_pstate_driver == &intel_pstate)
2536                                return 0;
2537
2538                        ret = intel_pstate_unregister_driver();
2539                        if (ret)
2540                                return ret;
2541                }
2542
2543                return intel_pstate_register_driver(&intel_pstate);
2544        }
2545
2546        if (size == 7 && !strncmp(buf, "passive", size)) {
2547                if (intel_pstate_driver) {
2548                        if (intel_pstate_driver == &intel_cpufreq)
2549                                return 0;
2550
2551                        ret = intel_pstate_unregister_driver();
2552                        if (ret)
2553                                return ret;
2554                }
2555
2556                return intel_pstate_register_driver(&intel_cpufreq);
2557        }
2558
2559        return -EINVAL;
2560}
2561
2562static int no_load __initdata;
2563static int no_hwp __initdata;
2564static int hwp_only __initdata;
2565static unsigned int force_load __initdata;
2566
2567static int __init intel_pstate_msrs_not_valid(void)
2568{
2569        if (!pstate_funcs.get_max() ||
2570            !pstate_funcs.get_min() ||
2571            !pstate_funcs.get_turbo())
2572                return -ENODEV;
2573
2574        return 0;
2575}
2576
2577static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2578{
2579        pstate_funcs.get_max   = funcs->get_max;
2580        pstate_funcs.get_max_physical = funcs->get_max_physical;
2581        pstate_funcs.get_min   = funcs->get_min;
2582        pstate_funcs.get_turbo = funcs->get_turbo;
2583        pstate_funcs.get_scaling = funcs->get_scaling;
2584        pstate_funcs.get_val   = funcs->get_val;
2585        pstate_funcs.get_vid   = funcs->get_vid;
2586        pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2587}
2588
2589#ifdef CONFIG_ACPI
2590
2591static bool __init intel_pstate_no_acpi_pss(void)
2592{
2593        int i;
2594
2595        for_each_possible_cpu(i) {
2596                acpi_status status;
2597                union acpi_object *pss;
2598                struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2599                struct acpi_processor *pr = per_cpu(processors, i);
2600
2601                if (!pr)
2602                        continue;
2603
2604                status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2605                if (ACPI_FAILURE(status))
2606                        continue;
2607
2608                pss = buffer.pointer;
2609                if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2610                        kfree(pss);
2611                        return false;
2612                }
2613
2614                kfree(pss);
2615        }
2616
2617        pr_debug("ACPI _PSS not found\n");
2618        return true;
2619}
2620
2621static bool __init intel_pstate_no_acpi_pcch(void)
2622{
2623        acpi_status status;
2624        acpi_handle handle;
2625
2626        status = acpi_get_handle(NULL, "\\_SB", &handle);
2627        if (ACPI_FAILURE(status))
2628                goto not_found;
2629
2630        if (acpi_has_method(handle, "PCCH"))
2631                return false;
2632
2633not_found:
2634        pr_debug("ACPI PCCH not found\n");
2635        return true;
2636}
2637
2638static bool __init intel_pstate_has_acpi_ppc(void)
2639{
2640        int i;
2641
2642        for_each_possible_cpu(i) {
2643                struct acpi_processor *pr = per_cpu(processors, i);
2644
2645                if (!pr)
2646                        continue;
2647                if (acpi_has_method(pr->handle, "_PPC"))
2648                        return true;
2649        }
2650        pr_debug("ACPI _PPC not found\n");
2651        return false;
2652}
2653
2654enum {
2655        PSS,
2656        PPC,
2657};
2658
2659/* Hardware vendor-specific info that has its own power management modes */
2660static struct acpi_platform_list plat_info[] __initdata = {
2661        {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2662        {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2663        {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2664        {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2665        {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2666        {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2667        {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2668        {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2669        {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2670        {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2671        {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2672        {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2673        {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2674        {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2675        {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2676        { } /* End */
2677};
2678
2679static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2680{
2681        const struct x86_cpu_id *id;
2682        u64 misc_pwr;
2683        int idx;
2684
2685        id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2686        if (id) {
2687                rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2688                if (misc_pwr & (1 << 8)) {
2689                        pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2690                        return true;
2691                }
2692        }
2693
2694        idx = acpi_match_platform_list(plat_info);
2695        if (idx < 0)
2696                return false;
2697
2698        switch (plat_info[idx].data) {
2699        case PSS:
2700                if (!intel_pstate_no_acpi_pss())
2701                        return false;
2702
2703                return intel_pstate_no_acpi_pcch();
2704        case PPC:
2705                return intel_pstate_has_acpi_ppc() && !force_load;
2706        }
2707
2708        return false;
2709}
2710
2711static void intel_pstate_request_control_from_smm(void)
2712{
2713        /*
2714         * It may be unsafe to request P-states control from SMM if _PPC support
2715         * has not been enabled.
2716         */
2717        if (acpi_ppc)
2718                acpi_processor_pstate_control();
2719}
2720#else /* CONFIG_ACPI not enabled */
2721static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2722static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2723static inline void intel_pstate_request_control_from_smm(void) {}
2724#endif /* CONFIG_ACPI */
2725
2726#define INTEL_PSTATE_HWP_BROADWELL      0x01
2727
2728#define ICPU_HWP(model, hwp_mode) \
2729        { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2730
2731static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2732        ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2733        ICPU_HWP(INTEL_FAM6_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2734        ICPU_HWP(X86_MODEL_ANY, 0),
2735        {}
2736};
2737
2738static int __init intel_pstate_init(void)
2739{
2740        const struct x86_cpu_id *id;
2741        int rc;
2742
2743        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2744                return -ENODEV;
2745
2746        if (no_load)
2747                return -ENODEV;
2748
2749        id = x86_match_cpu(hwp_support_ids);
2750        if (id) {
2751                copy_cpu_funcs(&core_funcs);
2752                if (!no_hwp) {
2753                        hwp_active++;
2754                        hwp_mode_bdw = id->driver_data;
2755                        intel_pstate.attr = hwp_cpufreq_attrs;
2756                        goto hwp_cpu_matched;
2757                }
2758        } else {
2759                id = x86_match_cpu(intel_pstate_cpu_ids);
2760                if (!id) {
2761                        pr_info("CPU model not supported\n");
2762                        return -ENODEV;
2763                }
2764
2765                copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2766        }
2767
2768        if (intel_pstate_msrs_not_valid()) {
2769                pr_info("Invalid MSRs\n");
2770                return -ENODEV;
2771        }
2772
2773hwp_cpu_matched:
2774        /*
2775         * The Intel pstate driver will be ignored if the platform
2776         * firmware has its own power management modes.
2777         */
2778        if (intel_pstate_platform_pwr_mgmt_exists()) {
2779                pr_info("P-states controlled by the platform\n");
2780                return -ENODEV;
2781        }
2782
2783        if (!hwp_active && hwp_only)
2784                return -ENOTSUPP;
2785
2786        pr_info("Intel P-state driver initializing\n");
2787
2788        all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2789        if (!all_cpu_data)
2790                return -ENOMEM;
2791
2792        intel_pstate_request_control_from_smm();
2793
2794        intel_pstate_sysfs_expose_params();
2795
2796        mutex_lock(&intel_pstate_driver_lock);
2797        rc = intel_pstate_register_driver(default_driver);
2798        mutex_unlock(&intel_pstate_driver_lock);
2799        if (rc)
2800                return rc;
2801
2802        if (hwp_active)
2803                pr_info("HWP enabled\n");
2804
2805        return 0;
2806}
2807device_initcall(intel_pstate_init);
2808
2809static int __init intel_pstate_setup(char *str)
2810{
2811        if (!str)
2812                return -EINVAL;
2813
2814        if (!strcmp(str, "disable")) {
2815                no_load = 1;
2816        } else if (!strcmp(str, "passive")) {
2817                pr_info("Passive mode enabled\n");
2818                default_driver = &intel_cpufreq;
2819                no_hwp = 1;
2820        }
2821        if (!strcmp(str, "no_hwp")) {
2822                pr_info("HWP disabled\n");
2823                no_hwp = 1;
2824        }
2825        if (!strcmp(str, "force"))
2826                force_load = 1;
2827        if (!strcmp(str, "hwp_only"))
2828                hwp_only = 1;
2829        if (!strcmp(str, "per_cpu_perf_limits"))
2830                per_cpu_limits = true;
2831
2832#ifdef CONFIG_ACPI
2833        if (!strcmp(str, "support_acpi_ppc"))
2834                acpi_ppc = true;
2835#endif
2836
2837        return 0;
2838}
2839early_param("intel_pstate", intel_pstate_setup);
2840
2841MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2842MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2843MODULE_LICENSE("GPL");
2844