linux/drivers/infiniband/ulp/srpt/ib_srpt.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
   3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/err.h>
  39#include <linux/ctype.h>
  40#include <linux/kthread.h>
  41#include <linux/string.h>
  42#include <linux/delay.h>
  43#include <linux/atomic.h>
  44#include <linux/inet.h>
  45#include <rdma/ib_cache.h>
  46#include <scsi/scsi_proto.h>
  47#include <scsi/scsi_tcq.h>
  48#include <target/target_core_base.h>
  49#include <target/target_core_fabric.h>
  50#include "ib_srpt.h"
  51
  52/* Name of this kernel module. */
  53#define DRV_NAME                "ib_srpt"
  54
  55#define SRPT_ID_STRING  "Linux SRP target"
  56
  57#undef pr_fmt
  58#define pr_fmt(fmt) DRV_NAME " " fmt
  59
  60MODULE_AUTHOR("Vu Pham and Bart Van Assche");
  61MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
  62MODULE_LICENSE("Dual BSD/GPL");
  63
  64/*
  65 * Global Variables
  66 */
  67
  68static u64 srpt_service_guid;
  69static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
  70static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
  71
  72static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
  73module_param(srp_max_req_size, int, 0444);
  74MODULE_PARM_DESC(srp_max_req_size,
  75                 "Maximum size of SRP request messages in bytes.");
  76
  77static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
  78module_param(srpt_srq_size, int, 0444);
  79MODULE_PARM_DESC(srpt_srq_size,
  80                 "Shared receive queue (SRQ) size.");
  81
  82static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
  83{
  84        return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
  85}
  86module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
  87                  0444);
  88MODULE_PARM_DESC(srpt_service_guid,
  89                 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
  90
  91static struct ib_client srpt_client;
  92/* Protects both rdma_cm_port and rdma_cm_id. */
  93static DEFINE_MUTEX(rdma_cm_mutex);
  94/* Port number RDMA/CM will bind to. */
  95static u16 rdma_cm_port;
  96static struct rdma_cm_id *rdma_cm_id;
  97static void srpt_release_cmd(struct se_cmd *se_cmd);
  98static void srpt_free_ch(struct kref *kref);
  99static int srpt_queue_status(struct se_cmd *cmd);
 100static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 101static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
 102static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
 103
 104/*
 105 * The only allowed channel state changes are those that change the channel
 106 * state into a state with a higher numerical value. Hence the new > prev test.
 107 */
 108static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
 109{
 110        unsigned long flags;
 111        enum rdma_ch_state prev;
 112        bool changed = false;
 113
 114        spin_lock_irqsave(&ch->spinlock, flags);
 115        prev = ch->state;
 116        if (new > prev) {
 117                ch->state = new;
 118                changed = true;
 119        }
 120        spin_unlock_irqrestore(&ch->spinlock, flags);
 121
 122        return changed;
 123}
 124
 125/**
 126 * srpt_event_handler - asynchronous IB event callback function
 127 * @handler: IB event handler registered by ib_register_event_handler().
 128 * @event: Description of the event that occurred.
 129 *
 130 * Callback function called by the InfiniBand core when an asynchronous IB
 131 * event occurs. This callback may occur in interrupt context. See also
 132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 133 * Architecture Specification.
 134 */
 135static void srpt_event_handler(struct ib_event_handler *handler,
 136                               struct ib_event *event)
 137{
 138        struct srpt_device *sdev;
 139        struct srpt_port *sport;
 140        u8 port_num;
 141
 142        sdev = ib_get_client_data(event->device, &srpt_client);
 143        if (!sdev || sdev->device != event->device)
 144                return;
 145
 146        pr_debug("ASYNC event= %d on device= %s\n", event->event,
 147                 dev_name(&sdev->device->dev));
 148
 149        switch (event->event) {
 150        case IB_EVENT_PORT_ERR:
 151                port_num = event->element.port_num - 1;
 152                if (port_num < sdev->device->phys_port_cnt) {
 153                        sport = &sdev->port[port_num];
 154                        sport->lid = 0;
 155                        sport->sm_lid = 0;
 156                } else {
 157                        WARN(true, "event %d: port_num %d out of range 1..%d\n",
 158                             event->event, port_num + 1,
 159                             sdev->device->phys_port_cnt);
 160                }
 161                break;
 162        case IB_EVENT_PORT_ACTIVE:
 163        case IB_EVENT_LID_CHANGE:
 164        case IB_EVENT_PKEY_CHANGE:
 165        case IB_EVENT_SM_CHANGE:
 166        case IB_EVENT_CLIENT_REREGISTER:
 167        case IB_EVENT_GID_CHANGE:
 168                /* Refresh port data asynchronously. */
 169                port_num = event->element.port_num - 1;
 170                if (port_num < sdev->device->phys_port_cnt) {
 171                        sport = &sdev->port[port_num];
 172                        if (!sport->lid && !sport->sm_lid)
 173                                schedule_work(&sport->work);
 174                } else {
 175                        WARN(true, "event %d: port_num %d out of range 1..%d\n",
 176                             event->event, port_num + 1,
 177                             sdev->device->phys_port_cnt);
 178                }
 179                break;
 180        default:
 181                pr_err("received unrecognized IB event %d\n", event->event);
 182                break;
 183        }
 184}
 185
 186/**
 187 * srpt_srq_event - SRQ event callback function
 188 * @event: Description of the event that occurred.
 189 * @ctx: Context pointer specified at SRQ creation time.
 190 */
 191static void srpt_srq_event(struct ib_event *event, void *ctx)
 192{
 193        pr_debug("SRQ event %d\n", event->event);
 194}
 195
 196static const char *get_ch_state_name(enum rdma_ch_state s)
 197{
 198        switch (s) {
 199        case CH_CONNECTING:
 200                return "connecting";
 201        case CH_LIVE:
 202                return "live";
 203        case CH_DISCONNECTING:
 204                return "disconnecting";
 205        case CH_DRAINING:
 206                return "draining";
 207        case CH_DISCONNECTED:
 208                return "disconnected";
 209        }
 210        return "???";
 211}
 212
 213/**
 214 * srpt_qp_event - QP event callback function
 215 * @event: Description of the event that occurred.
 216 * @ch: SRPT RDMA channel.
 217 */
 218static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
 219{
 220        pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n",
 221                 event->event, ch, ch->sess_name, ch->state);
 222
 223        switch (event->event) {
 224        case IB_EVENT_COMM_EST:
 225                if (ch->using_rdma_cm)
 226                        rdma_notify(ch->rdma_cm.cm_id, event->event);
 227                else
 228                        ib_cm_notify(ch->ib_cm.cm_id, event->event);
 229                break;
 230        case IB_EVENT_QP_LAST_WQE_REACHED:
 231                pr_debug("%s-%d, state %s: received Last WQE event.\n",
 232                         ch->sess_name, ch->qp->qp_num,
 233                         get_ch_state_name(ch->state));
 234                break;
 235        default:
 236                pr_err("received unrecognized IB QP event %d\n", event->event);
 237                break;
 238        }
 239}
 240
 241/**
 242 * srpt_set_ioc - initialize a IOUnitInfo structure
 243 * @c_list: controller list.
 244 * @slot: one-based slot number.
 245 * @value: four-bit value.
 246 *
 247 * Copies the lowest four bits of value in element slot of the array of four
 248 * bit elements called c_list (controller list). The index slot is one-based.
 249 */
 250static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
 251{
 252        u16 id;
 253        u8 tmp;
 254
 255        id = (slot - 1) / 2;
 256        if (slot & 0x1) {
 257                tmp = c_list[id] & 0xf;
 258                c_list[id] = (value << 4) | tmp;
 259        } else {
 260                tmp = c_list[id] & 0xf0;
 261                c_list[id] = (value & 0xf) | tmp;
 262        }
 263}
 264
 265/**
 266 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 267 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
 268 *
 269 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 270 * Specification.
 271 */
 272static void srpt_get_class_port_info(struct ib_dm_mad *mad)
 273{
 274        struct ib_class_port_info *cif;
 275
 276        cif = (struct ib_class_port_info *)mad->data;
 277        memset(cif, 0, sizeof(*cif));
 278        cif->base_version = 1;
 279        cif->class_version = 1;
 280
 281        ib_set_cpi_resp_time(cif, 20);
 282        mad->mad_hdr.status = 0;
 283}
 284
 285/**
 286 * srpt_get_iou - write IOUnitInfo to a management datagram
 287 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
 288 *
 289 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 290 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 291 */
 292static void srpt_get_iou(struct ib_dm_mad *mad)
 293{
 294        struct ib_dm_iou_info *ioui;
 295        u8 slot;
 296        int i;
 297
 298        ioui = (struct ib_dm_iou_info *)mad->data;
 299        ioui->change_id = cpu_to_be16(1);
 300        ioui->max_controllers = 16;
 301
 302        /* set present for slot 1 and empty for the rest */
 303        srpt_set_ioc(ioui->controller_list, 1, 1);
 304        for (i = 1, slot = 2; i < 16; i++, slot++)
 305                srpt_set_ioc(ioui->controller_list, slot, 0);
 306
 307        mad->mad_hdr.status = 0;
 308}
 309
 310/**
 311 * srpt_get_ioc - write IOControllerprofile to a management datagram
 312 * @sport: HCA port through which the MAD has been received.
 313 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 314 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
 315 *
 316 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 317 * Architecture Specification. See also section B.7, table B.7 in the SRP
 318 * r16a document.
 319 */
 320static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
 321                         struct ib_dm_mad *mad)
 322{
 323        struct srpt_device *sdev = sport->sdev;
 324        struct ib_dm_ioc_profile *iocp;
 325        int send_queue_depth;
 326
 327        iocp = (struct ib_dm_ioc_profile *)mad->data;
 328
 329        if (!slot || slot > 16) {
 330                mad->mad_hdr.status
 331                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 332                return;
 333        }
 334
 335        if (slot > 2) {
 336                mad->mad_hdr.status
 337                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 338                return;
 339        }
 340
 341        if (sdev->use_srq)
 342                send_queue_depth = sdev->srq_size;
 343        else
 344                send_queue_depth = min(MAX_SRPT_RQ_SIZE,
 345                                       sdev->device->attrs.max_qp_wr);
 346
 347        memset(iocp, 0, sizeof(*iocp));
 348        strcpy(iocp->id_string, SRPT_ID_STRING);
 349        iocp->guid = cpu_to_be64(srpt_service_guid);
 350        iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
 351        iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
 352        iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
 353        iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
 354        iocp->subsys_device_id = 0x0;
 355        iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
 356        iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
 357        iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
 358        iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
 359        iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
 360        iocp->rdma_read_depth = 4;
 361        iocp->send_size = cpu_to_be32(srp_max_req_size);
 362        iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
 363                                          1U << 24));
 364        iocp->num_svc_entries = 1;
 365        iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
 366                SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
 367
 368        mad->mad_hdr.status = 0;
 369}
 370
 371/**
 372 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 373 * @ioc_guid: I/O controller GUID to use in reply.
 374 * @slot: I/O controller number.
 375 * @hi: End of the range of service entries to be specified in the reply.
 376 * @lo: Start of the range of service entries to be specified in the reply..
 377 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
 378 *
 379 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 380 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 381 */
 382static void srpt_get_svc_entries(u64 ioc_guid,
 383                                 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
 384{
 385        struct ib_dm_svc_entries *svc_entries;
 386
 387        WARN_ON(!ioc_guid);
 388
 389        if (!slot || slot > 16) {
 390                mad->mad_hdr.status
 391                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 392                return;
 393        }
 394
 395        if (slot > 2 || lo > hi || hi > 1) {
 396                mad->mad_hdr.status
 397                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 398                return;
 399        }
 400
 401        svc_entries = (struct ib_dm_svc_entries *)mad->data;
 402        memset(svc_entries, 0, sizeof(*svc_entries));
 403        svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
 404        snprintf(svc_entries->service_entries[0].name,
 405                 sizeof(svc_entries->service_entries[0].name),
 406                 "%s%016llx",
 407                 SRP_SERVICE_NAME_PREFIX,
 408                 ioc_guid);
 409
 410        mad->mad_hdr.status = 0;
 411}
 412
 413/**
 414 * srpt_mgmt_method_get - process a received management datagram
 415 * @sp:      HCA port through which the MAD has been received.
 416 * @rq_mad:  received MAD.
 417 * @rsp_mad: response MAD.
 418 */
 419static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
 420                                 struct ib_dm_mad *rsp_mad)
 421{
 422        u16 attr_id;
 423        u32 slot;
 424        u8 hi, lo;
 425
 426        attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
 427        switch (attr_id) {
 428        case DM_ATTR_CLASS_PORT_INFO:
 429                srpt_get_class_port_info(rsp_mad);
 430                break;
 431        case DM_ATTR_IOU_INFO:
 432                srpt_get_iou(rsp_mad);
 433                break;
 434        case DM_ATTR_IOC_PROFILE:
 435                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 436                srpt_get_ioc(sp, slot, rsp_mad);
 437                break;
 438        case DM_ATTR_SVC_ENTRIES:
 439                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 440                hi = (u8) ((slot >> 8) & 0xff);
 441                lo = (u8) (slot & 0xff);
 442                slot = (u16) ((slot >> 16) & 0xffff);
 443                srpt_get_svc_entries(srpt_service_guid,
 444                                     slot, hi, lo, rsp_mad);
 445                break;
 446        default:
 447                rsp_mad->mad_hdr.status =
 448                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 449                break;
 450        }
 451}
 452
 453/**
 454 * srpt_mad_send_handler - MAD send completion callback
 455 * @mad_agent: Return value of ib_register_mad_agent().
 456 * @mad_wc: Work completion reporting that the MAD has been sent.
 457 */
 458static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
 459                                  struct ib_mad_send_wc *mad_wc)
 460{
 461        rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
 462        ib_free_send_mad(mad_wc->send_buf);
 463}
 464
 465/**
 466 * srpt_mad_recv_handler - MAD reception callback function
 467 * @mad_agent: Return value of ib_register_mad_agent().
 468 * @send_buf: Not used.
 469 * @mad_wc: Work completion reporting that a MAD has been received.
 470 */
 471static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
 472                                  struct ib_mad_send_buf *send_buf,
 473                                  struct ib_mad_recv_wc *mad_wc)
 474{
 475        struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
 476        struct ib_ah *ah;
 477        struct ib_mad_send_buf *rsp;
 478        struct ib_dm_mad *dm_mad;
 479
 480        if (!mad_wc || !mad_wc->recv_buf.mad)
 481                return;
 482
 483        ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
 484                                  mad_wc->recv_buf.grh, mad_agent->port_num);
 485        if (IS_ERR(ah))
 486                goto err;
 487
 488        BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
 489
 490        rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
 491                                 mad_wc->wc->pkey_index, 0,
 492                                 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
 493                                 GFP_KERNEL,
 494                                 IB_MGMT_BASE_VERSION);
 495        if (IS_ERR(rsp))
 496                goto err_rsp;
 497
 498        rsp->ah = ah;
 499
 500        dm_mad = rsp->mad;
 501        memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
 502        dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
 503        dm_mad->mad_hdr.status = 0;
 504
 505        switch (mad_wc->recv_buf.mad->mad_hdr.method) {
 506        case IB_MGMT_METHOD_GET:
 507                srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
 508                break;
 509        case IB_MGMT_METHOD_SET:
 510                dm_mad->mad_hdr.status =
 511                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 512                break;
 513        default:
 514                dm_mad->mad_hdr.status =
 515                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
 516                break;
 517        }
 518
 519        if (!ib_post_send_mad(rsp, NULL)) {
 520                ib_free_recv_mad(mad_wc);
 521                /* will destroy_ah & free_send_mad in send completion */
 522                return;
 523        }
 524
 525        ib_free_send_mad(rsp);
 526
 527err_rsp:
 528        rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
 529err:
 530        ib_free_recv_mad(mad_wc);
 531}
 532
 533static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
 534{
 535        const __be16 *g = (const __be16 *)guid;
 536
 537        return snprintf(buf, size, "%04x:%04x:%04x:%04x",
 538                        be16_to_cpu(g[0]), be16_to_cpu(g[1]),
 539                        be16_to_cpu(g[2]), be16_to_cpu(g[3]));
 540}
 541
 542/**
 543 * srpt_refresh_port - configure a HCA port
 544 * @sport: SRPT HCA port.
 545 *
 546 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 547 * lid and gid values, and register a callback function for processing MADs
 548 * on the specified port.
 549 *
 550 * Note: It is safe to call this function more than once for the same port.
 551 */
 552static int srpt_refresh_port(struct srpt_port *sport)
 553{
 554        struct ib_mad_reg_req reg_req;
 555        struct ib_port_modify port_modify;
 556        struct ib_port_attr port_attr;
 557        int ret;
 558
 559        ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
 560        if (ret)
 561                return ret;
 562
 563        sport->sm_lid = port_attr.sm_lid;
 564        sport->lid = port_attr.lid;
 565
 566        ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
 567        if (ret)
 568                return ret;
 569
 570        sport->port_guid_id.wwn.priv = sport;
 571        srpt_format_guid(sport->port_guid_id.name,
 572                         sizeof(sport->port_guid_id.name),
 573                         &sport->gid.global.interface_id);
 574        sport->port_gid_id.wwn.priv = sport;
 575        snprintf(sport->port_gid_id.name, sizeof(sport->port_gid_id.name),
 576                 "0x%016llx%016llx",
 577                 be64_to_cpu(sport->gid.global.subnet_prefix),
 578                 be64_to_cpu(sport->gid.global.interface_id));
 579
 580        if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
 581                return 0;
 582
 583        memset(&port_modify, 0, sizeof(port_modify));
 584        port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 585        port_modify.clr_port_cap_mask = 0;
 586
 587        ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 588        if (ret) {
 589                pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
 590                        dev_name(&sport->sdev->device->dev), sport->port, ret);
 591                return 0;
 592        }
 593
 594        if (!sport->mad_agent) {
 595                memset(&reg_req, 0, sizeof(reg_req));
 596                reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
 597                reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
 598                set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
 599                set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
 600
 601                sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
 602                                                         sport->port,
 603                                                         IB_QPT_GSI,
 604                                                         &reg_req, 0,
 605                                                         srpt_mad_send_handler,
 606                                                         srpt_mad_recv_handler,
 607                                                         sport, 0);
 608                if (IS_ERR(sport->mad_agent)) {
 609                        pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
 610                               dev_name(&sport->sdev->device->dev), sport->port,
 611                               PTR_ERR(sport->mad_agent));
 612                        sport->mad_agent = NULL;
 613                }
 614        }
 615
 616        return 0;
 617}
 618
 619/**
 620 * srpt_unregister_mad_agent - unregister MAD callback functions
 621 * @sdev: SRPT HCA pointer.
 622 *
 623 * Note: It is safe to call this function more than once for the same device.
 624 */
 625static void srpt_unregister_mad_agent(struct srpt_device *sdev)
 626{
 627        struct ib_port_modify port_modify = {
 628                .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
 629        };
 630        struct srpt_port *sport;
 631        int i;
 632
 633        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
 634                sport = &sdev->port[i - 1];
 635                WARN_ON(sport->port != i);
 636                if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
 637                        pr_err("disabling MAD processing failed.\n");
 638                if (sport->mad_agent) {
 639                        ib_unregister_mad_agent(sport->mad_agent);
 640                        sport->mad_agent = NULL;
 641                }
 642        }
 643}
 644
 645/**
 646 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 647 * @sdev: SRPT HCA pointer.
 648 * @ioctx_size: I/O context size.
 649 * @buf_cache: I/O buffer cache.
 650 * @dir: DMA data direction.
 651 */
 652static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
 653                                           int ioctx_size,
 654                                           struct kmem_cache *buf_cache,
 655                                           enum dma_data_direction dir)
 656{
 657        struct srpt_ioctx *ioctx;
 658
 659        ioctx = kzalloc(ioctx_size, GFP_KERNEL);
 660        if (!ioctx)
 661                goto err;
 662
 663        ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
 664        if (!ioctx->buf)
 665                goto err_free_ioctx;
 666
 667        ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
 668                                       kmem_cache_size(buf_cache), dir);
 669        if (ib_dma_mapping_error(sdev->device, ioctx->dma))
 670                goto err_free_buf;
 671
 672        return ioctx;
 673
 674err_free_buf:
 675        kmem_cache_free(buf_cache, ioctx->buf);
 676err_free_ioctx:
 677        kfree(ioctx);
 678err:
 679        return NULL;
 680}
 681
 682/**
 683 * srpt_free_ioctx - free a SRPT I/O context structure
 684 * @sdev: SRPT HCA pointer.
 685 * @ioctx: I/O context pointer.
 686 * @buf_cache: I/O buffer cache.
 687 * @dir: DMA data direction.
 688 */
 689static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
 690                            struct kmem_cache *buf_cache,
 691                            enum dma_data_direction dir)
 692{
 693        if (!ioctx)
 694                return;
 695
 696        ib_dma_unmap_single(sdev->device, ioctx->dma,
 697                            kmem_cache_size(buf_cache), dir);
 698        kmem_cache_free(buf_cache, ioctx->buf);
 699        kfree(ioctx);
 700}
 701
 702/**
 703 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
 704 * @sdev:       Device to allocate the I/O context ring for.
 705 * @ring_size:  Number of elements in the I/O context ring.
 706 * @ioctx_size: I/O context size.
 707 * @buf_cache:  I/O buffer cache.
 708 * @alignment_offset: Offset in each ring buffer at which the SRP information
 709 *              unit starts.
 710 * @dir:        DMA data direction.
 711 */
 712static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
 713                                int ring_size, int ioctx_size,
 714                                struct kmem_cache *buf_cache,
 715                                int alignment_offset,
 716                                enum dma_data_direction dir)
 717{
 718        struct srpt_ioctx **ring;
 719        int i;
 720
 721        WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
 722                ioctx_size != sizeof(struct srpt_send_ioctx));
 723
 724        ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
 725        if (!ring)
 726                goto out;
 727        for (i = 0; i < ring_size; ++i) {
 728                ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
 729                if (!ring[i])
 730                        goto err;
 731                ring[i]->index = i;
 732                ring[i]->offset = alignment_offset;
 733        }
 734        goto out;
 735
 736err:
 737        while (--i >= 0)
 738                srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
 739        kvfree(ring);
 740        ring = NULL;
 741out:
 742        return ring;
 743}
 744
 745/**
 746 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 747 * @ioctx_ring: I/O context ring to be freed.
 748 * @sdev: SRPT HCA pointer.
 749 * @ring_size: Number of ring elements.
 750 * @buf_cache: I/O buffer cache.
 751 * @dir: DMA data direction.
 752 */
 753static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
 754                                 struct srpt_device *sdev, int ring_size,
 755                                 struct kmem_cache *buf_cache,
 756                                 enum dma_data_direction dir)
 757{
 758        int i;
 759
 760        if (!ioctx_ring)
 761                return;
 762
 763        for (i = 0; i < ring_size; ++i)
 764                srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
 765        kvfree(ioctx_ring);
 766}
 767
 768/**
 769 * srpt_set_cmd_state - set the state of a SCSI command
 770 * @ioctx: Send I/O context.
 771 * @new: New I/O context state.
 772 *
 773 * Does not modify the state of aborted commands. Returns the previous command
 774 * state.
 775 */
 776static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
 777                                                  enum srpt_command_state new)
 778{
 779        enum srpt_command_state previous;
 780
 781        previous = ioctx->state;
 782        if (previous != SRPT_STATE_DONE)
 783                ioctx->state = new;
 784
 785        return previous;
 786}
 787
 788/**
 789 * srpt_test_and_set_cmd_state - test and set the state of a command
 790 * @ioctx: Send I/O context.
 791 * @old: Current I/O context state.
 792 * @new: New I/O context state.
 793 *
 794 * Returns true if and only if the previous command state was equal to 'old'.
 795 */
 796static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
 797                                        enum srpt_command_state old,
 798                                        enum srpt_command_state new)
 799{
 800        enum srpt_command_state previous;
 801
 802        WARN_ON(!ioctx);
 803        WARN_ON(old == SRPT_STATE_DONE);
 804        WARN_ON(new == SRPT_STATE_NEW);
 805
 806        previous = ioctx->state;
 807        if (previous == old)
 808                ioctx->state = new;
 809
 810        return previous == old;
 811}
 812
 813/**
 814 * srpt_post_recv - post an IB receive request
 815 * @sdev: SRPT HCA pointer.
 816 * @ch: SRPT RDMA channel.
 817 * @ioctx: Receive I/O context pointer.
 818 */
 819static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
 820                          struct srpt_recv_ioctx *ioctx)
 821{
 822        struct ib_sge list;
 823        struct ib_recv_wr wr;
 824
 825        BUG_ON(!sdev);
 826        list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
 827        list.length = srp_max_req_size;
 828        list.lkey = sdev->lkey;
 829
 830        ioctx->ioctx.cqe.done = srpt_recv_done;
 831        wr.wr_cqe = &ioctx->ioctx.cqe;
 832        wr.next = NULL;
 833        wr.sg_list = &list;
 834        wr.num_sge = 1;
 835
 836        if (sdev->use_srq)
 837                return ib_post_srq_recv(sdev->srq, &wr, NULL);
 838        else
 839                return ib_post_recv(ch->qp, &wr, NULL);
 840}
 841
 842/**
 843 * srpt_zerolength_write - perform a zero-length RDMA write
 844 * @ch: SRPT RDMA channel.
 845 *
 846 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 847 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 848 * request, the R_Key shall not be validated, even if the request includes
 849 * Immediate data.
 850 */
 851static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
 852{
 853        struct ib_rdma_wr wr = {
 854                .wr = {
 855                        .next           = NULL,
 856                        { .wr_cqe       = &ch->zw_cqe, },
 857                        .opcode         = IB_WR_RDMA_WRITE,
 858                        .send_flags     = IB_SEND_SIGNALED,
 859                }
 860        };
 861
 862        pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
 863                 ch->qp->qp_num);
 864
 865        return ib_post_send(ch->qp, &wr.wr, NULL);
 866}
 867
 868static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
 869{
 870        struct srpt_rdma_ch *ch = cq->cq_context;
 871
 872        pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
 873                 wc->status);
 874
 875        if (wc->status == IB_WC_SUCCESS) {
 876                srpt_process_wait_list(ch);
 877        } else {
 878                if (srpt_set_ch_state(ch, CH_DISCONNECTED))
 879                        schedule_work(&ch->release_work);
 880                else
 881                        pr_debug("%s-%d: already disconnected.\n",
 882                                 ch->sess_name, ch->qp->qp_num);
 883        }
 884}
 885
 886static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
 887                struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
 888                unsigned *sg_cnt)
 889{
 890        enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
 891        struct srpt_rdma_ch *ch = ioctx->ch;
 892        struct scatterlist *prev = NULL;
 893        unsigned prev_nents;
 894        int ret, i;
 895
 896        if (nbufs == 1) {
 897                ioctx->rw_ctxs = &ioctx->s_rw_ctx;
 898        } else {
 899                ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
 900                        GFP_KERNEL);
 901                if (!ioctx->rw_ctxs)
 902                        return -ENOMEM;
 903        }
 904
 905        for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
 906                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 907                u64 remote_addr = be64_to_cpu(db->va);
 908                u32 size = be32_to_cpu(db->len);
 909                u32 rkey = be32_to_cpu(db->key);
 910
 911                ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
 912                                i < nbufs - 1);
 913                if (ret)
 914                        goto unwind;
 915
 916                ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
 917                                ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
 918                if (ret < 0) {
 919                        target_free_sgl(ctx->sg, ctx->nents);
 920                        goto unwind;
 921                }
 922
 923                ioctx->n_rdma += ret;
 924                ioctx->n_rw_ctx++;
 925
 926                if (prev) {
 927                        sg_unmark_end(&prev[prev_nents - 1]);
 928                        sg_chain(prev, prev_nents + 1, ctx->sg);
 929                } else {
 930                        *sg = ctx->sg;
 931                }
 932
 933                prev = ctx->sg;
 934                prev_nents = ctx->nents;
 935
 936                *sg_cnt += ctx->nents;
 937        }
 938
 939        return 0;
 940
 941unwind:
 942        while (--i >= 0) {
 943                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 944
 945                rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
 946                                ctx->sg, ctx->nents, dir);
 947                target_free_sgl(ctx->sg, ctx->nents);
 948        }
 949        if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
 950                kfree(ioctx->rw_ctxs);
 951        return ret;
 952}
 953
 954static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
 955                                    struct srpt_send_ioctx *ioctx)
 956{
 957        enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
 958        int i;
 959
 960        for (i = 0; i < ioctx->n_rw_ctx; i++) {
 961                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 962
 963                rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
 964                                ctx->sg, ctx->nents, dir);
 965                target_free_sgl(ctx->sg, ctx->nents);
 966        }
 967
 968        if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
 969                kfree(ioctx->rw_ctxs);
 970}
 971
 972static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
 973{
 974        /*
 975         * The pointer computations below will only be compiled correctly
 976         * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
 977         * whether srp_cmd::add_data has been declared as a byte pointer.
 978         */
 979        BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
 980                     !__same_type(srp_cmd->add_data[0], (u8)0));
 981
 982        /*
 983         * According to the SRP spec, the lower two bits of the 'ADDITIONAL
 984         * CDB LENGTH' field are reserved and the size in bytes of this field
 985         * is four times the value specified in bits 3..7. Hence the "& ~3".
 986         */
 987        return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
 988}
 989
 990/**
 991 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
 992 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
 993 * @ioctx: I/O context that will be used for responding to the initiator.
 994 * @srp_cmd: Pointer to the SRP_CMD request data.
 995 * @dir: Pointer to the variable to which the transfer direction will be
 996 *   written.
 997 * @sg: [out] scatterlist for the parsed SRP_CMD.
 998 * @sg_cnt: [out] length of @sg.
 999 * @data_len: Pointer to the variable to which the total data length of all
1000 *   descriptors in the SRP_CMD request will be written.
1001 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1002 *   starts.
1003 *
1004 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1005 *
1006 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1007 * -ENOMEM when memory allocation fails and zero upon success.
1008 */
1009static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1010                struct srpt_send_ioctx *ioctx,
1011                struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1012                struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1013                u16 imm_data_offset)
1014{
1015        BUG_ON(!dir);
1016        BUG_ON(!data_len);
1017
1018        /*
1019         * The lower four bits of the buffer format field contain the DATA-IN
1020         * buffer descriptor format, and the highest four bits contain the
1021         * DATA-OUT buffer descriptor format.
1022         */
1023        if (srp_cmd->buf_fmt & 0xf)
1024                /* DATA-IN: transfer data from target to initiator (read). */
1025                *dir = DMA_FROM_DEVICE;
1026        else if (srp_cmd->buf_fmt >> 4)
1027                /* DATA-OUT: transfer data from initiator to target (write). */
1028                *dir = DMA_TO_DEVICE;
1029        else
1030                *dir = DMA_NONE;
1031
1032        /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1033        ioctx->cmd.data_direction = *dir;
1034
1035        if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1036            ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1037                struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1038
1039                *data_len = be32_to_cpu(db->len);
1040                return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1041        } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1042                   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1043                struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1044                int nbufs = be32_to_cpu(idb->table_desc.len) /
1045                                sizeof(struct srp_direct_buf);
1046
1047                if (nbufs >
1048                    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1049                        pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1050                               srp_cmd->data_out_desc_cnt,
1051                               srp_cmd->data_in_desc_cnt,
1052                               be32_to_cpu(idb->table_desc.len),
1053                               sizeof(struct srp_direct_buf));
1054                        return -EINVAL;
1055                }
1056
1057                *data_len = be32_to_cpu(idb->len);
1058                return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1059                                sg, sg_cnt);
1060        } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1061                struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1062                void *data = (void *)srp_cmd + imm_data_offset;
1063                uint32_t len = be32_to_cpu(imm_buf->len);
1064                uint32_t req_size = imm_data_offset + len;
1065
1066                if (req_size > srp_max_req_size) {
1067                        pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1068                               imm_data_offset, len, srp_max_req_size);
1069                        return -EINVAL;
1070                }
1071                if (recv_ioctx->byte_len < req_size) {
1072                        pr_err("Received too few data - %d < %d\n",
1073                               recv_ioctx->byte_len, req_size);
1074                        return -EIO;
1075                }
1076                /*
1077                 * The immediate data buffer descriptor must occur before the
1078                 * immediate data itself.
1079                 */
1080                if ((void *)(imm_buf + 1) > (void *)data) {
1081                        pr_err("Received invalid write request\n");
1082                        return -EINVAL;
1083                }
1084                *data_len = len;
1085                ioctx->recv_ioctx = recv_ioctx;
1086                if ((uintptr_t)data & 511) {
1087                        pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1088                        return -EINVAL;
1089                }
1090                sg_init_one(&ioctx->imm_sg, data, len);
1091                *sg = &ioctx->imm_sg;
1092                *sg_cnt = 1;
1093                return 0;
1094        } else {
1095                *data_len = 0;
1096                return 0;
1097        }
1098}
1099
1100/**
1101 * srpt_init_ch_qp - initialize queue pair attributes
1102 * @ch: SRPT RDMA channel.
1103 * @qp: Queue pair pointer.
1104 *
1105 * Initialized the attributes of queue pair 'qp' by allowing local write,
1106 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1107 */
1108static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1109{
1110        struct ib_qp_attr *attr;
1111        int ret;
1112
1113        WARN_ON_ONCE(ch->using_rdma_cm);
1114
1115        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1116        if (!attr)
1117                return -ENOMEM;
1118
1119        attr->qp_state = IB_QPS_INIT;
1120        attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1121        attr->port_num = ch->sport->port;
1122
1123        ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1124                                  ch->pkey, &attr->pkey_index);
1125        if (ret < 0)
1126                pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1127                       ch->pkey, ret);
1128
1129        ret = ib_modify_qp(qp, attr,
1130                           IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1131                           IB_QP_PKEY_INDEX);
1132
1133        kfree(attr);
1134        return ret;
1135}
1136
1137/**
1138 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1139 * @ch: channel of the queue pair.
1140 * @qp: queue pair to change the state of.
1141 *
1142 * Returns zero upon success and a negative value upon failure.
1143 *
1144 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1145 * If this structure ever becomes larger, it might be necessary to allocate
1146 * it dynamically instead of on the stack.
1147 */
1148static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1149{
1150        struct ib_qp_attr qp_attr;
1151        int attr_mask;
1152        int ret;
1153
1154        WARN_ON_ONCE(ch->using_rdma_cm);
1155
1156        qp_attr.qp_state = IB_QPS_RTR;
1157        ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1158        if (ret)
1159                goto out;
1160
1161        qp_attr.max_dest_rd_atomic = 4;
1162
1163        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1164
1165out:
1166        return ret;
1167}
1168
1169/**
1170 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1171 * @ch: channel of the queue pair.
1172 * @qp: queue pair to change the state of.
1173 *
1174 * Returns zero upon success and a negative value upon failure.
1175 *
1176 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1177 * If this structure ever becomes larger, it might be necessary to allocate
1178 * it dynamically instead of on the stack.
1179 */
1180static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1181{
1182        struct ib_qp_attr qp_attr;
1183        int attr_mask;
1184        int ret;
1185
1186        qp_attr.qp_state = IB_QPS_RTS;
1187        ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1188        if (ret)
1189                goto out;
1190
1191        qp_attr.max_rd_atomic = 4;
1192
1193        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1194
1195out:
1196        return ret;
1197}
1198
1199/**
1200 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1201 * @ch: SRPT RDMA channel.
1202 */
1203static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1204{
1205        struct ib_qp_attr qp_attr;
1206
1207        qp_attr.qp_state = IB_QPS_ERR;
1208        return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1209}
1210
1211/**
1212 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1213 * @ch: SRPT RDMA channel.
1214 */
1215static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1216{
1217        struct srpt_send_ioctx *ioctx;
1218        int tag, cpu;
1219
1220        BUG_ON(!ch);
1221
1222        tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1223        if (tag < 0)
1224                return NULL;
1225
1226        ioctx = ch->ioctx_ring[tag];
1227        BUG_ON(ioctx->ch != ch);
1228        ioctx->state = SRPT_STATE_NEW;
1229        WARN_ON_ONCE(ioctx->recv_ioctx);
1230        ioctx->n_rdma = 0;
1231        ioctx->n_rw_ctx = 0;
1232        ioctx->queue_status_only = false;
1233        /*
1234         * transport_init_se_cmd() does not initialize all fields, so do it
1235         * here.
1236         */
1237        memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1238        memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1239        ioctx->cmd.map_tag = tag;
1240        ioctx->cmd.map_cpu = cpu;
1241
1242        return ioctx;
1243}
1244
1245/**
1246 * srpt_abort_cmd - abort a SCSI command
1247 * @ioctx:   I/O context associated with the SCSI command.
1248 */
1249static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1250{
1251        enum srpt_command_state state;
1252
1253        BUG_ON(!ioctx);
1254
1255        /*
1256         * If the command is in a state where the target core is waiting for
1257         * the ib_srpt driver, change the state to the next state.
1258         */
1259
1260        state = ioctx->state;
1261        switch (state) {
1262        case SRPT_STATE_NEED_DATA:
1263                ioctx->state = SRPT_STATE_DATA_IN;
1264                break;
1265        case SRPT_STATE_CMD_RSP_SENT:
1266        case SRPT_STATE_MGMT_RSP_SENT:
1267                ioctx->state = SRPT_STATE_DONE;
1268                break;
1269        default:
1270                WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1271                          __func__, state);
1272                break;
1273        }
1274
1275        pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1276                 ioctx->state, ioctx->cmd.tag);
1277
1278        switch (state) {
1279        case SRPT_STATE_NEW:
1280        case SRPT_STATE_DATA_IN:
1281        case SRPT_STATE_MGMT:
1282        case SRPT_STATE_DONE:
1283                /*
1284                 * Do nothing - defer abort processing until
1285                 * srpt_queue_response() is invoked.
1286                 */
1287                break;
1288        case SRPT_STATE_NEED_DATA:
1289                pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1290                transport_generic_request_failure(&ioctx->cmd,
1291                                        TCM_CHECK_CONDITION_ABORT_CMD);
1292                break;
1293        case SRPT_STATE_CMD_RSP_SENT:
1294                /*
1295                 * SRP_RSP sending failed or the SRP_RSP send completion has
1296                 * not been received in time.
1297                 */
1298                transport_generic_free_cmd(&ioctx->cmd, 0);
1299                break;
1300        case SRPT_STATE_MGMT_RSP_SENT:
1301                transport_generic_free_cmd(&ioctx->cmd, 0);
1302                break;
1303        default:
1304                WARN(1, "Unexpected command state (%d)", state);
1305                break;
1306        }
1307
1308        return state;
1309}
1310
1311/**
1312 * srpt_rdma_read_done - RDMA read completion callback
1313 * @cq: Completion queue.
1314 * @wc: Work completion.
1315 *
1316 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1317 * the data that has been transferred via IB RDMA had to be postponed until the
1318 * check_stop_free() callback.  None of this is necessary anymore and needs to
1319 * be cleaned up.
1320 */
1321static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1322{
1323        struct srpt_rdma_ch *ch = cq->cq_context;
1324        struct srpt_send_ioctx *ioctx =
1325                container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1326
1327        WARN_ON(ioctx->n_rdma <= 0);
1328        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1329        ioctx->n_rdma = 0;
1330
1331        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1332                pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1333                        ioctx, wc->status);
1334                srpt_abort_cmd(ioctx);
1335                return;
1336        }
1337
1338        if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1339                                        SRPT_STATE_DATA_IN))
1340                target_execute_cmd(&ioctx->cmd);
1341        else
1342                pr_err("%s[%d]: wrong state = %d\n", __func__,
1343                       __LINE__, ioctx->state);
1344}
1345
1346/**
1347 * srpt_build_cmd_rsp - build a SRP_RSP response
1348 * @ch: RDMA channel through which the request has been received.
1349 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1350 *   be built in the buffer ioctx->buf points at and hence this function will
1351 *   overwrite the request data.
1352 * @tag: tag of the request for which this response is being generated.
1353 * @status: value for the STATUS field of the SRP_RSP information unit.
1354 *
1355 * Returns the size in bytes of the SRP_RSP response.
1356 *
1357 * An SRP_RSP response contains a SCSI status or service response. See also
1358 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1359 * response. See also SPC-2 for more information about sense data.
1360 */
1361static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1362                              struct srpt_send_ioctx *ioctx, u64 tag,
1363                              int status)
1364{
1365        struct se_cmd *cmd = &ioctx->cmd;
1366        struct srp_rsp *srp_rsp;
1367        const u8 *sense_data;
1368        int sense_data_len, max_sense_len;
1369        u32 resid = cmd->residual_count;
1370
1371        /*
1372         * The lowest bit of all SAM-3 status codes is zero (see also
1373         * paragraph 5.3 in SAM-3).
1374         */
1375        WARN_ON(status & 1);
1376
1377        srp_rsp = ioctx->ioctx.buf;
1378        BUG_ON(!srp_rsp);
1379
1380        sense_data = ioctx->sense_data;
1381        sense_data_len = ioctx->cmd.scsi_sense_length;
1382        WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1383
1384        memset(srp_rsp, 0, sizeof(*srp_rsp));
1385        srp_rsp->opcode = SRP_RSP;
1386        srp_rsp->req_lim_delta =
1387                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1388        srp_rsp->tag = tag;
1389        srp_rsp->status = status;
1390
1391        if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1392                if (cmd->data_direction == DMA_TO_DEVICE) {
1393                        /* residual data from an underflow write */
1394                        srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1395                        srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1396                } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1397                        /* residual data from an underflow read */
1398                        srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1399                        srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1400                }
1401        } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1402                if (cmd->data_direction == DMA_TO_DEVICE) {
1403                        /* residual data from an overflow write */
1404                        srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1405                        srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1406                } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1407                        /* residual data from an overflow read */
1408                        srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1409                        srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1410                }
1411        }
1412
1413        if (sense_data_len) {
1414                BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1415                max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1416                if (sense_data_len > max_sense_len) {
1417                        pr_warn("truncated sense data from %d to %d bytes\n",
1418                                sense_data_len, max_sense_len);
1419                        sense_data_len = max_sense_len;
1420                }
1421
1422                srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1423                srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1424                memcpy(srp_rsp + 1, sense_data, sense_data_len);
1425        }
1426
1427        return sizeof(*srp_rsp) + sense_data_len;
1428}
1429
1430/**
1431 * srpt_build_tskmgmt_rsp - build a task management response
1432 * @ch:       RDMA channel through which the request has been received.
1433 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1434 * @rsp_code: RSP_CODE that will be stored in the response.
1435 * @tag:      Tag of the request for which this response is being generated.
1436 *
1437 * Returns the size in bytes of the SRP_RSP response.
1438 *
1439 * An SRP_RSP response contains a SCSI status or service response. See also
1440 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1441 * response.
1442 */
1443static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1444                                  struct srpt_send_ioctx *ioctx,
1445                                  u8 rsp_code, u64 tag)
1446{
1447        struct srp_rsp *srp_rsp;
1448        int resp_data_len;
1449        int resp_len;
1450
1451        resp_data_len = 4;
1452        resp_len = sizeof(*srp_rsp) + resp_data_len;
1453
1454        srp_rsp = ioctx->ioctx.buf;
1455        BUG_ON(!srp_rsp);
1456        memset(srp_rsp, 0, sizeof(*srp_rsp));
1457
1458        srp_rsp->opcode = SRP_RSP;
1459        srp_rsp->req_lim_delta =
1460                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1461        srp_rsp->tag = tag;
1462
1463        srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1464        srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1465        srp_rsp->data[3] = rsp_code;
1466
1467        return resp_len;
1468}
1469
1470static int srpt_check_stop_free(struct se_cmd *cmd)
1471{
1472        struct srpt_send_ioctx *ioctx = container_of(cmd,
1473                                struct srpt_send_ioctx, cmd);
1474
1475        return target_put_sess_cmd(&ioctx->cmd);
1476}
1477
1478/**
1479 * srpt_handle_cmd - process a SRP_CMD information unit
1480 * @ch: SRPT RDMA channel.
1481 * @recv_ioctx: Receive I/O context.
1482 * @send_ioctx: Send I/O context.
1483 */
1484static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1485                            struct srpt_recv_ioctx *recv_ioctx,
1486                            struct srpt_send_ioctx *send_ioctx)
1487{
1488        struct se_cmd *cmd;
1489        struct srp_cmd *srp_cmd;
1490        struct scatterlist *sg = NULL;
1491        unsigned sg_cnt = 0;
1492        u64 data_len;
1493        enum dma_data_direction dir;
1494        int rc;
1495
1496        BUG_ON(!send_ioctx);
1497
1498        srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1499        cmd = &send_ioctx->cmd;
1500        cmd->tag = srp_cmd->tag;
1501
1502        switch (srp_cmd->task_attr) {
1503        case SRP_CMD_SIMPLE_Q:
1504                cmd->sam_task_attr = TCM_SIMPLE_TAG;
1505                break;
1506        case SRP_CMD_ORDERED_Q:
1507        default:
1508                cmd->sam_task_attr = TCM_ORDERED_TAG;
1509                break;
1510        case SRP_CMD_HEAD_OF_Q:
1511                cmd->sam_task_attr = TCM_HEAD_TAG;
1512                break;
1513        case SRP_CMD_ACA:
1514                cmd->sam_task_attr = TCM_ACA_TAG;
1515                break;
1516        }
1517
1518        rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1519                               &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1520        if (rc) {
1521                if (rc != -EAGAIN) {
1522                        pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1523                               srp_cmd->tag);
1524                }
1525                goto busy;
1526        }
1527
1528        rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1529                               &send_ioctx->sense_data[0],
1530                               scsilun_to_int(&srp_cmd->lun), data_len,
1531                               TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1532                               sg, sg_cnt, NULL, 0, NULL, 0);
1533        if (rc != 0) {
1534                pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1535                         srp_cmd->tag);
1536                goto busy;
1537        }
1538        return;
1539
1540busy:
1541        target_send_busy(cmd);
1542}
1543
1544static int srp_tmr_to_tcm(int fn)
1545{
1546        switch (fn) {
1547        case SRP_TSK_ABORT_TASK:
1548                return TMR_ABORT_TASK;
1549        case SRP_TSK_ABORT_TASK_SET:
1550                return TMR_ABORT_TASK_SET;
1551        case SRP_TSK_CLEAR_TASK_SET:
1552                return TMR_CLEAR_TASK_SET;
1553        case SRP_TSK_LUN_RESET:
1554                return TMR_LUN_RESET;
1555        case SRP_TSK_CLEAR_ACA:
1556                return TMR_CLEAR_ACA;
1557        default:
1558                return -1;
1559        }
1560}
1561
1562/**
1563 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1564 * @ch: SRPT RDMA channel.
1565 * @recv_ioctx: Receive I/O context.
1566 * @send_ioctx: Send I/O context.
1567 *
1568 * Returns 0 if and only if the request will be processed by the target core.
1569 *
1570 * For more information about SRP_TSK_MGMT information units, see also section
1571 * 6.7 in the SRP r16a document.
1572 */
1573static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1574                                 struct srpt_recv_ioctx *recv_ioctx,
1575                                 struct srpt_send_ioctx *send_ioctx)
1576{
1577        struct srp_tsk_mgmt *srp_tsk;
1578        struct se_cmd *cmd;
1579        struct se_session *sess = ch->sess;
1580        int tcm_tmr;
1581        int rc;
1582
1583        BUG_ON(!send_ioctx);
1584
1585        srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1586        cmd = &send_ioctx->cmd;
1587
1588        pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1589                 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1590                 ch->sess);
1591
1592        srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1593        send_ioctx->cmd.tag = srp_tsk->tag;
1594        tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1595        rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1596                               scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1597                               GFP_KERNEL, srp_tsk->task_tag,
1598                               TARGET_SCF_ACK_KREF);
1599        if (rc != 0) {
1600                send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1601                cmd->se_tfo->queue_tm_rsp(cmd);
1602        }
1603        return;
1604}
1605
1606/**
1607 * srpt_handle_new_iu - process a newly received information unit
1608 * @ch:    RDMA channel through which the information unit has been received.
1609 * @recv_ioctx: Receive I/O context associated with the information unit.
1610 */
1611static bool
1612srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1613{
1614        struct srpt_send_ioctx *send_ioctx = NULL;
1615        struct srp_cmd *srp_cmd;
1616        bool res = false;
1617        u8 opcode;
1618
1619        BUG_ON(!ch);
1620        BUG_ON(!recv_ioctx);
1621
1622        if (unlikely(ch->state == CH_CONNECTING))
1623                goto push;
1624
1625        ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1626                                   recv_ioctx->ioctx.dma,
1627                                   recv_ioctx->ioctx.offset + srp_max_req_size,
1628                                   DMA_FROM_DEVICE);
1629
1630        srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1631        opcode = srp_cmd->opcode;
1632        if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1633                send_ioctx = srpt_get_send_ioctx(ch);
1634                if (unlikely(!send_ioctx))
1635                        goto push;
1636        }
1637
1638        if (!list_empty(&recv_ioctx->wait_list)) {
1639                WARN_ON_ONCE(!ch->processing_wait_list);
1640                list_del_init(&recv_ioctx->wait_list);
1641        }
1642
1643        switch (opcode) {
1644        case SRP_CMD:
1645                srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1646                break;
1647        case SRP_TSK_MGMT:
1648                srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1649                break;
1650        case SRP_I_LOGOUT:
1651                pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1652                break;
1653        case SRP_CRED_RSP:
1654                pr_debug("received SRP_CRED_RSP\n");
1655                break;
1656        case SRP_AER_RSP:
1657                pr_debug("received SRP_AER_RSP\n");
1658                break;
1659        case SRP_RSP:
1660                pr_err("Received SRP_RSP\n");
1661                break;
1662        default:
1663                pr_err("received IU with unknown opcode 0x%x\n", opcode);
1664                break;
1665        }
1666
1667        if (!send_ioctx || !send_ioctx->recv_ioctx)
1668                srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1669        res = true;
1670
1671out:
1672        return res;
1673
1674push:
1675        if (list_empty(&recv_ioctx->wait_list)) {
1676                WARN_ON_ONCE(ch->processing_wait_list);
1677                list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1678        }
1679        goto out;
1680}
1681
1682static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1683{
1684        struct srpt_rdma_ch *ch = cq->cq_context;
1685        struct srpt_recv_ioctx *ioctx =
1686                container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1687
1688        if (wc->status == IB_WC_SUCCESS) {
1689                int req_lim;
1690
1691                req_lim = atomic_dec_return(&ch->req_lim);
1692                if (unlikely(req_lim < 0))
1693                        pr_err("req_lim = %d < 0\n", req_lim);
1694                ioctx->byte_len = wc->byte_len;
1695                srpt_handle_new_iu(ch, ioctx);
1696        } else {
1697                pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1698                                    ioctx, wc->status);
1699        }
1700}
1701
1702/*
1703 * This function must be called from the context in which RDMA completions are
1704 * processed because it accesses the wait list without protection against
1705 * access from other threads.
1706 */
1707static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1708{
1709        struct srpt_recv_ioctx *recv_ioctx, *tmp;
1710
1711        WARN_ON_ONCE(ch->state == CH_CONNECTING);
1712
1713        if (list_empty(&ch->cmd_wait_list))
1714                return;
1715
1716        WARN_ON_ONCE(ch->processing_wait_list);
1717        ch->processing_wait_list = true;
1718        list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1719                                 wait_list) {
1720                if (!srpt_handle_new_iu(ch, recv_ioctx))
1721                        break;
1722        }
1723        ch->processing_wait_list = false;
1724}
1725
1726/**
1727 * srpt_send_done - send completion callback
1728 * @cq: Completion queue.
1729 * @wc: Work completion.
1730 *
1731 * Note: Although this has not yet been observed during tests, at least in
1732 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1733 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1734 * value in each response is set to one, and it is possible that this response
1735 * makes the initiator send a new request before the send completion for that
1736 * response has been processed. This could e.g. happen if the call to
1737 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1738 * if IB retransmission causes generation of the send completion to be
1739 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1740 * are queued on cmd_wait_list. The code below processes these delayed
1741 * requests one at a time.
1742 */
1743static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1744{
1745        struct srpt_rdma_ch *ch = cq->cq_context;
1746        struct srpt_send_ioctx *ioctx =
1747                container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1748        enum srpt_command_state state;
1749
1750        state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1751
1752        WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1753                state != SRPT_STATE_MGMT_RSP_SENT);
1754
1755        atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1756
1757        if (wc->status != IB_WC_SUCCESS)
1758                pr_info("sending response for ioctx 0x%p failed with status %d\n",
1759                        ioctx, wc->status);
1760
1761        if (state != SRPT_STATE_DONE) {
1762                transport_generic_free_cmd(&ioctx->cmd, 0);
1763        } else {
1764                pr_err("IB completion has been received too late for wr_id = %u.\n",
1765                       ioctx->ioctx.index);
1766        }
1767
1768        srpt_process_wait_list(ch);
1769}
1770
1771/**
1772 * srpt_create_ch_ib - create receive and send completion queues
1773 * @ch: SRPT RDMA channel.
1774 */
1775static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1776{
1777        struct ib_qp_init_attr *qp_init;
1778        struct srpt_port *sport = ch->sport;
1779        struct srpt_device *sdev = sport->sdev;
1780        const struct ib_device_attr *attrs = &sdev->device->attrs;
1781        int sq_size = sport->port_attrib.srp_sq_size;
1782        int i, ret;
1783
1784        WARN_ON(ch->rq_size < 1);
1785
1786        ret = -ENOMEM;
1787        qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1788        if (!qp_init)
1789                goto out;
1790
1791retry:
1792        ch->cq = ib_alloc_cq_any(sdev->device, ch, ch->rq_size + sq_size,
1793                                 IB_POLL_WORKQUEUE);
1794        if (IS_ERR(ch->cq)) {
1795                ret = PTR_ERR(ch->cq);
1796                pr_err("failed to create CQ cqe= %d ret= %d\n",
1797                       ch->rq_size + sq_size, ret);
1798                goto out;
1799        }
1800
1801        qp_init->qp_context = (void *)ch;
1802        qp_init->event_handler
1803                = (void(*)(struct ib_event *, void*))srpt_qp_event;
1804        qp_init->send_cq = ch->cq;
1805        qp_init->recv_cq = ch->cq;
1806        qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1807        qp_init->qp_type = IB_QPT_RC;
1808        /*
1809         * We divide up our send queue size into half SEND WRs to send the
1810         * completions, and half R/W contexts to actually do the RDMA
1811         * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1812         * both both, as RDMA contexts will also post completions for the
1813         * RDMA READ case.
1814         */
1815        qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1816        qp_init->cap.max_rdma_ctxs = sq_size / 2;
1817        qp_init->cap.max_send_sge = min(attrs->max_send_sge,
1818                                        SRPT_MAX_SG_PER_WQE);
1819        qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1820                                        SRPT_MAX_SG_PER_WQE);
1821        qp_init->port_num = ch->sport->port;
1822        if (sdev->use_srq) {
1823                qp_init->srq = sdev->srq;
1824        } else {
1825                qp_init->cap.max_recv_wr = ch->rq_size;
1826                qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1827                                                SRPT_MAX_SG_PER_WQE);
1828        }
1829
1830        if (ch->using_rdma_cm) {
1831                ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1832                ch->qp = ch->rdma_cm.cm_id->qp;
1833        } else {
1834                ch->qp = ib_create_qp(sdev->pd, qp_init);
1835                if (!IS_ERR(ch->qp)) {
1836                        ret = srpt_init_ch_qp(ch, ch->qp);
1837                        if (ret)
1838                                ib_destroy_qp(ch->qp);
1839                } else {
1840                        ret = PTR_ERR(ch->qp);
1841                }
1842        }
1843        if (ret) {
1844                bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1845
1846                if (retry) {
1847                        pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1848                                 sq_size, ret);
1849                        ib_free_cq(ch->cq);
1850                        sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1851                        goto retry;
1852                } else {
1853                        pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1854                               sq_size, ret);
1855                        goto err_destroy_cq;
1856                }
1857        }
1858
1859        atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1860
1861        pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1862                 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1863                 qp_init->cap.max_send_wr, ch);
1864
1865        if (!sdev->use_srq)
1866                for (i = 0; i < ch->rq_size; i++)
1867                        srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1868
1869out:
1870        kfree(qp_init);
1871        return ret;
1872
1873err_destroy_cq:
1874        ch->qp = NULL;
1875        ib_free_cq(ch->cq);
1876        goto out;
1877}
1878
1879static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1880{
1881        ib_destroy_qp(ch->qp);
1882        ib_free_cq(ch->cq);
1883}
1884
1885/**
1886 * srpt_close_ch - close a RDMA channel
1887 * @ch: SRPT RDMA channel.
1888 *
1889 * Make sure all resources associated with the channel will be deallocated at
1890 * an appropriate time.
1891 *
1892 * Returns true if and only if the channel state has been modified into
1893 * CH_DRAINING.
1894 */
1895static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1896{
1897        int ret;
1898
1899        if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1900                pr_debug("%s: already closed\n", ch->sess_name);
1901                return false;
1902        }
1903
1904        kref_get(&ch->kref);
1905
1906        ret = srpt_ch_qp_err(ch);
1907        if (ret < 0)
1908                pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1909                       ch->sess_name, ch->qp->qp_num, ret);
1910
1911        ret = srpt_zerolength_write(ch);
1912        if (ret < 0) {
1913                pr_err("%s-%d: queuing zero-length write failed: %d\n",
1914                       ch->sess_name, ch->qp->qp_num, ret);
1915                if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1916                        schedule_work(&ch->release_work);
1917                else
1918                        WARN_ON_ONCE(true);
1919        }
1920
1921        kref_put(&ch->kref, srpt_free_ch);
1922
1923        return true;
1924}
1925
1926/*
1927 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1928 * reached the connected state, close it. If a channel is in the connected
1929 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1930 * the responsibility of the caller to ensure that this function is not
1931 * invoked concurrently with the code that accepts a connection. This means
1932 * that this function must either be invoked from inside a CM callback
1933 * function or that it must be invoked with the srpt_port.mutex held.
1934 */
1935static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1936{
1937        int ret;
1938
1939        if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1940                return -ENOTCONN;
1941
1942        if (ch->using_rdma_cm) {
1943                ret = rdma_disconnect(ch->rdma_cm.cm_id);
1944        } else {
1945                ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1946                if (ret < 0)
1947                        ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1948        }
1949
1950        if (ret < 0 && srpt_close_ch(ch))
1951                ret = 0;
1952
1953        return ret;
1954}
1955
1956/* Send DREQ and wait for DREP. */
1957static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1958{
1959        DECLARE_COMPLETION_ONSTACK(closed);
1960        struct srpt_port *sport = ch->sport;
1961
1962        pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1963                 ch->state);
1964
1965        ch->closed = &closed;
1966
1967        mutex_lock(&sport->mutex);
1968        srpt_disconnect_ch(ch);
1969        mutex_unlock(&sport->mutex);
1970
1971        while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1972                pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1973                        ch->sess_name, ch->qp->qp_num, ch->state);
1974
1975}
1976
1977static void __srpt_close_all_ch(struct srpt_port *sport)
1978{
1979        struct srpt_nexus *nexus;
1980        struct srpt_rdma_ch *ch;
1981
1982        lockdep_assert_held(&sport->mutex);
1983
1984        list_for_each_entry(nexus, &sport->nexus_list, entry) {
1985                list_for_each_entry(ch, &nexus->ch_list, list) {
1986                        if (srpt_disconnect_ch(ch) >= 0)
1987                                pr_info("Closing channel %s because target %s_%d has been disabled\n",
1988                                        ch->sess_name,
1989                                        dev_name(&sport->sdev->device->dev),
1990                                        sport->port);
1991                        srpt_close_ch(ch);
1992                }
1993        }
1994}
1995
1996/*
1997 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1998 * it does not yet exist.
1999 */
2000static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2001                                         const u8 i_port_id[16],
2002                                         const u8 t_port_id[16])
2003{
2004        struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2005
2006        for (;;) {
2007                mutex_lock(&sport->mutex);
2008                list_for_each_entry(n, &sport->nexus_list, entry) {
2009                        if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2010                            memcmp(n->t_port_id, t_port_id, 16) == 0) {
2011                                nexus = n;
2012                                break;
2013                        }
2014                }
2015                if (!nexus && tmp_nexus) {
2016                        list_add_tail_rcu(&tmp_nexus->entry,
2017                                          &sport->nexus_list);
2018                        swap(nexus, tmp_nexus);
2019                }
2020                mutex_unlock(&sport->mutex);
2021
2022                if (nexus)
2023                        break;
2024                tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2025                if (!tmp_nexus) {
2026                        nexus = ERR_PTR(-ENOMEM);
2027                        break;
2028                }
2029                INIT_LIST_HEAD(&tmp_nexus->ch_list);
2030                memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2031                memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2032        }
2033
2034        kfree(tmp_nexus);
2035
2036        return nexus;
2037}
2038
2039static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2040        __must_hold(&sport->mutex)
2041{
2042        lockdep_assert_held(&sport->mutex);
2043
2044        if (sport->enabled == enabled)
2045                return;
2046        sport->enabled = enabled;
2047        if (!enabled)
2048                __srpt_close_all_ch(sport);
2049}
2050
2051static void srpt_drop_sport_ref(struct srpt_port *sport)
2052{
2053        if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2054                complete(sport->freed_channels);
2055}
2056
2057static void srpt_free_ch(struct kref *kref)
2058{
2059        struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2060
2061        srpt_drop_sport_ref(ch->sport);
2062        kfree_rcu(ch, rcu);
2063}
2064
2065/*
2066 * Shut down the SCSI target session, tell the connection manager to
2067 * disconnect the associated RDMA channel, transition the QP to the error
2068 * state and remove the channel from the channel list. This function is
2069 * typically called from inside srpt_zerolength_write_done(). Concurrent
2070 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2071 * as long as the channel is on sport->nexus_list.
2072 */
2073static void srpt_release_channel_work(struct work_struct *w)
2074{
2075        struct srpt_rdma_ch *ch;
2076        struct srpt_device *sdev;
2077        struct srpt_port *sport;
2078        struct se_session *se_sess;
2079
2080        ch = container_of(w, struct srpt_rdma_ch, release_work);
2081        pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2082
2083        sdev = ch->sport->sdev;
2084        BUG_ON(!sdev);
2085
2086        se_sess = ch->sess;
2087        BUG_ON(!se_sess);
2088
2089        target_sess_cmd_list_set_waiting(se_sess);
2090        target_wait_for_sess_cmds(se_sess);
2091
2092        target_remove_session(se_sess);
2093        ch->sess = NULL;
2094
2095        if (ch->using_rdma_cm)
2096                rdma_destroy_id(ch->rdma_cm.cm_id);
2097        else
2098                ib_destroy_cm_id(ch->ib_cm.cm_id);
2099
2100        sport = ch->sport;
2101        mutex_lock(&sport->mutex);
2102        list_del_rcu(&ch->list);
2103        mutex_unlock(&sport->mutex);
2104
2105        if (ch->closed)
2106                complete(ch->closed);
2107
2108        srpt_destroy_ch_ib(ch);
2109
2110        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2111                             ch->sport->sdev, ch->rq_size,
2112                             ch->rsp_buf_cache, DMA_TO_DEVICE);
2113
2114        kmem_cache_destroy(ch->rsp_buf_cache);
2115
2116        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2117                             sdev, ch->rq_size,
2118                             ch->req_buf_cache, DMA_FROM_DEVICE);
2119
2120        kmem_cache_destroy(ch->req_buf_cache);
2121
2122        kref_put(&ch->kref, srpt_free_ch);
2123}
2124
2125/**
2126 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2127 * @sdev: HCA through which the login request was received.
2128 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2129 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2130 * @port_num: Port through which the REQ message was received.
2131 * @pkey: P_Key of the incoming connection.
2132 * @req: SRP login request.
2133 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2134 * the login request.
2135 *
2136 * Ownership of the cm_id is transferred to the target session if this
2137 * function returns zero. Otherwise the caller remains the owner of cm_id.
2138 */
2139static int srpt_cm_req_recv(struct srpt_device *const sdev,
2140                            struct ib_cm_id *ib_cm_id,
2141                            struct rdma_cm_id *rdma_cm_id,
2142                            u8 port_num, __be16 pkey,
2143                            const struct srp_login_req *req,
2144                            const char *src_addr)
2145{
2146        struct srpt_port *sport = &sdev->port[port_num - 1];
2147        struct srpt_nexus *nexus;
2148        struct srp_login_rsp *rsp = NULL;
2149        struct srp_login_rej *rej = NULL;
2150        union {
2151                struct rdma_conn_param rdma_cm;
2152                struct ib_cm_rep_param ib_cm;
2153        } *rep_param = NULL;
2154        struct srpt_rdma_ch *ch = NULL;
2155        char i_port_id[36];
2156        u32 it_iu_len;
2157        int i, tag_num, tag_size, ret;
2158        struct srpt_tpg *stpg;
2159
2160        WARN_ON_ONCE(irqs_disabled());
2161
2162        if (WARN_ON(!sdev || !req))
2163                return -EINVAL;
2164
2165        it_iu_len = be32_to_cpu(req->req_it_iu_len);
2166
2167        pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2168                req->initiator_port_id, req->target_port_id, it_iu_len,
2169                port_num, &sport->gid, be16_to_cpu(pkey));
2170
2171        nexus = srpt_get_nexus(sport, req->initiator_port_id,
2172                               req->target_port_id);
2173        if (IS_ERR(nexus)) {
2174                ret = PTR_ERR(nexus);
2175                goto out;
2176        }
2177
2178        ret = -ENOMEM;
2179        rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2180        rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2181        rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2182        if (!rsp || !rej || !rep_param)
2183                goto out;
2184
2185        ret = -EINVAL;
2186        if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2187                rej->reason = cpu_to_be32(
2188                                SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2189                pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2190                       it_iu_len, 64, srp_max_req_size);
2191                goto reject;
2192        }
2193
2194        if (!sport->enabled) {
2195                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2196                pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2197                        dev_name(&sport->sdev->device->dev), port_num);
2198                goto reject;
2199        }
2200
2201        if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2202            || *(__be64 *)(req->target_port_id + 8) !=
2203               cpu_to_be64(srpt_service_guid)) {
2204                rej->reason = cpu_to_be32(
2205                                SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2206                pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2207                goto reject;
2208        }
2209
2210        ret = -ENOMEM;
2211        ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2212        if (!ch) {
2213                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2214                pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2215                goto reject;
2216        }
2217
2218        kref_init(&ch->kref);
2219        ch->pkey = be16_to_cpu(pkey);
2220        ch->nexus = nexus;
2221        ch->zw_cqe.done = srpt_zerolength_write_done;
2222        INIT_WORK(&ch->release_work, srpt_release_channel_work);
2223        ch->sport = sport;
2224        if (ib_cm_id) {
2225                ch->ib_cm.cm_id = ib_cm_id;
2226                ib_cm_id->context = ch;
2227        } else {
2228                ch->using_rdma_cm = true;
2229                ch->rdma_cm.cm_id = rdma_cm_id;
2230                rdma_cm_id->context = ch;
2231        }
2232        /*
2233         * ch->rq_size should be at least as large as the initiator queue
2234         * depth to avoid that the initiator driver has to report QUEUE_FULL
2235         * to the SCSI mid-layer.
2236         */
2237        ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2238        spin_lock_init(&ch->spinlock);
2239        ch->state = CH_CONNECTING;
2240        INIT_LIST_HEAD(&ch->cmd_wait_list);
2241        ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2242
2243        ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2244                                              512, 0, NULL);
2245        if (!ch->rsp_buf_cache)
2246                goto free_ch;
2247
2248        ch->ioctx_ring = (struct srpt_send_ioctx **)
2249                srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2250                                      sizeof(*ch->ioctx_ring[0]),
2251                                      ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2252        if (!ch->ioctx_ring) {
2253                pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2254                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2255                goto free_rsp_cache;
2256        }
2257
2258        for (i = 0; i < ch->rq_size; i++)
2259                ch->ioctx_ring[i]->ch = ch;
2260        if (!sdev->use_srq) {
2261                u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2262                        be16_to_cpu(req->imm_data_offset) : 0;
2263                u16 alignment_offset;
2264                u32 req_sz;
2265
2266                if (req->req_flags & SRP_IMMED_REQUESTED)
2267                        pr_debug("imm_data_offset = %d\n",
2268                                 be16_to_cpu(req->imm_data_offset));
2269                if (imm_data_offset >= sizeof(struct srp_cmd)) {
2270                        ch->imm_data_offset = imm_data_offset;
2271                        rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2272                } else {
2273                        ch->imm_data_offset = 0;
2274                }
2275                alignment_offset = round_up(imm_data_offset, 512) -
2276                        imm_data_offset;
2277                req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2278                ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2279                                                      512, 0, NULL);
2280                if (!ch->req_buf_cache)
2281                        goto free_rsp_ring;
2282
2283                ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2284                        srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2285                                              sizeof(*ch->ioctx_recv_ring[0]),
2286                                              ch->req_buf_cache,
2287                                              alignment_offset,
2288                                              DMA_FROM_DEVICE);
2289                if (!ch->ioctx_recv_ring) {
2290                        pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2291                        rej->reason =
2292                            cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2293                        goto free_recv_cache;
2294                }
2295                for (i = 0; i < ch->rq_size; i++)
2296                        INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2297        }
2298
2299        ret = srpt_create_ch_ib(ch);
2300        if (ret) {
2301                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2302                pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2303                goto free_recv_ring;
2304        }
2305
2306        strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2307        snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2308                        be64_to_cpu(*(__be64 *)nexus->i_port_id),
2309                        be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2310
2311        pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2312                 i_port_id);
2313
2314        tag_num = ch->rq_size;
2315        tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2316
2317        mutex_lock(&sport->port_guid_id.mutex);
2318        list_for_each_entry(stpg, &sport->port_guid_id.tpg_list, entry) {
2319                if (!IS_ERR_OR_NULL(ch->sess))
2320                        break;
2321                ch->sess = target_setup_session(&stpg->tpg, tag_num,
2322                                                tag_size, TARGET_PROT_NORMAL,
2323                                                ch->sess_name, ch, NULL);
2324        }
2325        mutex_unlock(&sport->port_guid_id.mutex);
2326
2327        mutex_lock(&sport->port_gid_id.mutex);
2328        list_for_each_entry(stpg, &sport->port_gid_id.tpg_list, entry) {
2329                if (!IS_ERR_OR_NULL(ch->sess))
2330                        break;
2331                ch->sess = target_setup_session(&stpg->tpg, tag_num,
2332                                        tag_size, TARGET_PROT_NORMAL, i_port_id,
2333                                        ch, NULL);
2334                if (!IS_ERR_OR_NULL(ch->sess))
2335                        break;
2336                /* Retry without leading "0x" */
2337                ch->sess = target_setup_session(&stpg->tpg, tag_num,
2338                                                tag_size, TARGET_PROT_NORMAL,
2339                                                i_port_id + 2, ch, NULL);
2340        }
2341        mutex_unlock(&sport->port_gid_id.mutex);
2342
2343        if (IS_ERR_OR_NULL(ch->sess)) {
2344                WARN_ON_ONCE(ch->sess == NULL);
2345                ret = PTR_ERR(ch->sess);
2346                ch->sess = NULL;
2347                pr_info("Rejected login for initiator %s: ret = %d.\n",
2348                        ch->sess_name, ret);
2349                rej->reason = cpu_to_be32(ret == -ENOMEM ?
2350                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2351                                SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2352                goto destroy_ib;
2353        }
2354
2355        /*
2356         * Once a session has been created destruction of srpt_rdma_ch objects
2357         * will decrement sport->refcount. Hence increment sport->refcount now.
2358         */
2359        atomic_inc(&sport->refcount);
2360
2361        mutex_lock(&sport->mutex);
2362
2363        if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2364                struct srpt_rdma_ch *ch2;
2365
2366                list_for_each_entry(ch2, &nexus->ch_list, list) {
2367                        if (srpt_disconnect_ch(ch2) < 0)
2368                                continue;
2369                        pr_info("Relogin - closed existing channel %s\n",
2370                                ch2->sess_name);
2371                        rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2372                }
2373        } else {
2374                rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2375        }
2376
2377        list_add_tail_rcu(&ch->list, &nexus->ch_list);
2378
2379        if (!sport->enabled) {
2380                rej->reason = cpu_to_be32(
2381                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2382                pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2383                        dev_name(&sdev->device->dev), port_num);
2384                mutex_unlock(&sport->mutex);
2385                goto reject;
2386        }
2387
2388        mutex_unlock(&sport->mutex);
2389
2390        ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2391        if (ret) {
2392                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2393                pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2394                       ret);
2395                goto reject;
2396        }
2397
2398        pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2399                 ch->sess_name, ch);
2400
2401        /* create srp_login_response */
2402        rsp->opcode = SRP_LOGIN_RSP;
2403        rsp->tag = req->tag;
2404        rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2405        rsp->max_ti_iu_len = req->req_it_iu_len;
2406        ch->max_ti_iu_len = it_iu_len;
2407        rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2408                                   SRP_BUF_FORMAT_INDIRECT);
2409        rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2410        atomic_set(&ch->req_lim, ch->rq_size);
2411        atomic_set(&ch->req_lim_delta, 0);
2412
2413        /* create cm reply */
2414        if (ch->using_rdma_cm) {
2415                rep_param->rdma_cm.private_data = (void *)rsp;
2416                rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2417                rep_param->rdma_cm.rnr_retry_count = 7;
2418                rep_param->rdma_cm.flow_control = 1;
2419                rep_param->rdma_cm.responder_resources = 4;
2420                rep_param->rdma_cm.initiator_depth = 4;
2421        } else {
2422                rep_param->ib_cm.qp_num = ch->qp->qp_num;
2423                rep_param->ib_cm.private_data = (void *)rsp;
2424                rep_param->ib_cm.private_data_len = sizeof(*rsp);
2425                rep_param->ib_cm.rnr_retry_count = 7;
2426                rep_param->ib_cm.flow_control = 1;
2427                rep_param->ib_cm.failover_accepted = 0;
2428                rep_param->ib_cm.srq = 1;
2429                rep_param->ib_cm.responder_resources = 4;
2430                rep_param->ib_cm.initiator_depth = 4;
2431        }
2432
2433        /*
2434         * Hold the sport mutex while accepting a connection to avoid that
2435         * srpt_disconnect_ch() is invoked concurrently with this code.
2436         */
2437        mutex_lock(&sport->mutex);
2438        if (sport->enabled && ch->state == CH_CONNECTING) {
2439                if (ch->using_rdma_cm)
2440                        ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2441                else
2442                        ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2443        } else {
2444                ret = -EINVAL;
2445        }
2446        mutex_unlock(&sport->mutex);
2447
2448        switch (ret) {
2449        case 0:
2450                break;
2451        case -EINVAL:
2452                goto reject;
2453        default:
2454                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2455                pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2456                       ret);
2457                goto reject;
2458        }
2459
2460        goto out;
2461
2462destroy_ib:
2463        srpt_destroy_ch_ib(ch);
2464
2465free_recv_ring:
2466        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2467                             ch->sport->sdev, ch->rq_size,
2468                             ch->req_buf_cache, DMA_FROM_DEVICE);
2469
2470free_recv_cache:
2471        kmem_cache_destroy(ch->req_buf_cache);
2472
2473free_rsp_ring:
2474        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2475                             ch->sport->sdev, ch->rq_size,
2476                             ch->rsp_buf_cache, DMA_TO_DEVICE);
2477
2478free_rsp_cache:
2479        kmem_cache_destroy(ch->rsp_buf_cache);
2480
2481free_ch:
2482        if (rdma_cm_id)
2483                rdma_cm_id->context = NULL;
2484        else
2485                ib_cm_id->context = NULL;
2486        kfree(ch);
2487        ch = NULL;
2488
2489        WARN_ON_ONCE(ret == 0);
2490
2491reject:
2492        pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2493        rej->opcode = SRP_LOGIN_REJ;
2494        rej->tag = req->tag;
2495        rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2496                                   SRP_BUF_FORMAT_INDIRECT);
2497
2498        if (rdma_cm_id)
2499                rdma_reject(rdma_cm_id, rej, sizeof(*rej));
2500        else
2501                ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2502                               rej, sizeof(*rej));
2503
2504        if (ch && ch->sess) {
2505                srpt_close_ch(ch);
2506                /*
2507                 * Tell the caller not to free cm_id since
2508                 * srpt_release_channel_work() will do that.
2509                 */
2510                ret = 0;
2511        }
2512
2513out:
2514        kfree(rep_param);
2515        kfree(rsp);
2516        kfree(rej);
2517
2518        return ret;
2519}
2520
2521static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2522                               const struct ib_cm_req_event_param *param,
2523                               void *private_data)
2524{
2525        char sguid[40];
2526
2527        srpt_format_guid(sguid, sizeof(sguid),
2528                         &param->primary_path->dgid.global.interface_id);
2529
2530        return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2531                                param->primary_path->pkey,
2532                                private_data, sguid);
2533}
2534
2535static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2536                                 struct rdma_cm_event *event)
2537{
2538        struct srpt_device *sdev;
2539        struct srp_login_req req;
2540        const struct srp_login_req_rdma *req_rdma;
2541        struct sa_path_rec *path_rec = cm_id->route.path_rec;
2542        char src_addr[40];
2543
2544        sdev = ib_get_client_data(cm_id->device, &srpt_client);
2545        if (!sdev)
2546                return -ECONNREFUSED;
2547
2548        if (event->param.conn.private_data_len < sizeof(*req_rdma))
2549                return -EINVAL;
2550
2551        /* Transform srp_login_req_rdma into srp_login_req. */
2552        req_rdma = event->param.conn.private_data;
2553        memset(&req, 0, sizeof(req));
2554        req.opcode              = req_rdma->opcode;
2555        req.tag                 = req_rdma->tag;
2556        req.req_it_iu_len       = req_rdma->req_it_iu_len;
2557        req.req_buf_fmt         = req_rdma->req_buf_fmt;
2558        req.req_flags           = req_rdma->req_flags;
2559        memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2560        memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2561        req.imm_data_offset     = req_rdma->imm_data_offset;
2562
2563        snprintf(src_addr, sizeof(src_addr), "%pIS",
2564                 &cm_id->route.addr.src_addr);
2565
2566        return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2567                                path_rec ? path_rec->pkey : 0, &req, src_addr);
2568}
2569
2570static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2571                             enum ib_cm_rej_reason reason,
2572                             const u8 *private_data,
2573                             u8 private_data_len)
2574{
2575        char *priv = NULL;
2576        int i;
2577
2578        if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2579                                                GFP_KERNEL))) {
2580                for (i = 0; i < private_data_len; i++)
2581                        sprintf(priv + 3 * i, " %02x", private_data[i]);
2582        }
2583        pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2584                ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2585                "; private data" : "", priv ? priv : " (?)");
2586        kfree(priv);
2587}
2588
2589/**
2590 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2591 * @ch: SRPT RDMA channel.
2592 *
2593 * An RTU (ready to use) message indicates that the connection has been
2594 * established and that the recipient may begin transmitting.
2595 */
2596static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2597{
2598        int ret;
2599
2600        ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2601        if (ret < 0) {
2602                pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2603                       ch->qp->qp_num);
2604                srpt_close_ch(ch);
2605                return;
2606        }
2607
2608        /*
2609         * Note: calling srpt_close_ch() if the transition to the LIVE state
2610         * fails is not necessary since that means that that function has
2611         * already been invoked from another thread.
2612         */
2613        if (!srpt_set_ch_state(ch, CH_LIVE)) {
2614                pr_err("%s-%d: channel transition to LIVE state failed\n",
2615                       ch->sess_name, ch->qp->qp_num);
2616                return;
2617        }
2618
2619        /* Trigger wait list processing. */
2620        ret = srpt_zerolength_write(ch);
2621        WARN_ONCE(ret < 0, "%d\n", ret);
2622}
2623
2624/**
2625 * srpt_cm_handler - IB connection manager callback function
2626 * @cm_id: IB/CM connection identifier.
2627 * @event: IB/CM event.
2628 *
2629 * A non-zero return value will cause the caller destroy the CM ID.
2630 *
2631 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2632 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2633 * a non-zero value in any other case will trigger a race with the
2634 * ib_destroy_cm_id() call in srpt_release_channel().
2635 */
2636static int srpt_cm_handler(struct ib_cm_id *cm_id,
2637                           const struct ib_cm_event *event)
2638{
2639        struct srpt_rdma_ch *ch = cm_id->context;
2640        int ret;
2641
2642        ret = 0;
2643        switch (event->event) {
2644        case IB_CM_REQ_RECEIVED:
2645                ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2646                                          event->private_data);
2647                break;
2648        case IB_CM_REJ_RECEIVED:
2649                srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2650                                 event->private_data,
2651                                 IB_CM_REJ_PRIVATE_DATA_SIZE);
2652                break;
2653        case IB_CM_RTU_RECEIVED:
2654        case IB_CM_USER_ESTABLISHED:
2655                srpt_cm_rtu_recv(ch);
2656                break;
2657        case IB_CM_DREQ_RECEIVED:
2658                srpt_disconnect_ch(ch);
2659                break;
2660        case IB_CM_DREP_RECEIVED:
2661                pr_info("Received CM DREP message for ch %s-%d.\n",
2662                        ch->sess_name, ch->qp->qp_num);
2663                srpt_close_ch(ch);
2664                break;
2665        case IB_CM_TIMEWAIT_EXIT:
2666                pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2667                        ch->sess_name, ch->qp->qp_num);
2668                srpt_close_ch(ch);
2669                break;
2670        case IB_CM_REP_ERROR:
2671                pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2672                        ch->qp->qp_num);
2673                break;
2674        case IB_CM_DREQ_ERROR:
2675                pr_info("Received CM DREQ ERROR event.\n");
2676                break;
2677        case IB_CM_MRA_RECEIVED:
2678                pr_info("Received CM MRA event\n");
2679                break;
2680        default:
2681                pr_err("received unrecognized CM event %d\n", event->event);
2682                break;
2683        }
2684
2685        return ret;
2686}
2687
2688static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2689                                struct rdma_cm_event *event)
2690{
2691        struct srpt_rdma_ch *ch = cm_id->context;
2692        int ret = 0;
2693
2694        switch (event->event) {
2695        case RDMA_CM_EVENT_CONNECT_REQUEST:
2696                ret = srpt_rdma_cm_req_recv(cm_id, event);
2697                break;
2698        case RDMA_CM_EVENT_REJECTED:
2699                srpt_cm_rej_recv(ch, event->status,
2700                                 event->param.conn.private_data,
2701                                 event->param.conn.private_data_len);
2702                break;
2703        case RDMA_CM_EVENT_ESTABLISHED:
2704                srpt_cm_rtu_recv(ch);
2705                break;
2706        case RDMA_CM_EVENT_DISCONNECTED:
2707                if (ch->state < CH_DISCONNECTING)
2708                        srpt_disconnect_ch(ch);
2709                else
2710                        srpt_close_ch(ch);
2711                break;
2712        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2713                srpt_close_ch(ch);
2714                break;
2715        case RDMA_CM_EVENT_UNREACHABLE:
2716                pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2717                        ch->qp->qp_num);
2718                break;
2719        case RDMA_CM_EVENT_DEVICE_REMOVAL:
2720        case RDMA_CM_EVENT_ADDR_CHANGE:
2721                break;
2722        default:
2723                pr_err("received unrecognized RDMA CM event %d\n",
2724                       event->event);
2725                break;
2726        }
2727
2728        return ret;
2729}
2730
2731/*
2732 * srpt_write_pending - Start data transfer from initiator to target (write).
2733 */
2734static int srpt_write_pending(struct se_cmd *se_cmd)
2735{
2736        struct srpt_send_ioctx *ioctx =
2737                container_of(se_cmd, struct srpt_send_ioctx, cmd);
2738        struct srpt_rdma_ch *ch = ioctx->ch;
2739        struct ib_send_wr *first_wr = NULL;
2740        struct ib_cqe *cqe = &ioctx->rdma_cqe;
2741        enum srpt_command_state new_state;
2742        int ret, i;
2743
2744        if (ioctx->recv_ioctx) {
2745                srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2746                target_execute_cmd(&ioctx->cmd);
2747                return 0;
2748        }
2749
2750        new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2751        WARN_ON(new_state == SRPT_STATE_DONE);
2752
2753        if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2754                pr_warn("%s: IB send queue full (needed %d)\n",
2755                                __func__, ioctx->n_rdma);
2756                ret = -ENOMEM;
2757                goto out_undo;
2758        }
2759
2760        cqe->done = srpt_rdma_read_done;
2761        for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2762                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2763
2764                first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2765                                cqe, first_wr);
2766                cqe = NULL;
2767        }
2768
2769        ret = ib_post_send(ch->qp, first_wr, NULL);
2770        if (ret) {
2771                pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2772                         __func__, ret, ioctx->n_rdma,
2773                         atomic_read(&ch->sq_wr_avail));
2774                goto out_undo;
2775        }
2776
2777        return 0;
2778out_undo:
2779        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2780        return ret;
2781}
2782
2783static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2784{
2785        switch (tcm_mgmt_status) {
2786        case TMR_FUNCTION_COMPLETE:
2787                return SRP_TSK_MGMT_SUCCESS;
2788        case TMR_FUNCTION_REJECTED:
2789                return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2790        }
2791        return SRP_TSK_MGMT_FAILED;
2792}
2793
2794/**
2795 * srpt_queue_response - transmit the response to a SCSI command
2796 * @cmd: SCSI target command.
2797 *
2798 * Callback function called by the TCM core. Must not block since it can be
2799 * invoked on the context of the IB completion handler.
2800 */
2801static void srpt_queue_response(struct se_cmd *cmd)
2802{
2803        struct srpt_send_ioctx *ioctx =
2804                container_of(cmd, struct srpt_send_ioctx, cmd);
2805        struct srpt_rdma_ch *ch = ioctx->ch;
2806        struct srpt_device *sdev = ch->sport->sdev;
2807        struct ib_send_wr send_wr, *first_wr = &send_wr;
2808        struct ib_sge sge;
2809        enum srpt_command_state state;
2810        int resp_len, ret, i;
2811        u8 srp_tm_status;
2812
2813        state = ioctx->state;
2814        switch (state) {
2815        case SRPT_STATE_NEW:
2816        case SRPT_STATE_DATA_IN:
2817                ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2818                break;
2819        case SRPT_STATE_MGMT:
2820                ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2821                break;
2822        default:
2823                WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2824                        ch, ioctx->ioctx.index, ioctx->state);
2825                break;
2826        }
2827
2828        if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2829                return;
2830
2831        /* For read commands, transfer the data to the initiator. */
2832        if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2833            ioctx->cmd.data_length &&
2834            !ioctx->queue_status_only) {
2835                for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2836                        struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2837
2838                        first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2839                                        ch->sport->port, NULL, first_wr);
2840                }
2841        }
2842
2843        if (state != SRPT_STATE_MGMT)
2844                resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2845                                              cmd->scsi_status);
2846        else {
2847                srp_tm_status
2848                        = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2849                resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2850                                                 ioctx->cmd.tag);
2851        }
2852
2853        atomic_inc(&ch->req_lim);
2854
2855        if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2856                        &ch->sq_wr_avail) < 0)) {
2857                pr_warn("%s: IB send queue full (needed %d)\n",
2858                                __func__, ioctx->n_rdma);
2859                ret = -ENOMEM;
2860                goto out;
2861        }
2862
2863        ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2864                                      DMA_TO_DEVICE);
2865
2866        sge.addr = ioctx->ioctx.dma;
2867        sge.length = resp_len;
2868        sge.lkey = sdev->lkey;
2869
2870        ioctx->ioctx.cqe.done = srpt_send_done;
2871        send_wr.next = NULL;
2872        send_wr.wr_cqe = &ioctx->ioctx.cqe;
2873        send_wr.sg_list = &sge;
2874        send_wr.num_sge = 1;
2875        send_wr.opcode = IB_WR_SEND;
2876        send_wr.send_flags = IB_SEND_SIGNALED;
2877
2878        ret = ib_post_send(ch->qp, first_wr, NULL);
2879        if (ret < 0) {
2880                pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2881                        __func__, ioctx->cmd.tag, ret);
2882                goto out;
2883        }
2884
2885        return;
2886
2887out:
2888        atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2889        atomic_dec(&ch->req_lim);
2890        srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2891        target_put_sess_cmd(&ioctx->cmd);
2892}
2893
2894static int srpt_queue_data_in(struct se_cmd *cmd)
2895{
2896        srpt_queue_response(cmd);
2897        return 0;
2898}
2899
2900static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2901{
2902        srpt_queue_response(cmd);
2903}
2904
2905/*
2906 * This function is called for aborted commands if no response is sent to the
2907 * initiator. Make sure that the credits freed by aborting a command are
2908 * returned to the initiator the next time a response is sent by incrementing
2909 * ch->req_lim_delta.
2910 */
2911static void srpt_aborted_task(struct se_cmd *cmd)
2912{
2913        struct srpt_send_ioctx *ioctx = container_of(cmd,
2914                                struct srpt_send_ioctx, cmd);
2915        struct srpt_rdma_ch *ch = ioctx->ch;
2916
2917        atomic_inc(&ch->req_lim_delta);
2918}
2919
2920static int srpt_queue_status(struct se_cmd *cmd)
2921{
2922        struct srpt_send_ioctx *ioctx;
2923
2924        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2925        BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2926        if (cmd->se_cmd_flags &
2927            (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2928                WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2929        ioctx->queue_status_only = true;
2930        srpt_queue_response(cmd);
2931        return 0;
2932}
2933
2934static void srpt_refresh_port_work(struct work_struct *work)
2935{
2936        struct srpt_port *sport = container_of(work, struct srpt_port, work);
2937
2938        srpt_refresh_port(sport);
2939}
2940
2941/**
2942 * srpt_release_sport - disable login and wait for associated channels
2943 * @sport: SRPT HCA port.
2944 */
2945static int srpt_release_sport(struct srpt_port *sport)
2946{
2947        DECLARE_COMPLETION_ONSTACK(c);
2948        struct srpt_nexus *nexus, *next_n;
2949        struct srpt_rdma_ch *ch;
2950
2951        WARN_ON_ONCE(irqs_disabled());
2952
2953        sport->freed_channels = &c;
2954
2955        mutex_lock(&sport->mutex);
2956        srpt_set_enabled(sport, false);
2957        mutex_unlock(&sport->mutex);
2958
2959        while (atomic_read(&sport->refcount) > 0 &&
2960               wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2961                pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2962                        dev_name(&sport->sdev->device->dev), sport->port,
2963                        atomic_read(&sport->refcount));
2964                rcu_read_lock();
2965                list_for_each_entry(nexus, &sport->nexus_list, entry) {
2966                        list_for_each_entry(ch, &nexus->ch_list, list) {
2967                                pr_info("%s-%d: state %s\n",
2968                                        ch->sess_name, ch->qp->qp_num,
2969                                        get_ch_state_name(ch->state));
2970                        }
2971                }
2972                rcu_read_unlock();
2973        }
2974
2975        mutex_lock(&sport->mutex);
2976        list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2977                list_del(&nexus->entry);
2978                kfree_rcu(nexus, rcu);
2979        }
2980        mutex_unlock(&sport->mutex);
2981
2982        return 0;
2983}
2984
2985static struct se_wwn *__srpt_lookup_wwn(const char *name)
2986{
2987        struct ib_device *dev;
2988        struct srpt_device *sdev;
2989        struct srpt_port *sport;
2990        int i;
2991
2992        list_for_each_entry(sdev, &srpt_dev_list, list) {
2993                dev = sdev->device;
2994                if (!dev)
2995                        continue;
2996
2997                for (i = 0; i < dev->phys_port_cnt; i++) {
2998                        sport = &sdev->port[i];
2999
3000                        if (strcmp(sport->port_guid_id.name, name) == 0)
3001                                return &sport->port_guid_id.wwn;
3002                        if (strcmp(sport->port_gid_id.name, name) == 0)
3003                                return &sport->port_gid_id.wwn;
3004                }
3005        }
3006
3007        return NULL;
3008}
3009
3010static struct se_wwn *srpt_lookup_wwn(const char *name)
3011{
3012        struct se_wwn *wwn;
3013
3014        spin_lock(&srpt_dev_lock);
3015        wwn = __srpt_lookup_wwn(name);
3016        spin_unlock(&srpt_dev_lock);
3017
3018        return wwn;
3019}
3020
3021static void srpt_free_srq(struct srpt_device *sdev)
3022{
3023        if (!sdev->srq)
3024                return;
3025
3026        ib_destroy_srq(sdev->srq);
3027        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3028                             sdev->srq_size, sdev->req_buf_cache,
3029                             DMA_FROM_DEVICE);
3030        kmem_cache_destroy(sdev->req_buf_cache);
3031        sdev->srq = NULL;
3032}
3033
3034static int srpt_alloc_srq(struct srpt_device *sdev)
3035{
3036        struct ib_srq_init_attr srq_attr = {
3037                .event_handler = srpt_srq_event,
3038                .srq_context = (void *)sdev,
3039                .attr.max_wr = sdev->srq_size,
3040                .attr.max_sge = 1,
3041                .srq_type = IB_SRQT_BASIC,
3042        };
3043        struct ib_device *device = sdev->device;
3044        struct ib_srq *srq;
3045        int i;
3046
3047        WARN_ON_ONCE(sdev->srq);
3048        srq = ib_create_srq(sdev->pd, &srq_attr);
3049        if (IS_ERR(srq)) {
3050                pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3051                return PTR_ERR(srq);
3052        }
3053
3054        pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3055                 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3056
3057        sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3058                                                srp_max_req_size, 0, 0, NULL);
3059        if (!sdev->req_buf_cache)
3060                goto free_srq;
3061
3062        sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3063                srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3064                                      sizeof(*sdev->ioctx_ring[0]),
3065                                      sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3066        if (!sdev->ioctx_ring)
3067                goto free_cache;
3068
3069        sdev->use_srq = true;
3070        sdev->srq = srq;
3071
3072        for (i = 0; i < sdev->srq_size; ++i) {
3073                INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3074                srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3075        }
3076
3077        return 0;
3078
3079free_cache:
3080        kmem_cache_destroy(sdev->req_buf_cache);
3081
3082free_srq:
3083        ib_destroy_srq(srq);
3084        return -ENOMEM;
3085}
3086
3087static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3088{
3089        struct ib_device *device = sdev->device;
3090        int ret = 0;
3091
3092        if (!use_srq) {
3093                srpt_free_srq(sdev);
3094                sdev->use_srq = false;
3095        } else if (use_srq && !sdev->srq) {
3096                ret = srpt_alloc_srq(sdev);
3097        }
3098        pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3099                 dev_name(&device->dev), sdev->use_srq, ret);
3100        return ret;
3101}
3102
3103/**
3104 * srpt_add_one - InfiniBand device addition callback function
3105 * @device: Describes a HCA.
3106 */
3107static void srpt_add_one(struct ib_device *device)
3108{
3109        struct srpt_device *sdev;
3110        struct srpt_port *sport;
3111        int i, ret;
3112
3113        pr_debug("device = %p\n", device);
3114
3115        sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3116                       GFP_KERNEL);
3117        if (!sdev)
3118                goto err;
3119
3120        sdev->device = device;
3121        mutex_init(&sdev->sdev_mutex);
3122
3123        sdev->pd = ib_alloc_pd(device, 0);
3124        if (IS_ERR(sdev->pd))
3125                goto free_dev;
3126
3127        sdev->lkey = sdev->pd->local_dma_lkey;
3128
3129        sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3130
3131        srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3132
3133        if (!srpt_service_guid)
3134                srpt_service_guid = be64_to_cpu(device->node_guid);
3135
3136        if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3137                sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3138        if (IS_ERR(sdev->cm_id)) {
3139                pr_info("ib_create_cm_id() failed: %ld\n",
3140                        PTR_ERR(sdev->cm_id));
3141                sdev->cm_id = NULL;
3142                if (!rdma_cm_id)
3143                        goto err_ring;
3144        }
3145
3146        /* print out target login information */
3147        pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3148                 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3149
3150        /*
3151         * We do not have a consistent service_id (ie. also id_ext of target_id)
3152         * to identify this target. We currently use the guid of the first HCA
3153         * in the system as service_id; therefore, the target_id will change
3154         * if this HCA is gone bad and replaced by different HCA
3155         */
3156        ret = sdev->cm_id ?
3157                ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3158                0;
3159        if (ret < 0) {
3160                pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3161                       sdev->cm_id->state);
3162                goto err_cm;
3163        }
3164
3165        INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3166                              srpt_event_handler);
3167        ib_register_event_handler(&sdev->event_handler);
3168
3169        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3170                sport = &sdev->port[i - 1];
3171                INIT_LIST_HEAD(&sport->nexus_list);
3172                mutex_init(&sport->mutex);
3173                sport->sdev = sdev;
3174                sport->port = i;
3175                sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3176                sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3177                sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3178                sport->port_attrib.use_srq = false;
3179                INIT_WORK(&sport->work, srpt_refresh_port_work);
3180                mutex_init(&sport->port_guid_id.mutex);
3181                INIT_LIST_HEAD(&sport->port_guid_id.tpg_list);
3182                mutex_init(&sport->port_gid_id.mutex);
3183                INIT_LIST_HEAD(&sport->port_gid_id.tpg_list);
3184
3185                if (srpt_refresh_port(sport)) {
3186                        pr_err("MAD registration failed for %s-%d.\n",
3187                               dev_name(&sdev->device->dev), i);
3188                        goto err_event;
3189                }
3190        }
3191
3192        spin_lock(&srpt_dev_lock);
3193        list_add_tail(&sdev->list, &srpt_dev_list);
3194        spin_unlock(&srpt_dev_lock);
3195
3196out:
3197        ib_set_client_data(device, &srpt_client, sdev);
3198        pr_debug("added %s.\n", dev_name(&device->dev));
3199        return;
3200
3201err_event:
3202        ib_unregister_event_handler(&sdev->event_handler);
3203err_cm:
3204        if (sdev->cm_id)
3205                ib_destroy_cm_id(sdev->cm_id);
3206err_ring:
3207        srpt_free_srq(sdev);
3208        ib_dealloc_pd(sdev->pd);
3209free_dev:
3210        kfree(sdev);
3211err:
3212        sdev = NULL;
3213        pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3214        goto out;
3215}
3216
3217/**
3218 * srpt_remove_one - InfiniBand device removal callback function
3219 * @device: Describes a HCA.
3220 * @client_data: The value passed as the third argument to ib_set_client_data().
3221 */
3222static void srpt_remove_one(struct ib_device *device, void *client_data)
3223{
3224        struct srpt_device *sdev = client_data;
3225        int i;
3226
3227        if (!sdev) {
3228                pr_info("%s(%s): nothing to do.\n", __func__,
3229                        dev_name(&device->dev));
3230                return;
3231        }
3232
3233        srpt_unregister_mad_agent(sdev);
3234
3235        ib_unregister_event_handler(&sdev->event_handler);
3236
3237        /* Cancel any work queued by the just unregistered IB event handler. */
3238        for (i = 0; i < sdev->device->phys_port_cnt; i++)
3239                cancel_work_sync(&sdev->port[i].work);
3240
3241        if (sdev->cm_id)
3242                ib_destroy_cm_id(sdev->cm_id);
3243
3244        ib_set_client_data(device, &srpt_client, NULL);
3245
3246        /*
3247         * Unregistering a target must happen after destroying sdev->cm_id
3248         * such that no new SRP_LOGIN_REQ information units can arrive while
3249         * destroying the target.
3250         */
3251        spin_lock(&srpt_dev_lock);
3252        list_del(&sdev->list);
3253        spin_unlock(&srpt_dev_lock);
3254
3255        for (i = 0; i < sdev->device->phys_port_cnt; i++)
3256                srpt_release_sport(&sdev->port[i]);
3257
3258        srpt_free_srq(sdev);
3259
3260        ib_dealloc_pd(sdev->pd);
3261
3262        kfree(sdev);
3263}
3264
3265static struct ib_client srpt_client = {
3266        .name = DRV_NAME,
3267        .add = srpt_add_one,
3268        .remove = srpt_remove_one
3269};
3270
3271static int srpt_check_true(struct se_portal_group *se_tpg)
3272{
3273        return 1;
3274}
3275
3276static int srpt_check_false(struct se_portal_group *se_tpg)
3277{
3278        return 0;
3279}
3280
3281static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3282{
3283        return tpg->se_tpg_wwn->priv;
3284}
3285
3286static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3287{
3288        struct srpt_port *sport = wwn->priv;
3289
3290        if (wwn == &sport->port_guid_id.wwn)
3291                return &sport->port_guid_id;
3292        if (wwn == &sport->port_gid_id.wwn)
3293                return &sport->port_gid_id;
3294        WARN_ON_ONCE(true);
3295        return NULL;
3296}
3297
3298static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3299{
3300        struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3301
3302        return stpg->sport_id->name;
3303}
3304
3305static u16 srpt_get_tag(struct se_portal_group *tpg)
3306{
3307        return 1;
3308}
3309
3310static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3311{
3312        return 1;
3313}
3314
3315static void srpt_release_cmd(struct se_cmd *se_cmd)
3316{
3317        struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3318                                struct srpt_send_ioctx, cmd);
3319        struct srpt_rdma_ch *ch = ioctx->ch;
3320        struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3321
3322        WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3323                     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3324
3325        if (recv_ioctx) {
3326                WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3327                ioctx->recv_ioctx = NULL;
3328                srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3329        }
3330
3331        if (ioctx->n_rw_ctx) {
3332                srpt_free_rw_ctxs(ch, ioctx);
3333                ioctx->n_rw_ctx = 0;
3334        }
3335
3336        target_free_tag(se_cmd->se_sess, se_cmd);
3337}
3338
3339/**
3340 * srpt_close_session - forcibly close a session
3341 * @se_sess: SCSI target session.
3342 *
3343 * Callback function invoked by the TCM core to clean up sessions associated
3344 * with a node ACL when the user invokes
3345 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3346 */
3347static void srpt_close_session(struct se_session *se_sess)
3348{
3349        struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3350
3351        srpt_disconnect_ch_sync(ch);
3352}
3353
3354/**
3355 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3356 * @se_sess: SCSI target session.
3357 *
3358 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3359 * This object represents an arbitrary integer used to uniquely identify a
3360 * particular attached remote initiator port to a particular SCSI target port
3361 * within a particular SCSI target device within a particular SCSI instance.
3362 */
3363static u32 srpt_sess_get_index(struct se_session *se_sess)
3364{
3365        return 0;
3366}
3367
3368static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3369{
3370}
3371
3372/* Note: only used from inside debug printk's by the TCM core. */
3373static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3374{
3375        struct srpt_send_ioctx *ioctx;
3376
3377        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3378        return ioctx->state;
3379}
3380
3381static int srpt_parse_guid(u64 *guid, const char *name)
3382{
3383        u16 w[4];
3384        int ret = -EINVAL;
3385
3386        if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3387                goto out;
3388        *guid = get_unaligned_be64(w);
3389        ret = 0;
3390out:
3391        return ret;
3392}
3393
3394/**
3395 * srpt_parse_i_port_id - parse an initiator port ID
3396 * @name: ASCII representation of a 128-bit initiator port ID.
3397 * @i_port_id: Binary 128-bit port ID.
3398 */
3399static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3400{
3401        const char *p;
3402        unsigned len, count, leading_zero_bytes;
3403        int ret;
3404
3405        p = name;
3406        if (strncasecmp(p, "0x", 2) == 0)
3407                p += 2;
3408        ret = -EINVAL;
3409        len = strlen(p);
3410        if (len % 2)
3411                goto out;
3412        count = min(len / 2, 16U);
3413        leading_zero_bytes = 16 - count;
3414        memset(i_port_id, 0, leading_zero_bytes);
3415        ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3416
3417out:
3418        return ret;
3419}
3420
3421/*
3422 * configfs callback function invoked for mkdir
3423 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3424 *
3425 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3426 * target_alloc_session() calls in this driver. Examples of valid initiator
3427 * port IDs:
3428 * 0x0000000000000000505400fffe4a0b7b
3429 * 0000000000000000505400fffe4a0b7b
3430 * 5054:00ff:fe4a:0b7b
3431 * 192.168.122.76
3432 */
3433static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3434{
3435        struct sockaddr_storage sa;
3436        u64 guid;
3437        u8 i_port_id[16];
3438        int ret;
3439
3440        ret = srpt_parse_guid(&guid, name);
3441        if (ret < 0)
3442                ret = srpt_parse_i_port_id(i_port_id, name);
3443        if (ret < 0)
3444                ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3445                                           &sa);
3446        if (ret < 0)
3447                pr_err("invalid initiator port ID %s\n", name);
3448        return ret;
3449}
3450
3451static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3452                char *page)
3453{
3454        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3455        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3456
3457        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3458}
3459
3460static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3461                const char *page, size_t count)
3462{
3463        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3464        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3465        unsigned long val;
3466        int ret;
3467
3468        ret = kstrtoul(page, 0, &val);
3469        if (ret < 0) {
3470                pr_err("kstrtoul() failed with ret: %d\n", ret);
3471                return -EINVAL;
3472        }
3473        if (val > MAX_SRPT_RDMA_SIZE) {
3474                pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3475                        MAX_SRPT_RDMA_SIZE);
3476                return -EINVAL;
3477        }
3478        if (val < DEFAULT_MAX_RDMA_SIZE) {
3479                pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3480                        val, DEFAULT_MAX_RDMA_SIZE);
3481                return -EINVAL;
3482        }
3483        sport->port_attrib.srp_max_rdma_size = val;
3484
3485        return count;
3486}
3487
3488static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3489                char *page)
3490{
3491        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3492        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3493
3494        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3495}
3496
3497static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3498                const char *page, size_t count)
3499{
3500        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3501        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3502        unsigned long val;
3503        int ret;
3504
3505        ret = kstrtoul(page, 0, &val);
3506        if (ret < 0) {
3507                pr_err("kstrtoul() failed with ret: %d\n", ret);
3508                return -EINVAL;
3509        }
3510        if (val > MAX_SRPT_RSP_SIZE) {
3511                pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3512                        MAX_SRPT_RSP_SIZE);
3513                return -EINVAL;
3514        }
3515        if (val < MIN_MAX_RSP_SIZE) {
3516                pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3517                        MIN_MAX_RSP_SIZE);
3518                return -EINVAL;
3519        }
3520        sport->port_attrib.srp_max_rsp_size = val;
3521
3522        return count;
3523}
3524
3525static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3526                char *page)
3527{
3528        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3529        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3530
3531        return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3532}
3533
3534static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3535                const char *page, size_t count)
3536{
3537        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3538        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3539        unsigned long val;
3540        int ret;
3541
3542        ret = kstrtoul(page, 0, &val);
3543        if (ret < 0) {
3544                pr_err("kstrtoul() failed with ret: %d\n", ret);
3545                return -EINVAL;
3546        }
3547        if (val > MAX_SRPT_SRQ_SIZE) {
3548                pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3549                        MAX_SRPT_SRQ_SIZE);
3550                return -EINVAL;
3551        }
3552        if (val < MIN_SRPT_SRQ_SIZE) {
3553                pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3554                        MIN_SRPT_SRQ_SIZE);
3555                return -EINVAL;
3556        }
3557        sport->port_attrib.srp_sq_size = val;
3558
3559        return count;
3560}
3561
3562static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3563                                            char *page)
3564{
3565        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3566        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3567
3568        return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3569}
3570
3571static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3572                                             const char *page, size_t count)
3573{
3574        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3575        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3576        struct srpt_device *sdev = sport->sdev;
3577        unsigned long val;
3578        bool enabled;
3579        int ret;
3580
3581        ret = kstrtoul(page, 0, &val);
3582        if (ret < 0)
3583                return ret;
3584        if (val != !!val)
3585                return -EINVAL;
3586
3587        ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3588        if (ret < 0)
3589                return ret;
3590        ret = mutex_lock_interruptible(&sport->mutex);
3591        if (ret < 0)
3592                goto unlock_sdev;
3593        enabled = sport->enabled;
3594        /* Log out all initiator systems before changing 'use_srq'. */
3595        srpt_set_enabled(sport, false);
3596        sport->port_attrib.use_srq = val;
3597        srpt_use_srq(sdev, sport->port_attrib.use_srq);
3598        srpt_set_enabled(sport, enabled);
3599        ret = count;
3600        mutex_unlock(&sport->mutex);
3601unlock_sdev:
3602        mutex_unlock(&sdev->sdev_mutex);
3603
3604        return ret;
3605}
3606
3607CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3608CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3609CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3610CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3611
3612static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3613        &srpt_tpg_attrib_attr_srp_max_rdma_size,
3614        &srpt_tpg_attrib_attr_srp_max_rsp_size,
3615        &srpt_tpg_attrib_attr_srp_sq_size,
3616        &srpt_tpg_attrib_attr_use_srq,
3617        NULL,
3618};
3619
3620static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3621{
3622        struct rdma_cm_id *rdma_cm_id;
3623        int ret;
3624
3625        rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3626                                    NULL, RDMA_PS_TCP, IB_QPT_RC);
3627        if (IS_ERR(rdma_cm_id)) {
3628                pr_err("RDMA/CM ID creation failed: %ld\n",
3629                       PTR_ERR(rdma_cm_id));
3630                goto out;
3631        }
3632
3633        ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3634        if (ret) {
3635                char addr_str[64];
3636
3637                snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3638                pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3639                       addr_str, ret);
3640                rdma_destroy_id(rdma_cm_id);
3641                rdma_cm_id = ERR_PTR(ret);
3642                goto out;
3643        }
3644
3645        ret = rdma_listen(rdma_cm_id, 128);
3646        if (ret) {
3647                pr_err("rdma_listen() failed: %d\n", ret);
3648                rdma_destroy_id(rdma_cm_id);
3649                rdma_cm_id = ERR_PTR(ret);
3650        }
3651
3652out:
3653        return rdma_cm_id;
3654}
3655
3656static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3657{
3658        return sprintf(page, "%d\n", rdma_cm_port);
3659}
3660
3661static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3662                                       const char *page, size_t count)
3663{
3664        struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3665        struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3666        struct rdma_cm_id *new_id = NULL;
3667        u16 val;
3668        int ret;
3669
3670        ret = kstrtou16(page, 0, &val);
3671        if (ret < 0)
3672                return ret;
3673        ret = count;
3674        if (rdma_cm_port == val)
3675                goto out;
3676
3677        if (val) {
3678                addr6.sin6_port = cpu_to_be16(val);
3679                new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3680                if (IS_ERR(new_id)) {
3681                        addr4.sin_port = cpu_to_be16(val);
3682                        new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3683                        if (IS_ERR(new_id)) {
3684                                ret = PTR_ERR(new_id);
3685                                goto out;
3686                        }
3687                }
3688        }
3689
3690        mutex_lock(&rdma_cm_mutex);
3691        rdma_cm_port = val;
3692        swap(rdma_cm_id, new_id);
3693        mutex_unlock(&rdma_cm_mutex);
3694
3695        if (new_id)
3696                rdma_destroy_id(new_id);
3697        ret = count;
3698out:
3699        return ret;
3700}
3701
3702CONFIGFS_ATTR(srpt_, rdma_cm_port);
3703
3704static struct configfs_attribute *srpt_da_attrs[] = {
3705        &srpt_attr_rdma_cm_port,
3706        NULL,
3707};
3708
3709static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3710{
3711        struct se_portal_group *se_tpg = to_tpg(item);
3712        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3713
3714        return snprintf(page, PAGE_SIZE, "%d\n", sport->enabled);
3715}
3716
3717static ssize_t srpt_tpg_enable_store(struct config_item *item,
3718                const char *page, size_t count)
3719{
3720        struct se_portal_group *se_tpg = to_tpg(item);
3721        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3722        unsigned long tmp;
3723        int ret;
3724
3725        ret = kstrtoul(page, 0, &tmp);
3726        if (ret < 0) {
3727                pr_err("Unable to extract srpt_tpg_store_enable\n");
3728                return -EINVAL;
3729        }
3730
3731        if ((tmp != 0) && (tmp != 1)) {
3732                pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3733                return -EINVAL;
3734        }
3735
3736        mutex_lock(&sport->mutex);
3737        srpt_set_enabled(sport, tmp);
3738        mutex_unlock(&sport->mutex);
3739
3740        return count;
3741}
3742
3743CONFIGFS_ATTR(srpt_tpg_, enable);
3744
3745static struct configfs_attribute *srpt_tpg_attrs[] = {
3746        &srpt_tpg_attr_enable,
3747        NULL,
3748};
3749
3750/**
3751 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3752 * @wwn: Corresponds to $driver/$port.
3753 * @name: $tpg.
3754 */
3755static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3756                                             const char *name)
3757{
3758        struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3759        struct srpt_tpg *stpg;
3760        int res = -ENOMEM;
3761
3762        stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3763        if (!stpg)
3764                return ERR_PTR(res);
3765        stpg->sport_id = sport_id;
3766        res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3767        if (res) {
3768                kfree(stpg);
3769                return ERR_PTR(res);
3770        }
3771
3772        mutex_lock(&sport_id->mutex);
3773        list_add_tail(&stpg->entry, &sport_id->tpg_list);
3774        mutex_unlock(&sport_id->mutex);
3775
3776        return &stpg->tpg;
3777}
3778
3779/**
3780 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3781 * @tpg: Target portal group to deregister.
3782 */
3783static void srpt_drop_tpg(struct se_portal_group *tpg)
3784{
3785        struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3786        struct srpt_port_id *sport_id = stpg->sport_id;
3787        struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3788
3789        mutex_lock(&sport_id->mutex);
3790        list_del(&stpg->entry);
3791        mutex_unlock(&sport_id->mutex);
3792
3793        sport->enabled = false;
3794        core_tpg_deregister(tpg);
3795        kfree(stpg);
3796}
3797
3798/**
3799 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3800 * @tf: Not used.
3801 * @group: Not used.
3802 * @name: $port.
3803 */
3804static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3805                                      struct config_group *group,
3806                                      const char *name)
3807{
3808        return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3809}
3810
3811/**
3812 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3813 * @wwn: $port.
3814 */
3815static void srpt_drop_tport(struct se_wwn *wwn)
3816{
3817}
3818
3819static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3820{
3821        return scnprintf(buf, PAGE_SIZE, "\n");
3822}
3823
3824CONFIGFS_ATTR_RO(srpt_wwn_, version);
3825
3826static struct configfs_attribute *srpt_wwn_attrs[] = {
3827        &srpt_wwn_attr_version,
3828        NULL,
3829};
3830
3831static const struct target_core_fabric_ops srpt_template = {
3832        .module                         = THIS_MODULE,
3833        .fabric_name                    = "srpt",
3834        .tpg_get_wwn                    = srpt_get_fabric_wwn,
3835        .tpg_get_tag                    = srpt_get_tag,
3836        .tpg_check_demo_mode            = srpt_check_false,
3837        .tpg_check_demo_mode_cache      = srpt_check_true,
3838        .tpg_check_demo_mode_write_protect = srpt_check_true,
3839        .tpg_check_prod_mode_write_protect = srpt_check_false,
3840        .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3841        .release_cmd                    = srpt_release_cmd,
3842        .check_stop_free                = srpt_check_stop_free,
3843        .close_session                  = srpt_close_session,
3844        .sess_get_index                 = srpt_sess_get_index,
3845        .sess_get_initiator_sid         = NULL,
3846        .write_pending                  = srpt_write_pending,
3847        .set_default_node_attributes    = srpt_set_default_node_attrs,
3848        .get_cmd_state                  = srpt_get_tcm_cmd_state,
3849        .queue_data_in                  = srpt_queue_data_in,
3850        .queue_status                   = srpt_queue_status,
3851        .queue_tm_rsp                   = srpt_queue_tm_rsp,
3852        .aborted_task                   = srpt_aborted_task,
3853        /*
3854         * Setup function pointers for generic logic in
3855         * target_core_fabric_configfs.c
3856         */
3857        .fabric_make_wwn                = srpt_make_tport,
3858        .fabric_drop_wwn                = srpt_drop_tport,
3859        .fabric_make_tpg                = srpt_make_tpg,
3860        .fabric_drop_tpg                = srpt_drop_tpg,
3861        .fabric_init_nodeacl            = srpt_init_nodeacl,
3862
3863        .tfc_discovery_attrs            = srpt_da_attrs,
3864        .tfc_wwn_attrs                  = srpt_wwn_attrs,
3865        .tfc_tpg_base_attrs             = srpt_tpg_attrs,
3866        .tfc_tpg_attrib_attrs           = srpt_tpg_attrib_attrs,
3867};
3868
3869/**
3870 * srpt_init_module - kernel module initialization
3871 *
3872 * Note: Since ib_register_client() registers callback functions, and since at
3873 * least one of these callback functions (srpt_add_one()) calls target core
3874 * functions, this driver must be registered with the target core before
3875 * ib_register_client() is called.
3876 */
3877static int __init srpt_init_module(void)
3878{
3879        int ret;
3880
3881        ret = -EINVAL;
3882        if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3883                pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3884                       srp_max_req_size, MIN_MAX_REQ_SIZE);
3885                goto out;
3886        }
3887
3888        if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3889            || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3890                pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3891                       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3892                goto out;
3893        }
3894
3895        ret = target_register_template(&srpt_template);
3896        if (ret)
3897                goto out;
3898
3899        ret = ib_register_client(&srpt_client);
3900        if (ret) {
3901                pr_err("couldn't register IB client\n");
3902                goto out_unregister_target;
3903        }
3904
3905        return 0;
3906
3907out_unregister_target:
3908        target_unregister_template(&srpt_template);
3909out:
3910        return ret;
3911}
3912
3913static void __exit srpt_cleanup_module(void)
3914{
3915        if (rdma_cm_id)
3916                rdma_destroy_id(rdma_cm_id);
3917        ib_unregister_client(&srpt_client);
3918        target_unregister_template(&srpt_template);
3919}
3920
3921module_init(srpt_init_module);
3922module_exit(srpt_cleanup_module);
3923