linux/drivers/iio/adc/stm32-dfsdm-adc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is the ADC part of the STM32 DFSDM driver
   4 *
   5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
   7 */
   8
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/iio/adc/stm32-dfsdm-adc.h>
  12#include <linux/iio/buffer.h>
  13#include <linux/iio/hw-consumer.h>
  14#include <linux/iio/sysfs.h>
  15#include <linux/iio/timer/stm32-lptim-trigger.h>
  16#include <linux/iio/timer/stm32-timer-trigger.h>
  17#include <linux/iio/trigger.h>
  18#include <linux/iio/trigger_consumer.h>
  19#include <linux/iio/triggered_buffer.h>
  20#include <linux/interrupt.h>
  21#include <linux/module.h>
  22#include <linux/of_device.h>
  23#include <linux/platform_device.h>
  24#include <linux/regmap.h>
  25#include <linux/slab.h>
  26
  27#include "stm32-dfsdm.h"
  28
  29#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
  30
  31/* Conversion timeout */
  32#define DFSDM_TIMEOUT_US 100000
  33#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
  34
  35/* Oversampling attribute default */
  36#define DFSDM_DEFAULT_OVERSAMPLING  100
  37
  38/* Oversampling max values */
  39#define DFSDM_MAX_INT_OVERSAMPLING 256
  40#define DFSDM_MAX_FL_OVERSAMPLING 1024
  41
  42/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
  43#define DFSDM_DATA_MAX BIT(30)
  44/*
  45 * Data are output as two's complement data in a 24 bit field.
  46 * Data from filters are in the range +/-2^(n-1)
  47 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
  48 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
  49 * So, the resolution of samples from filter is actually limited to 23 bits
  50 */
  51#define DFSDM_DATA_RES 24
  52
  53/* Filter configuration */
  54#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
  55                            DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
  56                            DFSDM_CR1_JSCAN_MASK)
  57
  58enum sd_converter_type {
  59        DFSDM_AUDIO,
  60        DFSDM_IIO,
  61};
  62
  63struct stm32_dfsdm_dev_data {
  64        int type;
  65        int (*init)(struct iio_dev *indio_dev);
  66        unsigned int num_channels;
  67        const struct regmap_config *regmap_cfg;
  68};
  69
  70struct stm32_dfsdm_adc {
  71        struct stm32_dfsdm *dfsdm;
  72        const struct stm32_dfsdm_dev_data *dev_data;
  73        unsigned int fl_id;
  74        unsigned int nconv;
  75        unsigned long smask;
  76
  77        /* ADC specific */
  78        unsigned int oversamp;
  79        struct iio_hw_consumer *hwc;
  80        struct completion completion;
  81        u32 *buffer;
  82
  83        /* Audio specific */
  84        unsigned int spi_freq;  /* SPI bus clock frequency */
  85        unsigned int sample_freq; /* Sample frequency after filter decimation */
  86        int (*cb)(const void *data, size_t size, void *cb_priv);
  87        void *cb_priv;
  88
  89        /* DMA */
  90        u8 *rx_buf;
  91        unsigned int bufi; /* Buffer current position */
  92        unsigned int buf_sz; /* Buffer size */
  93        struct dma_chan *dma_chan;
  94        dma_addr_t dma_buf;
  95};
  96
  97struct stm32_dfsdm_str2field {
  98        const char      *name;
  99        unsigned int    val;
 100};
 101
 102/* DFSDM channel serial interface type */
 103static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
 104        { "SPI_R", 0 }, /* SPI with data on rising edge */
 105        { "SPI_F", 1 }, /* SPI with data on falling edge */
 106        { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
 107        { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
 108        {},
 109};
 110
 111/* DFSDM channel clock source */
 112static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
 113        /* External SPI clock (CLKIN x) */
 114        { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
 115        /* Internal SPI clock (CLKOUT) */
 116        { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
 117        /* Internal SPI clock divided by 2 (falling edge) */
 118        { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
 119        /* Internal SPI clock divided by 2 (falling edge) */
 120        { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
 121        {},
 122};
 123
 124static int stm32_dfsdm_str2val(const char *str,
 125                               const struct stm32_dfsdm_str2field *list)
 126{
 127        const struct stm32_dfsdm_str2field *p = list;
 128
 129        for (p = list; p && p->name; p++)
 130                if (!strcmp(p->name, str))
 131                        return p->val;
 132
 133        return -EINVAL;
 134}
 135
 136/**
 137 * struct stm32_dfsdm_trig_info - DFSDM trigger info
 138 * @name:               name of the trigger, corresponding to its source
 139 * @jextsel:            trigger signal selection
 140 */
 141struct stm32_dfsdm_trig_info {
 142        const char *name;
 143        unsigned int jextsel;
 144};
 145
 146/* hardware injected trigger enable, edge selection */
 147enum stm32_dfsdm_jexten {
 148        STM32_DFSDM_JEXTEN_DISABLED,
 149        STM32_DFSDM_JEXTEN_RISING_EDGE,
 150        STM32_DFSDM_JEXTEN_FALLING_EDGE,
 151        STM32_DFSDM_EXTEN_BOTH_EDGES,
 152};
 153
 154static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
 155        { TIM1_TRGO, 0 },
 156        { TIM1_TRGO2, 1 },
 157        { TIM8_TRGO, 2 },
 158        { TIM8_TRGO2, 3 },
 159        { TIM3_TRGO, 4 },
 160        { TIM4_TRGO, 5 },
 161        { TIM16_OC1, 6 },
 162        { TIM6_TRGO, 7 },
 163        { TIM7_TRGO, 8 },
 164        { LPTIM1_OUT, 26 },
 165        { LPTIM2_OUT, 27 },
 166        { LPTIM3_OUT, 28 },
 167        {},
 168};
 169
 170static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
 171                                   struct iio_trigger *trig)
 172{
 173        int i;
 174
 175        /* lookup triggers registered by stm32 timer trigger driver */
 176        for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
 177                /**
 178                 * Checking both stm32 timer trigger type and trig name
 179                 * should be safe against arbitrary trigger names.
 180                 */
 181                if ((is_stm32_timer_trigger(trig) ||
 182                     is_stm32_lptim_trigger(trig)) &&
 183                    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
 184                        return stm32_dfsdm_trigs[i].jextsel;
 185                }
 186        }
 187
 188        return -EINVAL;
 189}
 190
 191static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
 192                                    unsigned int fast, unsigned int oversamp)
 193{
 194        unsigned int i, d, fosr, iosr;
 195        u64 res, max;
 196        int bits, shift;
 197        unsigned int m = 1;     /* multiplication factor */
 198        unsigned int p = fl->ford;      /* filter order (ford) */
 199        struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
 200
 201        pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
 202        /*
 203         * This function tries to compute filter oversampling and integrator
 204         * oversampling, base on oversampling ratio requested by user.
 205         *
 206         * Decimation d depends on the filter order and the oversampling ratios.
 207         * ford: filter order
 208         * fosr: filter over sampling ratio
 209         * iosr: integrator over sampling ratio
 210         */
 211        if (fl->ford == DFSDM_FASTSINC_ORDER) {
 212                m = 2;
 213                p = 2;
 214        }
 215
 216        /*
 217         * Look for filter and integrator oversampling ratios which allows
 218         * to maximize data output resolution.
 219         */
 220        for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
 221                for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
 222                        if (fast)
 223                                d = fosr * iosr;
 224                        else if (fl->ford == DFSDM_FASTSINC_ORDER)
 225                                d = fosr * (iosr + 3) + 2;
 226                        else
 227                                d = fosr * (iosr - 1 + p) + p;
 228
 229                        if (d > oversamp)
 230                                break;
 231                        else if (d != oversamp)
 232                                continue;
 233                        /*
 234                         * Check resolution (limited to signed 32 bits)
 235                         *   res <= 2^31
 236                         * Sincx filters:
 237                         *   res = m * fosr^p x iosr (with m=1, p=ford)
 238                         * FastSinc filter
 239                         *   res = m * fosr^p x iosr (with m=2, p=2)
 240                         */
 241                        res = fosr;
 242                        for (i = p - 1; i > 0; i--) {
 243                                res = res * (u64)fosr;
 244                                if (res > DFSDM_DATA_MAX)
 245                                        break;
 246                        }
 247                        if (res > DFSDM_DATA_MAX)
 248                                continue;
 249
 250                        res = res * (u64)m * (u64)iosr;
 251                        if (res > DFSDM_DATA_MAX)
 252                                continue;
 253
 254                        if (res >= flo->res) {
 255                                flo->res = res;
 256                                flo->fosr = fosr;
 257                                flo->iosr = iosr;
 258
 259                                bits = fls(flo->res);
 260                                /* 8 LBSs in data register contain chan info */
 261                                max = flo->res << 8;
 262
 263                                /* if resolution is not a power of two */
 264                                if (flo->res > BIT(bits - 1))
 265                                        bits++;
 266                                else
 267                                        max--;
 268
 269                                shift = DFSDM_DATA_RES - bits;
 270                                /*
 271                                 * Compute right/left shift
 272                                 * Right shift is performed by hardware
 273                                 * when transferring samples to data register.
 274                                 * Left shift is done by software on buffer
 275                                 */
 276                                if (shift > 0) {
 277                                        /* Resolution is lower than 24 bits */
 278                                        flo->rshift = 0;
 279                                        flo->lshift = shift;
 280                                } else {
 281                                        /*
 282                                         * If resolution is 24 bits or more,
 283                                         * max positive value may be ambiguous
 284                                         * (equal to max negative value as sign
 285                                         * bit is dropped).
 286                                         * Reduce resolution to 23 bits (rshift)
 287                                         * to keep the sign on bit 23 and treat
 288                                         * saturation before rescaling on 24
 289                                         * bits (lshift).
 290                                         */
 291                                        flo->rshift = 1 - shift;
 292                                        flo->lshift = 1;
 293                                        max >>= flo->rshift;
 294                                }
 295                                flo->max = (s32)max;
 296
 297                                pr_debug("%s: fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
 298                                         __func__, fast, flo->fosr, flo->iosr,
 299                                         flo->res, bits, flo->rshift,
 300                                         flo->lshift);
 301                        }
 302                }
 303        }
 304
 305        if (!flo->res)
 306                return -EINVAL;
 307
 308        return 0;
 309}
 310
 311static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
 312                                        unsigned int oversamp)
 313{
 314        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 315        struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 316        int ret0, ret1;
 317
 318        memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
 319        memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
 320
 321        ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
 322        ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
 323        if (ret0 < 0 && ret1 < 0) {
 324                dev_err(&indio_dev->dev,
 325                        "Filter parameters not found: errors %d/%d\n",
 326                        ret0, ret1);
 327                return -EINVAL;
 328        }
 329
 330        return 0;
 331}
 332
 333static int stm32_dfsdm_start_channel(struct stm32_dfsdm_adc *adc)
 334{
 335        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 336        struct regmap *regmap = adc->dfsdm->regmap;
 337        const struct iio_chan_spec *chan;
 338        unsigned int bit;
 339        int ret;
 340
 341        for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 342                chan = indio_dev->channels + bit;
 343                ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 344                                         DFSDM_CHCFGR1_CHEN_MASK,
 345                                         DFSDM_CHCFGR1_CHEN(1));
 346                if (ret < 0)
 347                        return ret;
 348        }
 349
 350        return 0;
 351}
 352
 353static void stm32_dfsdm_stop_channel(struct stm32_dfsdm_adc *adc)
 354{
 355        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 356        struct regmap *regmap = adc->dfsdm->regmap;
 357        const struct iio_chan_spec *chan;
 358        unsigned int bit;
 359
 360        for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 361                chan = indio_dev->channels + bit;
 362                regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 363                                   DFSDM_CHCFGR1_CHEN_MASK,
 364                                   DFSDM_CHCFGR1_CHEN(0));
 365        }
 366}
 367
 368static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
 369                                      struct stm32_dfsdm_channel *ch)
 370{
 371        unsigned int id = ch->id;
 372        struct regmap *regmap = dfsdm->regmap;
 373        int ret;
 374
 375        ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 376                                 DFSDM_CHCFGR1_SITP_MASK,
 377                                 DFSDM_CHCFGR1_SITP(ch->type));
 378        if (ret < 0)
 379                return ret;
 380        ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 381                                 DFSDM_CHCFGR1_SPICKSEL_MASK,
 382                                 DFSDM_CHCFGR1_SPICKSEL(ch->src));
 383        if (ret < 0)
 384                return ret;
 385        return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 386                                  DFSDM_CHCFGR1_CHINSEL_MASK,
 387                                  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
 388}
 389
 390static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
 391                                    unsigned int fl_id,
 392                                    struct iio_trigger *trig)
 393{
 394        struct stm32_dfsdm *dfsdm = adc->dfsdm;
 395        int ret;
 396
 397        /* Enable filter */
 398        ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 399                                 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
 400        if (ret < 0)
 401                return ret;
 402
 403        /* Nothing more to do for injected (scan mode/triggered) conversions */
 404        if (adc->nconv > 1 || trig)
 405                return 0;
 406
 407        /* Software start (single or continuous) regular conversion */
 408        return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 409                                  DFSDM_CR1_RSWSTART_MASK,
 410                                  DFSDM_CR1_RSWSTART(1));
 411}
 412
 413static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
 414                                    unsigned int fl_id)
 415{
 416        /* Disable conversion */
 417        regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 418                           DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
 419}
 420
 421static int stm32_dfsdm_filter_set_trig(struct stm32_dfsdm_adc *adc,
 422                                       unsigned int fl_id,
 423                                       struct iio_trigger *trig)
 424{
 425        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 426        struct regmap *regmap = adc->dfsdm->regmap;
 427        u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
 428        int ret;
 429
 430        if (trig) {
 431                ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
 432                if (ret < 0)
 433                        return ret;
 434
 435                /* set trigger source and polarity (default to rising edge) */
 436                jextsel = ret;
 437                jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
 438        }
 439
 440        ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 441                                 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
 442                                 DFSDM_CR1_JEXTSEL(jextsel) |
 443                                 DFSDM_CR1_JEXTEN(jexten));
 444        if (ret < 0)
 445                return ret;
 446
 447        return 0;
 448}
 449
 450static int stm32_dfsdm_channels_configure(struct stm32_dfsdm_adc *adc,
 451                                          unsigned int fl_id,
 452                                          struct iio_trigger *trig)
 453{
 454        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 455        struct regmap *regmap = adc->dfsdm->regmap;
 456        struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 457        struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
 458        const struct iio_chan_spec *chan;
 459        unsigned int bit;
 460        int ret;
 461
 462        fl->fast = 0;
 463
 464        /*
 465         * In continuous mode, use fast mode configuration,
 466         * if it provides a better resolution.
 467         */
 468        if (adc->nconv == 1 && !trig &&
 469            (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
 470                if (fl->flo[1].res >= fl->flo[0].res) {
 471                        fl->fast = 1;
 472                        flo = &fl->flo[1];
 473                }
 474        }
 475
 476        if (!flo->res)
 477                return -EINVAL;
 478
 479        for_each_set_bit(bit, &adc->smask,
 480                         sizeof(adc->smask) * BITS_PER_BYTE) {
 481                chan = indio_dev->channels + bit;
 482
 483                ret = regmap_update_bits(regmap,
 484                                         DFSDM_CHCFGR2(chan->channel),
 485                                         DFSDM_CHCFGR2_DTRBS_MASK,
 486                                         DFSDM_CHCFGR2_DTRBS(flo->rshift));
 487                if (ret)
 488                        return ret;
 489        }
 490
 491        return 0;
 492}
 493
 494static int stm32_dfsdm_filter_configure(struct stm32_dfsdm_adc *adc,
 495                                        unsigned int fl_id,
 496                                        struct iio_trigger *trig)
 497{
 498        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 499        struct regmap *regmap = adc->dfsdm->regmap;
 500        struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 501        struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 502        u32 cr1;
 503        const struct iio_chan_spec *chan;
 504        unsigned int bit, jchg = 0;
 505        int ret;
 506
 507        /* Average integrator oversampling */
 508        ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
 509                                 DFSDM_FCR_IOSR(flo->iosr - 1));
 510        if (ret)
 511                return ret;
 512
 513        /* Filter order and Oversampling */
 514        ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
 515                                 DFSDM_FCR_FOSR(flo->fosr - 1));
 516        if (ret)
 517                return ret;
 518
 519        ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
 520                                 DFSDM_FCR_FORD(fl->ford));
 521        if (ret)
 522                return ret;
 523
 524        ret = stm32_dfsdm_filter_set_trig(adc, fl_id, trig);
 525        if (ret)
 526                return ret;
 527
 528        ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 529                                 DFSDM_CR1_FAST_MASK,
 530                                 DFSDM_CR1_FAST(fl->fast));
 531        if (ret)
 532                return ret;
 533
 534        /*
 535         * DFSDM modes configuration W.R.T audio/iio type modes
 536         * ----------------------------------------------------------------
 537         * Modes         | regular |  regular     | injected | injected   |
 538         *               |         |  continuous  |          | + scan     |
 539         * --------------|---------|--------------|----------|------------|
 540         * single conv   |    x    |              |          |            |
 541         * (1 chan)      |         |              |          |            |
 542         * --------------|---------|--------------|----------|------------|
 543         * 1 Audio chan  |         | sample freq  |          |            |
 544         *               |         | or sync_mode |          |            |
 545         * --------------|---------|--------------|----------|------------|
 546         * 1 IIO chan    |         | sample freq  | trigger  |            |
 547         *               |         | or sync_mode |          |            |
 548         * --------------|---------|--------------|----------|------------|
 549         * 2+ IIO chans  |         |              |          | trigger or |
 550         *               |         |              |          | sync_mode  |
 551         * ----------------------------------------------------------------
 552         */
 553        if (adc->nconv == 1 && !trig) {
 554                bit = __ffs(adc->smask);
 555                chan = indio_dev->channels + bit;
 556
 557                /* Use regular conversion for single channel without trigger */
 558                cr1 = DFSDM_CR1_RCH(chan->channel);
 559
 560                /* Continuous conversions triggered by SPI clk in buffer mode */
 561                if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
 562                        cr1 |= DFSDM_CR1_RCONT(1);
 563
 564                cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
 565        } else {
 566                /* Use injected conversion for multiple channels */
 567                for_each_set_bit(bit, &adc->smask,
 568                                 sizeof(adc->smask) * BITS_PER_BYTE) {
 569                        chan = indio_dev->channels + bit;
 570                        jchg |= BIT(chan->channel);
 571                }
 572                ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
 573                if (ret < 0)
 574                        return ret;
 575
 576                /* Use scan mode for multiple channels */
 577                cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
 578
 579                /*
 580                 * Continuous conversions not supported in injected mode,
 581                 * either use:
 582                 * - conversions in sync with filter 0
 583                 * - triggered conversions
 584                 */
 585                if (!fl->sync_mode && !trig)
 586                        return -EINVAL;
 587                cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
 588        }
 589
 590        return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
 591                                  cr1);
 592}
 593
 594static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
 595                                        struct iio_dev *indio_dev,
 596                                        struct iio_chan_spec *ch)
 597{
 598        struct stm32_dfsdm_channel *df_ch;
 599        const char *of_str;
 600        int chan_idx = ch->scan_index;
 601        int ret, val;
 602
 603        ret = of_property_read_u32_index(indio_dev->dev.of_node,
 604                                         "st,adc-channels", chan_idx,
 605                                         &ch->channel);
 606        if (ret < 0) {
 607                dev_err(&indio_dev->dev,
 608                        " Error parsing 'st,adc-channels' for idx %d\n",
 609                        chan_idx);
 610                return ret;
 611        }
 612        if (ch->channel >= dfsdm->num_chs) {
 613                dev_err(&indio_dev->dev,
 614                        " Error bad channel number %d (max = %d)\n",
 615                        ch->channel, dfsdm->num_chs);
 616                return -EINVAL;
 617        }
 618
 619        ret = of_property_read_string_index(indio_dev->dev.of_node,
 620                                            "st,adc-channel-names", chan_idx,
 621                                            &ch->datasheet_name);
 622        if (ret < 0) {
 623                dev_err(&indio_dev->dev,
 624                        " Error parsing 'st,adc-channel-names' for idx %d\n",
 625                        chan_idx);
 626                return ret;
 627        }
 628
 629        df_ch =  &dfsdm->ch_list[ch->channel];
 630        df_ch->id = ch->channel;
 631
 632        ret = of_property_read_string_index(indio_dev->dev.of_node,
 633                                            "st,adc-channel-types", chan_idx,
 634                                            &of_str);
 635        if (!ret) {
 636                val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
 637                if (val < 0)
 638                        return val;
 639        } else {
 640                val = 0;
 641        }
 642        df_ch->type = val;
 643
 644        ret = of_property_read_string_index(indio_dev->dev.of_node,
 645                                            "st,adc-channel-clk-src", chan_idx,
 646                                            &of_str);
 647        if (!ret) {
 648                val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
 649                if (val < 0)
 650                        return val;
 651        } else {
 652                val = 0;
 653        }
 654        df_ch->src = val;
 655
 656        ret = of_property_read_u32_index(indio_dev->dev.of_node,
 657                                         "st,adc-alt-channel", chan_idx,
 658                                         &df_ch->alt_si);
 659        if (ret < 0)
 660                df_ch->alt_si = 0;
 661
 662        return 0;
 663}
 664
 665static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
 666                                          uintptr_t priv,
 667                                          const struct iio_chan_spec *chan,
 668                                          char *buf)
 669{
 670        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 671
 672        return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
 673}
 674
 675static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
 676                                   unsigned int sample_freq,
 677                                   unsigned int spi_freq)
 678{
 679        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 680        unsigned int oversamp;
 681        int ret;
 682
 683        oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
 684        if (spi_freq % sample_freq)
 685                dev_dbg(&indio_dev->dev,
 686                        "Rate not accurate. requested (%u), actual (%u)\n",
 687                        sample_freq, spi_freq / oversamp);
 688
 689        ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
 690        if (ret < 0)
 691                return ret;
 692
 693        adc->sample_freq = spi_freq / oversamp;
 694        adc->oversamp = oversamp;
 695
 696        return 0;
 697}
 698
 699static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
 700                                          uintptr_t priv,
 701                                          const struct iio_chan_spec *chan,
 702                                          const char *buf, size_t len)
 703{
 704        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 705        struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
 706        unsigned int sample_freq = adc->sample_freq;
 707        unsigned int spi_freq;
 708        int ret;
 709
 710        dev_err(&indio_dev->dev, "enter %s\n", __func__);
 711        /* If DFSDM is master on SPI, SPI freq can not be updated */
 712        if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
 713                return -EPERM;
 714
 715        ret = kstrtoint(buf, 0, &spi_freq);
 716        if (ret)
 717                return ret;
 718
 719        if (!spi_freq)
 720                return -EINVAL;
 721
 722        if (sample_freq) {
 723                ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
 724                if (ret < 0)
 725                        return ret;
 726        }
 727        adc->spi_freq = spi_freq;
 728
 729        return len;
 730}
 731
 732static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
 733                                  struct iio_trigger *trig)
 734{
 735        struct regmap *regmap = adc->dfsdm->regmap;
 736        int ret;
 737
 738        ret = stm32_dfsdm_channels_configure(adc, adc->fl_id, trig);
 739        if (ret < 0)
 740                return ret;
 741
 742        ret = stm32_dfsdm_start_channel(adc);
 743        if (ret < 0)
 744                return ret;
 745
 746        ret = stm32_dfsdm_filter_configure(adc, adc->fl_id, trig);
 747        if (ret < 0)
 748                goto stop_channels;
 749
 750        ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
 751        if (ret < 0)
 752                goto filter_unconfigure;
 753
 754        return 0;
 755
 756filter_unconfigure:
 757        regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 758                           DFSDM_CR1_CFG_MASK, 0);
 759stop_channels:
 760        stm32_dfsdm_stop_channel(adc);
 761
 762        return ret;
 763}
 764
 765static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
 766{
 767        struct regmap *regmap = adc->dfsdm->regmap;
 768
 769        stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
 770
 771        regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 772                           DFSDM_CR1_CFG_MASK, 0);
 773
 774        stm32_dfsdm_stop_channel(adc);
 775}
 776
 777static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
 778                                     unsigned int val)
 779{
 780        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 781        unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
 782        unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
 783
 784        /*
 785         * DMA cyclic transfers are used, buffer is split into two periods.
 786         * There should be :
 787         * - always one buffer (period) DMA is working on
 788         * - one buffer (period) driver pushed to ASoC side.
 789         */
 790        watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
 791        adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
 792
 793        return 0;
 794}
 795
 796static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
 797{
 798        struct dma_tx_state state;
 799        enum dma_status status;
 800
 801        status = dmaengine_tx_status(adc->dma_chan,
 802                                     adc->dma_chan->cookie,
 803                                     &state);
 804        if (status == DMA_IN_PROGRESS) {
 805                /* Residue is size in bytes from end of buffer */
 806                unsigned int i = adc->buf_sz - state.residue;
 807                unsigned int size;
 808
 809                /* Return available bytes */
 810                if (i >= adc->bufi)
 811                        size = i - adc->bufi;
 812                else
 813                        size = adc->buf_sz + i - adc->bufi;
 814
 815                return size;
 816        }
 817
 818        return 0;
 819}
 820
 821static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
 822                                            s32 *buffer)
 823{
 824        struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 825        struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 826        unsigned int i = adc->nconv;
 827        s32 *ptr = buffer;
 828
 829        while (i--) {
 830                /* Mask 8 LSB that contains the channel ID */
 831                *ptr &= 0xFFFFFF00;
 832                /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
 833                if (*ptr > flo->max)
 834                        *ptr -= 1;
 835                /*
 836                 * Samples from filter are retrieved with 23 bits resolution
 837                 * or less. Shift left to align MSB on 24 bits.
 838                 */
 839                *ptr <<= flo->lshift;
 840
 841                ptr++;
 842        }
 843}
 844
 845static void stm32_dfsdm_dma_buffer_done(void *data)
 846{
 847        struct iio_dev *indio_dev = data;
 848        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 849        int available = stm32_dfsdm_adc_dma_residue(adc);
 850        size_t old_pos;
 851
 852        /*
 853         * FIXME: In Kernel interface does not support cyclic DMA buffer,and
 854         * offers only an interface to push data samples per samples.
 855         * For this reason IIO buffer interface is not used and interface is
 856         * bypassed using a private callback registered by ASoC.
 857         * This should be a temporary solution waiting a cyclic DMA engine
 858         * support in IIO.
 859         */
 860
 861        dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
 862                adc->bufi, available);
 863        old_pos = adc->bufi;
 864
 865        while (available >= indio_dev->scan_bytes) {
 866                s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
 867
 868                stm32_dfsdm_process_data(adc, buffer);
 869
 870                available -= indio_dev->scan_bytes;
 871                adc->bufi += indio_dev->scan_bytes;
 872                if (adc->bufi >= adc->buf_sz) {
 873                        if (adc->cb)
 874                                adc->cb(&adc->rx_buf[old_pos],
 875                                         adc->buf_sz - old_pos, adc->cb_priv);
 876                        adc->bufi = 0;
 877                        old_pos = 0;
 878                }
 879                /*
 880                 * In DMA mode the trigger services of IIO are not used
 881                 * (e.g. no call to iio_trigger_poll).
 882                 * Calling irq handler associated to the hardware trigger is not
 883                 * relevant as the conversions have already been done. Data
 884                 * transfers are performed directly in DMA callback instead.
 885                 * This implementation avoids to call trigger irq handler that
 886                 * may sleep, in an atomic context (DMA irq handler context).
 887                 */
 888                if (adc->dev_data->type == DFSDM_IIO)
 889                        iio_push_to_buffers(indio_dev, buffer);
 890        }
 891        if (adc->cb)
 892                adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
 893                        adc->cb_priv);
 894}
 895
 896static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
 897{
 898        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 899        /*
 900         * The DFSDM supports half-word transfers. However, for 16 bits record,
 901         * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
 902         * shift is required.
 903         */
 904        struct dma_slave_config config = {
 905                .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
 906                .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 907        };
 908        struct dma_async_tx_descriptor *desc;
 909        dma_cookie_t cookie;
 910        int ret;
 911
 912        if (!adc->dma_chan)
 913                return -EINVAL;
 914
 915        dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
 916                adc->buf_sz, adc->buf_sz / 2);
 917
 918        if (adc->nconv == 1 && !indio_dev->trig)
 919                config.src_addr += DFSDM_RDATAR(adc->fl_id);
 920        else
 921                config.src_addr += DFSDM_JDATAR(adc->fl_id);
 922        ret = dmaengine_slave_config(adc->dma_chan, &config);
 923        if (ret)
 924                return ret;
 925
 926        /* Prepare a DMA cyclic transaction */
 927        desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
 928                                         adc->dma_buf,
 929                                         adc->buf_sz, adc->buf_sz / 2,
 930                                         DMA_DEV_TO_MEM,
 931                                         DMA_PREP_INTERRUPT);
 932        if (!desc)
 933                return -EBUSY;
 934
 935        desc->callback = stm32_dfsdm_dma_buffer_done;
 936        desc->callback_param = indio_dev;
 937
 938        cookie = dmaengine_submit(desc);
 939        ret = dma_submit_error(cookie);
 940        if (ret)
 941                goto err_stop_dma;
 942
 943        /* Issue pending DMA requests */
 944        dma_async_issue_pending(adc->dma_chan);
 945
 946        if (adc->nconv == 1 && !indio_dev->trig) {
 947                /* Enable regular DMA transfer*/
 948                ret = regmap_update_bits(adc->dfsdm->regmap,
 949                                         DFSDM_CR1(adc->fl_id),
 950                                         DFSDM_CR1_RDMAEN_MASK,
 951                                         DFSDM_CR1_RDMAEN_MASK);
 952        } else {
 953                /* Enable injected DMA transfer*/
 954                ret = regmap_update_bits(adc->dfsdm->regmap,
 955                                         DFSDM_CR1(adc->fl_id),
 956                                         DFSDM_CR1_JDMAEN_MASK,
 957                                         DFSDM_CR1_JDMAEN_MASK);
 958        }
 959
 960        if (ret < 0)
 961                goto err_stop_dma;
 962
 963        return 0;
 964
 965err_stop_dma:
 966        dmaengine_terminate_all(adc->dma_chan);
 967
 968        return ret;
 969}
 970
 971static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
 972{
 973        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 974
 975        if (!adc->dma_chan)
 976                return;
 977
 978        regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
 979                           DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
 980        dmaengine_terminate_all(adc->dma_chan);
 981}
 982
 983static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
 984                                        const unsigned long *scan_mask)
 985{
 986        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 987
 988        adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
 989        adc->smask = *scan_mask;
 990
 991        dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
 992
 993        return 0;
 994}
 995
 996static int __stm32_dfsdm_postenable(struct iio_dev *indio_dev)
 997{
 998        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 999        int ret;
1000
1001        /* Reset adc buffer index */
1002        adc->bufi = 0;
1003
1004        if (adc->hwc) {
1005                ret = iio_hw_consumer_enable(adc->hwc);
1006                if (ret < 0)
1007                        return ret;
1008        }
1009
1010        ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1011        if (ret < 0)
1012                goto err_stop_hwc;
1013
1014        ret = stm32_dfsdm_adc_dma_start(indio_dev);
1015        if (ret) {
1016                dev_err(&indio_dev->dev, "Can't start DMA\n");
1017                goto stop_dfsdm;
1018        }
1019
1020        ret = stm32_dfsdm_start_conv(adc, indio_dev->trig);
1021        if (ret) {
1022                dev_err(&indio_dev->dev, "Can't start conversion\n");
1023                goto err_stop_dma;
1024        }
1025
1026        return 0;
1027
1028err_stop_dma:
1029        stm32_dfsdm_adc_dma_stop(indio_dev);
1030stop_dfsdm:
1031        stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1032err_stop_hwc:
1033        if (adc->hwc)
1034                iio_hw_consumer_disable(adc->hwc);
1035
1036        return ret;
1037}
1038
1039static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1040{
1041        int ret;
1042
1043        if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
1044                ret = iio_triggered_buffer_postenable(indio_dev);
1045                if (ret < 0)
1046                        return ret;
1047        }
1048
1049        ret = __stm32_dfsdm_postenable(indio_dev);
1050        if (ret < 0)
1051                goto err_predisable;
1052
1053        return 0;
1054
1055err_predisable:
1056        if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1057                iio_triggered_buffer_predisable(indio_dev);
1058
1059        return ret;
1060}
1061
1062static void __stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1063{
1064        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1065
1066        stm32_dfsdm_stop_conv(adc);
1067
1068        stm32_dfsdm_adc_dma_stop(indio_dev);
1069
1070        stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1071
1072        if (adc->hwc)
1073                iio_hw_consumer_disable(adc->hwc);
1074}
1075
1076static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1077{
1078        __stm32_dfsdm_predisable(indio_dev);
1079
1080        if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1081                iio_triggered_buffer_predisable(indio_dev);
1082
1083        return 0;
1084}
1085
1086static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1087        .postenable = &stm32_dfsdm_postenable,
1088        .predisable = &stm32_dfsdm_predisable,
1089};
1090
1091/**
1092 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1093 *                             DMA transfer period is achieved.
1094 *
1095 * @iio_dev: Handle to IIO device.
1096 * @cb: Pointer to callback function:
1097 *      - data: pointer to data buffer
1098 *      - size: size in byte of the data buffer
1099 *      - private: pointer to consumer private structure.
1100 * @private: Pointer to consumer private structure.
1101 */
1102int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1103                            int (*cb)(const void *data, size_t size,
1104                                      void *private),
1105                            void *private)
1106{
1107        struct stm32_dfsdm_adc *adc;
1108
1109        if (!iio_dev)
1110                return -EINVAL;
1111        adc = iio_priv(iio_dev);
1112
1113        adc->cb = cb;
1114        adc->cb_priv = private;
1115
1116        return 0;
1117}
1118EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1119
1120/**
1121 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1122 *
1123 * @iio_dev: Handle to IIO device.
1124 */
1125int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1126{
1127        struct stm32_dfsdm_adc *adc;
1128
1129        if (!iio_dev)
1130                return -EINVAL;
1131        adc = iio_priv(iio_dev);
1132
1133        adc->cb = NULL;
1134        adc->cb_priv = NULL;
1135
1136        return 0;
1137}
1138EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1139
1140static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1141                                   const struct iio_chan_spec *chan, int *res)
1142{
1143        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1144        long timeout;
1145        int ret;
1146
1147        reinit_completion(&adc->completion);
1148
1149        adc->buffer = res;
1150
1151        ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1152        if (ret < 0)
1153                return ret;
1154
1155        ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1156                                 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1157        if (ret < 0)
1158                goto stop_dfsdm;
1159
1160        adc->nconv = 1;
1161        adc->smask = BIT(chan->scan_index);
1162        ret = stm32_dfsdm_start_conv(adc, NULL);
1163        if (ret < 0) {
1164                regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1165                                   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1166                goto stop_dfsdm;
1167        }
1168
1169        timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1170                                                            DFSDM_TIMEOUT);
1171
1172        /* Mask IRQ for regular conversion achievement*/
1173        regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1174                           DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1175
1176        if (timeout == 0)
1177                ret = -ETIMEDOUT;
1178        else if (timeout < 0)
1179                ret = timeout;
1180        else
1181                ret = IIO_VAL_INT;
1182
1183        stm32_dfsdm_stop_conv(adc);
1184
1185        stm32_dfsdm_process_data(adc, res);
1186
1187stop_dfsdm:
1188        stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1189
1190        return ret;
1191}
1192
1193static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1194                                 struct iio_chan_spec const *chan,
1195                                 int val, int val2, long mask)
1196{
1197        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1198        struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1199        unsigned int spi_freq;
1200        int ret = -EINVAL;
1201
1202        switch (ch->src) {
1203        case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1204                spi_freq = adc->dfsdm->spi_master_freq;
1205                break;
1206        case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1207        case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1208                spi_freq = adc->dfsdm->spi_master_freq / 2;
1209                break;
1210        default:
1211                spi_freq = adc->spi_freq;
1212        }
1213
1214        switch (mask) {
1215        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1216                ret = iio_device_claim_direct_mode(indio_dev);
1217                if (ret)
1218                        return ret;
1219
1220                ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1221                if (!ret) {
1222                        dev_dbg(&indio_dev->dev,
1223                                "Sampling rate changed from (%u) to (%u)\n",
1224                                adc->sample_freq, spi_freq / val);
1225                        adc->oversamp = val;
1226                        adc->sample_freq = spi_freq / val;
1227                }
1228                iio_device_release_direct_mode(indio_dev);
1229                return ret;
1230
1231        case IIO_CHAN_INFO_SAMP_FREQ:
1232                if (!val)
1233                        return -EINVAL;
1234
1235                ret = iio_device_claim_direct_mode(indio_dev);
1236                if (ret)
1237                        return ret;
1238
1239                ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1240                iio_device_release_direct_mode(indio_dev);
1241                return ret;
1242        }
1243
1244        return -EINVAL;
1245}
1246
1247static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1248                                struct iio_chan_spec const *chan, int *val,
1249                                int *val2, long mask)
1250{
1251        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1252        int ret;
1253
1254        switch (mask) {
1255        case IIO_CHAN_INFO_RAW:
1256                ret = iio_device_claim_direct_mode(indio_dev);
1257                if (ret)
1258                        return ret;
1259                ret = iio_hw_consumer_enable(adc->hwc);
1260                if (ret < 0) {
1261                        dev_err(&indio_dev->dev,
1262                                "%s: IIO enable failed (channel %d)\n",
1263                                __func__, chan->channel);
1264                        iio_device_release_direct_mode(indio_dev);
1265                        return ret;
1266                }
1267                ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1268                iio_hw_consumer_disable(adc->hwc);
1269                if (ret < 0) {
1270                        dev_err(&indio_dev->dev,
1271                                "%s: Conversion failed (channel %d)\n",
1272                                __func__, chan->channel);
1273                        iio_device_release_direct_mode(indio_dev);
1274                        return ret;
1275                }
1276                iio_device_release_direct_mode(indio_dev);
1277                return IIO_VAL_INT;
1278
1279        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1280                *val = adc->oversamp;
1281
1282                return IIO_VAL_INT;
1283
1284        case IIO_CHAN_INFO_SAMP_FREQ:
1285                *val = adc->sample_freq;
1286
1287                return IIO_VAL_INT;
1288        }
1289
1290        return -EINVAL;
1291}
1292
1293static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1294                                        struct iio_trigger *trig)
1295{
1296        return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1297}
1298
1299static const struct iio_info stm32_dfsdm_info_audio = {
1300        .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1301        .read_raw = stm32_dfsdm_read_raw,
1302        .write_raw = stm32_dfsdm_write_raw,
1303        .update_scan_mode = stm32_dfsdm_update_scan_mode,
1304};
1305
1306static const struct iio_info stm32_dfsdm_info_adc = {
1307        .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1308        .read_raw = stm32_dfsdm_read_raw,
1309        .write_raw = stm32_dfsdm_write_raw,
1310        .update_scan_mode = stm32_dfsdm_update_scan_mode,
1311        .validate_trigger = stm32_dfsdm_validate_trigger,
1312};
1313
1314static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1315{
1316        struct stm32_dfsdm_adc *adc = arg;
1317        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1318        struct regmap *regmap = adc->dfsdm->regmap;
1319        unsigned int status, int_en;
1320
1321        regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1322        regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1323
1324        if (status & DFSDM_ISR_REOCF_MASK) {
1325                /* Read the data register clean the IRQ status */
1326                regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1327                complete(&adc->completion);
1328        }
1329
1330        if (status & DFSDM_ISR_ROVRF_MASK) {
1331                if (int_en & DFSDM_CR2_ROVRIE_MASK)
1332                        dev_warn(&indio_dev->dev, "Overrun detected\n");
1333                regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1334                                   DFSDM_ICR_CLRROVRF_MASK,
1335                                   DFSDM_ICR_CLRROVRF_MASK);
1336        }
1337
1338        return IRQ_HANDLED;
1339}
1340
1341/*
1342 * Define external info for SPI Frequency and audio sampling rate that can be
1343 * configured by ASoC driver through consumer.h API
1344 */
1345static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1346        /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1347        {
1348                .name = "spi_clk_freq",
1349                .shared = IIO_SHARED_BY_TYPE,
1350                .read = dfsdm_adc_audio_get_spiclk,
1351                .write = dfsdm_adc_audio_set_spiclk,
1352        },
1353        {},
1354};
1355
1356static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1357{
1358        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1359
1360        if (adc->dma_chan) {
1361                dma_free_coherent(adc->dma_chan->device->dev,
1362                                  DFSDM_DMA_BUFFER_SIZE,
1363                                  adc->rx_buf, adc->dma_buf);
1364                dma_release_channel(adc->dma_chan);
1365        }
1366}
1367
1368static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
1369{
1370        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1371
1372        adc->dma_chan = dma_request_chan(&indio_dev->dev, "rx");
1373        if (IS_ERR(adc->dma_chan)) {
1374                int ret = PTR_ERR(adc->dma_chan);
1375
1376                adc->dma_chan = NULL;
1377                return ret;
1378        }
1379
1380        adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1381                                         DFSDM_DMA_BUFFER_SIZE,
1382                                         &adc->dma_buf, GFP_KERNEL);
1383        if (!adc->rx_buf) {
1384                dma_release_channel(adc->dma_chan);
1385                return -ENOMEM;
1386        }
1387
1388        indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1389        indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1390
1391        return 0;
1392}
1393
1394static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1395                                         struct iio_chan_spec *ch)
1396{
1397        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1398        int ret;
1399
1400        ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1401        if (ret < 0)
1402                return ret;
1403
1404        ch->type = IIO_VOLTAGE;
1405        ch->indexed = 1;
1406
1407        /*
1408         * IIO_CHAN_INFO_RAW: used to compute regular conversion
1409         * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1410         */
1411        ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1412        ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1413                                        BIT(IIO_CHAN_INFO_SAMP_FREQ);
1414
1415        if (adc->dev_data->type == DFSDM_AUDIO) {
1416                ch->ext_info = dfsdm_adc_audio_ext_info;
1417        } else {
1418                ch->scan_type.shift = 8;
1419        }
1420        ch->scan_type.sign = 's';
1421        ch->scan_type.realbits = 24;
1422        ch->scan_type.storagebits = 32;
1423
1424        return stm32_dfsdm_chan_configure(adc->dfsdm,
1425                                          &adc->dfsdm->ch_list[ch->channel]);
1426}
1427
1428static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
1429{
1430        struct iio_chan_spec *ch;
1431        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1432        struct stm32_dfsdm_channel *d_ch;
1433        int ret;
1434
1435        ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1436        if (!ch)
1437                return -ENOMEM;
1438
1439        ch->scan_index = 0;
1440
1441        ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1442        if (ret < 0) {
1443                dev_err(&indio_dev->dev, "Channels init failed\n");
1444                return ret;
1445        }
1446        ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1447
1448        d_ch = &adc->dfsdm->ch_list[ch->channel];
1449        if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1450                adc->spi_freq = adc->dfsdm->spi_master_freq;
1451
1452        indio_dev->num_channels = 1;
1453        indio_dev->channels = ch;
1454
1455        return stm32_dfsdm_dma_request(indio_dev);
1456}
1457
1458static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1459{
1460        struct iio_chan_spec *ch;
1461        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1462        int num_ch;
1463        int ret, chan_idx;
1464
1465        adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1466        ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1467        if (ret < 0)
1468                return ret;
1469
1470        num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1471                                             "st,adc-channels");
1472        if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1473                dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1474                return num_ch < 0 ? num_ch : -EINVAL;
1475        }
1476
1477        /* Bind to SD modulator IIO device */
1478        adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1479        if (IS_ERR(adc->hwc))
1480                return -EPROBE_DEFER;
1481
1482        ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1483                          GFP_KERNEL);
1484        if (!ch)
1485                return -ENOMEM;
1486
1487        for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1488                ch[chan_idx].scan_index = chan_idx;
1489                ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1490                if (ret < 0) {
1491                        dev_err(&indio_dev->dev, "Channels init failed\n");
1492                        return ret;
1493                }
1494        }
1495
1496        indio_dev->num_channels = num_ch;
1497        indio_dev->channels = ch;
1498
1499        init_completion(&adc->completion);
1500
1501        /* Optionally request DMA */
1502        ret = stm32_dfsdm_dma_request(indio_dev);
1503        if (ret) {
1504                if (ret != -ENODEV) {
1505                        if (ret != -EPROBE_DEFER)
1506                                dev_err(&indio_dev->dev,
1507                                        "DMA channel request failed with %d\n",
1508                                        ret);
1509                        return ret;
1510                }
1511
1512                dev_dbg(&indio_dev->dev, "No DMA support\n");
1513                return 0;
1514        }
1515
1516        ret = iio_triggered_buffer_setup(indio_dev,
1517                                         &iio_pollfunc_store_time, NULL,
1518                                         &stm32_dfsdm_buffer_setup_ops);
1519        if (ret) {
1520                stm32_dfsdm_dma_release(indio_dev);
1521                dev_err(&indio_dev->dev, "buffer setup failed\n");
1522                return ret;
1523        }
1524
1525        /* lptimer/timer hardware triggers */
1526        indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1527
1528        return 0;
1529}
1530
1531static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1532        .type = DFSDM_IIO,
1533        .init = stm32_dfsdm_adc_init,
1534};
1535
1536static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1537        .type = DFSDM_AUDIO,
1538        .init = stm32_dfsdm_audio_init,
1539};
1540
1541static const struct of_device_id stm32_dfsdm_adc_match[] = {
1542        {
1543                .compatible = "st,stm32-dfsdm-adc",
1544                .data = &stm32h7_dfsdm_adc_data,
1545        },
1546        {
1547                .compatible = "st,stm32-dfsdm-dmic",
1548                .data = &stm32h7_dfsdm_audio_data,
1549        },
1550        {}
1551};
1552
1553static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1554{
1555        struct device *dev = &pdev->dev;
1556        struct stm32_dfsdm_adc *adc;
1557        struct device_node *np = dev->of_node;
1558        const struct stm32_dfsdm_dev_data *dev_data;
1559        struct iio_dev *iio;
1560        char *name;
1561        int ret, irq, val;
1562
1563        dev_data = of_device_get_match_data(dev);
1564        iio = devm_iio_device_alloc(dev, sizeof(*adc));
1565        if (!iio) {
1566                dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1567                return -ENOMEM;
1568        }
1569
1570        adc = iio_priv(iio);
1571        adc->dfsdm = dev_get_drvdata(dev->parent);
1572
1573        iio->dev.parent = dev;
1574        iio->dev.of_node = np;
1575        iio->modes = INDIO_DIRECT_MODE;
1576
1577        platform_set_drvdata(pdev, adc);
1578
1579        ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1580        if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1581                dev_err(dev, "Missing or bad reg property\n");
1582                return -EINVAL;
1583        }
1584
1585        name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1586        if (!name)
1587                return -ENOMEM;
1588        if (dev_data->type == DFSDM_AUDIO) {
1589                iio->info = &stm32_dfsdm_info_audio;
1590                snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1591        } else {
1592                iio->info = &stm32_dfsdm_info_adc;
1593                snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1594        }
1595        iio->name = name;
1596
1597        /*
1598         * In a first step IRQs generated for channels are not treated.
1599         * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1600         */
1601        irq = platform_get_irq(pdev, 0);
1602        if (irq < 0)
1603                return irq;
1604
1605        ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1606                               0, pdev->name, adc);
1607        if (ret < 0) {
1608                dev_err(dev, "Failed to request IRQ\n");
1609                return ret;
1610        }
1611
1612        ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1613        if (ret < 0) {
1614                dev_err(dev, "Failed to set filter order\n");
1615                return ret;
1616        }
1617
1618        adc->dfsdm->fl_list[adc->fl_id].ford = val;
1619
1620        ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1621        if (!ret)
1622                adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1623
1624        adc->dev_data = dev_data;
1625        ret = dev_data->init(iio);
1626        if (ret < 0)
1627                return ret;
1628
1629        ret = iio_device_register(iio);
1630        if (ret < 0)
1631                goto err_cleanup;
1632
1633        if (dev_data->type == DFSDM_AUDIO) {
1634                ret = of_platform_populate(np, NULL, NULL, dev);
1635                if (ret < 0) {
1636                        dev_err(dev, "Failed to find an audio DAI\n");
1637                        goto err_unregister;
1638                }
1639        }
1640
1641        return 0;
1642
1643err_unregister:
1644        iio_device_unregister(iio);
1645err_cleanup:
1646        stm32_dfsdm_dma_release(iio);
1647
1648        return ret;
1649}
1650
1651static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1652{
1653        struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1654        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1655
1656        if (adc->dev_data->type == DFSDM_AUDIO)
1657                of_platform_depopulate(&pdev->dev);
1658        iio_device_unregister(indio_dev);
1659        stm32_dfsdm_dma_release(indio_dev);
1660
1661        return 0;
1662}
1663
1664static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1665{
1666        struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1667        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1668
1669        if (iio_buffer_enabled(indio_dev))
1670                __stm32_dfsdm_predisable(indio_dev);
1671
1672        return 0;
1673}
1674
1675static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1676{
1677        struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1678        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1679        const struct iio_chan_spec *chan;
1680        struct stm32_dfsdm_channel *ch;
1681        int i, ret;
1682
1683        /* restore channels configuration */
1684        for (i = 0; i < indio_dev->num_channels; i++) {
1685                chan = indio_dev->channels + i;
1686                ch = &adc->dfsdm->ch_list[chan->channel];
1687                ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1688                if (ret)
1689                        return ret;
1690        }
1691
1692        if (iio_buffer_enabled(indio_dev))
1693                __stm32_dfsdm_postenable(indio_dev);
1694
1695        return 0;
1696}
1697
1698static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1699                         stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
1700
1701static struct platform_driver stm32_dfsdm_adc_driver = {
1702        .driver = {
1703                .name = "stm32-dfsdm-adc",
1704                .of_match_table = stm32_dfsdm_adc_match,
1705                .pm = &stm32_dfsdm_adc_pm_ops,
1706        },
1707        .probe = stm32_dfsdm_adc_probe,
1708        .remove = stm32_dfsdm_adc_remove,
1709};
1710module_platform_driver(stm32_dfsdm_adc_driver);
1711
1712MODULE_DESCRIPTION("STM32 sigma delta ADC");
1713MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1714MODULE_LICENSE("GPL v2");
1715