linux/drivers/md/bcache/btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38#include <linux/delay.h>
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC             64
  92#define MAX_SAVE_PRIO           72
  93#define MAX_GC_TIMES            100
  94#define MIN_GC_NODES            100
  95#define GC_SLEEP_MS             100
  96
  97#define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
  98
  99#define PTR_HASH(c, k)                                                  \
 100        (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
 101
 102#define insert_lock(s, b)       ((b)->level <= (s)->lock)
 103
 104/*
 105 * These macros are for recursing down the btree - they handle the details of
 106 * locking and looking up nodes in the cache for you. They're best treated as
 107 * mere syntax when reading code that uses them.
 108 *
 109 * op->lock determines whether we take a read or a write lock at a given depth.
 110 * If you've got a read lock and find that you need a write lock (i.e. you're
 111 * going to have to split), set op->lock and return -EINTR; btree_root() will
 112 * call you again and you'll have the correct lock.
 113 */
 114
 115/**
 116 * btree - recurse down the btree on a specified key
 117 * @fn:         function to call, which will be passed the child node
 118 * @key:        key to recurse on
 119 * @b:          parent btree node
 120 * @op:         pointer to struct btree_op
 121 */
 122#define btree(fn, key, b, op, ...)                                      \
 123({                                                                      \
 124        int _r, l = (b)->level - 1;                                     \
 125        bool _w = l <= (op)->lock;                                      \
 126        struct btree *_child = bch_btree_node_get((b)->c, op, key, l,   \
 127                                                  _w, b);               \
 128        if (!IS_ERR(_child)) {                                          \
 129                _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);       \
 130                rw_unlock(_w, _child);                                  \
 131        } else                                                          \
 132                _r = PTR_ERR(_child);                                   \
 133        _r;                                                             \
 134})
 135
 136/**
 137 * btree_root - call a function on the root of the btree
 138 * @fn:         function to call, which will be passed the child node
 139 * @c:          cache set
 140 * @op:         pointer to struct btree_op
 141 */
 142#define btree_root(fn, c, op, ...)                                      \
 143({                                                                      \
 144        int _r = -EINTR;                                                \
 145        do {                                                            \
 146                struct btree *_b = (c)->root;                           \
 147                bool _w = insert_lock(op, _b);                          \
 148                rw_lock(_w, _b, _b->level);                             \
 149                if (_b == (c)->root &&                                  \
 150                    _w == insert_lock(op, _b)) {                        \
 151                        _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);   \
 152                }                                                       \
 153                rw_unlock(_w, _b);                                      \
 154                bch_cannibalize_unlock(c);                              \
 155                if (_r == -EINTR)                                       \
 156                        schedule();                                     \
 157        } while (_r == -EINTR);                                         \
 158                                                                        \
 159        finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
 160        _r;                                                             \
 161})
 162
 163static inline struct bset *write_block(struct btree *b)
 164{
 165        return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
 166}
 167
 168static void bch_btree_init_next(struct btree *b)
 169{
 170        /* If not a leaf node, always sort */
 171        if (b->level && b->keys.nsets)
 172                bch_btree_sort(&b->keys, &b->c->sort);
 173        else
 174                bch_btree_sort_lazy(&b->keys, &b->c->sort);
 175
 176        if (b->written < btree_blocks(b))
 177                bch_bset_init_next(&b->keys, write_block(b),
 178                                   bset_magic(&b->c->sb));
 179
 180}
 181
 182/* Btree key manipulation */
 183
 184void bkey_put(struct cache_set *c, struct bkey *k)
 185{
 186        unsigned int i;
 187
 188        for (i = 0; i < KEY_PTRS(k); i++)
 189                if (ptr_available(c, k, i))
 190                        atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 191}
 192
 193/* Btree IO */
 194
 195static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 196{
 197        uint64_t crc = b->key.ptr[0];
 198        void *data = (void *) i + 8, *end = bset_bkey_last(i);
 199
 200        crc = bch_crc64_update(crc, data, end - data);
 201        return crc ^ 0xffffffffffffffffULL;
 202}
 203
 204void bch_btree_node_read_done(struct btree *b)
 205{
 206        const char *err = "bad btree header";
 207        struct bset *i = btree_bset_first(b);
 208        struct btree_iter *iter;
 209
 210        /*
 211         * c->fill_iter can allocate an iterator with more memory space
 212         * than static MAX_BSETS.
 213         * See the comment arount cache_set->fill_iter.
 214         */
 215        iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 216        iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
 217        iter->used = 0;
 218
 219#ifdef CONFIG_BCACHE_DEBUG
 220        iter->b = &b->keys;
 221#endif
 222
 223        if (!i->seq)
 224                goto err;
 225
 226        for (;
 227             b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 228             i = write_block(b)) {
 229                err = "unsupported bset version";
 230                if (i->version > BCACHE_BSET_VERSION)
 231                        goto err;
 232
 233                err = "bad btree header";
 234                if (b->written + set_blocks(i, block_bytes(b->c)) >
 235                    btree_blocks(b))
 236                        goto err;
 237
 238                err = "bad magic";
 239                if (i->magic != bset_magic(&b->c->sb))
 240                        goto err;
 241
 242                err = "bad checksum";
 243                switch (i->version) {
 244                case 0:
 245                        if (i->csum != csum_set(i))
 246                                goto err;
 247                        break;
 248                case BCACHE_BSET_VERSION:
 249                        if (i->csum != btree_csum_set(b, i))
 250                                goto err;
 251                        break;
 252                }
 253
 254                err = "empty set";
 255                if (i != b->keys.set[0].data && !i->keys)
 256                        goto err;
 257
 258                bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 259
 260                b->written += set_blocks(i, block_bytes(b->c));
 261        }
 262
 263        err = "corrupted btree";
 264        for (i = write_block(b);
 265             bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 266             i = ((void *) i) + block_bytes(b->c))
 267                if (i->seq == b->keys.set[0].data->seq)
 268                        goto err;
 269
 270        bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 271
 272        i = b->keys.set[0].data;
 273        err = "short btree key";
 274        if (b->keys.set[0].size &&
 275            bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 276                goto err;
 277
 278        if (b->written < btree_blocks(b))
 279                bch_bset_init_next(&b->keys, write_block(b),
 280                                   bset_magic(&b->c->sb));
 281out:
 282        mempool_free(iter, &b->c->fill_iter);
 283        return;
 284err:
 285        set_btree_node_io_error(b);
 286        bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 287                            err, PTR_BUCKET_NR(b->c, &b->key, 0),
 288                            bset_block_offset(b, i), i->keys);
 289        goto out;
 290}
 291
 292static void btree_node_read_endio(struct bio *bio)
 293{
 294        struct closure *cl = bio->bi_private;
 295
 296        closure_put(cl);
 297}
 298
 299static void bch_btree_node_read(struct btree *b)
 300{
 301        uint64_t start_time = local_clock();
 302        struct closure cl;
 303        struct bio *bio;
 304
 305        trace_bcache_btree_read(b);
 306
 307        closure_init_stack(&cl);
 308
 309        bio = bch_bbio_alloc(b->c);
 310        bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 311        bio->bi_end_io  = btree_node_read_endio;
 312        bio->bi_private = &cl;
 313        bio->bi_opf = REQ_OP_READ | REQ_META;
 314
 315        bch_bio_map(bio, b->keys.set[0].data);
 316
 317        bch_submit_bbio(bio, b->c, &b->key, 0);
 318        closure_sync(&cl);
 319
 320        if (bio->bi_status)
 321                set_btree_node_io_error(b);
 322
 323        bch_bbio_free(bio, b->c);
 324
 325        if (btree_node_io_error(b))
 326                goto err;
 327
 328        bch_btree_node_read_done(b);
 329        bch_time_stats_update(&b->c->btree_read_time, start_time);
 330
 331        return;
 332err:
 333        bch_cache_set_error(b->c, "io error reading bucket %zu",
 334                            PTR_BUCKET_NR(b->c, &b->key, 0));
 335}
 336
 337static void btree_complete_write(struct btree *b, struct btree_write *w)
 338{
 339        if (w->prio_blocked &&
 340            !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 341                wake_up_allocators(b->c);
 342
 343        if (w->journal) {
 344                atomic_dec_bug(w->journal);
 345                __closure_wake_up(&b->c->journal.wait);
 346        }
 347
 348        w->prio_blocked = 0;
 349        w->journal      = NULL;
 350}
 351
 352static void btree_node_write_unlock(struct closure *cl)
 353{
 354        struct btree *b = container_of(cl, struct btree, io);
 355
 356        up(&b->io_mutex);
 357}
 358
 359static void __btree_node_write_done(struct closure *cl)
 360{
 361        struct btree *b = container_of(cl, struct btree, io);
 362        struct btree_write *w = btree_prev_write(b);
 363
 364        bch_bbio_free(b->bio, b->c);
 365        b->bio = NULL;
 366        btree_complete_write(b, w);
 367
 368        if (btree_node_dirty(b))
 369                schedule_delayed_work(&b->work, 30 * HZ);
 370
 371        closure_return_with_destructor(cl, btree_node_write_unlock);
 372}
 373
 374static void btree_node_write_done(struct closure *cl)
 375{
 376        struct btree *b = container_of(cl, struct btree, io);
 377
 378        bio_free_pages(b->bio);
 379        __btree_node_write_done(cl);
 380}
 381
 382static void btree_node_write_endio(struct bio *bio)
 383{
 384        struct closure *cl = bio->bi_private;
 385        struct btree *b = container_of(cl, struct btree, io);
 386
 387        if (bio->bi_status)
 388                set_btree_node_io_error(b);
 389
 390        bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 391        closure_put(cl);
 392}
 393
 394static void do_btree_node_write(struct btree *b)
 395{
 396        struct closure *cl = &b->io;
 397        struct bset *i = btree_bset_last(b);
 398        BKEY_PADDED(key) k;
 399
 400        i->version      = BCACHE_BSET_VERSION;
 401        i->csum         = btree_csum_set(b, i);
 402
 403        BUG_ON(b->bio);
 404        b->bio = bch_bbio_alloc(b->c);
 405
 406        b->bio->bi_end_io       = btree_node_write_endio;
 407        b->bio->bi_private      = cl;
 408        b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
 409        b->bio->bi_opf          = REQ_OP_WRITE | REQ_META | REQ_FUA;
 410        bch_bio_map(b->bio, i);
 411
 412        /*
 413         * If we're appending to a leaf node, we don't technically need FUA -
 414         * this write just needs to be persisted before the next journal write,
 415         * which will be marked FLUSH|FUA.
 416         *
 417         * Similarly if we're writing a new btree root - the pointer is going to
 418         * be in the next journal entry.
 419         *
 420         * But if we're writing a new btree node (that isn't a root) or
 421         * appending to a non leaf btree node, we need either FUA or a flush
 422         * when we write the parent with the new pointer. FUA is cheaper than a
 423         * flush, and writes appending to leaf nodes aren't blocking anything so
 424         * just make all btree node writes FUA to keep things sane.
 425         */
 426
 427        bkey_copy(&k.key, &b->key);
 428        SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 429                       bset_sector_offset(&b->keys, i));
 430
 431        if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 432                struct bio_vec *bv;
 433                void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 434                struct bvec_iter_all iter_all;
 435
 436                bio_for_each_segment_all(bv, b->bio, iter_all) {
 437                        memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
 438                        addr += PAGE_SIZE;
 439                }
 440
 441                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 442
 443                continue_at(cl, btree_node_write_done, NULL);
 444        } else {
 445                /*
 446                 * No problem for multipage bvec since the bio is
 447                 * just allocated
 448                 */
 449                b->bio->bi_vcnt = 0;
 450                bch_bio_map(b->bio, i);
 451
 452                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 453
 454                closure_sync(cl);
 455                continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 456        }
 457}
 458
 459void __bch_btree_node_write(struct btree *b, struct closure *parent)
 460{
 461        struct bset *i = btree_bset_last(b);
 462
 463        lockdep_assert_held(&b->write_lock);
 464
 465        trace_bcache_btree_write(b);
 466
 467        BUG_ON(current->bio_list);
 468        BUG_ON(b->written >= btree_blocks(b));
 469        BUG_ON(b->written && !i->keys);
 470        BUG_ON(btree_bset_first(b)->seq != i->seq);
 471        bch_check_keys(&b->keys, "writing");
 472
 473        cancel_delayed_work(&b->work);
 474
 475        /* If caller isn't waiting for write, parent refcount is cache set */
 476        down(&b->io_mutex);
 477        closure_init(&b->io, parent ?: &b->c->cl);
 478
 479        clear_bit(BTREE_NODE_dirty,      &b->flags);
 480        change_bit(BTREE_NODE_write_idx, &b->flags);
 481
 482        do_btree_node_write(b);
 483
 484        atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
 485                        &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
 486
 487        b->written += set_blocks(i, block_bytes(b->c));
 488}
 489
 490void bch_btree_node_write(struct btree *b, struct closure *parent)
 491{
 492        unsigned int nsets = b->keys.nsets;
 493
 494        lockdep_assert_held(&b->lock);
 495
 496        __bch_btree_node_write(b, parent);
 497
 498        /*
 499         * do verify if there was more than one set initially (i.e. we did a
 500         * sort) and we sorted down to a single set:
 501         */
 502        if (nsets && !b->keys.nsets)
 503                bch_btree_verify(b);
 504
 505        bch_btree_init_next(b);
 506}
 507
 508static void bch_btree_node_write_sync(struct btree *b)
 509{
 510        struct closure cl;
 511
 512        closure_init_stack(&cl);
 513
 514        mutex_lock(&b->write_lock);
 515        bch_btree_node_write(b, &cl);
 516        mutex_unlock(&b->write_lock);
 517
 518        closure_sync(&cl);
 519}
 520
 521static void btree_node_write_work(struct work_struct *w)
 522{
 523        struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 524
 525        mutex_lock(&b->write_lock);
 526        if (btree_node_dirty(b))
 527                __bch_btree_node_write(b, NULL);
 528        mutex_unlock(&b->write_lock);
 529}
 530
 531static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 532{
 533        struct bset *i = btree_bset_last(b);
 534        struct btree_write *w = btree_current_write(b);
 535
 536        lockdep_assert_held(&b->write_lock);
 537
 538        BUG_ON(!b->written);
 539        BUG_ON(!i->keys);
 540
 541        if (!btree_node_dirty(b))
 542                schedule_delayed_work(&b->work, 30 * HZ);
 543
 544        set_btree_node_dirty(b);
 545
 546        /*
 547         * w->journal is always the oldest journal pin of all bkeys
 548         * in the leaf node, to make sure the oldest jset seq won't
 549         * be increased before this btree node is flushed.
 550         */
 551        if (journal_ref) {
 552                if (w->journal &&
 553                    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 554                        atomic_dec_bug(w->journal);
 555                        w->journal = NULL;
 556                }
 557
 558                if (!w->journal) {
 559                        w->journal = journal_ref;
 560                        atomic_inc(w->journal);
 561                }
 562        }
 563
 564        /* Force write if set is too big */
 565        if (set_bytes(i) > PAGE_SIZE - 48 &&
 566            !current->bio_list)
 567                bch_btree_node_write(b, NULL);
 568}
 569
 570/*
 571 * Btree in memory cache - allocation/freeing
 572 * mca -> memory cache
 573 */
 574
 575#define mca_reserve(c)  (((c->root && c->root->level)           \
 576                          ? c->root->level : 1) * 8 + 16)
 577#define mca_can_free(c)                                         \
 578        max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 579
 580static void mca_data_free(struct btree *b)
 581{
 582        BUG_ON(b->io_mutex.count != 1);
 583
 584        bch_btree_keys_free(&b->keys);
 585
 586        b->c->btree_cache_used--;
 587        list_move(&b->list, &b->c->btree_cache_freed);
 588}
 589
 590static void mca_bucket_free(struct btree *b)
 591{
 592        BUG_ON(btree_node_dirty(b));
 593
 594        b->key.ptr[0] = 0;
 595        hlist_del_init_rcu(&b->hash);
 596        list_move(&b->list, &b->c->btree_cache_freeable);
 597}
 598
 599static unsigned int btree_order(struct bkey *k)
 600{
 601        return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 602}
 603
 604static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 605{
 606        if (!bch_btree_keys_alloc(&b->keys,
 607                                  max_t(unsigned int,
 608                                        ilog2(b->c->btree_pages),
 609                                        btree_order(k)),
 610                                  gfp)) {
 611                b->c->btree_cache_used++;
 612                list_move(&b->list, &b->c->btree_cache);
 613        } else {
 614                list_move(&b->list, &b->c->btree_cache_freed);
 615        }
 616}
 617
 618static struct btree *mca_bucket_alloc(struct cache_set *c,
 619                                      struct bkey *k, gfp_t gfp)
 620{
 621        /*
 622         * kzalloc() is necessary here for initialization,
 623         * see code comments in bch_btree_keys_init().
 624         */
 625        struct btree *b = kzalloc(sizeof(struct btree), gfp);
 626
 627        if (!b)
 628                return NULL;
 629
 630        init_rwsem(&b->lock);
 631        lockdep_set_novalidate_class(&b->lock);
 632        mutex_init(&b->write_lock);
 633        lockdep_set_novalidate_class(&b->write_lock);
 634        INIT_LIST_HEAD(&b->list);
 635        INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 636        b->c = c;
 637        sema_init(&b->io_mutex, 1);
 638
 639        mca_data_alloc(b, k, gfp);
 640        return b;
 641}
 642
 643static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
 644{
 645        struct closure cl;
 646
 647        closure_init_stack(&cl);
 648        lockdep_assert_held(&b->c->bucket_lock);
 649
 650        if (!down_write_trylock(&b->lock))
 651                return -ENOMEM;
 652
 653        BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 654
 655        if (b->keys.page_order < min_order)
 656                goto out_unlock;
 657
 658        if (!flush) {
 659                if (btree_node_dirty(b))
 660                        goto out_unlock;
 661
 662                if (down_trylock(&b->io_mutex))
 663                        goto out_unlock;
 664                up(&b->io_mutex);
 665        }
 666
 667retry:
 668        /*
 669         * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
 670         * __bch_btree_node_write(). To avoid an extra flush, acquire
 671         * b->write_lock before checking BTREE_NODE_dirty bit.
 672         */
 673        mutex_lock(&b->write_lock);
 674        /*
 675         * If this btree node is selected in btree_flush_write() by journal
 676         * code, delay and retry until the node is flushed by journal code
 677         * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
 678         */
 679        if (btree_node_journal_flush(b)) {
 680                pr_debug("bnode %p is flushing by journal, retry", b);
 681                mutex_unlock(&b->write_lock);
 682                udelay(1);
 683                goto retry;
 684        }
 685
 686        if (btree_node_dirty(b))
 687                __bch_btree_node_write(b, &cl);
 688        mutex_unlock(&b->write_lock);
 689
 690        closure_sync(&cl);
 691
 692        /* wait for any in flight btree write */
 693        down(&b->io_mutex);
 694        up(&b->io_mutex);
 695
 696        return 0;
 697out_unlock:
 698        rw_unlock(true, b);
 699        return -ENOMEM;
 700}
 701
 702static unsigned long bch_mca_scan(struct shrinker *shrink,
 703                                  struct shrink_control *sc)
 704{
 705        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 706        struct btree *b, *t;
 707        unsigned long i, nr = sc->nr_to_scan;
 708        unsigned long freed = 0;
 709        unsigned int btree_cache_used;
 710
 711        if (c->shrinker_disabled)
 712                return SHRINK_STOP;
 713
 714        if (c->btree_cache_alloc_lock)
 715                return SHRINK_STOP;
 716
 717        /* Return -1 if we can't do anything right now */
 718        if (sc->gfp_mask & __GFP_IO)
 719                mutex_lock(&c->bucket_lock);
 720        else if (!mutex_trylock(&c->bucket_lock))
 721                return -1;
 722
 723        /*
 724         * It's _really_ critical that we don't free too many btree nodes - we
 725         * have to always leave ourselves a reserve. The reserve is how we
 726         * guarantee that allocating memory for a new btree node can always
 727         * succeed, so that inserting keys into the btree can always succeed and
 728         * IO can always make forward progress:
 729         */
 730        nr /= c->btree_pages;
 731        if (nr == 0)
 732                nr = 1;
 733        nr = min_t(unsigned long, nr, mca_can_free(c));
 734
 735        i = 0;
 736        btree_cache_used = c->btree_cache_used;
 737        list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
 738                if (nr <= 0)
 739                        goto out;
 740
 741                if (!mca_reap(b, 0, false)) {
 742                        mca_data_free(b);
 743                        rw_unlock(true, b);
 744                        freed++;
 745                }
 746                nr--;
 747                i++;
 748        }
 749
 750        list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
 751                if (nr <= 0 || i >= btree_cache_used)
 752                        goto out;
 753
 754                if (!mca_reap(b, 0, false)) {
 755                        mca_bucket_free(b);
 756                        mca_data_free(b);
 757                        rw_unlock(true, b);
 758                        freed++;
 759                }
 760
 761                nr--;
 762                i++;
 763        }
 764out:
 765        mutex_unlock(&c->bucket_lock);
 766        return freed * c->btree_pages;
 767}
 768
 769static unsigned long bch_mca_count(struct shrinker *shrink,
 770                                   struct shrink_control *sc)
 771{
 772        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 773
 774        if (c->shrinker_disabled)
 775                return 0;
 776
 777        if (c->btree_cache_alloc_lock)
 778                return 0;
 779
 780        return mca_can_free(c) * c->btree_pages;
 781}
 782
 783void bch_btree_cache_free(struct cache_set *c)
 784{
 785        struct btree *b;
 786        struct closure cl;
 787
 788        closure_init_stack(&cl);
 789
 790        if (c->shrink.list.next)
 791                unregister_shrinker(&c->shrink);
 792
 793        mutex_lock(&c->bucket_lock);
 794
 795#ifdef CONFIG_BCACHE_DEBUG
 796        if (c->verify_data)
 797                list_move(&c->verify_data->list, &c->btree_cache);
 798
 799        free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
 800#endif
 801
 802        list_splice(&c->btree_cache_freeable,
 803                    &c->btree_cache);
 804
 805        while (!list_empty(&c->btree_cache)) {
 806                b = list_first_entry(&c->btree_cache, struct btree, list);
 807
 808                /*
 809                 * This function is called by cache_set_free(), no I/O
 810                 * request on cache now, it is unnecessary to acquire
 811                 * b->write_lock before clearing BTREE_NODE_dirty anymore.
 812                 */
 813                if (btree_node_dirty(b)) {
 814                        btree_complete_write(b, btree_current_write(b));
 815                        clear_bit(BTREE_NODE_dirty, &b->flags);
 816                }
 817                mca_data_free(b);
 818        }
 819
 820        while (!list_empty(&c->btree_cache_freed)) {
 821                b = list_first_entry(&c->btree_cache_freed,
 822                                     struct btree, list);
 823                list_del(&b->list);
 824                cancel_delayed_work_sync(&b->work);
 825                kfree(b);
 826        }
 827
 828        mutex_unlock(&c->bucket_lock);
 829}
 830
 831int bch_btree_cache_alloc(struct cache_set *c)
 832{
 833        unsigned int i;
 834
 835        for (i = 0; i < mca_reserve(c); i++)
 836                if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 837                        return -ENOMEM;
 838
 839        list_splice_init(&c->btree_cache,
 840                         &c->btree_cache_freeable);
 841
 842#ifdef CONFIG_BCACHE_DEBUG
 843        mutex_init(&c->verify_lock);
 844
 845        c->verify_ondisk = (void *)
 846                __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
 847
 848        c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 849
 850        if (c->verify_data &&
 851            c->verify_data->keys.set->data)
 852                list_del_init(&c->verify_data->list);
 853        else
 854                c->verify_data = NULL;
 855#endif
 856
 857        c->shrink.count_objects = bch_mca_count;
 858        c->shrink.scan_objects = bch_mca_scan;
 859        c->shrink.seeks = 4;
 860        c->shrink.batch = c->btree_pages * 2;
 861
 862        if (register_shrinker(&c->shrink))
 863                pr_warn("bcache: %s: could not register shrinker",
 864                                __func__);
 865
 866        return 0;
 867}
 868
 869/* Btree in memory cache - hash table */
 870
 871static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 872{
 873        return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 874}
 875
 876static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 877{
 878        struct btree *b;
 879
 880        rcu_read_lock();
 881        hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 882                if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 883                        goto out;
 884        b = NULL;
 885out:
 886        rcu_read_unlock();
 887        return b;
 888}
 889
 890static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 891{
 892        spin_lock(&c->btree_cannibalize_lock);
 893        if (likely(c->btree_cache_alloc_lock == NULL)) {
 894                c->btree_cache_alloc_lock = current;
 895        } else if (c->btree_cache_alloc_lock != current) {
 896                if (op)
 897                        prepare_to_wait(&c->btree_cache_wait, &op->wait,
 898                                        TASK_UNINTERRUPTIBLE);
 899                spin_unlock(&c->btree_cannibalize_lock);
 900                return -EINTR;
 901        }
 902        spin_unlock(&c->btree_cannibalize_lock);
 903
 904        return 0;
 905}
 906
 907static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 908                                     struct bkey *k)
 909{
 910        struct btree *b;
 911
 912        trace_bcache_btree_cache_cannibalize(c);
 913
 914        if (mca_cannibalize_lock(c, op))
 915                return ERR_PTR(-EINTR);
 916
 917        list_for_each_entry_reverse(b, &c->btree_cache, list)
 918                if (!mca_reap(b, btree_order(k), false))
 919                        return b;
 920
 921        list_for_each_entry_reverse(b, &c->btree_cache, list)
 922                if (!mca_reap(b, btree_order(k), true))
 923                        return b;
 924
 925        WARN(1, "btree cache cannibalize failed\n");
 926        return ERR_PTR(-ENOMEM);
 927}
 928
 929/*
 930 * We can only have one thread cannibalizing other cached btree nodes at a time,
 931 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 932 * cannibalize_bucket() will take. This means every time we unlock the root of
 933 * the btree, we need to release this lock if we have it held.
 934 */
 935static void bch_cannibalize_unlock(struct cache_set *c)
 936{
 937        spin_lock(&c->btree_cannibalize_lock);
 938        if (c->btree_cache_alloc_lock == current) {
 939                c->btree_cache_alloc_lock = NULL;
 940                wake_up(&c->btree_cache_wait);
 941        }
 942        spin_unlock(&c->btree_cannibalize_lock);
 943}
 944
 945static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 946                               struct bkey *k, int level)
 947{
 948        struct btree *b;
 949
 950        BUG_ON(current->bio_list);
 951
 952        lockdep_assert_held(&c->bucket_lock);
 953
 954        if (mca_find(c, k))
 955                return NULL;
 956
 957        /* btree_free() doesn't free memory; it sticks the node on the end of
 958         * the list. Check if there's any freed nodes there:
 959         */
 960        list_for_each_entry(b, &c->btree_cache_freeable, list)
 961                if (!mca_reap(b, btree_order(k), false))
 962                        goto out;
 963
 964        /* We never free struct btree itself, just the memory that holds the on
 965         * disk node. Check the freed list before allocating a new one:
 966         */
 967        list_for_each_entry(b, &c->btree_cache_freed, list)
 968                if (!mca_reap(b, 0, false)) {
 969                        mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 970                        if (!b->keys.set[0].data)
 971                                goto err;
 972                        else
 973                                goto out;
 974                }
 975
 976        b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 977        if (!b)
 978                goto err;
 979
 980        BUG_ON(!down_write_trylock(&b->lock));
 981        if (!b->keys.set->data)
 982                goto err;
 983out:
 984        BUG_ON(b->io_mutex.count != 1);
 985
 986        bkey_copy(&b->key, k);
 987        list_move(&b->list, &c->btree_cache);
 988        hlist_del_init_rcu(&b->hash);
 989        hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 990
 991        lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 992        b->parent       = (void *) ~0UL;
 993        b->flags        = 0;
 994        b->written      = 0;
 995        b->level        = level;
 996
 997        if (!b->level)
 998                bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 999                                    &b->c->expensive_debug_checks);
1000        else
1001                bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
1002                                    &b->c->expensive_debug_checks);
1003
1004        return b;
1005err:
1006        if (b)
1007                rw_unlock(true, b);
1008
1009        b = mca_cannibalize(c, op, k);
1010        if (!IS_ERR(b))
1011                goto out;
1012
1013        return b;
1014}
1015
1016/*
1017 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1018 * in from disk if necessary.
1019 *
1020 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1021 *
1022 * The btree node will have either a read or a write lock held, depending on
1023 * level and op->lock.
1024 */
1025struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1026                                 struct bkey *k, int level, bool write,
1027                                 struct btree *parent)
1028{
1029        int i = 0;
1030        struct btree *b;
1031
1032        BUG_ON(level < 0);
1033retry:
1034        b = mca_find(c, k);
1035
1036        if (!b) {
1037                if (current->bio_list)
1038                        return ERR_PTR(-EAGAIN);
1039
1040                mutex_lock(&c->bucket_lock);
1041                b = mca_alloc(c, op, k, level);
1042                mutex_unlock(&c->bucket_lock);
1043
1044                if (!b)
1045                        goto retry;
1046                if (IS_ERR(b))
1047                        return b;
1048
1049                bch_btree_node_read(b);
1050
1051                if (!write)
1052                        downgrade_write(&b->lock);
1053        } else {
1054                rw_lock(write, b, level);
1055                if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1056                        rw_unlock(write, b);
1057                        goto retry;
1058                }
1059                BUG_ON(b->level != level);
1060        }
1061
1062        if (btree_node_io_error(b)) {
1063                rw_unlock(write, b);
1064                return ERR_PTR(-EIO);
1065        }
1066
1067        BUG_ON(!b->written);
1068
1069        b->parent = parent;
1070
1071        for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1072                prefetch(b->keys.set[i].tree);
1073                prefetch(b->keys.set[i].data);
1074        }
1075
1076        for (; i <= b->keys.nsets; i++)
1077                prefetch(b->keys.set[i].data);
1078
1079        return b;
1080}
1081
1082static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1083{
1084        struct btree *b;
1085
1086        mutex_lock(&parent->c->bucket_lock);
1087        b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1088        mutex_unlock(&parent->c->bucket_lock);
1089
1090        if (!IS_ERR_OR_NULL(b)) {
1091                b->parent = parent;
1092                bch_btree_node_read(b);
1093                rw_unlock(true, b);
1094        }
1095}
1096
1097/* Btree alloc */
1098
1099static void btree_node_free(struct btree *b)
1100{
1101        trace_bcache_btree_node_free(b);
1102
1103        BUG_ON(b == b->c->root);
1104
1105retry:
1106        mutex_lock(&b->write_lock);
1107        /*
1108         * If the btree node is selected and flushing in btree_flush_write(),
1109         * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1110         * then it is safe to free the btree node here. Otherwise this btree
1111         * node will be in race condition.
1112         */
1113        if (btree_node_journal_flush(b)) {
1114                mutex_unlock(&b->write_lock);
1115                pr_debug("bnode %p journal_flush set, retry", b);
1116                udelay(1);
1117                goto retry;
1118        }
1119
1120        if (btree_node_dirty(b)) {
1121                btree_complete_write(b, btree_current_write(b));
1122                clear_bit(BTREE_NODE_dirty, &b->flags);
1123        }
1124
1125        mutex_unlock(&b->write_lock);
1126
1127        cancel_delayed_work(&b->work);
1128
1129        mutex_lock(&b->c->bucket_lock);
1130        bch_bucket_free(b->c, &b->key);
1131        mca_bucket_free(b);
1132        mutex_unlock(&b->c->bucket_lock);
1133}
1134
1135struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1136                                     int level, bool wait,
1137                                     struct btree *parent)
1138{
1139        BKEY_PADDED(key) k;
1140        struct btree *b = ERR_PTR(-EAGAIN);
1141
1142        mutex_lock(&c->bucket_lock);
1143retry:
1144        if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1145                goto err;
1146
1147        bkey_put(c, &k.key);
1148        SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1149
1150        b = mca_alloc(c, op, &k.key, level);
1151        if (IS_ERR(b))
1152                goto err_free;
1153
1154        if (!b) {
1155                cache_bug(c,
1156                        "Tried to allocate bucket that was in btree cache");
1157                goto retry;
1158        }
1159
1160        b->parent = parent;
1161        bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1162
1163        mutex_unlock(&c->bucket_lock);
1164
1165        trace_bcache_btree_node_alloc(b);
1166        return b;
1167err_free:
1168        bch_bucket_free(c, &k.key);
1169err:
1170        mutex_unlock(&c->bucket_lock);
1171
1172        trace_bcache_btree_node_alloc_fail(c);
1173        return b;
1174}
1175
1176static struct btree *bch_btree_node_alloc(struct cache_set *c,
1177                                          struct btree_op *op, int level,
1178                                          struct btree *parent)
1179{
1180        return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1181}
1182
1183static struct btree *btree_node_alloc_replacement(struct btree *b,
1184                                                  struct btree_op *op)
1185{
1186        struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1187
1188        if (!IS_ERR_OR_NULL(n)) {
1189                mutex_lock(&n->write_lock);
1190                bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1191                bkey_copy_key(&n->key, &b->key);
1192                mutex_unlock(&n->write_lock);
1193        }
1194
1195        return n;
1196}
1197
1198static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1199{
1200        unsigned int i;
1201
1202        mutex_lock(&b->c->bucket_lock);
1203
1204        atomic_inc(&b->c->prio_blocked);
1205
1206        bkey_copy(k, &b->key);
1207        bkey_copy_key(k, &ZERO_KEY);
1208
1209        for (i = 0; i < KEY_PTRS(k); i++)
1210                SET_PTR_GEN(k, i,
1211                            bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1212                                        PTR_BUCKET(b->c, &b->key, i)));
1213
1214        mutex_unlock(&b->c->bucket_lock);
1215}
1216
1217static int btree_check_reserve(struct btree *b, struct btree_op *op)
1218{
1219        struct cache_set *c = b->c;
1220        struct cache *ca;
1221        unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1222
1223        mutex_lock(&c->bucket_lock);
1224
1225        for_each_cache(ca, c, i)
1226                if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1227                        if (op)
1228                                prepare_to_wait(&c->btree_cache_wait, &op->wait,
1229                                                TASK_UNINTERRUPTIBLE);
1230                        mutex_unlock(&c->bucket_lock);
1231                        return -EINTR;
1232                }
1233
1234        mutex_unlock(&c->bucket_lock);
1235
1236        return mca_cannibalize_lock(b->c, op);
1237}
1238
1239/* Garbage collection */
1240
1241static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1242                                    struct bkey *k)
1243{
1244        uint8_t stale = 0;
1245        unsigned int i;
1246        struct bucket *g;
1247
1248        /*
1249         * ptr_invalid() can't return true for the keys that mark btree nodes as
1250         * freed, but since ptr_bad() returns true we'll never actually use them
1251         * for anything and thus we don't want mark their pointers here
1252         */
1253        if (!bkey_cmp(k, &ZERO_KEY))
1254                return stale;
1255
1256        for (i = 0; i < KEY_PTRS(k); i++) {
1257                if (!ptr_available(c, k, i))
1258                        continue;
1259
1260                g = PTR_BUCKET(c, k, i);
1261
1262                if (gen_after(g->last_gc, PTR_GEN(k, i)))
1263                        g->last_gc = PTR_GEN(k, i);
1264
1265                if (ptr_stale(c, k, i)) {
1266                        stale = max(stale, ptr_stale(c, k, i));
1267                        continue;
1268                }
1269
1270                cache_bug_on(GC_MARK(g) &&
1271                             (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1272                             c, "inconsistent ptrs: mark = %llu, level = %i",
1273                             GC_MARK(g), level);
1274
1275                if (level)
1276                        SET_GC_MARK(g, GC_MARK_METADATA);
1277                else if (KEY_DIRTY(k))
1278                        SET_GC_MARK(g, GC_MARK_DIRTY);
1279                else if (!GC_MARK(g))
1280                        SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1281
1282                /* guard against overflow */
1283                SET_GC_SECTORS_USED(g, min_t(unsigned int,
1284                                             GC_SECTORS_USED(g) + KEY_SIZE(k),
1285                                             MAX_GC_SECTORS_USED));
1286
1287                BUG_ON(!GC_SECTORS_USED(g));
1288        }
1289
1290        return stale;
1291}
1292
1293#define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1294
1295void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1296{
1297        unsigned int i;
1298
1299        for (i = 0; i < KEY_PTRS(k); i++)
1300                if (ptr_available(c, k, i) &&
1301                    !ptr_stale(c, k, i)) {
1302                        struct bucket *b = PTR_BUCKET(c, k, i);
1303
1304                        b->gen = PTR_GEN(k, i);
1305
1306                        if (level && bkey_cmp(k, &ZERO_KEY))
1307                                b->prio = BTREE_PRIO;
1308                        else if (!level && b->prio == BTREE_PRIO)
1309                                b->prio = INITIAL_PRIO;
1310                }
1311
1312        __bch_btree_mark_key(c, level, k);
1313}
1314
1315void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1316{
1317        stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1318}
1319
1320static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1321{
1322        uint8_t stale = 0;
1323        unsigned int keys = 0, good_keys = 0;
1324        struct bkey *k;
1325        struct btree_iter iter;
1326        struct bset_tree *t;
1327
1328        gc->nodes++;
1329
1330        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1331                stale = max(stale, btree_mark_key(b, k));
1332                keys++;
1333
1334                if (bch_ptr_bad(&b->keys, k))
1335                        continue;
1336
1337                gc->key_bytes += bkey_u64s(k);
1338                gc->nkeys++;
1339                good_keys++;
1340
1341                gc->data += KEY_SIZE(k);
1342        }
1343
1344        for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1345                btree_bug_on(t->size &&
1346                             bset_written(&b->keys, t) &&
1347                             bkey_cmp(&b->key, &t->end) < 0,
1348                             b, "found short btree key in gc");
1349
1350        if (b->c->gc_always_rewrite)
1351                return true;
1352
1353        if (stale > 10)
1354                return true;
1355
1356        if ((keys - good_keys) * 2 > keys)
1357                return true;
1358
1359        return false;
1360}
1361
1362#define GC_MERGE_NODES  4U
1363
1364struct gc_merge_info {
1365        struct btree    *b;
1366        unsigned int    keys;
1367};
1368
1369static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1370                                 struct keylist *insert_keys,
1371                                 atomic_t *journal_ref,
1372                                 struct bkey *replace_key);
1373
1374static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1375                             struct gc_stat *gc, struct gc_merge_info *r)
1376{
1377        unsigned int i, nodes = 0, keys = 0, blocks;
1378        struct btree *new_nodes[GC_MERGE_NODES];
1379        struct keylist keylist;
1380        struct closure cl;
1381        struct bkey *k;
1382
1383        bch_keylist_init(&keylist);
1384
1385        if (btree_check_reserve(b, NULL))
1386                return 0;
1387
1388        memset(new_nodes, 0, sizeof(new_nodes));
1389        closure_init_stack(&cl);
1390
1391        while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1392                keys += r[nodes++].keys;
1393
1394        blocks = btree_default_blocks(b->c) * 2 / 3;
1395
1396        if (nodes < 2 ||
1397            __set_blocks(b->keys.set[0].data, keys,
1398                         block_bytes(b->c)) > blocks * (nodes - 1))
1399                return 0;
1400
1401        for (i = 0; i < nodes; i++) {
1402                new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1403                if (IS_ERR_OR_NULL(new_nodes[i]))
1404                        goto out_nocoalesce;
1405        }
1406
1407        /*
1408         * We have to check the reserve here, after we've allocated our new
1409         * nodes, to make sure the insert below will succeed - we also check
1410         * before as an optimization to potentially avoid a bunch of expensive
1411         * allocs/sorts
1412         */
1413        if (btree_check_reserve(b, NULL))
1414                goto out_nocoalesce;
1415
1416        for (i = 0; i < nodes; i++)
1417                mutex_lock(&new_nodes[i]->write_lock);
1418
1419        for (i = nodes - 1; i > 0; --i) {
1420                struct bset *n1 = btree_bset_first(new_nodes[i]);
1421                struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1422                struct bkey *k, *last = NULL;
1423
1424                keys = 0;
1425
1426                if (i > 1) {
1427                        for (k = n2->start;
1428                             k < bset_bkey_last(n2);
1429                             k = bkey_next(k)) {
1430                                if (__set_blocks(n1, n1->keys + keys +
1431                                                 bkey_u64s(k),
1432                                                 block_bytes(b->c)) > blocks)
1433                                        break;
1434
1435                                last = k;
1436                                keys += bkey_u64s(k);
1437                        }
1438                } else {
1439                        /*
1440                         * Last node we're not getting rid of - we're getting
1441                         * rid of the node at r[0]. Have to try and fit all of
1442                         * the remaining keys into this node; we can't ensure
1443                         * they will always fit due to rounding and variable
1444                         * length keys (shouldn't be possible in practice,
1445                         * though)
1446                         */
1447                        if (__set_blocks(n1, n1->keys + n2->keys,
1448                                         block_bytes(b->c)) >
1449                            btree_blocks(new_nodes[i]))
1450                                goto out_nocoalesce;
1451
1452                        keys = n2->keys;
1453                        /* Take the key of the node we're getting rid of */
1454                        last = &r->b->key;
1455                }
1456
1457                BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1458                       btree_blocks(new_nodes[i]));
1459
1460                if (last)
1461                        bkey_copy_key(&new_nodes[i]->key, last);
1462
1463                memcpy(bset_bkey_last(n1),
1464                       n2->start,
1465                       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1466
1467                n1->keys += keys;
1468                r[i].keys = n1->keys;
1469
1470                memmove(n2->start,
1471                        bset_bkey_idx(n2, keys),
1472                        (void *) bset_bkey_last(n2) -
1473                        (void *) bset_bkey_idx(n2, keys));
1474
1475                n2->keys -= keys;
1476
1477                if (__bch_keylist_realloc(&keylist,
1478                                          bkey_u64s(&new_nodes[i]->key)))
1479                        goto out_nocoalesce;
1480
1481                bch_btree_node_write(new_nodes[i], &cl);
1482                bch_keylist_add(&keylist, &new_nodes[i]->key);
1483        }
1484
1485        for (i = 0; i < nodes; i++)
1486                mutex_unlock(&new_nodes[i]->write_lock);
1487
1488        closure_sync(&cl);
1489
1490        /* We emptied out this node */
1491        BUG_ON(btree_bset_first(new_nodes[0])->keys);
1492        btree_node_free(new_nodes[0]);
1493        rw_unlock(true, new_nodes[0]);
1494        new_nodes[0] = NULL;
1495
1496        for (i = 0; i < nodes; i++) {
1497                if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1498                        goto out_nocoalesce;
1499
1500                make_btree_freeing_key(r[i].b, keylist.top);
1501                bch_keylist_push(&keylist);
1502        }
1503
1504        bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1505        BUG_ON(!bch_keylist_empty(&keylist));
1506
1507        for (i = 0; i < nodes; i++) {
1508                btree_node_free(r[i].b);
1509                rw_unlock(true, r[i].b);
1510
1511                r[i].b = new_nodes[i];
1512        }
1513
1514        memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1515        r[nodes - 1].b = ERR_PTR(-EINTR);
1516
1517        trace_bcache_btree_gc_coalesce(nodes);
1518        gc->nodes--;
1519
1520        bch_keylist_free(&keylist);
1521
1522        /* Invalidated our iterator */
1523        return -EINTR;
1524
1525out_nocoalesce:
1526        closure_sync(&cl);
1527
1528        while ((k = bch_keylist_pop(&keylist)))
1529                if (!bkey_cmp(k, &ZERO_KEY))
1530                        atomic_dec(&b->c->prio_blocked);
1531        bch_keylist_free(&keylist);
1532
1533        for (i = 0; i < nodes; i++)
1534                if (!IS_ERR_OR_NULL(new_nodes[i])) {
1535                        btree_node_free(new_nodes[i]);
1536                        rw_unlock(true, new_nodes[i]);
1537                }
1538        return 0;
1539}
1540
1541static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1542                                 struct btree *replace)
1543{
1544        struct keylist keys;
1545        struct btree *n;
1546
1547        if (btree_check_reserve(b, NULL))
1548                return 0;
1549
1550        n = btree_node_alloc_replacement(replace, NULL);
1551
1552        /* recheck reserve after allocating replacement node */
1553        if (btree_check_reserve(b, NULL)) {
1554                btree_node_free(n);
1555                rw_unlock(true, n);
1556                return 0;
1557        }
1558
1559        bch_btree_node_write_sync(n);
1560
1561        bch_keylist_init(&keys);
1562        bch_keylist_add(&keys, &n->key);
1563
1564        make_btree_freeing_key(replace, keys.top);
1565        bch_keylist_push(&keys);
1566
1567        bch_btree_insert_node(b, op, &keys, NULL, NULL);
1568        BUG_ON(!bch_keylist_empty(&keys));
1569
1570        btree_node_free(replace);
1571        rw_unlock(true, n);
1572
1573        /* Invalidated our iterator */
1574        return -EINTR;
1575}
1576
1577static unsigned int btree_gc_count_keys(struct btree *b)
1578{
1579        struct bkey *k;
1580        struct btree_iter iter;
1581        unsigned int ret = 0;
1582
1583        for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1584                ret += bkey_u64s(k);
1585
1586        return ret;
1587}
1588
1589static size_t btree_gc_min_nodes(struct cache_set *c)
1590{
1591        size_t min_nodes;
1592
1593        /*
1594         * Since incremental GC would stop 100ms when front
1595         * side I/O comes, so when there are many btree nodes,
1596         * if GC only processes constant (100) nodes each time,
1597         * GC would last a long time, and the front side I/Os
1598         * would run out of the buckets (since no new bucket
1599         * can be allocated during GC), and be blocked again.
1600         * So GC should not process constant nodes, but varied
1601         * nodes according to the number of btree nodes, which
1602         * realized by dividing GC into constant(100) times,
1603         * so when there are many btree nodes, GC can process
1604         * more nodes each time, otherwise, GC will process less
1605         * nodes each time (but no less than MIN_GC_NODES)
1606         */
1607        min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1608        if (min_nodes < MIN_GC_NODES)
1609                min_nodes = MIN_GC_NODES;
1610
1611        return min_nodes;
1612}
1613
1614
1615static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1616                            struct closure *writes, struct gc_stat *gc)
1617{
1618        int ret = 0;
1619        bool should_rewrite;
1620        struct bkey *k;
1621        struct btree_iter iter;
1622        struct gc_merge_info r[GC_MERGE_NODES];
1623        struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1624
1625        bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1626
1627        for (i = r; i < r + ARRAY_SIZE(r); i++)
1628                i->b = ERR_PTR(-EINTR);
1629
1630        while (1) {
1631                k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1632                if (k) {
1633                        r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1634                                                  true, b);
1635                        if (IS_ERR(r->b)) {
1636                                ret = PTR_ERR(r->b);
1637                                break;
1638                        }
1639
1640                        r->keys = btree_gc_count_keys(r->b);
1641
1642                        ret = btree_gc_coalesce(b, op, gc, r);
1643                        if (ret)
1644                                break;
1645                }
1646
1647                if (!last->b)
1648                        break;
1649
1650                if (!IS_ERR(last->b)) {
1651                        should_rewrite = btree_gc_mark_node(last->b, gc);
1652                        if (should_rewrite) {
1653                                ret = btree_gc_rewrite_node(b, op, last->b);
1654                                if (ret)
1655                                        break;
1656                        }
1657
1658                        if (last->b->level) {
1659                                ret = btree_gc_recurse(last->b, op, writes, gc);
1660                                if (ret)
1661                                        break;
1662                        }
1663
1664                        bkey_copy_key(&b->c->gc_done, &last->b->key);
1665
1666                        /*
1667                         * Must flush leaf nodes before gc ends, since replace
1668                         * operations aren't journalled
1669                         */
1670                        mutex_lock(&last->b->write_lock);
1671                        if (btree_node_dirty(last->b))
1672                                bch_btree_node_write(last->b, writes);
1673                        mutex_unlock(&last->b->write_lock);
1674                        rw_unlock(true, last->b);
1675                }
1676
1677                memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1678                r->b = NULL;
1679
1680                if (atomic_read(&b->c->search_inflight) &&
1681                    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1682                        gc->nodes_pre =  gc->nodes;
1683                        ret = -EAGAIN;
1684                        break;
1685                }
1686
1687                if (need_resched()) {
1688                        ret = -EAGAIN;
1689                        break;
1690                }
1691        }
1692
1693        for (i = r; i < r + ARRAY_SIZE(r); i++)
1694                if (!IS_ERR_OR_NULL(i->b)) {
1695                        mutex_lock(&i->b->write_lock);
1696                        if (btree_node_dirty(i->b))
1697                                bch_btree_node_write(i->b, writes);
1698                        mutex_unlock(&i->b->write_lock);
1699                        rw_unlock(true, i->b);
1700                }
1701
1702        return ret;
1703}
1704
1705static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1706                             struct closure *writes, struct gc_stat *gc)
1707{
1708        struct btree *n = NULL;
1709        int ret = 0;
1710        bool should_rewrite;
1711
1712        should_rewrite = btree_gc_mark_node(b, gc);
1713        if (should_rewrite) {
1714                n = btree_node_alloc_replacement(b, NULL);
1715
1716                if (!IS_ERR_OR_NULL(n)) {
1717                        bch_btree_node_write_sync(n);
1718
1719                        bch_btree_set_root(n);
1720                        btree_node_free(b);
1721                        rw_unlock(true, n);
1722
1723                        return -EINTR;
1724                }
1725        }
1726
1727        __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1728
1729        if (b->level) {
1730                ret = btree_gc_recurse(b, op, writes, gc);
1731                if (ret)
1732                        return ret;
1733        }
1734
1735        bkey_copy_key(&b->c->gc_done, &b->key);
1736
1737        return ret;
1738}
1739
1740static void btree_gc_start(struct cache_set *c)
1741{
1742        struct cache *ca;
1743        struct bucket *b;
1744        unsigned int i;
1745
1746        if (!c->gc_mark_valid)
1747                return;
1748
1749        mutex_lock(&c->bucket_lock);
1750
1751        c->gc_mark_valid = 0;
1752        c->gc_done = ZERO_KEY;
1753
1754        for_each_cache(ca, c, i)
1755                for_each_bucket(b, ca) {
1756                        b->last_gc = b->gen;
1757                        if (!atomic_read(&b->pin)) {
1758                                SET_GC_MARK(b, 0);
1759                                SET_GC_SECTORS_USED(b, 0);
1760                        }
1761                }
1762
1763        mutex_unlock(&c->bucket_lock);
1764}
1765
1766static void bch_btree_gc_finish(struct cache_set *c)
1767{
1768        struct bucket *b;
1769        struct cache *ca;
1770        unsigned int i;
1771
1772        mutex_lock(&c->bucket_lock);
1773
1774        set_gc_sectors(c);
1775        c->gc_mark_valid = 1;
1776        c->need_gc      = 0;
1777
1778        for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1779                SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1780                            GC_MARK_METADATA);
1781
1782        /* don't reclaim buckets to which writeback keys point */
1783        rcu_read_lock();
1784        for (i = 0; i < c->devices_max_used; i++) {
1785                struct bcache_device *d = c->devices[i];
1786                struct cached_dev *dc;
1787                struct keybuf_key *w, *n;
1788                unsigned int j;
1789
1790                if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1791                        continue;
1792                dc = container_of(d, struct cached_dev, disk);
1793
1794                spin_lock(&dc->writeback_keys.lock);
1795                rbtree_postorder_for_each_entry_safe(w, n,
1796                                        &dc->writeback_keys.keys, node)
1797                        for (j = 0; j < KEY_PTRS(&w->key); j++)
1798                                SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1799                                            GC_MARK_DIRTY);
1800                spin_unlock(&dc->writeback_keys.lock);
1801        }
1802        rcu_read_unlock();
1803
1804        c->avail_nbuckets = 0;
1805        for_each_cache(ca, c, i) {
1806                uint64_t *i;
1807
1808                ca->invalidate_needs_gc = 0;
1809
1810                for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1811                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1812
1813                for (i = ca->prio_buckets;
1814                     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1815                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1816
1817                for_each_bucket(b, ca) {
1818                        c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1819
1820                        if (atomic_read(&b->pin))
1821                                continue;
1822
1823                        BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1824
1825                        if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1826                                c->avail_nbuckets++;
1827                }
1828        }
1829
1830        mutex_unlock(&c->bucket_lock);
1831}
1832
1833static void bch_btree_gc(struct cache_set *c)
1834{
1835        int ret;
1836        struct gc_stat stats;
1837        struct closure writes;
1838        struct btree_op op;
1839        uint64_t start_time = local_clock();
1840
1841        trace_bcache_gc_start(c);
1842
1843        memset(&stats, 0, sizeof(struct gc_stat));
1844        closure_init_stack(&writes);
1845        bch_btree_op_init(&op, SHRT_MAX);
1846
1847        btree_gc_start(c);
1848
1849        /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1850        do {
1851                ret = btree_root(gc_root, c, &op, &writes, &stats);
1852                closure_sync(&writes);
1853                cond_resched();
1854
1855                if (ret == -EAGAIN)
1856                        schedule_timeout_interruptible(msecs_to_jiffies
1857                                                       (GC_SLEEP_MS));
1858                else if (ret)
1859                        pr_warn("gc failed!");
1860        } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1861
1862        bch_btree_gc_finish(c);
1863        wake_up_allocators(c);
1864
1865        bch_time_stats_update(&c->btree_gc_time, start_time);
1866
1867        stats.key_bytes *= sizeof(uint64_t);
1868        stats.data      <<= 9;
1869        bch_update_bucket_in_use(c, &stats);
1870        memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1871
1872        trace_bcache_gc_end(c);
1873
1874        bch_moving_gc(c);
1875}
1876
1877static bool gc_should_run(struct cache_set *c)
1878{
1879        struct cache *ca;
1880        unsigned int i;
1881
1882        for_each_cache(ca, c, i)
1883                if (ca->invalidate_needs_gc)
1884                        return true;
1885
1886        if (atomic_read(&c->sectors_to_gc) < 0)
1887                return true;
1888
1889        return false;
1890}
1891
1892static int bch_gc_thread(void *arg)
1893{
1894        struct cache_set *c = arg;
1895
1896        while (1) {
1897                wait_event_interruptible(c->gc_wait,
1898                           kthread_should_stop() ||
1899                           test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1900                           gc_should_run(c));
1901
1902                if (kthread_should_stop() ||
1903                    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1904                        break;
1905
1906                set_gc_sectors(c);
1907                bch_btree_gc(c);
1908        }
1909
1910        wait_for_kthread_stop();
1911        return 0;
1912}
1913
1914int bch_gc_thread_start(struct cache_set *c)
1915{
1916        c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1917        return PTR_ERR_OR_ZERO(c->gc_thread);
1918}
1919
1920/* Initial partial gc */
1921
1922static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1923{
1924        int ret = 0;
1925        struct bkey *k, *p = NULL;
1926        struct btree_iter iter;
1927
1928        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1929                bch_initial_mark_key(b->c, b->level, k);
1930
1931        bch_initial_mark_key(b->c, b->level + 1, &b->key);
1932
1933        if (b->level) {
1934                bch_btree_iter_init(&b->keys, &iter, NULL);
1935
1936                do {
1937                        k = bch_btree_iter_next_filter(&iter, &b->keys,
1938                                                       bch_ptr_bad);
1939                        if (k) {
1940                                btree_node_prefetch(b, k);
1941                                /*
1942                                 * initiallize c->gc_stats.nodes
1943                                 * for incremental GC
1944                                 */
1945                                b->c->gc_stats.nodes++;
1946                        }
1947
1948                        if (p)
1949                                ret = btree(check_recurse, p, b, op);
1950
1951                        p = k;
1952                } while (p && !ret);
1953        }
1954
1955        return ret;
1956}
1957
1958int bch_btree_check(struct cache_set *c)
1959{
1960        struct btree_op op;
1961
1962        bch_btree_op_init(&op, SHRT_MAX);
1963
1964        return btree_root(check_recurse, c, &op);
1965}
1966
1967void bch_initial_gc_finish(struct cache_set *c)
1968{
1969        struct cache *ca;
1970        struct bucket *b;
1971        unsigned int i;
1972
1973        bch_btree_gc_finish(c);
1974
1975        mutex_lock(&c->bucket_lock);
1976
1977        /*
1978         * We need to put some unused buckets directly on the prio freelist in
1979         * order to get the allocator thread started - it needs freed buckets in
1980         * order to rewrite the prios and gens, and it needs to rewrite prios
1981         * and gens in order to free buckets.
1982         *
1983         * This is only safe for buckets that have no live data in them, which
1984         * there should always be some of.
1985         */
1986        for_each_cache(ca, c, i) {
1987                for_each_bucket(b, ca) {
1988                        if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1989                            fifo_full(&ca->free[RESERVE_BTREE]))
1990                                break;
1991
1992                        if (bch_can_invalidate_bucket(ca, b) &&
1993                            !GC_MARK(b)) {
1994                                __bch_invalidate_one_bucket(ca, b);
1995                                if (!fifo_push(&ca->free[RESERVE_PRIO],
1996                                   b - ca->buckets))
1997                                        fifo_push(&ca->free[RESERVE_BTREE],
1998                                                  b - ca->buckets);
1999                        }
2000                }
2001        }
2002
2003        mutex_unlock(&c->bucket_lock);
2004}
2005
2006/* Btree insertion */
2007
2008static bool btree_insert_key(struct btree *b, struct bkey *k,
2009                             struct bkey *replace_key)
2010{
2011        unsigned int status;
2012
2013        BUG_ON(bkey_cmp(k, &b->key) > 0);
2014
2015        status = bch_btree_insert_key(&b->keys, k, replace_key);
2016        if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2017                bch_check_keys(&b->keys, "%u for %s", status,
2018                               replace_key ? "replace" : "insert");
2019
2020                trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2021                                              status);
2022                return true;
2023        } else
2024                return false;
2025}
2026
2027static size_t insert_u64s_remaining(struct btree *b)
2028{
2029        long ret = bch_btree_keys_u64s_remaining(&b->keys);
2030
2031        /*
2032         * Might land in the middle of an existing extent and have to split it
2033         */
2034        if (b->keys.ops->is_extents)
2035                ret -= KEY_MAX_U64S;
2036
2037        return max(ret, 0L);
2038}
2039
2040static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2041                                  struct keylist *insert_keys,
2042                                  struct bkey *replace_key)
2043{
2044        bool ret = false;
2045        int oldsize = bch_count_data(&b->keys);
2046
2047        while (!bch_keylist_empty(insert_keys)) {
2048                struct bkey *k = insert_keys->keys;
2049
2050                if (bkey_u64s(k) > insert_u64s_remaining(b))
2051                        break;
2052
2053                if (bkey_cmp(k, &b->key) <= 0) {
2054                        if (!b->level)
2055                                bkey_put(b->c, k);
2056
2057                        ret |= btree_insert_key(b, k, replace_key);
2058                        bch_keylist_pop_front(insert_keys);
2059                } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2060                        BKEY_PADDED(key) temp;
2061                        bkey_copy(&temp.key, insert_keys->keys);
2062
2063                        bch_cut_back(&b->key, &temp.key);
2064                        bch_cut_front(&b->key, insert_keys->keys);
2065
2066                        ret |= btree_insert_key(b, &temp.key, replace_key);
2067                        break;
2068                } else {
2069                        break;
2070                }
2071        }
2072
2073        if (!ret)
2074                op->insert_collision = true;
2075
2076        BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2077
2078        BUG_ON(bch_count_data(&b->keys) < oldsize);
2079        return ret;
2080}
2081
2082static int btree_split(struct btree *b, struct btree_op *op,
2083                       struct keylist *insert_keys,
2084                       struct bkey *replace_key)
2085{
2086        bool split;
2087        struct btree *n1, *n2 = NULL, *n3 = NULL;
2088        uint64_t start_time = local_clock();
2089        struct closure cl;
2090        struct keylist parent_keys;
2091
2092        closure_init_stack(&cl);
2093        bch_keylist_init(&parent_keys);
2094
2095        if (btree_check_reserve(b, op)) {
2096                if (!b->level)
2097                        return -EINTR;
2098                else
2099                        WARN(1, "insufficient reserve for split\n");
2100        }
2101
2102        n1 = btree_node_alloc_replacement(b, op);
2103        if (IS_ERR(n1))
2104                goto err;
2105
2106        split = set_blocks(btree_bset_first(n1),
2107                           block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2108
2109        if (split) {
2110                unsigned int keys = 0;
2111
2112                trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2113
2114                n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2115                if (IS_ERR(n2))
2116                        goto err_free1;
2117
2118                if (!b->parent) {
2119                        n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2120                        if (IS_ERR(n3))
2121                                goto err_free2;
2122                }
2123
2124                mutex_lock(&n1->write_lock);
2125                mutex_lock(&n2->write_lock);
2126
2127                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2128
2129                /*
2130                 * Has to be a linear search because we don't have an auxiliary
2131                 * search tree yet
2132                 */
2133
2134                while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2135                        keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2136                                                        keys));
2137
2138                bkey_copy_key(&n1->key,
2139                              bset_bkey_idx(btree_bset_first(n1), keys));
2140                keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2141
2142                btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2143                btree_bset_first(n1)->keys = keys;
2144
2145                memcpy(btree_bset_first(n2)->start,
2146                       bset_bkey_last(btree_bset_first(n1)),
2147                       btree_bset_first(n2)->keys * sizeof(uint64_t));
2148
2149                bkey_copy_key(&n2->key, &b->key);
2150
2151                bch_keylist_add(&parent_keys, &n2->key);
2152                bch_btree_node_write(n2, &cl);
2153                mutex_unlock(&n2->write_lock);
2154                rw_unlock(true, n2);
2155        } else {
2156                trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2157
2158                mutex_lock(&n1->write_lock);
2159                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2160        }
2161
2162        bch_keylist_add(&parent_keys, &n1->key);
2163        bch_btree_node_write(n1, &cl);
2164        mutex_unlock(&n1->write_lock);
2165
2166        if (n3) {
2167                /* Depth increases, make a new root */
2168                mutex_lock(&n3->write_lock);
2169                bkey_copy_key(&n3->key, &MAX_KEY);
2170                bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2171                bch_btree_node_write(n3, &cl);
2172                mutex_unlock(&n3->write_lock);
2173
2174                closure_sync(&cl);
2175                bch_btree_set_root(n3);
2176                rw_unlock(true, n3);
2177        } else if (!b->parent) {
2178                /* Root filled up but didn't need to be split */
2179                closure_sync(&cl);
2180                bch_btree_set_root(n1);
2181        } else {
2182                /* Split a non root node */
2183                closure_sync(&cl);
2184                make_btree_freeing_key(b, parent_keys.top);
2185                bch_keylist_push(&parent_keys);
2186
2187                bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2188                BUG_ON(!bch_keylist_empty(&parent_keys));
2189        }
2190
2191        btree_node_free(b);
2192        rw_unlock(true, n1);
2193
2194        bch_time_stats_update(&b->c->btree_split_time, start_time);
2195
2196        return 0;
2197err_free2:
2198        bkey_put(b->c, &n2->key);
2199        btree_node_free(n2);
2200        rw_unlock(true, n2);
2201err_free1:
2202        bkey_put(b->c, &n1->key);
2203        btree_node_free(n1);
2204        rw_unlock(true, n1);
2205err:
2206        WARN(1, "bcache: btree split failed (level %u)", b->level);
2207
2208        if (n3 == ERR_PTR(-EAGAIN) ||
2209            n2 == ERR_PTR(-EAGAIN) ||
2210            n1 == ERR_PTR(-EAGAIN))
2211                return -EAGAIN;
2212
2213        return -ENOMEM;
2214}
2215
2216static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2217                                 struct keylist *insert_keys,
2218                                 atomic_t *journal_ref,
2219                                 struct bkey *replace_key)
2220{
2221        struct closure cl;
2222
2223        BUG_ON(b->level && replace_key);
2224
2225        closure_init_stack(&cl);
2226
2227        mutex_lock(&b->write_lock);
2228
2229        if (write_block(b) != btree_bset_last(b) &&
2230            b->keys.last_set_unwritten)
2231                bch_btree_init_next(b); /* just wrote a set */
2232
2233        if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2234                mutex_unlock(&b->write_lock);
2235                goto split;
2236        }
2237
2238        BUG_ON(write_block(b) != btree_bset_last(b));
2239
2240        if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2241                if (!b->level)
2242                        bch_btree_leaf_dirty(b, journal_ref);
2243                else
2244                        bch_btree_node_write(b, &cl);
2245        }
2246
2247        mutex_unlock(&b->write_lock);
2248
2249        /* wait for btree node write if necessary, after unlock */
2250        closure_sync(&cl);
2251
2252        return 0;
2253split:
2254        if (current->bio_list) {
2255                op->lock = b->c->root->level + 1;
2256                return -EAGAIN;
2257        } else if (op->lock <= b->c->root->level) {
2258                op->lock = b->c->root->level + 1;
2259                return -EINTR;
2260        } else {
2261                /* Invalidated all iterators */
2262                int ret = btree_split(b, op, insert_keys, replace_key);
2263
2264                if (bch_keylist_empty(insert_keys))
2265                        return 0;
2266                else if (!ret)
2267                        return -EINTR;
2268                return ret;
2269        }
2270}
2271
2272int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2273                               struct bkey *check_key)
2274{
2275        int ret = -EINTR;
2276        uint64_t btree_ptr = b->key.ptr[0];
2277        unsigned long seq = b->seq;
2278        struct keylist insert;
2279        bool upgrade = op->lock == -1;
2280
2281        bch_keylist_init(&insert);
2282
2283        if (upgrade) {
2284                rw_unlock(false, b);
2285                rw_lock(true, b, b->level);
2286
2287                if (b->key.ptr[0] != btree_ptr ||
2288                    b->seq != seq + 1) {
2289                        op->lock = b->level;
2290                        goto out;
2291                }
2292        }
2293
2294        SET_KEY_PTRS(check_key, 1);
2295        get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2296
2297        SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2298
2299        bch_keylist_add(&insert, check_key);
2300
2301        ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2302
2303        BUG_ON(!ret && !bch_keylist_empty(&insert));
2304out:
2305        if (upgrade)
2306                downgrade_write(&b->lock);
2307        return ret;
2308}
2309
2310struct btree_insert_op {
2311        struct btree_op op;
2312        struct keylist  *keys;
2313        atomic_t        *journal_ref;
2314        struct bkey     *replace_key;
2315};
2316
2317static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2318{
2319        struct btree_insert_op *op = container_of(b_op,
2320                                        struct btree_insert_op, op);
2321
2322        int ret = bch_btree_insert_node(b, &op->op, op->keys,
2323                                        op->journal_ref, op->replace_key);
2324        if (ret && !bch_keylist_empty(op->keys))
2325                return ret;
2326        else
2327                return MAP_DONE;
2328}
2329
2330int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2331                     atomic_t *journal_ref, struct bkey *replace_key)
2332{
2333        struct btree_insert_op op;
2334        int ret = 0;
2335
2336        BUG_ON(current->bio_list);
2337        BUG_ON(bch_keylist_empty(keys));
2338
2339        bch_btree_op_init(&op.op, 0);
2340        op.keys         = keys;
2341        op.journal_ref  = journal_ref;
2342        op.replace_key  = replace_key;
2343
2344        while (!ret && !bch_keylist_empty(keys)) {
2345                op.op.lock = 0;
2346                ret = bch_btree_map_leaf_nodes(&op.op, c,
2347                                               &START_KEY(keys->keys),
2348                                               btree_insert_fn);
2349        }
2350
2351        if (ret) {
2352                struct bkey *k;
2353
2354                pr_err("error %i", ret);
2355
2356                while ((k = bch_keylist_pop(keys)))
2357                        bkey_put(c, k);
2358        } else if (op.op.insert_collision)
2359                ret = -ESRCH;
2360
2361        return ret;
2362}
2363
2364void bch_btree_set_root(struct btree *b)
2365{
2366        unsigned int i;
2367        struct closure cl;
2368
2369        closure_init_stack(&cl);
2370
2371        trace_bcache_btree_set_root(b);
2372
2373        BUG_ON(!b->written);
2374
2375        for (i = 0; i < KEY_PTRS(&b->key); i++)
2376                BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2377
2378        mutex_lock(&b->c->bucket_lock);
2379        list_del_init(&b->list);
2380        mutex_unlock(&b->c->bucket_lock);
2381
2382        b->c->root = b;
2383
2384        bch_journal_meta(b->c, &cl);
2385        closure_sync(&cl);
2386}
2387
2388/* Map across nodes or keys */
2389
2390static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2391                                       struct bkey *from,
2392                                       btree_map_nodes_fn *fn, int flags)
2393{
2394        int ret = MAP_CONTINUE;
2395
2396        if (b->level) {
2397                struct bkey *k;
2398                struct btree_iter iter;
2399
2400                bch_btree_iter_init(&b->keys, &iter, from);
2401
2402                while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2403                                                       bch_ptr_bad))) {
2404                        ret = btree(map_nodes_recurse, k, b,
2405                                    op, from, fn, flags);
2406                        from = NULL;
2407
2408                        if (ret != MAP_CONTINUE)
2409                                return ret;
2410                }
2411        }
2412
2413        if (!b->level || flags == MAP_ALL_NODES)
2414                ret = fn(op, b);
2415
2416        return ret;
2417}
2418
2419int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2420                          struct bkey *from, btree_map_nodes_fn *fn, int flags)
2421{
2422        return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2423}
2424
2425static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2426                                      struct bkey *from, btree_map_keys_fn *fn,
2427                                      int flags)
2428{
2429        int ret = MAP_CONTINUE;
2430        struct bkey *k;
2431        struct btree_iter iter;
2432
2433        bch_btree_iter_init(&b->keys, &iter, from);
2434
2435        while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2436                ret = !b->level
2437                        ? fn(op, b, k)
2438                        : btree(map_keys_recurse, k, b, op, from, fn, flags);
2439                from = NULL;
2440
2441                if (ret != MAP_CONTINUE)
2442                        return ret;
2443        }
2444
2445        if (!b->level && (flags & MAP_END_KEY))
2446                ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2447                                     KEY_OFFSET(&b->key), 0));
2448
2449        return ret;
2450}
2451
2452int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2453                       struct bkey *from, btree_map_keys_fn *fn, int flags)
2454{
2455        return btree_root(map_keys_recurse, c, op, from, fn, flags);
2456}
2457
2458/* Keybuf code */
2459
2460static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2461{
2462        /* Overlapping keys compare equal */
2463        if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2464                return -1;
2465        if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2466                return 1;
2467        return 0;
2468}
2469
2470static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2471                                            struct keybuf_key *r)
2472{
2473        return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2474}
2475
2476struct refill {
2477        struct btree_op op;
2478        unsigned int    nr_found;
2479        struct keybuf   *buf;
2480        struct bkey     *end;
2481        keybuf_pred_fn  *pred;
2482};
2483
2484static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2485                            struct bkey *k)
2486{
2487        struct refill *refill = container_of(op, struct refill, op);
2488        struct keybuf *buf = refill->buf;
2489        int ret = MAP_CONTINUE;
2490
2491        if (bkey_cmp(k, refill->end) > 0) {
2492                ret = MAP_DONE;
2493                goto out;
2494        }
2495
2496        if (!KEY_SIZE(k)) /* end key */
2497                goto out;
2498
2499        if (refill->pred(buf, k)) {
2500                struct keybuf_key *w;
2501
2502                spin_lock(&buf->lock);
2503
2504                w = array_alloc(&buf->freelist);
2505                if (!w) {
2506                        spin_unlock(&buf->lock);
2507                        return MAP_DONE;
2508                }
2509
2510                w->private = NULL;
2511                bkey_copy(&w->key, k);
2512
2513                if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2514                        array_free(&buf->freelist, w);
2515                else
2516                        refill->nr_found++;
2517
2518                if (array_freelist_empty(&buf->freelist))
2519                        ret = MAP_DONE;
2520
2521                spin_unlock(&buf->lock);
2522        }
2523out:
2524        buf->last_scanned = *k;
2525        return ret;
2526}
2527
2528void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2529                       struct bkey *end, keybuf_pred_fn *pred)
2530{
2531        struct bkey start = buf->last_scanned;
2532        struct refill refill;
2533
2534        cond_resched();
2535
2536        bch_btree_op_init(&refill.op, -1);
2537        refill.nr_found = 0;
2538        refill.buf      = buf;
2539        refill.end      = end;
2540        refill.pred     = pred;
2541
2542        bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2543                           refill_keybuf_fn, MAP_END_KEY);
2544
2545        trace_bcache_keyscan(refill.nr_found,
2546                             KEY_INODE(&start), KEY_OFFSET(&start),
2547                             KEY_INODE(&buf->last_scanned),
2548                             KEY_OFFSET(&buf->last_scanned));
2549
2550        spin_lock(&buf->lock);
2551
2552        if (!RB_EMPTY_ROOT(&buf->keys)) {
2553                struct keybuf_key *w;
2554
2555                w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2556                buf->start      = START_KEY(&w->key);
2557
2558                w = RB_LAST(&buf->keys, struct keybuf_key, node);
2559                buf->end        = w->key;
2560        } else {
2561                buf->start      = MAX_KEY;
2562                buf->end        = MAX_KEY;
2563        }
2564
2565        spin_unlock(&buf->lock);
2566}
2567
2568static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2569{
2570        rb_erase(&w->node, &buf->keys);
2571        array_free(&buf->freelist, w);
2572}
2573
2574void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2575{
2576        spin_lock(&buf->lock);
2577        __bch_keybuf_del(buf, w);
2578        spin_unlock(&buf->lock);
2579}
2580
2581bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2582                                  struct bkey *end)
2583{
2584        bool ret = false;
2585        struct keybuf_key *p, *w, s;
2586
2587        s.key = *start;
2588
2589        if (bkey_cmp(end, &buf->start) <= 0 ||
2590            bkey_cmp(start, &buf->end) >= 0)
2591                return false;
2592
2593        spin_lock(&buf->lock);
2594        w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2595
2596        while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2597                p = w;
2598                w = RB_NEXT(w, node);
2599
2600                if (p->private)
2601                        ret = true;
2602                else
2603                        __bch_keybuf_del(buf, p);
2604        }
2605
2606        spin_unlock(&buf->lock);
2607        return ret;
2608}
2609
2610struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2611{
2612        struct keybuf_key *w;
2613
2614        spin_lock(&buf->lock);
2615
2616        w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2617
2618        while (w && w->private)
2619                w = RB_NEXT(w, node);
2620
2621        if (w)
2622                w->private = ERR_PTR(-EINTR);
2623
2624        spin_unlock(&buf->lock);
2625        return w;
2626}
2627
2628struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2629                                          struct keybuf *buf,
2630                                          struct bkey *end,
2631                                          keybuf_pred_fn *pred)
2632{
2633        struct keybuf_key *ret;
2634
2635        while (1) {
2636                ret = bch_keybuf_next(buf);
2637                if (ret)
2638                        break;
2639
2640                if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2641                        pr_debug("scan finished");
2642                        break;
2643                }
2644
2645                bch_refill_keybuf(c, buf, end, pred);
2646        }
2647
2648        return ret;
2649}
2650
2651void bch_keybuf_init(struct keybuf *buf)
2652{
2653        buf->last_scanned       = MAX_KEY;
2654        buf->keys               = RB_ROOT;
2655
2656        spin_lock_init(&buf->lock);
2657        array_allocator_init(&buf->freelist);
2658}
2659