linux/drivers/gpu/drm/i915/i915_request.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/dma-fence-array.h>
  26#include <linux/irq_work.h>
  27#include <linux/prefetch.h>
  28#include <linux/sched.h>
  29#include <linux/sched/clock.h>
  30#include <linux/sched/signal.h>
  31
  32#include "gem/i915_gem_context.h"
  33#include "gt/intel_context.h"
  34#include "gt/intel_ring.h"
  35#include "gt/intel_rps.h"
  36
  37#include "i915_active.h"
  38#include "i915_drv.h"
  39#include "i915_globals.h"
  40#include "i915_trace.h"
  41#include "intel_pm.h"
  42
  43struct execute_cb {
  44        struct list_head link;
  45        struct irq_work work;
  46        struct i915_sw_fence *fence;
  47        void (*hook)(struct i915_request *rq, struct dma_fence *signal);
  48        struct i915_request *signal;
  49};
  50
  51static struct i915_global_request {
  52        struct i915_global base;
  53        struct kmem_cache *slab_requests;
  54        struct kmem_cache *slab_dependencies;
  55        struct kmem_cache *slab_execute_cbs;
  56} global;
  57
  58static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  59{
  60        return dev_name(to_request(fence)->i915->drm.dev);
  61}
  62
  63static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  64{
  65        const struct i915_gem_context *ctx;
  66
  67        /*
  68         * The timeline struct (as part of the ppgtt underneath a context)
  69         * may be freed when the request is no longer in use by the GPU.
  70         * We could extend the life of a context to beyond that of all
  71         * fences, possibly keeping the hw resource around indefinitely,
  72         * or we just give them a false name. Since
  73         * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  74         * lie seems justifiable.
  75         */
  76        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  77                return "signaled";
  78
  79        ctx = i915_request_gem_context(to_request(fence));
  80        if (!ctx)
  81                return "[" DRIVER_NAME "]";
  82
  83        return ctx->name;
  84}
  85
  86static bool i915_fence_signaled(struct dma_fence *fence)
  87{
  88        return i915_request_completed(to_request(fence));
  89}
  90
  91static bool i915_fence_enable_signaling(struct dma_fence *fence)
  92{
  93        return i915_request_enable_breadcrumb(to_request(fence));
  94}
  95
  96static signed long i915_fence_wait(struct dma_fence *fence,
  97                                   bool interruptible,
  98                                   signed long timeout)
  99{
 100        return i915_request_wait(to_request(fence),
 101                                 interruptible | I915_WAIT_PRIORITY,
 102                                 timeout);
 103}
 104
 105static void i915_fence_release(struct dma_fence *fence)
 106{
 107        struct i915_request *rq = to_request(fence);
 108
 109        /*
 110         * The request is put onto a RCU freelist (i.e. the address
 111         * is immediately reused), mark the fences as being freed now.
 112         * Otherwise the debugobjects for the fences are only marked as
 113         * freed when the slab cache itself is freed, and so we would get
 114         * caught trying to reuse dead objects.
 115         */
 116        i915_sw_fence_fini(&rq->submit);
 117        i915_sw_fence_fini(&rq->semaphore);
 118
 119        kmem_cache_free(global.slab_requests, rq);
 120}
 121
 122const struct dma_fence_ops i915_fence_ops = {
 123        .get_driver_name = i915_fence_get_driver_name,
 124        .get_timeline_name = i915_fence_get_timeline_name,
 125        .enable_signaling = i915_fence_enable_signaling,
 126        .signaled = i915_fence_signaled,
 127        .wait = i915_fence_wait,
 128        .release = i915_fence_release,
 129};
 130
 131static void irq_execute_cb(struct irq_work *wrk)
 132{
 133        struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 134
 135        i915_sw_fence_complete(cb->fence);
 136        kmem_cache_free(global.slab_execute_cbs, cb);
 137}
 138
 139static void irq_execute_cb_hook(struct irq_work *wrk)
 140{
 141        struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 142
 143        cb->hook(container_of(cb->fence, struct i915_request, submit),
 144                 &cb->signal->fence);
 145        i915_request_put(cb->signal);
 146
 147        irq_execute_cb(wrk);
 148}
 149
 150static void __notify_execute_cb(struct i915_request *rq)
 151{
 152        struct execute_cb *cb;
 153
 154        lockdep_assert_held(&rq->lock);
 155
 156        if (list_empty(&rq->execute_cb))
 157                return;
 158
 159        list_for_each_entry(cb, &rq->execute_cb, link)
 160                irq_work_queue(&cb->work);
 161
 162        /*
 163         * XXX Rollback on __i915_request_unsubmit()
 164         *
 165         * In the future, perhaps when we have an active time-slicing scheduler,
 166         * it will be interesting to unsubmit parallel execution and remove
 167         * busywaits from the GPU until their master is restarted. This is
 168         * quite hairy, we have to carefully rollback the fence and do a
 169         * preempt-to-idle cycle on the target engine, all the while the
 170         * master execute_cb may refire.
 171         */
 172        INIT_LIST_HEAD(&rq->execute_cb);
 173}
 174
 175static inline void
 176remove_from_client(struct i915_request *request)
 177{
 178        struct drm_i915_file_private *file_priv;
 179
 180        if (!READ_ONCE(request->file_priv))
 181                return;
 182
 183        rcu_read_lock();
 184        file_priv = xchg(&request->file_priv, NULL);
 185        if (file_priv) {
 186                spin_lock(&file_priv->mm.lock);
 187                list_del(&request->client_link);
 188                spin_unlock(&file_priv->mm.lock);
 189        }
 190        rcu_read_unlock();
 191}
 192
 193static void free_capture_list(struct i915_request *request)
 194{
 195        struct i915_capture_list *capture;
 196
 197        capture = fetch_and_zero(&request->capture_list);
 198        while (capture) {
 199                struct i915_capture_list *next = capture->next;
 200
 201                kfree(capture);
 202                capture = next;
 203        }
 204}
 205
 206static void remove_from_engine(struct i915_request *rq)
 207{
 208        struct intel_engine_cs *engine, *locked;
 209
 210        /*
 211         * Virtual engines complicate acquiring the engine timeline lock,
 212         * as their rq->engine pointer is not stable until under that
 213         * engine lock. The simple ploy we use is to take the lock then
 214         * check that the rq still belongs to the newly locked engine.
 215         */
 216        locked = READ_ONCE(rq->engine);
 217        spin_lock_irq(&locked->active.lock);
 218        while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
 219                spin_unlock(&locked->active.lock);
 220                spin_lock(&engine->active.lock);
 221                locked = engine;
 222        }
 223        list_del_init(&rq->sched.link);
 224        clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
 225        clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
 226        spin_unlock_irq(&locked->active.lock);
 227}
 228
 229bool i915_request_retire(struct i915_request *rq)
 230{
 231        if (!i915_request_completed(rq))
 232                return false;
 233
 234        RQ_TRACE(rq, "\n");
 235
 236        GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
 237        trace_i915_request_retire(rq);
 238
 239        /*
 240         * We know the GPU must have read the request to have
 241         * sent us the seqno + interrupt, so use the position
 242         * of tail of the request to update the last known position
 243         * of the GPU head.
 244         *
 245         * Note this requires that we are always called in request
 246         * completion order.
 247         */
 248        GEM_BUG_ON(!list_is_first(&rq->link,
 249                                  &i915_request_timeline(rq)->requests));
 250        rq->ring->head = rq->postfix;
 251
 252        /*
 253         * We only loosely track inflight requests across preemption,
 254         * and so we may find ourselves attempting to retire a _completed_
 255         * request that we have removed from the HW and put back on a run
 256         * queue.
 257         */
 258        remove_from_engine(rq);
 259
 260        spin_lock_irq(&rq->lock);
 261        i915_request_mark_complete(rq);
 262        if (!i915_request_signaled(rq))
 263                dma_fence_signal_locked(&rq->fence);
 264        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
 265                i915_request_cancel_breadcrumb(rq);
 266        if (i915_request_has_waitboost(rq)) {
 267                GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
 268                atomic_dec(&rq->engine->gt->rps.num_waiters);
 269        }
 270        if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
 271                set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
 272                __notify_execute_cb(rq);
 273        }
 274        GEM_BUG_ON(!list_empty(&rq->execute_cb));
 275        spin_unlock_irq(&rq->lock);
 276
 277        remove_from_client(rq);
 278        list_del_rcu(&rq->link);
 279
 280        intel_context_exit(rq->context);
 281        intel_context_unpin(rq->context);
 282
 283        free_capture_list(rq);
 284        i915_sched_node_fini(&rq->sched);
 285        i915_request_put(rq);
 286
 287        return true;
 288}
 289
 290void i915_request_retire_upto(struct i915_request *rq)
 291{
 292        struct intel_timeline * const tl = i915_request_timeline(rq);
 293        struct i915_request *tmp;
 294
 295        RQ_TRACE(rq, "\n");
 296
 297        GEM_BUG_ON(!i915_request_completed(rq));
 298
 299        do {
 300                tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
 301        } while (i915_request_retire(tmp) && tmp != rq);
 302}
 303
 304static int
 305__await_execution(struct i915_request *rq,
 306                  struct i915_request *signal,
 307                  void (*hook)(struct i915_request *rq,
 308                               struct dma_fence *signal),
 309                  gfp_t gfp)
 310{
 311        struct execute_cb *cb;
 312
 313        if (i915_request_is_active(signal)) {
 314                if (hook)
 315                        hook(rq, &signal->fence);
 316                return 0;
 317        }
 318
 319        cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
 320        if (!cb)
 321                return -ENOMEM;
 322
 323        cb->fence = &rq->submit;
 324        i915_sw_fence_await(cb->fence);
 325        init_irq_work(&cb->work, irq_execute_cb);
 326
 327        if (hook) {
 328                cb->hook = hook;
 329                cb->signal = i915_request_get(signal);
 330                cb->work.func = irq_execute_cb_hook;
 331        }
 332
 333        spin_lock_irq(&signal->lock);
 334        if (i915_request_is_active(signal)) {
 335                if (hook) {
 336                        hook(rq, &signal->fence);
 337                        i915_request_put(signal);
 338                }
 339                i915_sw_fence_complete(cb->fence);
 340                kmem_cache_free(global.slab_execute_cbs, cb);
 341        } else {
 342                list_add_tail(&cb->link, &signal->execute_cb);
 343        }
 344        spin_unlock_irq(&signal->lock);
 345
 346        /* Copy across semaphore status as we need the same behaviour */
 347        rq->sched.flags |= signal->sched.flags;
 348        return 0;
 349}
 350
 351bool __i915_request_submit(struct i915_request *request)
 352{
 353        struct intel_engine_cs *engine = request->engine;
 354        bool result = false;
 355
 356        RQ_TRACE(request, "\n");
 357
 358        GEM_BUG_ON(!irqs_disabled());
 359        lockdep_assert_held(&engine->active.lock);
 360
 361        /*
 362         * With the advent of preempt-to-busy, we frequently encounter
 363         * requests that we have unsubmitted from HW, but left running
 364         * until the next ack and so have completed in the meantime. On
 365         * resubmission of that completed request, we can skip
 366         * updating the payload, and execlists can even skip submitting
 367         * the request.
 368         *
 369         * We must remove the request from the caller's priority queue,
 370         * and the caller must only call us when the request is in their
 371         * priority queue, under the active.lock. This ensures that the
 372         * request has *not* yet been retired and we can safely move
 373         * the request into the engine->active.list where it will be
 374         * dropped upon retiring. (Otherwise if resubmit a *retired*
 375         * request, this would be a horrible use-after-free.)
 376         */
 377        if (i915_request_completed(request))
 378                goto xfer;
 379
 380        if (intel_context_is_banned(request->context))
 381                i915_request_skip(request, -EIO);
 382
 383        /*
 384         * Are we using semaphores when the gpu is already saturated?
 385         *
 386         * Using semaphores incurs a cost in having the GPU poll a
 387         * memory location, busywaiting for it to change. The continual
 388         * memory reads can have a noticeable impact on the rest of the
 389         * system with the extra bus traffic, stalling the cpu as it too
 390         * tries to access memory across the bus (perf stat -e bus-cycles).
 391         *
 392         * If we installed a semaphore on this request and we only submit
 393         * the request after the signaler completed, that indicates the
 394         * system is overloaded and using semaphores at this time only
 395         * increases the amount of work we are doing. If so, we disable
 396         * further use of semaphores until we are idle again, whence we
 397         * optimistically try again.
 398         */
 399        if (request->sched.semaphores &&
 400            i915_sw_fence_signaled(&request->semaphore))
 401                engine->saturated |= request->sched.semaphores;
 402
 403        engine->emit_fini_breadcrumb(request,
 404                                     request->ring->vaddr + request->postfix);
 405
 406        trace_i915_request_execute(request);
 407        engine->serial++;
 408        result = true;
 409
 410xfer:   /* We may be recursing from the signal callback of another i915 fence */
 411        spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 412
 413        if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
 414                list_move_tail(&request->sched.link, &engine->active.requests);
 415                clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
 416        }
 417
 418        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
 419            !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
 420            !i915_request_enable_breadcrumb(request))
 421                intel_engine_signal_breadcrumbs(engine);
 422
 423        __notify_execute_cb(request);
 424
 425        spin_unlock(&request->lock);
 426
 427        return result;
 428}
 429
 430void i915_request_submit(struct i915_request *request)
 431{
 432        struct intel_engine_cs *engine = request->engine;
 433        unsigned long flags;
 434
 435        /* Will be called from irq-context when using foreign fences. */
 436        spin_lock_irqsave(&engine->active.lock, flags);
 437
 438        __i915_request_submit(request);
 439
 440        spin_unlock_irqrestore(&engine->active.lock, flags);
 441}
 442
 443void __i915_request_unsubmit(struct i915_request *request)
 444{
 445        struct intel_engine_cs *engine = request->engine;
 446
 447        RQ_TRACE(request, "\n");
 448
 449        GEM_BUG_ON(!irqs_disabled());
 450        lockdep_assert_held(&engine->active.lock);
 451
 452        /*
 453         * Only unwind in reverse order, required so that the per-context list
 454         * is kept in seqno/ring order.
 455         */
 456
 457        /* We may be recursing from the signal callback of another i915 fence */
 458        spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 459
 460        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 461                i915_request_cancel_breadcrumb(request);
 462
 463        GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
 464        clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
 465
 466        spin_unlock(&request->lock);
 467
 468        /* We've already spun, don't charge on resubmitting. */
 469        if (request->sched.semaphores && i915_request_started(request)) {
 470                request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
 471                request->sched.semaphores = 0;
 472        }
 473
 474        /*
 475         * We don't need to wake_up any waiters on request->execute, they
 476         * will get woken by any other event or us re-adding this request
 477         * to the engine timeline (__i915_request_submit()). The waiters
 478         * should be quite adapt at finding that the request now has a new
 479         * global_seqno to the one they went to sleep on.
 480         */
 481}
 482
 483void i915_request_unsubmit(struct i915_request *request)
 484{
 485        struct intel_engine_cs *engine = request->engine;
 486        unsigned long flags;
 487
 488        /* Will be called from irq-context when using foreign fences. */
 489        spin_lock_irqsave(&engine->active.lock, flags);
 490
 491        __i915_request_unsubmit(request);
 492
 493        spin_unlock_irqrestore(&engine->active.lock, flags);
 494}
 495
 496static int __i915_sw_fence_call
 497submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 498{
 499        struct i915_request *request =
 500                container_of(fence, typeof(*request), submit);
 501
 502        switch (state) {
 503        case FENCE_COMPLETE:
 504                trace_i915_request_submit(request);
 505
 506                if (unlikely(fence->error))
 507                        i915_request_skip(request, fence->error);
 508
 509                /*
 510                 * We need to serialize use of the submit_request() callback
 511                 * with its hotplugging performed during an emergency
 512                 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
 513                 * critical section in order to force i915_gem_set_wedged() to
 514                 * wait until the submit_request() is completed before
 515                 * proceeding.
 516                 */
 517                rcu_read_lock();
 518                request->engine->submit_request(request);
 519                rcu_read_unlock();
 520                break;
 521
 522        case FENCE_FREE:
 523                i915_request_put(request);
 524                break;
 525        }
 526
 527        return NOTIFY_DONE;
 528}
 529
 530static void irq_semaphore_cb(struct irq_work *wrk)
 531{
 532        struct i915_request *rq =
 533                container_of(wrk, typeof(*rq), semaphore_work);
 534
 535        i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
 536        i915_request_put(rq);
 537}
 538
 539static int __i915_sw_fence_call
 540semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 541{
 542        struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
 543
 544        switch (state) {
 545        case FENCE_COMPLETE:
 546                if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
 547                        i915_request_get(rq);
 548                        init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
 549                        irq_work_queue(&rq->semaphore_work);
 550                }
 551                break;
 552
 553        case FENCE_FREE:
 554                i915_request_put(rq);
 555                break;
 556        }
 557
 558        return NOTIFY_DONE;
 559}
 560
 561static void retire_requests(struct intel_timeline *tl)
 562{
 563        struct i915_request *rq, *rn;
 564
 565        list_for_each_entry_safe(rq, rn, &tl->requests, link)
 566                if (!i915_request_retire(rq))
 567                        break;
 568}
 569
 570static noinline struct i915_request *
 571request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
 572{
 573        struct i915_request *rq;
 574
 575        if (list_empty(&tl->requests))
 576                goto out;
 577
 578        if (!gfpflags_allow_blocking(gfp))
 579                goto out;
 580
 581        /* Move our oldest request to the slab-cache (if not in use!) */
 582        rq = list_first_entry(&tl->requests, typeof(*rq), link);
 583        i915_request_retire(rq);
 584
 585        rq = kmem_cache_alloc(global.slab_requests,
 586                              gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 587        if (rq)
 588                return rq;
 589
 590        /* Ratelimit ourselves to prevent oom from malicious clients */
 591        rq = list_last_entry(&tl->requests, typeof(*rq), link);
 592        cond_synchronize_rcu(rq->rcustate);
 593
 594        /* Retire our old requests in the hope that we free some */
 595        retire_requests(tl);
 596
 597out:
 598        return kmem_cache_alloc(global.slab_requests, gfp);
 599}
 600
 601static void __i915_request_ctor(void *arg)
 602{
 603        struct i915_request *rq = arg;
 604
 605        spin_lock_init(&rq->lock);
 606        i915_sched_node_init(&rq->sched);
 607        i915_sw_fence_init(&rq->submit, submit_notify);
 608        i915_sw_fence_init(&rq->semaphore, semaphore_notify);
 609
 610        dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
 611
 612        rq->file_priv = NULL;
 613        rq->capture_list = NULL;
 614
 615        INIT_LIST_HEAD(&rq->execute_cb);
 616}
 617
 618struct i915_request *
 619__i915_request_create(struct intel_context *ce, gfp_t gfp)
 620{
 621        struct intel_timeline *tl = ce->timeline;
 622        struct i915_request *rq;
 623        u32 seqno;
 624        int ret;
 625
 626        might_sleep_if(gfpflags_allow_blocking(gfp));
 627
 628        /* Check that the caller provided an already pinned context */
 629        __intel_context_pin(ce);
 630
 631        /*
 632         * Beware: Dragons be flying overhead.
 633         *
 634         * We use RCU to look up requests in flight. The lookups may
 635         * race with the request being allocated from the slab freelist.
 636         * That is the request we are writing to here, may be in the process
 637         * of being read by __i915_active_request_get_rcu(). As such,
 638         * we have to be very careful when overwriting the contents. During
 639         * the RCU lookup, we change chase the request->engine pointer,
 640         * read the request->global_seqno and increment the reference count.
 641         *
 642         * The reference count is incremented atomically. If it is zero,
 643         * the lookup knows the request is unallocated and complete. Otherwise,
 644         * it is either still in use, or has been reallocated and reset
 645         * with dma_fence_init(). This increment is safe for release as we
 646         * check that the request we have a reference to and matches the active
 647         * request.
 648         *
 649         * Before we increment the refcount, we chase the request->engine
 650         * pointer. We must not call kmem_cache_zalloc() or else we set
 651         * that pointer to NULL and cause a crash during the lookup. If
 652         * we see the request is completed (based on the value of the
 653         * old engine and seqno), the lookup is complete and reports NULL.
 654         * If we decide the request is not completed (new engine or seqno),
 655         * then we grab a reference and double check that it is still the
 656         * active request - which it won't be and restart the lookup.
 657         *
 658         * Do not use kmem_cache_zalloc() here!
 659         */
 660        rq = kmem_cache_alloc(global.slab_requests,
 661                              gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 662        if (unlikely(!rq)) {
 663                rq = request_alloc_slow(tl, gfp);
 664                if (!rq) {
 665                        ret = -ENOMEM;
 666                        goto err_unreserve;
 667                }
 668        }
 669
 670        rq->i915 = ce->engine->i915;
 671        rq->context = ce;
 672        rq->engine = ce->engine;
 673        rq->ring = ce->ring;
 674        rq->execution_mask = ce->engine->mask;
 675
 676        kref_init(&rq->fence.refcount);
 677        rq->fence.flags = 0;
 678        rq->fence.error = 0;
 679        INIT_LIST_HEAD(&rq->fence.cb_list);
 680
 681        ret = intel_timeline_get_seqno(tl, rq, &seqno);
 682        if (ret)
 683                goto err_free;
 684
 685        rq->fence.context = tl->fence_context;
 686        rq->fence.seqno = seqno;
 687
 688        RCU_INIT_POINTER(rq->timeline, tl);
 689        RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
 690        rq->hwsp_seqno = tl->hwsp_seqno;
 691
 692        rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
 693
 694        /* We bump the ref for the fence chain */
 695        i915_sw_fence_reinit(&i915_request_get(rq)->submit);
 696        i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
 697
 698        i915_sched_node_reinit(&rq->sched);
 699
 700        /* No zalloc, everything must be cleared after use */
 701        rq->batch = NULL;
 702        GEM_BUG_ON(rq->file_priv);
 703        GEM_BUG_ON(rq->capture_list);
 704        GEM_BUG_ON(!list_empty(&rq->execute_cb));
 705
 706        /*
 707         * Reserve space in the ring buffer for all the commands required to
 708         * eventually emit this request. This is to guarantee that the
 709         * i915_request_add() call can't fail. Note that the reserve may need
 710         * to be redone if the request is not actually submitted straight
 711         * away, e.g. because a GPU scheduler has deferred it.
 712         *
 713         * Note that due to how we add reserved_space to intel_ring_begin()
 714         * we need to double our request to ensure that if we need to wrap
 715         * around inside i915_request_add() there is sufficient space at
 716         * the beginning of the ring as well.
 717         */
 718        rq->reserved_space =
 719                2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
 720
 721        /*
 722         * Record the position of the start of the request so that
 723         * should we detect the updated seqno part-way through the
 724         * GPU processing the request, we never over-estimate the
 725         * position of the head.
 726         */
 727        rq->head = rq->ring->emit;
 728
 729        ret = rq->engine->request_alloc(rq);
 730        if (ret)
 731                goto err_unwind;
 732
 733        rq->infix = rq->ring->emit; /* end of header; start of user payload */
 734
 735        intel_context_mark_active(ce);
 736        list_add_tail_rcu(&rq->link, &tl->requests);
 737
 738        return rq;
 739
 740err_unwind:
 741        ce->ring->emit = rq->head;
 742
 743        /* Make sure we didn't add ourselves to external state before freeing */
 744        GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
 745        GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
 746
 747err_free:
 748        kmem_cache_free(global.slab_requests, rq);
 749err_unreserve:
 750        intel_context_unpin(ce);
 751        return ERR_PTR(ret);
 752}
 753
 754struct i915_request *
 755i915_request_create(struct intel_context *ce)
 756{
 757        struct i915_request *rq;
 758        struct intel_timeline *tl;
 759
 760        tl = intel_context_timeline_lock(ce);
 761        if (IS_ERR(tl))
 762                return ERR_CAST(tl);
 763
 764        /* Move our oldest request to the slab-cache (if not in use!) */
 765        rq = list_first_entry(&tl->requests, typeof(*rq), link);
 766        if (!list_is_last(&rq->link, &tl->requests))
 767                i915_request_retire(rq);
 768
 769        intel_context_enter(ce);
 770        rq = __i915_request_create(ce, GFP_KERNEL);
 771        intel_context_exit(ce); /* active reference transferred to request */
 772        if (IS_ERR(rq))
 773                goto err_unlock;
 774
 775        /* Check that we do not interrupt ourselves with a new request */
 776        rq->cookie = lockdep_pin_lock(&tl->mutex);
 777
 778        return rq;
 779
 780err_unlock:
 781        intel_context_timeline_unlock(tl);
 782        return rq;
 783}
 784
 785static int
 786i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
 787{
 788        struct dma_fence *fence;
 789        int err;
 790
 791        if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
 792                return 0;
 793
 794        if (i915_request_started(signal))
 795                return 0;
 796
 797        fence = NULL;
 798        rcu_read_lock();
 799        spin_lock_irq(&signal->lock);
 800        do {
 801                struct list_head *pos = READ_ONCE(signal->link.prev);
 802                struct i915_request *prev;
 803
 804                /* Confirm signal has not been retired, the link is valid */
 805                if (unlikely(i915_request_started(signal)))
 806                        break;
 807
 808                /* Is signal the earliest request on its timeline? */
 809                if (pos == &rcu_dereference(signal->timeline)->requests)
 810                        break;
 811
 812                /*
 813                 * Peek at the request before us in the timeline. That
 814                 * request will only be valid before it is retired, so
 815                 * after acquiring a reference to it, confirm that it is
 816                 * still part of the signaler's timeline.
 817                 */
 818                prev = list_entry(pos, typeof(*prev), link);
 819                if (!i915_request_get_rcu(prev))
 820                        break;
 821
 822                /* After the strong barrier, confirm prev is still attached */
 823                if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
 824                        i915_request_put(prev);
 825                        break;
 826                }
 827
 828                fence = &prev->fence;
 829        } while (0);
 830        spin_unlock_irq(&signal->lock);
 831        rcu_read_unlock();
 832        if (!fence)
 833                return 0;
 834
 835        err = 0;
 836        if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
 837                err = i915_sw_fence_await_dma_fence(&rq->submit,
 838                                                    fence, 0,
 839                                                    I915_FENCE_GFP);
 840        dma_fence_put(fence);
 841
 842        return err;
 843}
 844
 845static intel_engine_mask_t
 846already_busywaiting(struct i915_request *rq)
 847{
 848        /*
 849         * Polling a semaphore causes bus traffic, delaying other users of
 850         * both the GPU and CPU. We want to limit the impact on others,
 851         * while taking advantage of early submission to reduce GPU
 852         * latency. Therefore we restrict ourselves to not using more
 853         * than one semaphore from each source, and not using a semaphore
 854         * if we have detected the engine is saturated (i.e. would not be
 855         * submitted early and cause bus traffic reading an already passed
 856         * semaphore).
 857         *
 858         * See the are-we-too-late? check in __i915_request_submit().
 859         */
 860        return rq->sched.semaphores | rq->engine->saturated;
 861}
 862
 863static int
 864__emit_semaphore_wait(struct i915_request *to,
 865                      struct i915_request *from,
 866                      u32 seqno)
 867{
 868        const int has_token = INTEL_GEN(to->i915) >= 12;
 869        u32 hwsp_offset;
 870        int len, err;
 871        u32 *cs;
 872
 873        GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
 874
 875        /* We need to pin the signaler's HWSP until we are finished reading. */
 876        err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
 877        if (err)
 878                return err;
 879
 880        len = 4;
 881        if (has_token)
 882                len += 2;
 883
 884        cs = intel_ring_begin(to, len);
 885        if (IS_ERR(cs))
 886                return PTR_ERR(cs);
 887
 888        /*
 889         * Using greater-than-or-equal here means we have to worry
 890         * about seqno wraparound. To side step that issue, we swap
 891         * the timeline HWSP upon wrapping, so that everyone listening
 892         * for the old (pre-wrap) values do not see the much smaller
 893         * (post-wrap) values than they were expecting (and so wait
 894         * forever).
 895         */
 896        *cs++ = (MI_SEMAPHORE_WAIT |
 897                 MI_SEMAPHORE_GLOBAL_GTT |
 898                 MI_SEMAPHORE_POLL |
 899                 MI_SEMAPHORE_SAD_GTE_SDD) +
 900                has_token;
 901        *cs++ = seqno;
 902        *cs++ = hwsp_offset;
 903        *cs++ = 0;
 904        if (has_token) {
 905                *cs++ = 0;
 906                *cs++ = MI_NOOP;
 907        }
 908
 909        intel_ring_advance(to, cs);
 910        return 0;
 911}
 912
 913static int
 914emit_semaphore_wait(struct i915_request *to,
 915                    struct i915_request *from,
 916                    gfp_t gfp)
 917{
 918        /* Just emit the first semaphore we see as request space is limited. */
 919        if (already_busywaiting(to) & from->engine->mask)
 920                goto await_fence;
 921
 922        if (i915_request_await_start(to, from) < 0)
 923                goto await_fence;
 924
 925        /* Only submit our spinner after the signaler is running! */
 926        if (__await_execution(to, from, NULL, gfp))
 927                goto await_fence;
 928
 929        if (__emit_semaphore_wait(to, from, from->fence.seqno))
 930                goto await_fence;
 931
 932        to->sched.semaphores |= from->engine->mask;
 933        to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
 934        return 0;
 935
 936await_fence:
 937        return i915_sw_fence_await_dma_fence(&to->submit,
 938                                             &from->fence, 0,
 939                                             I915_FENCE_GFP);
 940}
 941
 942static int
 943i915_request_await_request(struct i915_request *to, struct i915_request *from)
 944{
 945        int ret;
 946
 947        GEM_BUG_ON(to == from);
 948        GEM_BUG_ON(to->timeline == from->timeline);
 949
 950        if (i915_request_completed(from))
 951                return 0;
 952
 953        if (to->engine->schedule) {
 954                ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
 955                if (ret < 0)
 956                        return ret;
 957        }
 958
 959        if (to->engine == from->engine)
 960                ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
 961                                                       &from->submit,
 962                                                       I915_FENCE_GFP);
 963        else if (intel_context_use_semaphores(to->context))
 964                ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
 965        else
 966                ret = i915_sw_fence_await_dma_fence(&to->submit,
 967                                                    &from->fence, 0,
 968                                                    I915_FENCE_GFP);
 969        if (ret < 0)
 970                return ret;
 971
 972        if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
 973                ret = i915_sw_fence_await_dma_fence(&to->semaphore,
 974                                                    &from->fence, 0,
 975                                                    I915_FENCE_GFP);
 976                if (ret < 0)
 977                        return ret;
 978        }
 979
 980        return 0;
 981}
 982
 983int
 984i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
 985{
 986        struct dma_fence **child = &fence;
 987        unsigned int nchild = 1;
 988        int ret;
 989
 990        /*
 991         * Note that if the fence-array was created in signal-on-any mode,
 992         * we should *not* decompose it into its individual fences. However,
 993         * we don't currently store which mode the fence-array is operating
 994         * in. Fortunately, the only user of signal-on-any is private to
 995         * amdgpu and we should not see any incoming fence-array from
 996         * sync-file being in signal-on-any mode.
 997         */
 998        if (dma_fence_is_array(fence)) {
 999                struct dma_fence_array *array = to_dma_fence_array(fence);
1000
1001                child = array->fences;
1002                nchild = array->num_fences;
1003                GEM_BUG_ON(!nchild);
1004        }
1005
1006        do {
1007                fence = *child++;
1008                if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1009                        i915_sw_fence_set_error_once(&rq->submit, fence->error);
1010                        continue;
1011                }
1012
1013                /*
1014                 * Requests on the same timeline are explicitly ordered, along
1015                 * with their dependencies, by i915_request_add() which ensures
1016                 * that requests are submitted in-order through each ring.
1017                 */
1018                if (fence->context == rq->fence.context)
1019                        continue;
1020
1021                /* Squash repeated waits to the same timelines */
1022                if (fence->context &&
1023                    intel_timeline_sync_is_later(i915_request_timeline(rq),
1024                                                 fence))
1025                        continue;
1026
1027                if (dma_fence_is_i915(fence))
1028                        ret = i915_request_await_request(rq, to_request(fence));
1029                else
1030                        ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1031                                                            fence->context ? I915_FENCE_TIMEOUT : 0,
1032                                                            I915_FENCE_GFP);
1033                if (ret < 0)
1034                        return ret;
1035
1036                /* Record the latest fence used against each timeline */
1037                if (fence->context)
1038                        intel_timeline_sync_set(i915_request_timeline(rq),
1039                                                fence);
1040        } while (--nchild);
1041
1042        return 0;
1043}
1044
1045static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1046                                          struct dma_fence *fence)
1047{
1048        return __intel_timeline_sync_is_later(tl,
1049                                              fence->context,
1050                                              fence->seqno - 1);
1051}
1052
1053static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1054                                         const struct dma_fence *fence)
1055{
1056        return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1057}
1058
1059static int
1060__i915_request_await_execution(struct i915_request *to,
1061                               struct i915_request *from,
1062                               void (*hook)(struct i915_request *rq,
1063                                            struct dma_fence *signal))
1064{
1065        int err;
1066
1067        /* Submit both requests at the same time */
1068        err = __await_execution(to, from, hook, I915_FENCE_GFP);
1069        if (err)
1070                return err;
1071
1072        /* Squash repeated depenendices to the same timelines */
1073        if (intel_timeline_sync_has_start(i915_request_timeline(to),
1074                                          &from->fence))
1075                return 0;
1076
1077        /* Ensure both start together [after all semaphores in signal] */
1078        if (intel_engine_has_semaphores(to->engine))
1079                err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1080        else
1081                err = i915_request_await_start(to, from);
1082        if (err < 0)
1083                return err;
1084
1085        /* Couple the dependency tree for PI on this exposed to->fence */
1086        if (to->engine->schedule) {
1087                err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1088                if (err < 0)
1089                        return err;
1090        }
1091
1092        return intel_timeline_sync_set_start(i915_request_timeline(to),
1093                                             &from->fence);
1094}
1095
1096int
1097i915_request_await_execution(struct i915_request *rq,
1098                             struct dma_fence *fence,
1099                             void (*hook)(struct i915_request *rq,
1100                                          struct dma_fence *signal))
1101{
1102        struct dma_fence **child = &fence;
1103        unsigned int nchild = 1;
1104        int ret;
1105
1106        if (dma_fence_is_array(fence)) {
1107                struct dma_fence_array *array = to_dma_fence_array(fence);
1108
1109                /* XXX Error for signal-on-any fence arrays */
1110
1111                child = array->fences;
1112                nchild = array->num_fences;
1113                GEM_BUG_ON(!nchild);
1114        }
1115
1116        do {
1117                fence = *child++;
1118                if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1119                        i915_sw_fence_set_error_once(&rq->submit, fence->error);
1120                        continue;
1121                }
1122
1123                /*
1124                 * We don't squash repeated fence dependencies here as we
1125                 * want to run our callback in all cases.
1126                 */
1127
1128                if (dma_fence_is_i915(fence))
1129                        ret = __i915_request_await_execution(rq,
1130                                                             to_request(fence),
1131                                                             hook);
1132                else
1133                        ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1134                                                            I915_FENCE_TIMEOUT,
1135                                                            GFP_KERNEL);
1136                if (ret < 0)
1137                        return ret;
1138        } while (--nchild);
1139
1140        return 0;
1141}
1142
1143/**
1144 * i915_request_await_object - set this request to (async) wait upon a bo
1145 * @to: request we are wishing to use
1146 * @obj: object which may be in use on another ring.
1147 * @write: whether the wait is on behalf of a writer
1148 *
1149 * This code is meant to abstract object synchronization with the GPU.
1150 * Conceptually we serialise writes between engines inside the GPU.
1151 * We only allow one engine to write into a buffer at any time, but
1152 * multiple readers. To ensure each has a coherent view of memory, we must:
1153 *
1154 * - If there is an outstanding write request to the object, the new
1155 *   request must wait for it to complete (either CPU or in hw, requests
1156 *   on the same ring will be naturally ordered).
1157 *
1158 * - If we are a write request (pending_write_domain is set), the new
1159 *   request must wait for outstanding read requests to complete.
1160 *
1161 * Returns 0 if successful, else propagates up the lower layer error.
1162 */
1163int
1164i915_request_await_object(struct i915_request *to,
1165                          struct drm_i915_gem_object *obj,
1166                          bool write)
1167{
1168        struct dma_fence *excl;
1169        int ret = 0;
1170
1171        if (write) {
1172                struct dma_fence **shared;
1173                unsigned int count, i;
1174
1175                ret = dma_resv_get_fences_rcu(obj->base.resv,
1176                                                        &excl, &count, &shared);
1177                if (ret)
1178                        return ret;
1179
1180                for (i = 0; i < count; i++) {
1181                        ret = i915_request_await_dma_fence(to, shared[i]);
1182                        if (ret)
1183                                break;
1184
1185                        dma_fence_put(shared[i]);
1186                }
1187
1188                for (; i < count; i++)
1189                        dma_fence_put(shared[i]);
1190                kfree(shared);
1191        } else {
1192                excl = dma_resv_get_excl_rcu(obj->base.resv);
1193        }
1194
1195        if (excl) {
1196                if (ret == 0)
1197                        ret = i915_request_await_dma_fence(to, excl);
1198
1199                dma_fence_put(excl);
1200        }
1201
1202        return ret;
1203}
1204
1205void i915_request_skip(struct i915_request *rq, int error)
1206{
1207        void *vaddr = rq->ring->vaddr;
1208        u32 head;
1209
1210        GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1211        dma_fence_set_error(&rq->fence, error);
1212
1213        if (rq->infix == rq->postfix)
1214                return;
1215
1216        /*
1217         * As this request likely depends on state from the lost
1218         * context, clear out all the user operations leaving the
1219         * breadcrumb at the end (so we get the fence notifications).
1220         */
1221        head = rq->infix;
1222        if (rq->postfix < head) {
1223                memset(vaddr + head, 0, rq->ring->size - head);
1224                head = 0;
1225        }
1226        memset(vaddr + head, 0, rq->postfix - head);
1227        rq->infix = rq->postfix;
1228}
1229
1230static struct i915_request *
1231__i915_request_add_to_timeline(struct i915_request *rq)
1232{
1233        struct intel_timeline *timeline = i915_request_timeline(rq);
1234        struct i915_request *prev;
1235
1236        /*
1237         * Dependency tracking and request ordering along the timeline
1238         * is special cased so that we can eliminate redundant ordering
1239         * operations while building the request (we know that the timeline
1240         * itself is ordered, and here we guarantee it).
1241         *
1242         * As we know we will need to emit tracking along the timeline,
1243         * we embed the hooks into our request struct -- at the cost of
1244         * having to have specialised no-allocation interfaces (which will
1245         * be beneficial elsewhere).
1246         *
1247         * A second benefit to open-coding i915_request_await_request is
1248         * that we can apply a slight variant of the rules specialised
1249         * for timelines that jump between engines (such as virtual engines).
1250         * If we consider the case of virtual engine, we must emit a dma-fence
1251         * to prevent scheduling of the second request until the first is
1252         * complete (to maximise our greedy late load balancing) and this
1253         * precludes optimising to use semaphores serialisation of a single
1254         * timeline across engines.
1255         */
1256        prev = to_request(__i915_active_fence_set(&timeline->last_request,
1257                                                  &rq->fence));
1258        if (prev && !i915_request_completed(prev)) {
1259                if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1260                        i915_sw_fence_await_sw_fence(&rq->submit,
1261                                                     &prev->submit,
1262                                                     &rq->submitq);
1263                else
1264                        __i915_sw_fence_await_dma_fence(&rq->submit,
1265                                                        &prev->fence,
1266                                                        &rq->dmaq);
1267                if (rq->engine->schedule)
1268                        __i915_sched_node_add_dependency(&rq->sched,
1269                                                         &prev->sched,
1270                                                         &rq->dep,
1271                                                         0);
1272        }
1273
1274        /*
1275         * Make sure that no request gazumped us - if it was allocated after
1276         * our i915_request_alloc() and called __i915_request_add() before
1277         * us, the timeline will hold its seqno which is later than ours.
1278         */
1279        GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1280
1281        return prev;
1282}
1283
1284/*
1285 * NB: This function is not allowed to fail. Doing so would mean the the
1286 * request is not being tracked for completion but the work itself is
1287 * going to happen on the hardware. This would be a Bad Thing(tm).
1288 */
1289struct i915_request *__i915_request_commit(struct i915_request *rq)
1290{
1291        struct intel_engine_cs *engine = rq->engine;
1292        struct intel_ring *ring = rq->ring;
1293        u32 *cs;
1294
1295        RQ_TRACE(rq, "\n");
1296
1297        /*
1298         * To ensure that this call will not fail, space for its emissions
1299         * should already have been reserved in the ring buffer. Let the ring
1300         * know that it is time to use that space up.
1301         */
1302        GEM_BUG_ON(rq->reserved_space > ring->space);
1303        rq->reserved_space = 0;
1304        rq->emitted_jiffies = jiffies;
1305
1306        /*
1307         * Record the position of the start of the breadcrumb so that
1308         * should we detect the updated seqno part-way through the
1309         * GPU processing the request, we never over-estimate the
1310         * position of the ring's HEAD.
1311         */
1312        cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1313        GEM_BUG_ON(IS_ERR(cs));
1314        rq->postfix = intel_ring_offset(rq, cs);
1315
1316        return __i915_request_add_to_timeline(rq);
1317}
1318
1319void __i915_request_queue(struct i915_request *rq,
1320                          const struct i915_sched_attr *attr)
1321{
1322        /*
1323         * Let the backend know a new request has arrived that may need
1324         * to adjust the existing execution schedule due to a high priority
1325         * request - i.e. we may want to preempt the current request in order
1326         * to run a high priority dependency chain *before* we can execute this
1327         * request.
1328         *
1329         * This is called before the request is ready to run so that we can
1330         * decide whether to preempt the entire chain so that it is ready to
1331         * run at the earliest possible convenience.
1332         */
1333        if (attr && rq->engine->schedule)
1334                rq->engine->schedule(rq, attr);
1335        i915_sw_fence_commit(&rq->semaphore);
1336        i915_sw_fence_commit(&rq->submit);
1337}
1338
1339void i915_request_add(struct i915_request *rq)
1340{
1341        struct intel_timeline * const tl = i915_request_timeline(rq);
1342        struct i915_sched_attr attr = {};
1343        struct i915_request *prev;
1344
1345        lockdep_assert_held(&tl->mutex);
1346        lockdep_unpin_lock(&tl->mutex, rq->cookie);
1347
1348        trace_i915_request_add(rq);
1349
1350        prev = __i915_request_commit(rq);
1351
1352        if (rcu_access_pointer(rq->context->gem_context))
1353                attr = i915_request_gem_context(rq)->sched;
1354
1355        /*
1356         * Boost actual workloads past semaphores!
1357         *
1358         * With semaphores we spin on one engine waiting for another,
1359         * simply to reduce the latency of starting our work when
1360         * the signaler completes. However, if there is any other
1361         * work that we could be doing on this engine instead, that
1362         * is better utilisation and will reduce the overall duration
1363         * of the current work. To avoid PI boosting a semaphore
1364         * far in the distance past over useful work, we keep a history
1365         * of any semaphore use along our dependency chain.
1366         */
1367        if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1368                attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1369
1370        /*
1371         * Boost priorities to new clients (new request flows).
1372         *
1373         * Allow interactive/synchronous clients to jump ahead of
1374         * the bulk clients. (FQ_CODEL)
1375         */
1376        if (list_empty(&rq->sched.signalers_list))
1377                attr.priority |= I915_PRIORITY_WAIT;
1378
1379        local_bh_disable();
1380        __i915_request_queue(rq, &attr);
1381        local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1382
1383        /*
1384         * In typical scenarios, we do not expect the previous request on
1385         * the timeline to be still tracked by timeline->last_request if it
1386         * has been completed. If the completed request is still here, that
1387         * implies that request retirement is a long way behind submission,
1388         * suggesting that we haven't been retiring frequently enough from
1389         * the combination of retire-before-alloc, waiters and the background
1390         * retirement worker. So if the last request on this timeline was
1391         * already completed, do a catch up pass, flushing the retirement queue
1392         * up to this client. Since we have now moved the heaviest operations
1393         * during retirement onto secondary workers, such as freeing objects
1394         * or contexts, retiring a bunch of requests is mostly list management
1395         * (and cache misses), and so we should not be overly penalizing this
1396         * client by performing excess work, though we may still performing
1397         * work on behalf of others -- but instead we should benefit from
1398         * improved resource management. (Well, that's the theory at least.)
1399         */
1400        if (prev &&
1401            i915_request_completed(prev) &&
1402            rcu_access_pointer(prev->timeline) == tl)
1403                i915_request_retire_upto(prev);
1404
1405        mutex_unlock(&tl->mutex);
1406}
1407
1408static unsigned long local_clock_us(unsigned int *cpu)
1409{
1410        unsigned long t;
1411
1412        /*
1413         * Cheaply and approximately convert from nanoseconds to microseconds.
1414         * The result and subsequent calculations are also defined in the same
1415         * approximate microseconds units. The principal source of timing
1416         * error here is from the simple truncation.
1417         *
1418         * Note that local_clock() is only defined wrt to the current CPU;
1419         * the comparisons are no longer valid if we switch CPUs. Instead of
1420         * blocking preemption for the entire busywait, we can detect the CPU
1421         * switch and use that as indicator of system load and a reason to
1422         * stop busywaiting, see busywait_stop().
1423         */
1424        *cpu = get_cpu();
1425        t = local_clock() >> 10;
1426        put_cpu();
1427
1428        return t;
1429}
1430
1431static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1432{
1433        unsigned int this_cpu;
1434
1435        if (time_after(local_clock_us(&this_cpu), timeout))
1436                return true;
1437
1438        return this_cpu != cpu;
1439}
1440
1441static bool __i915_spin_request(const struct i915_request * const rq,
1442                                int state, unsigned long timeout_us)
1443{
1444        unsigned int cpu;
1445
1446        /*
1447         * Only wait for the request if we know it is likely to complete.
1448         *
1449         * We don't track the timestamps around requests, nor the average
1450         * request length, so we do not have a good indicator that this
1451         * request will complete within the timeout. What we do know is the
1452         * order in which requests are executed by the context and so we can
1453         * tell if the request has been started. If the request is not even
1454         * running yet, it is a fair assumption that it will not complete
1455         * within our relatively short timeout.
1456         */
1457        if (!i915_request_is_running(rq))
1458                return false;
1459
1460        /*
1461         * When waiting for high frequency requests, e.g. during synchronous
1462         * rendering split between the CPU and GPU, the finite amount of time
1463         * required to set up the irq and wait upon it limits the response
1464         * rate. By busywaiting on the request completion for a short while we
1465         * can service the high frequency waits as quick as possible. However,
1466         * if it is a slow request, we want to sleep as quickly as possible.
1467         * The tradeoff between waiting and sleeping is roughly the time it
1468         * takes to sleep on a request, on the order of a microsecond.
1469         */
1470
1471        timeout_us += local_clock_us(&cpu);
1472        do {
1473                if (i915_request_completed(rq))
1474                        return true;
1475
1476                if (signal_pending_state(state, current))
1477                        break;
1478
1479                if (busywait_stop(timeout_us, cpu))
1480                        break;
1481
1482                cpu_relax();
1483        } while (!need_resched());
1484
1485        return false;
1486}
1487
1488struct request_wait {
1489        struct dma_fence_cb cb;
1490        struct task_struct *tsk;
1491};
1492
1493static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1494{
1495        struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1496
1497        wake_up_process(wait->tsk);
1498}
1499
1500/**
1501 * i915_request_wait - wait until execution of request has finished
1502 * @rq: the request to wait upon
1503 * @flags: how to wait
1504 * @timeout: how long to wait in jiffies
1505 *
1506 * i915_request_wait() waits for the request to be completed, for a
1507 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1508 * unbounded wait).
1509 *
1510 * Returns the remaining time (in jiffies) if the request completed, which may
1511 * be zero or -ETIME if the request is unfinished after the timeout expires.
1512 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1513 * pending before the request completes.
1514 */
1515long i915_request_wait(struct i915_request *rq,
1516                       unsigned int flags,
1517                       long timeout)
1518{
1519        const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1520                TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1521        struct request_wait wait;
1522
1523        might_sleep();
1524        GEM_BUG_ON(timeout < 0);
1525
1526        if (dma_fence_is_signaled(&rq->fence))
1527                return timeout;
1528
1529        if (!timeout)
1530                return -ETIME;
1531
1532        trace_i915_request_wait_begin(rq, flags);
1533
1534        /*
1535         * We must never wait on the GPU while holding a lock as we
1536         * may need to perform a GPU reset. So while we don't need to
1537         * serialise wait/reset with an explicit lock, we do want
1538         * lockdep to detect potential dependency cycles.
1539         */
1540        mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1541
1542        /*
1543         * Optimistic spin before touching IRQs.
1544         *
1545         * We may use a rather large value here to offset the penalty of
1546         * switching away from the active task. Frequently, the client will
1547         * wait upon an old swapbuffer to throttle itself to remain within a
1548         * frame of the gpu. If the client is running in lockstep with the gpu,
1549         * then it should not be waiting long at all, and a sleep now will incur
1550         * extra scheduler latency in producing the next frame. To try to
1551         * avoid adding the cost of enabling/disabling the interrupt to the
1552         * short wait, we first spin to see if the request would have completed
1553         * in the time taken to setup the interrupt.
1554         *
1555         * We need upto 5us to enable the irq, and upto 20us to hide the
1556         * scheduler latency of a context switch, ignoring the secondary
1557         * impacts from a context switch such as cache eviction.
1558         *
1559         * The scheme used for low-latency IO is called "hybrid interrupt
1560         * polling". The suggestion there is to sleep until just before you
1561         * expect to be woken by the device interrupt and then poll for its
1562         * completion. That requires having a good predictor for the request
1563         * duration, which we currently lack.
1564         */
1565        if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1566            __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1567                dma_fence_signal(&rq->fence);
1568                goto out;
1569        }
1570
1571        /*
1572         * This client is about to stall waiting for the GPU. In many cases
1573         * this is undesirable and limits the throughput of the system, as
1574         * many clients cannot continue processing user input/output whilst
1575         * blocked. RPS autotuning may take tens of milliseconds to respond
1576         * to the GPU load and thus incurs additional latency for the client.
1577         * We can circumvent that by promoting the GPU frequency to maximum
1578         * before we sleep. This makes the GPU throttle up much more quickly
1579         * (good for benchmarks and user experience, e.g. window animations),
1580         * but at a cost of spending more power processing the workload
1581         * (bad for battery).
1582         */
1583        if (flags & I915_WAIT_PRIORITY) {
1584                if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1585                        intel_rps_boost(rq);
1586                i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1587        }
1588
1589        wait.tsk = current;
1590        if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1591                goto out;
1592
1593        for (;;) {
1594                set_current_state(state);
1595
1596                if (i915_request_completed(rq)) {
1597                        dma_fence_signal(&rq->fence);
1598                        break;
1599                }
1600
1601                if (signal_pending_state(state, current)) {
1602                        timeout = -ERESTARTSYS;
1603                        break;
1604                }
1605
1606                if (!timeout) {
1607                        timeout = -ETIME;
1608                        break;
1609                }
1610
1611                intel_engine_flush_submission(rq->engine);
1612                timeout = io_schedule_timeout(timeout);
1613        }
1614        __set_current_state(TASK_RUNNING);
1615
1616        dma_fence_remove_callback(&rq->fence, &wait.cb);
1617
1618out:
1619        mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1620        trace_i915_request_wait_end(rq);
1621        return timeout;
1622}
1623
1624#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1625#include "selftests/mock_request.c"
1626#include "selftests/i915_request.c"
1627#endif
1628
1629static void i915_global_request_shrink(void)
1630{
1631        kmem_cache_shrink(global.slab_dependencies);
1632        kmem_cache_shrink(global.slab_execute_cbs);
1633        kmem_cache_shrink(global.slab_requests);
1634}
1635
1636static void i915_global_request_exit(void)
1637{
1638        kmem_cache_destroy(global.slab_dependencies);
1639        kmem_cache_destroy(global.slab_execute_cbs);
1640        kmem_cache_destroy(global.slab_requests);
1641}
1642
1643static struct i915_global_request global = { {
1644        .shrink = i915_global_request_shrink,
1645        .exit = i915_global_request_exit,
1646} };
1647
1648int __init i915_global_request_init(void)
1649{
1650        global.slab_requests =
1651                kmem_cache_create("i915_request",
1652                                  sizeof(struct i915_request),
1653                                  __alignof__(struct i915_request),
1654                                  SLAB_HWCACHE_ALIGN |
1655                                  SLAB_RECLAIM_ACCOUNT |
1656                                  SLAB_TYPESAFE_BY_RCU,
1657                                  __i915_request_ctor);
1658        if (!global.slab_requests)
1659                return -ENOMEM;
1660
1661        global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1662                                             SLAB_HWCACHE_ALIGN |
1663                                             SLAB_RECLAIM_ACCOUNT |
1664                                             SLAB_TYPESAFE_BY_RCU);
1665        if (!global.slab_execute_cbs)
1666                goto err_requests;
1667
1668        global.slab_dependencies = KMEM_CACHE(i915_dependency,
1669                                              SLAB_HWCACHE_ALIGN |
1670                                              SLAB_RECLAIM_ACCOUNT);
1671        if (!global.slab_dependencies)
1672                goto err_execute_cbs;
1673
1674        i915_global_register(&global.base);
1675        return 0;
1676
1677err_execute_cbs:
1678        kmem_cache_destroy(global.slab_execute_cbs);
1679err_requests:
1680        kmem_cache_destroy(global.slab_requests);
1681        return -ENOMEM;
1682}
1683