linux/drivers/gpu/drm/drm_vma_manager.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
   5 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the "Software"),
   9 * to deal in the Software without restriction, including without limitation
  10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  11 * and/or sell copies of the Software, and to permit persons to whom the
  12 * Software is furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  20 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  23 * OTHER DEALINGS IN THE SOFTWARE.
  24 */
  25
  26#include <linux/mm.h>
  27#include <linux/module.h>
  28#include <linux/rbtree.h>
  29#include <linux/slab.h>
  30#include <linux/spinlock.h>
  31#include <linux/types.h>
  32
  33#include <drm/drm_mm.h>
  34#include <drm/drm_vma_manager.h>
  35
  36/**
  37 * DOC: vma offset manager
  38 *
  39 * The vma-manager is responsible to map arbitrary driver-dependent memory
  40 * regions into the linear user address-space. It provides offsets to the
  41 * caller which can then be used on the address_space of the drm-device. It
  42 * takes care to not overlap regions, size them appropriately and to not
  43 * confuse mm-core by inconsistent fake vm_pgoff fields.
  44 * Drivers shouldn't use this for object placement in VMEM. This manager should
  45 * only be used to manage mappings into linear user-space VMs.
  46 *
  47 * We use drm_mm as backend to manage object allocations. But it is highly
  48 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
  49 * speed up offset lookups.
  50 *
  51 * You must not use multiple offset managers on a single address_space.
  52 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
  53 * no longer be linear.
  54 *
  55 * This offset manager works on page-based addresses. That is, every argument
  56 * and return code (with the exception of drm_vma_node_offset_addr()) is given
  57 * in number of pages, not number of bytes. That means, object sizes and offsets
  58 * must always be page-aligned (as usual).
  59 * If you want to get a valid byte-based user-space address for a given offset,
  60 * please see drm_vma_node_offset_addr().
  61 *
  62 * Additionally to offset management, the vma offset manager also handles access
  63 * management. For every open-file context that is allowed to access a given
  64 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
  65 * open-file with the offset of the node will fail with -EACCES. To revoke
  66 * access again, use drm_vma_node_revoke(). However, the caller is responsible
  67 * for destroying already existing mappings, if required.
  68 */
  69
  70/**
  71 * drm_vma_offset_manager_init - Initialize new offset-manager
  72 * @mgr: Manager object
  73 * @page_offset: Offset of available memory area (page-based)
  74 * @size: Size of available address space range (page-based)
  75 *
  76 * Initialize a new offset-manager. The offset and area size available for the
  77 * manager are given as @page_offset and @size. Both are interpreted as
  78 * page-numbers, not bytes.
  79 *
  80 * Adding/removing nodes from the manager is locked internally and protected
  81 * against concurrent access. However, node allocation and destruction is left
  82 * for the caller. While calling into the vma-manager, a given node must
  83 * always be guaranteed to be referenced.
  84 */
  85void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
  86                                 unsigned long page_offset, unsigned long size)
  87{
  88        rwlock_init(&mgr->vm_lock);
  89        drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
  90}
  91EXPORT_SYMBOL(drm_vma_offset_manager_init);
  92
  93/**
  94 * drm_vma_offset_manager_destroy() - Destroy offset manager
  95 * @mgr: Manager object
  96 *
  97 * Destroy an object manager which was previously created via
  98 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
  99 * before destroying the manager. Otherwise, drm_mm will refuse to free the
 100 * requested resources.
 101 *
 102 * The manager must not be accessed after this function is called.
 103 */
 104void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
 105{
 106        drm_mm_takedown(&mgr->vm_addr_space_mm);
 107}
 108EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
 109
 110/**
 111 * drm_vma_offset_lookup_locked() - Find node in offset space
 112 * @mgr: Manager object
 113 * @start: Start address for object (page-based)
 114 * @pages: Size of object (page-based)
 115 *
 116 * Find a node given a start address and object size. This returns the _best_
 117 * match for the given node. That is, @start may point somewhere into a valid
 118 * region and the given node will be returned, as long as the node spans the
 119 * whole requested area (given the size in number of pages as @pages).
 120 *
 121 * Note that before lookup the vma offset manager lookup lock must be acquired
 122 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
 123 * used to implement weakly referenced lookups using kref_get_unless_zero().
 124 *
 125 * Example:
 126 *
 127 * ::
 128 *
 129 *     drm_vma_offset_lock_lookup(mgr);
 130 *     node = drm_vma_offset_lookup_locked(mgr);
 131 *     if (node)
 132 *         kref_get_unless_zero(container_of(node, sth, entr));
 133 *     drm_vma_offset_unlock_lookup(mgr);
 134 *
 135 * RETURNS:
 136 * Returns NULL if no suitable node can be found. Otherwise, the best match
 137 * is returned. It's the caller's responsibility to make sure the node doesn't
 138 * get destroyed before the caller can access it.
 139 */
 140struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
 141                                                         unsigned long start,
 142                                                         unsigned long pages)
 143{
 144        struct drm_mm_node *node, *best;
 145        struct rb_node *iter;
 146        unsigned long offset;
 147
 148        iter = mgr->vm_addr_space_mm.interval_tree.rb_root.rb_node;
 149        best = NULL;
 150
 151        while (likely(iter)) {
 152                node = rb_entry(iter, struct drm_mm_node, rb);
 153                offset = node->start;
 154                if (start >= offset) {
 155                        iter = iter->rb_right;
 156                        best = node;
 157                        if (start == offset)
 158                                break;
 159                } else {
 160                        iter = iter->rb_left;
 161                }
 162        }
 163
 164        /* verify that the node spans the requested area */
 165        if (best) {
 166                offset = best->start + best->size;
 167                if (offset < start + pages)
 168                        best = NULL;
 169        }
 170
 171        if (!best)
 172                return NULL;
 173
 174        return container_of(best, struct drm_vma_offset_node, vm_node);
 175}
 176EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
 177
 178/**
 179 * drm_vma_offset_add() - Add offset node to manager
 180 * @mgr: Manager object
 181 * @node: Node to be added
 182 * @pages: Allocation size visible to user-space (in number of pages)
 183 *
 184 * Add a node to the offset-manager. If the node was already added, this does
 185 * nothing and return 0. @pages is the size of the object given in number of
 186 * pages.
 187 * After this call succeeds, you can access the offset of the node until it
 188 * is removed again.
 189 *
 190 * If this call fails, it is safe to retry the operation or call
 191 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
 192 * case.
 193 *
 194 * @pages is not required to be the same size as the underlying memory object
 195 * that you want to map. It only limits the size that user-space can map into
 196 * their address space.
 197 *
 198 * RETURNS:
 199 * 0 on success, negative error code on failure.
 200 */
 201int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
 202                       struct drm_vma_offset_node *node, unsigned long pages)
 203{
 204        int ret = 0;
 205
 206        write_lock(&mgr->vm_lock);
 207
 208        if (!drm_mm_node_allocated(&node->vm_node))
 209                ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
 210                                         &node->vm_node, pages);
 211
 212        write_unlock(&mgr->vm_lock);
 213
 214        return ret;
 215}
 216EXPORT_SYMBOL(drm_vma_offset_add);
 217
 218/**
 219 * drm_vma_offset_remove() - Remove offset node from manager
 220 * @mgr: Manager object
 221 * @node: Node to be removed
 222 *
 223 * Remove a node from the offset manager. If the node wasn't added before, this
 224 * does nothing. After this call returns, the offset and size will be 0 until a
 225 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
 226 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
 227 * offset is allocated.
 228 */
 229void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
 230                           struct drm_vma_offset_node *node)
 231{
 232        write_lock(&mgr->vm_lock);
 233
 234        if (drm_mm_node_allocated(&node->vm_node)) {
 235                drm_mm_remove_node(&node->vm_node);
 236                memset(&node->vm_node, 0, sizeof(node->vm_node));
 237        }
 238
 239        write_unlock(&mgr->vm_lock);
 240}
 241EXPORT_SYMBOL(drm_vma_offset_remove);
 242
 243/**
 244 * drm_vma_node_allow - Add open-file to list of allowed users
 245 * @node: Node to modify
 246 * @tag: Tag of file to remove
 247 *
 248 * Add @tag to the list of allowed open-files for this node. If @tag is
 249 * already on this list, the ref-count is incremented.
 250 *
 251 * The list of allowed-users is preserved across drm_vma_offset_add() and
 252 * drm_vma_offset_remove() calls. You may even call it if the node is currently
 253 * not added to any offset-manager.
 254 *
 255 * You must remove all open-files the same number of times as you added them
 256 * before destroying the node. Otherwise, you will leak memory.
 257 *
 258 * This is locked against concurrent access internally.
 259 *
 260 * RETURNS:
 261 * 0 on success, negative error code on internal failure (out-of-mem)
 262 */
 263int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
 264{
 265        struct rb_node **iter;
 266        struct rb_node *parent = NULL;
 267        struct drm_vma_offset_file *new, *entry;
 268        int ret = 0;
 269
 270        /* Preallocate entry to avoid atomic allocations below. It is quite
 271         * unlikely that an open-file is added twice to a single node so we
 272         * don't optimize for this case. OOM is checked below only if the entry
 273         * is actually used. */
 274        new = kmalloc(sizeof(*entry), GFP_KERNEL);
 275
 276        write_lock(&node->vm_lock);
 277
 278        iter = &node->vm_files.rb_node;
 279
 280        while (likely(*iter)) {
 281                parent = *iter;
 282                entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
 283
 284                if (tag == entry->vm_tag) {
 285                        entry->vm_count++;
 286                        goto unlock;
 287                } else if (tag > entry->vm_tag) {
 288                        iter = &(*iter)->rb_right;
 289                } else {
 290                        iter = &(*iter)->rb_left;
 291                }
 292        }
 293
 294        if (!new) {
 295                ret = -ENOMEM;
 296                goto unlock;
 297        }
 298
 299        new->vm_tag = tag;
 300        new->vm_count = 1;
 301        rb_link_node(&new->vm_rb, parent, iter);
 302        rb_insert_color(&new->vm_rb, &node->vm_files);
 303        new = NULL;
 304
 305unlock:
 306        write_unlock(&node->vm_lock);
 307        kfree(new);
 308        return ret;
 309}
 310EXPORT_SYMBOL(drm_vma_node_allow);
 311
 312/**
 313 * drm_vma_node_revoke - Remove open-file from list of allowed users
 314 * @node: Node to modify
 315 * @tag: Tag of file to remove
 316 *
 317 * Decrement the ref-count of @tag in the list of allowed open-files on @node.
 318 * If the ref-count drops to zero, remove @tag from the list. You must call
 319 * this once for every drm_vma_node_allow() on @tag.
 320 *
 321 * This is locked against concurrent access internally.
 322 *
 323 * If @tag is not on the list, nothing is done.
 324 */
 325void drm_vma_node_revoke(struct drm_vma_offset_node *node,
 326                         struct drm_file *tag)
 327{
 328        struct drm_vma_offset_file *entry;
 329        struct rb_node *iter;
 330
 331        write_lock(&node->vm_lock);
 332
 333        iter = node->vm_files.rb_node;
 334        while (likely(iter)) {
 335                entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
 336                if (tag == entry->vm_tag) {
 337                        if (!--entry->vm_count) {
 338                                rb_erase(&entry->vm_rb, &node->vm_files);
 339                                kfree(entry);
 340                        }
 341                        break;
 342                } else if (tag > entry->vm_tag) {
 343                        iter = iter->rb_right;
 344                } else {
 345                        iter = iter->rb_left;
 346                }
 347        }
 348
 349        write_unlock(&node->vm_lock);
 350}
 351EXPORT_SYMBOL(drm_vma_node_revoke);
 352
 353/**
 354 * drm_vma_node_is_allowed - Check whether an open-file is granted access
 355 * @node: Node to check
 356 * @tag: Tag of file to remove
 357 *
 358 * Search the list in @node whether @tag is currently on the list of allowed
 359 * open-files (see drm_vma_node_allow()).
 360 *
 361 * This is locked against concurrent access internally.
 362 *
 363 * RETURNS:
 364 * true iff @filp is on the list
 365 */
 366bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
 367                             struct drm_file *tag)
 368{
 369        struct drm_vma_offset_file *entry;
 370        struct rb_node *iter;
 371
 372        read_lock(&node->vm_lock);
 373
 374        iter = node->vm_files.rb_node;
 375        while (likely(iter)) {
 376                entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
 377                if (tag == entry->vm_tag)
 378                        break;
 379                else if (tag > entry->vm_tag)
 380                        iter = iter->rb_right;
 381                else
 382                        iter = iter->rb_left;
 383        }
 384
 385        read_unlock(&node->vm_lock);
 386
 387        return iter;
 388}
 389EXPORT_SYMBOL(drm_vma_node_is_allowed);
 390