linux/drivers/input/keyboard/lm8323.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/i2c/chips/lm8323.c
   4 *
   5 * Copyright (C) 2007-2009 Nokia Corporation
   6 *
   7 * Written by Daniel Stone <daniel.stone@nokia.com>
   8 *            Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
   9 *
  10 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/i2c.h>
  15#include <linux/interrupt.h>
  16#include <linux/sched.h>
  17#include <linux/mutex.h>
  18#include <linux/delay.h>
  19#include <linux/input.h>
  20#include <linux/leds.h>
  21#include <linux/platform_data/lm8323.h>
  22#include <linux/pm.h>
  23#include <linux/slab.h>
  24
  25/* Commands to send to the chip. */
  26#define LM8323_CMD_READ_ID              0x80 /* Read chip ID. */
  27#define LM8323_CMD_WRITE_CFG            0x81 /* Set configuration item. */
  28#define LM8323_CMD_READ_INT             0x82 /* Get interrupt status. */
  29#define LM8323_CMD_RESET                0x83 /* Reset, same as external one */
  30#define LM8323_CMD_WRITE_PORT_SEL       0x85 /* Set GPIO in/out. */
  31#define LM8323_CMD_WRITE_PORT_STATE     0x86 /* Set GPIO pullup. */
  32#define LM8323_CMD_READ_PORT_SEL        0x87 /* Get GPIO in/out. */
  33#define LM8323_CMD_READ_PORT_STATE      0x88 /* Get GPIO pullup. */
  34#define LM8323_CMD_READ_FIFO            0x89 /* Read byte from FIFO. */
  35#define LM8323_CMD_RPT_READ_FIFO        0x8a /* Read FIFO (no increment). */
  36#define LM8323_CMD_SET_ACTIVE           0x8b /* Set active time. */
  37#define LM8323_CMD_READ_ERR             0x8c /* Get error status. */
  38#define LM8323_CMD_READ_ROTATOR         0x8e /* Read rotator status. */
  39#define LM8323_CMD_SET_DEBOUNCE         0x8f /* Set debouncing time. */
  40#define LM8323_CMD_SET_KEY_SIZE         0x90 /* Set keypad size. */
  41#define LM8323_CMD_READ_KEY_SIZE        0x91 /* Get keypad size. */
  42#define LM8323_CMD_READ_CFG             0x92 /* Get configuration item. */
  43#define LM8323_CMD_WRITE_CLOCK          0x93 /* Set clock config. */
  44#define LM8323_CMD_READ_CLOCK           0x94 /* Get clock config. */
  45#define LM8323_CMD_PWM_WRITE            0x95 /* Write PWM script. */
  46#define LM8323_CMD_START_PWM            0x96 /* Start PWM engine. */
  47#define LM8323_CMD_STOP_PWM             0x97 /* Stop PWM engine. */
  48
  49/* Interrupt status. */
  50#define INT_KEYPAD                      0x01 /* Key event. */
  51#define INT_ROTATOR                     0x02 /* Rotator event. */
  52#define INT_ERROR                       0x08 /* Error: use CMD_READ_ERR. */
  53#define INT_NOINIT                      0x10 /* Lost configuration. */
  54#define INT_PWM1                        0x20 /* PWM1 stopped. */
  55#define INT_PWM2                        0x40 /* PWM2 stopped. */
  56#define INT_PWM3                        0x80 /* PWM3 stopped. */
  57
  58/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
  59#define ERR_BADPAR                      0x01 /* Bad parameter. */
  60#define ERR_CMDUNK                      0x02 /* Unknown command. */
  61#define ERR_KEYOVR                      0x04 /* Too many keys pressed. */
  62#define ERR_FIFOOVER                    0x40 /* FIFO overflow. */
  63
  64/* Configuration keys (CMD_{WRITE,READ}_CFG). */
  65#define CFG_MUX1SEL                     0x01 /* Select MUX1_OUT input. */
  66#define CFG_MUX1EN                      0x02 /* Enable MUX1_OUT. */
  67#define CFG_MUX2SEL                     0x04 /* Select MUX2_OUT input. */
  68#define CFG_MUX2EN                      0x08 /* Enable MUX2_OUT. */
  69#define CFG_PSIZE                       0x20 /* Package size (must be 0). */
  70#define CFG_ROTEN                       0x40 /* Enable rotator. */
  71
  72/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
  73#define CLK_RCPWM_INTERNAL              0x00
  74#define CLK_RCPWM_EXTERNAL              0x03
  75#define CLK_SLOWCLKEN                   0x08 /* Enable 32.768kHz clock. */
  76#define CLK_SLOWCLKOUT                  0x40 /* Enable slow pulse output. */
  77
  78/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
  79#define LM8323_I2C_ADDR00               (0x84 >> 1)     /* 1000 010x */
  80#define LM8323_I2C_ADDR01               (0x86 >> 1)     /* 1000 011x */
  81#define LM8323_I2C_ADDR10               (0x88 >> 1)     /* 1000 100x */
  82#define LM8323_I2C_ADDR11               (0x8A >> 1)     /* 1000 101x */
  83
  84/* Key event fifo length */
  85#define LM8323_FIFO_LEN                 15
  86
  87/* Commands for PWM engine; feed in with PWM_WRITE. */
  88/* Load ramp counter from duty cycle field (range 0 - 0xff). */
  89#define PWM_SET(v)                      (0x4000 | ((v) & 0xff))
  90/* Go to start of script. */
  91#define PWM_GOTOSTART                   0x0000
  92/*
  93 * Stop engine (generates interrupt).  If reset is 1, clear the program
  94 * counter, else leave it.
  95 */
  96#define PWM_END(reset)                  (0xc000 | (!!(reset) << 11))
  97/*
  98 * Ramp.  If s is 1, divide clock by 512, else divide clock by 16.
  99 * Take t clock scales (up to 63) per step, for n steps (up to 126).
 100 * If u is set, ramp up, else ramp down.
 101 */
 102#define PWM_RAMP(s, t, n, u)            ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
 103                                         ((n) & 0x7f) | ((u) ? 0 : 0x80))
 104/*
 105 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
 106 * If cnt is zero, execute until PWM_END is encountered.
 107 */
 108#define PWM_LOOP(cnt, pos)              (0xa000 | (((cnt) & 0x3f) << 7) | \
 109                                         ((pos) & 0x3f))
 110/*
 111 * Wait for trigger.  Argument is a mask of channels, shifted by the channel
 112 * number, e.g. 0xa for channels 3 and 1.  Note that channels are numbered
 113 * from 1, not 0.
 114 */
 115#define PWM_WAIT_TRIG(chans)            (0xe000 | (((chans) & 0x7) << 6))
 116/* Send trigger.  Argument is same as PWM_WAIT_TRIG. */
 117#define PWM_SEND_TRIG(chans)            (0xe000 | ((chans) & 0x7))
 118
 119struct lm8323_pwm {
 120        int                     id;
 121        int                     fade_time;
 122        int                     brightness;
 123        int                     desired_brightness;
 124        bool                    enabled;
 125        bool                    running;
 126        /* pwm lock */
 127        struct mutex            lock;
 128        struct work_struct      work;
 129        struct led_classdev     cdev;
 130        struct lm8323_chip      *chip;
 131};
 132
 133struct lm8323_chip {
 134        /* device lock */
 135        struct mutex            lock;
 136        struct i2c_client       *client;
 137        struct input_dev        *idev;
 138        bool                    kp_enabled;
 139        bool                    pm_suspend;
 140        unsigned                keys_down;
 141        char                    phys[32];
 142        unsigned short          keymap[LM8323_KEYMAP_SIZE];
 143        int                     size_x;
 144        int                     size_y;
 145        int                     debounce_time;
 146        int                     active_time;
 147        struct lm8323_pwm       pwm[LM8323_NUM_PWMS];
 148};
 149
 150#define client_to_lm8323(c)     container_of(c, struct lm8323_chip, client)
 151#define dev_to_lm8323(d)        container_of(d, struct lm8323_chip, client->dev)
 152#define cdev_to_pwm(c)          container_of(c, struct lm8323_pwm, cdev)
 153#define work_to_pwm(w)          container_of(w, struct lm8323_pwm, work)
 154
 155#define LM8323_MAX_DATA 8
 156
 157/*
 158 * To write, we just access the chip's address in write mode, and dump the
 159 * command and data out on the bus.  The command byte and data are taken as
 160 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
 161 */
 162static int lm8323_write(struct lm8323_chip *lm, int len, ...)
 163{
 164        int ret, i;
 165        va_list ap;
 166        u8 data[LM8323_MAX_DATA];
 167
 168        va_start(ap, len);
 169
 170        if (unlikely(len > LM8323_MAX_DATA)) {
 171                dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
 172                va_end(ap);
 173                return 0;
 174        }
 175
 176        for (i = 0; i < len; i++)
 177                data[i] = va_arg(ap, int);
 178
 179        va_end(ap);
 180
 181        /*
 182         * If the host is asleep while we send the data, we can get a NACK
 183         * back while it wakes up, so try again, once.
 184         */
 185        ret = i2c_master_send(lm->client, data, len);
 186        if (unlikely(ret == -EREMOTEIO))
 187                ret = i2c_master_send(lm->client, data, len);
 188        if (unlikely(ret != len))
 189                dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
 190                        len, ret);
 191
 192        return ret;
 193}
 194
 195/*
 196 * To read, we first send the command byte to the chip and end the transaction,
 197 * then access the chip in read mode, at which point it will send the data.
 198 */
 199static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
 200{
 201        int ret;
 202
 203        /*
 204         * If the host is asleep while we send the byte, we can get a NACK
 205         * back while it wakes up, so try again, once.
 206         */
 207        ret = i2c_master_send(lm->client, &cmd, 1);
 208        if (unlikely(ret == -EREMOTEIO))
 209                ret = i2c_master_send(lm->client, &cmd, 1);
 210        if (unlikely(ret != 1)) {
 211                dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
 212                        cmd);
 213                return 0;
 214        }
 215
 216        ret = i2c_master_recv(lm->client, buf, len);
 217        if (unlikely(ret != len))
 218                dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
 219                        len, ret);
 220
 221        return ret;
 222}
 223
 224/*
 225 * Set the chip active time (idle time before it enters halt).
 226 */
 227static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
 228{
 229        lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
 230}
 231
 232/*
 233 * The signals are AT-style: the low 7 bits are the keycode, and the top
 234 * bit indicates the state (1 for down, 0 for up).
 235 */
 236static inline u8 lm8323_whichkey(u8 event)
 237{
 238        return event & 0x7f;
 239}
 240
 241static inline int lm8323_ispress(u8 event)
 242{
 243        return (event & 0x80) ? 1 : 0;
 244}
 245
 246static void process_keys(struct lm8323_chip *lm)
 247{
 248        u8 event;
 249        u8 key_fifo[LM8323_FIFO_LEN + 1];
 250        int old_keys_down = lm->keys_down;
 251        int ret;
 252        int i = 0;
 253
 254        /*
 255         * Read all key events from the FIFO at once. Next READ_FIFO clears the
 256         * FIFO even if we didn't read all events previously.
 257         */
 258        ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
 259
 260        if (ret < 0) {
 261                dev_err(&lm->client->dev, "Failed reading fifo \n");
 262                return;
 263        }
 264        key_fifo[ret] = 0;
 265
 266        while ((event = key_fifo[i++])) {
 267                u8 key = lm8323_whichkey(event);
 268                int isdown = lm8323_ispress(event);
 269                unsigned short keycode = lm->keymap[key];
 270
 271                dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
 272                         key, isdown ? "down" : "up");
 273
 274                if (lm->kp_enabled) {
 275                        input_event(lm->idev, EV_MSC, MSC_SCAN, key);
 276                        input_report_key(lm->idev, keycode, isdown);
 277                        input_sync(lm->idev);
 278                }
 279
 280                if (isdown)
 281                        lm->keys_down++;
 282                else
 283                        lm->keys_down--;
 284        }
 285
 286        /*
 287         * Errata: We need to ensure that the chip never enters halt mode
 288         * during a keypress, so set active time to 0.  When it's released,
 289         * we can enter halt again, so set the active time back to normal.
 290         */
 291        if (!old_keys_down && lm->keys_down)
 292                lm8323_set_active_time(lm, 0);
 293        if (old_keys_down && !lm->keys_down)
 294                lm8323_set_active_time(lm, lm->active_time);
 295}
 296
 297static void lm8323_process_error(struct lm8323_chip *lm)
 298{
 299        u8 error;
 300
 301        if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
 302                if (error & ERR_FIFOOVER)
 303                        dev_vdbg(&lm->client->dev, "fifo overflow!\n");
 304                if (error & ERR_KEYOVR)
 305                        dev_vdbg(&lm->client->dev,
 306                                        "more than two keys pressed\n");
 307                if (error & ERR_CMDUNK)
 308                        dev_vdbg(&lm->client->dev,
 309                                        "unknown command submitted\n");
 310                if (error & ERR_BADPAR)
 311                        dev_vdbg(&lm->client->dev, "bad command parameter\n");
 312        }
 313}
 314
 315static void lm8323_reset(struct lm8323_chip *lm)
 316{
 317        /* The docs say we must pass 0xAA as the data byte. */
 318        lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
 319}
 320
 321static int lm8323_configure(struct lm8323_chip *lm)
 322{
 323        int keysize = (lm->size_x << 4) | lm->size_y;
 324        int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
 325        int debounce = lm->debounce_time >> 2;
 326        int active = lm->active_time >> 2;
 327
 328        /*
 329         * Active time must be greater than the debounce time: if it's
 330         * a close-run thing, give ourselves a 12ms buffer.
 331         */
 332        if (debounce >= active)
 333                active = debounce + 3;
 334
 335        lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
 336        lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
 337        lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
 338        lm8323_set_active_time(lm, lm->active_time);
 339        lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
 340        lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
 341        lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
 342
 343        /*
 344         * Not much we can do about errors at this point, so just hope
 345         * for the best.
 346         */
 347
 348        return 0;
 349}
 350
 351static void pwm_done(struct lm8323_pwm *pwm)
 352{
 353        mutex_lock(&pwm->lock);
 354        pwm->running = false;
 355        if (pwm->desired_brightness != pwm->brightness)
 356                schedule_work(&pwm->work);
 357        mutex_unlock(&pwm->lock);
 358}
 359
 360/*
 361 * Bottom half: handle the interrupt by posting key events, or dealing with
 362 * errors appropriately.
 363 */
 364static irqreturn_t lm8323_irq(int irq, void *_lm)
 365{
 366        struct lm8323_chip *lm = _lm;
 367        u8 ints;
 368        int i;
 369
 370        mutex_lock(&lm->lock);
 371
 372        while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
 373                if (likely(ints & INT_KEYPAD))
 374                        process_keys(lm);
 375                if (ints & INT_ROTATOR) {
 376                        /* We don't currently support the rotator. */
 377                        dev_vdbg(&lm->client->dev, "rotator fired\n");
 378                }
 379                if (ints & INT_ERROR) {
 380                        dev_vdbg(&lm->client->dev, "error!\n");
 381                        lm8323_process_error(lm);
 382                }
 383                if (ints & INT_NOINIT) {
 384                        dev_err(&lm->client->dev, "chip lost config; "
 385                                                  "reinitialising\n");
 386                        lm8323_configure(lm);
 387                }
 388                for (i = 0; i < LM8323_NUM_PWMS; i++) {
 389                        if (ints & (INT_PWM1 << i)) {
 390                                dev_vdbg(&lm->client->dev,
 391                                         "pwm%d engine completed\n", i);
 392                                pwm_done(&lm->pwm[i]);
 393                        }
 394                }
 395        }
 396
 397        mutex_unlock(&lm->lock);
 398
 399        return IRQ_HANDLED;
 400}
 401
 402/*
 403 * Read the chip ID.
 404 */
 405static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
 406{
 407        int bytes;
 408
 409        bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
 410        if (unlikely(bytes != 2))
 411                return -EIO;
 412
 413        return 0;
 414}
 415
 416static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
 417{
 418        lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
 419                     (cmd & 0xff00) >> 8, cmd & 0x00ff);
 420}
 421
 422/*
 423 * Write a script into a given PWM engine, concluding with PWM_END.
 424 * If 'kill' is nonzero, the engine will be shut down at the end
 425 * of the script, producing a zero output. Otherwise the engine
 426 * will be kept running at the final PWM level indefinitely.
 427 */
 428static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
 429                             int len, const u16 *cmds)
 430{
 431        int i;
 432
 433        for (i = 0; i < len; i++)
 434                lm8323_write_pwm_one(pwm, i, cmds[i]);
 435
 436        lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
 437        lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
 438        pwm->running = true;
 439}
 440
 441static void lm8323_pwm_work(struct work_struct *work)
 442{
 443        struct lm8323_pwm *pwm = work_to_pwm(work);
 444        int div512, perstep, steps, hz, up, kill;
 445        u16 pwm_cmds[3];
 446        int num_cmds = 0;
 447
 448        mutex_lock(&pwm->lock);
 449
 450        /*
 451         * Do nothing if we're already at the requested level,
 452         * or previous setting is not yet complete. In the latter
 453         * case we will be called again when the previous PWM script
 454         * finishes.
 455         */
 456        if (pwm->running || pwm->desired_brightness == pwm->brightness)
 457                goto out;
 458
 459        kill = (pwm->desired_brightness == 0);
 460        up = (pwm->desired_brightness > pwm->brightness);
 461        steps = abs(pwm->desired_brightness - pwm->brightness);
 462
 463        /*
 464         * Convert time (in ms) into a divisor (512 or 16 on a refclk of
 465         * 32768Hz), and number of ticks per step.
 466         */
 467        if ((pwm->fade_time / steps) > (32768 / 512)) {
 468                div512 = 1;
 469                hz = 32768 / 512;
 470        } else {
 471                div512 = 0;
 472                hz = 32768 / 16;
 473        }
 474
 475        perstep = (hz * pwm->fade_time) / (steps * 1000);
 476
 477        if (perstep == 0)
 478                perstep = 1;
 479        else if (perstep > 63)
 480                perstep = 63;
 481
 482        while (steps) {
 483                int s;
 484
 485                s = min(126, steps);
 486                pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
 487                steps -= s;
 488        }
 489
 490        lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
 491        pwm->brightness = pwm->desired_brightness;
 492
 493 out:
 494        mutex_unlock(&pwm->lock);
 495}
 496
 497static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
 498                                      enum led_brightness brightness)
 499{
 500        struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
 501        struct lm8323_chip *lm = pwm->chip;
 502
 503        mutex_lock(&pwm->lock);
 504        pwm->desired_brightness = brightness;
 505        mutex_unlock(&pwm->lock);
 506
 507        if (in_interrupt()) {
 508                schedule_work(&pwm->work);
 509        } else {
 510                /*
 511                 * Schedule PWM work as usual unless we are going into suspend
 512                 */
 513                mutex_lock(&lm->lock);
 514                if (likely(!lm->pm_suspend))
 515                        schedule_work(&pwm->work);
 516                else
 517                        lm8323_pwm_work(&pwm->work);
 518                mutex_unlock(&lm->lock);
 519        }
 520}
 521
 522static ssize_t lm8323_pwm_show_time(struct device *dev,
 523                struct device_attribute *attr, char *buf)
 524{
 525        struct led_classdev *led_cdev = dev_get_drvdata(dev);
 526        struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
 527
 528        return sprintf(buf, "%d\n", pwm->fade_time);
 529}
 530
 531static ssize_t lm8323_pwm_store_time(struct device *dev,
 532                struct device_attribute *attr, const char *buf, size_t len)
 533{
 534        struct led_classdev *led_cdev = dev_get_drvdata(dev);
 535        struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
 536        int ret, time;
 537
 538        ret = kstrtoint(buf, 10, &time);
 539        /* Numbers only, please. */
 540        if (ret)
 541                return ret;
 542
 543        pwm->fade_time = time;
 544
 545        return strlen(buf);
 546}
 547static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
 548
 549static struct attribute *lm8323_pwm_attrs[] = {
 550        &dev_attr_time.attr,
 551        NULL
 552};
 553ATTRIBUTE_GROUPS(lm8323_pwm);
 554
 555static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
 556                    const char *name)
 557{
 558        struct lm8323_pwm *pwm;
 559
 560        BUG_ON(id > 3);
 561
 562        pwm = &lm->pwm[id - 1];
 563
 564        pwm->id = id;
 565        pwm->fade_time = 0;
 566        pwm->brightness = 0;
 567        pwm->desired_brightness = 0;
 568        pwm->running = false;
 569        pwm->enabled = false;
 570        INIT_WORK(&pwm->work, lm8323_pwm_work);
 571        mutex_init(&pwm->lock);
 572        pwm->chip = lm;
 573
 574        if (name) {
 575                pwm->cdev.name = name;
 576                pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
 577                pwm->cdev.groups = lm8323_pwm_groups;
 578                if (led_classdev_register(dev, &pwm->cdev) < 0) {
 579                        dev_err(dev, "couldn't register PWM %d\n", id);
 580                        return -1;
 581                }
 582                pwm->enabled = true;
 583        }
 584
 585        return 0;
 586}
 587
 588static struct i2c_driver lm8323_i2c_driver;
 589
 590static ssize_t lm8323_show_disable(struct device *dev,
 591                                   struct device_attribute *attr, char *buf)
 592{
 593        struct lm8323_chip *lm = dev_get_drvdata(dev);
 594
 595        return sprintf(buf, "%u\n", !lm->kp_enabled);
 596}
 597
 598static ssize_t lm8323_set_disable(struct device *dev,
 599                                  struct device_attribute *attr,
 600                                  const char *buf, size_t count)
 601{
 602        struct lm8323_chip *lm = dev_get_drvdata(dev);
 603        int ret;
 604        unsigned int i;
 605
 606        ret = kstrtouint(buf, 10, &i);
 607        if (ret)
 608                return ret;
 609
 610        mutex_lock(&lm->lock);
 611        lm->kp_enabled = !i;
 612        mutex_unlock(&lm->lock);
 613
 614        return count;
 615}
 616static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
 617
 618static int lm8323_probe(struct i2c_client *client,
 619                                  const struct i2c_device_id *id)
 620{
 621        struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev);
 622        struct input_dev *idev;
 623        struct lm8323_chip *lm;
 624        int pwm;
 625        int i, err;
 626        unsigned long tmo;
 627        u8 data[2];
 628
 629        if (!pdata || !pdata->size_x || !pdata->size_y) {
 630                dev_err(&client->dev, "missing platform_data\n");
 631                return -EINVAL;
 632        }
 633
 634        if (pdata->size_x > 8) {
 635                dev_err(&client->dev, "invalid x size %d specified\n",
 636                        pdata->size_x);
 637                return -EINVAL;
 638        }
 639
 640        if (pdata->size_y > 12) {
 641                dev_err(&client->dev, "invalid y size %d specified\n",
 642                        pdata->size_y);
 643                return -EINVAL;
 644        }
 645
 646        lm = kzalloc(sizeof *lm, GFP_KERNEL);
 647        idev = input_allocate_device();
 648        if (!lm || !idev) {
 649                err = -ENOMEM;
 650                goto fail1;
 651        }
 652
 653        lm->client = client;
 654        lm->idev = idev;
 655        mutex_init(&lm->lock);
 656
 657        lm->size_x = pdata->size_x;
 658        lm->size_y = pdata->size_y;
 659        dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
 660                 lm->size_x, lm->size_y);
 661
 662        lm->debounce_time = pdata->debounce_time;
 663        lm->active_time = pdata->active_time;
 664
 665        lm8323_reset(lm);
 666
 667        /* Nothing's set up to service the IRQ yet, so just spin for max.
 668         * 100ms until we can configure. */
 669        tmo = jiffies + msecs_to_jiffies(100);
 670        while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
 671                if (data[0] & INT_NOINIT)
 672                        break;
 673
 674                if (time_after(jiffies, tmo)) {
 675                        dev_err(&client->dev,
 676                                "timeout waiting for initialisation\n");
 677                        break;
 678                }
 679
 680                msleep(1);
 681        }
 682
 683        lm8323_configure(lm);
 684
 685        /* If a true probe check the device */
 686        if (lm8323_read_id(lm, data) != 0) {
 687                dev_err(&client->dev, "device not found\n");
 688                err = -ENODEV;
 689                goto fail1;
 690        }
 691
 692        for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
 693                err = init_pwm(lm, pwm + 1, &client->dev,
 694                               pdata->pwm_names[pwm]);
 695                if (err < 0)
 696                        goto fail2;
 697        }
 698
 699        lm->kp_enabled = true;
 700        err = device_create_file(&client->dev, &dev_attr_disable_kp);
 701        if (err < 0)
 702                goto fail2;
 703
 704        idev->name = pdata->name ? : "LM8323 keypad";
 705        snprintf(lm->phys, sizeof(lm->phys),
 706                 "%s/input-kp", dev_name(&client->dev));
 707        idev->phys = lm->phys;
 708
 709        idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
 710        __set_bit(MSC_SCAN, idev->mscbit);
 711        for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
 712                __set_bit(pdata->keymap[i], idev->keybit);
 713                lm->keymap[i] = pdata->keymap[i];
 714        }
 715        __clear_bit(KEY_RESERVED, idev->keybit);
 716
 717        if (pdata->repeat)
 718                __set_bit(EV_REP, idev->evbit);
 719
 720        err = input_register_device(idev);
 721        if (err) {
 722                dev_dbg(&client->dev, "error registering input device\n");
 723                goto fail3;
 724        }
 725
 726        err = request_threaded_irq(client->irq, NULL, lm8323_irq,
 727                          IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
 728        if (err) {
 729                dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
 730                goto fail4;
 731        }
 732
 733        i2c_set_clientdata(client, lm);
 734
 735        device_init_wakeup(&client->dev, 1);
 736        enable_irq_wake(client->irq);
 737
 738        return 0;
 739
 740fail4:
 741        input_unregister_device(idev);
 742        idev = NULL;
 743fail3:
 744        device_remove_file(&client->dev, &dev_attr_disable_kp);
 745fail2:
 746        while (--pwm >= 0)
 747                if (lm->pwm[pwm].enabled)
 748                        led_classdev_unregister(&lm->pwm[pwm].cdev);
 749fail1:
 750        input_free_device(idev);
 751        kfree(lm);
 752        return err;
 753}
 754
 755static int lm8323_remove(struct i2c_client *client)
 756{
 757        struct lm8323_chip *lm = i2c_get_clientdata(client);
 758        int i;
 759
 760        disable_irq_wake(client->irq);
 761        free_irq(client->irq, lm);
 762
 763        input_unregister_device(lm->idev);
 764
 765        device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
 766
 767        for (i = 0; i < 3; i++)
 768                if (lm->pwm[i].enabled)
 769                        led_classdev_unregister(&lm->pwm[i].cdev);
 770
 771        kfree(lm);
 772
 773        return 0;
 774}
 775
 776#ifdef CONFIG_PM_SLEEP
 777/*
 778 * We don't need to explicitly suspend the chip, as it already switches off
 779 * when there's no activity.
 780 */
 781static int lm8323_suspend(struct device *dev)
 782{
 783        struct i2c_client *client = to_i2c_client(dev);
 784        struct lm8323_chip *lm = i2c_get_clientdata(client);
 785        int i;
 786
 787        irq_set_irq_wake(client->irq, 0);
 788        disable_irq(client->irq);
 789
 790        mutex_lock(&lm->lock);
 791        lm->pm_suspend = true;
 792        mutex_unlock(&lm->lock);
 793
 794        for (i = 0; i < 3; i++)
 795                if (lm->pwm[i].enabled)
 796                        led_classdev_suspend(&lm->pwm[i].cdev);
 797
 798        return 0;
 799}
 800
 801static int lm8323_resume(struct device *dev)
 802{
 803        struct i2c_client *client = to_i2c_client(dev);
 804        struct lm8323_chip *lm = i2c_get_clientdata(client);
 805        int i;
 806
 807        mutex_lock(&lm->lock);
 808        lm->pm_suspend = false;
 809        mutex_unlock(&lm->lock);
 810
 811        for (i = 0; i < 3; i++)
 812                if (lm->pwm[i].enabled)
 813                        led_classdev_resume(&lm->pwm[i].cdev);
 814
 815        enable_irq(client->irq);
 816        irq_set_irq_wake(client->irq, 1);
 817
 818        return 0;
 819}
 820#endif
 821
 822static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
 823
 824static const struct i2c_device_id lm8323_id[] = {
 825        { "lm8323", 0 },
 826        { }
 827};
 828
 829static struct i2c_driver lm8323_i2c_driver = {
 830        .driver = {
 831                .name   = "lm8323",
 832                .pm     = &lm8323_pm_ops,
 833        },
 834        .probe          = lm8323_probe,
 835        .remove         = lm8323_remove,
 836        .id_table       = lm8323_id,
 837};
 838MODULE_DEVICE_TABLE(i2c, lm8323_id);
 839
 840module_i2c_driver(lm8323_i2c_driver);
 841
 842MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
 843MODULE_AUTHOR("Daniel Stone");
 844MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
 845MODULE_DESCRIPTION("LM8323 keypad driver");
 846MODULE_LICENSE("GPL");
 847
 848