linux/drivers/media/rc/rc-main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// rc-main.c - Remote Controller core module
   3//
   4// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <media/rc-core.h>
   9#include <linux/bsearch.h>
  10#include <linux/spinlock.h>
  11#include <linux/delay.h>
  12#include <linux/input.h>
  13#include <linux/leds.h>
  14#include <linux/slab.h>
  15#include <linux/idr.h>
  16#include <linux/device.h>
  17#include <linux/module.h>
  18#include "rc-core-priv.h"
  19
  20/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  21#define IR_TAB_MIN_SIZE 256
  22#define IR_TAB_MAX_SIZE 8192
  23
  24static const struct {
  25        const char *name;
  26        unsigned int repeat_period;
  27        unsigned int scancode_bits;
  28} protocols[] = {
  29        [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
  30        [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
  31        [RC_PROTO_RC5] = { .name = "rc-5",
  32                .scancode_bits = 0x1f7f, .repeat_period = 114 },
  33        [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
  34                .scancode_bits = 0x1f7f3f, .repeat_period = 114 },
  35        [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
  36                .scancode_bits = 0x2fff, .repeat_period = 114 },
  37        [RC_PROTO_JVC] = { .name = "jvc",
  38                .scancode_bits = 0xffff, .repeat_period = 125 },
  39        [RC_PROTO_SONY12] = { .name = "sony-12",
  40                .scancode_bits = 0x1f007f, .repeat_period = 100 },
  41        [RC_PROTO_SONY15] = { .name = "sony-15",
  42                .scancode_bits = 0xff007f, .repeat_period = 100 },
  43        [RC_PROTO_SONY20] = { .name = "sony-20",
  44                .scancode_bits = 0x1fff7f, .repeat_period = 100 },
  45        [RC_PROTO_NEC] = { .name = "nec",
  46                .scancode_bits = 0xffff, .repeat_period = 110 },
  47        [RC_PROTO_NECX] = { .name = "nec-x",
  48                .scancode_bits = 0xffffff, .repeat_period = 110 },
  49        [RC_PROTO_NEC32] = { .name = "nec-32",
  50                .scancode_bits = 0xffffffff, .repeat_period = 110 },
  51        [RC_PROTO_SANYO] = { .name = "sanyo",
  52                .scancode_bits = 0x1fffff, .repeat_period = 125 },
  53        [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
  54                .scancode_bits = 0xffffff, .repeat_period = 100 },
  55        [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
  56                .scancode_bits = 0x1fffff, .repeat_period = 100 },
  57        [RC_PROTO_RC6_0] = { .name = "rc-6-0",
  58                .scancode_bits = 0xffff, .repeat_period = 114 },
  59        [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
  60                .scancode_bits = 0xfffff, .repeat_period = 114 },
  61        [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
  62                .scancode_bits = 0xffffff, .repeat_period = 114 },
  63        [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
  64                .scancode_bits = 0xffffffff, .repeat_period = 114 },
  65        [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
  66                .scancode_bits = 0xffff7fff, .repeat_period = 114 },
  67        [RC_PROTO_SHARP] = { .name = "sharp",
  68                .scancode_bits = 0x1fff, .repeat_period = 125 },
  69        [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
  70        [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
  71        [RC_PROTO_IMON] = { .name = "imon",
  72                .scancode_bits = 0x7fffffff, .repeat_period = 114 },
  73        [RC_PROTO_RCMM12] = { .name = "rc-mm-12",
  74                .scancode_bits = 0x00000fff, .repeat_period = 114 },
  75        [RC_PROTO_RCMM24] = { .name = "rc-mm-24",
  76                .scancode_bits = 0x00ffffff, .repeat_period = 114 },
  77        [RC_PROTO_RCMM32] = { .name = "rc-mm-32",
  78                .scancode_bits = 0xffffffff, .repeat_period = 114 },
  79        [RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
  80};
  81
  82/* Used to keep track of known keymaps */
  83static LIST_HEAD(rc_map_list);
  84static DEFINE_SPINLOCK(rc_map_lock);
  85static struct led_trigger *led_feedback;
  86
  87/* Used to keep track of rc devices */
  88static DEFINE_IDA(rc_ida);
  89
  90static struct rc_map_list *seek_rc_map(const char *name)
  91{
  92        struct rc_map_list *map = NULL;
  93
  94        spin_lock(&rc_map_lock);
  95        list_for_each_entry(map, &rc_map_list, list) {
  96                if (!strcmp(name, map->map.name)) {
  97                        spin_unlock(&rc_map_lock);
  98                        return map;
  99                }
 100        }
 101        spin_unlock(&rc_map_lock);
 102
 103        return NULL;
 104}
 105
 106struct rc_map *rc_map_get(const char *name)
 107{
 108
 109        struct rc_map_list *map;
 110
 111        map = seek_rc_map(name);
 112#ifdef CONFIG_MODULES
 113        if (!map) {
 114                int rc = request_module("%s", name);
 115                if (rc < 0) {
 116                        pr_err("Couldn't load IR keymap %s\n", name);
 117                        return NULL;
 118                }
 119                msleep(20);     /* Give some time for IR to register */
 120
 121                map = seek_rc_map(name);
 122        }
 123#endif
 124        if (!map) {
 125                pr_err("IR keymap %s not found\n", name);
 126                return NULL;
 127        }
 128
 129        printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
 130
 131        return &map->map;
 132}
 133EXPORT_SYMBOL_GPL(rc_map_get);
 134
 135int rc_map_register(struct rc_map_list *map)
 136{
 137        spin_lock(&rc_map_lock);
 138        list_add_tail(&map->list, &rc_map_list);
 139        spin_unlock(&rc_map_lock);
 140        return 0;
 141}
 142EXPORT_SYMBOL_GPL(rc_map_register);
 143
 144void rc_map_unregister(struct rc_map_list *map)
 145{
 146        spin_lock(&rc_map_lock);
 147        list_del(&map->list);
 148        spin_unlock(&rc_map_lock);
 149}
 150EXPORT_SYMBOL_GPL(rc_map_unregister);
 151
 152
 153static struct rc_map_table empty[] = {
 154        { 0x2a, KEY_COFFEE },
 155};
 156
 157static struct rc_map_list empty_map = {
 158        .map = {
 159                .scan     = empty,
 160                .size     = ARRAY_SIZE(empty),
 161                .rc_proto = RC_PROTO_UNKNOWN,   /* Legacy IR type */
 162                .name     = RC_MAP_EMPTY,
 163        }
 164};
 165
 166/**
 167 * ir_create_table() - initializes a scancode table
 168 * @dev:        the rc_dev device
 169 * @rc_map:     the rc_map to initialize
 170 * @name:       name to assign to the table
 171 * @rc_proto:   ir type to assign to the new table
 172 * @size:       initial size of the table
 173 *
 174 * This routine will initialize the rc_map and will allocate
 175 * memory to hold at least the specified number of elements.
 176 *
 177 * return:      zero on success or a negative error code
 178 */
 179static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
 180                           const char *name, u64 rc_proto, size_t size)
 181{
 182        rc_map->name = kstrdup(name, GFP_KERNEL);
 183        if (!rc_map->name)
 184                return -ENOMEM;
 185        rc_map->rc_proto = rc_proto;
 186        rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 187        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 188        rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 189        if (!rc_map->scan) {
 190                kfree(rc_map->name);
 191                rc_map->name = NULL;
 192                return -ENOMEM;
 193        }
 194
 195        dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
 196                rc_map->size, rc_map->alloc);
 197        return 0;
 198}
 199
 200/**
 201 * ir_free_table() - frees memory allocated by a scancode table
 202 * @rc_map:     the table whose mappings need to be freed
 203 *
 204 * This routine will free memory alloctaed for key mappings used by given
 205 * scancode table.
 206 */
 207static void ir_free_table(struct rc_map *rc_map)
 208{
 209        rc_map->size = 0;
 210        kfree(rc_map->name);
 211        rc_map->name = NULL;
 212        kfree(rc_map->scan);
 213        rc_map->scan = NULL;
 214}
 215
 216/**
 217 * ir_resize_table() - resizes a scancode table if necessary
 218 * @dev:        the rc_dev device
 219 * @rc_map:     the rc_map to resize
 220 * @gfp_flags:  gfp flags to use when allocating memory
 221 *
 222 * This routine will shrink the rc_map if it has lots of
 223 * unused entries and grow it if it is full.
 224 *
 225 * return:      zero on success or a negative error code
 226 */
 227static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
 228                           gfp_t gfp_flags)
 229{
 230        unsigned int oldalloc = rc_map->alloc;
 231        unsigned int newalloc = oldalloc;
 232        struct rc_map_table *oldscan = rc_map->scan;
 233        struct rc_map_table *newscan;
 234
 235        if (rc_map->size == rc_map->len) {
 236                /* All entries in use -> grow keytable */
 237                if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 238                        return -ENOMEM;
 239
 240                newalloc *= 2;
 241                dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
 242        }
 243
 244        if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 245                /* Less than 1/3 of entries in use -> shrink keytable */
 246                newalloc /= 2;
 247                dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
 248        }
 249
 250        if (newalloc == oldalloc)
 251                return 0;
 252
 253        newscan = kmalloc(newalloc, gfp_flags);
 254        if (!newscan)
 255                return -ENOMEM;
 256
 257        memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 258        rc_map->scan = newscan;
 259        rc_map->alloc = newalloc;
 260        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 261        kfree(oldscan);
 262        return 0;
 263}
 264
 265/**
 266 * ir_update_mapping() - set a keycode in the scancode->keycode table
 267 * @dev:        the struct rc_dev device descriptor
 268 * @rc_map:     scancode table to be adjusted
 269 * @index:      index of the mapping that needs to be updated
 270 * @new_keycode: the desired keycode
 271 *
 272 * This routine is used to update scancode->keycode mapping at given
 273 * position.
 274 *
 275 * return:      previous keycode assigned to the mapping
 276 *
 277 */
 278static unsigned int ir_update_mapping(struct rc_dev *dev,
 279                                      struct rc_map *rc_map,
 280                                      unsigned int index,
 281                                      unsigned int new_keycode)
 282{
 283        int old_keycode = rc_map->scan[index].keycode;
 284        int i;
 285
 286        /* Did the user wish to remove the mapping? */
 287        if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 288                dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
 289                        index, rc_map->scan[index].scancode);
 290                rc_map->len--;
 291                memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 292                        (rc_map->len - index) * sizeof(struct rc_map_table));
 293        } else {
 294                dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
 295                        index,
 296                        old_keycode == KEY_RESERVED ? "New" : "Replacing",
 297                        rc_map->scan[index].scancode, new_keycode);
 298                rc_map->scan[index].keycode = new_keycode;
 299                __set_bit(new_keycode, dev->input_dev->keybit);
 300        }
 301
 302        if (old_keycode != KEY_RESERVED) {
 303                /* A previous mapping was updated... */
 304                __clear_bit(old_keycode, dev->input_dev->keybit);
 305                /* ... but another scancode might use the same keycode */
 306                for (i = 0; i < rc_map->len; i++) {
 307                        if (rc_map->scan[i].keycode == old_keycode) {
 308                                __set_bit(old_keycode, dev->input_dev->keybit);
 309                                break;
 310                        }
 311                }
 312
 313                /* Possibly shrink the keytable, failure is not a problem */
 314                ir_resize_table(dev, rc_map, GFP_ATOMIC);
 315        }
 316
 317        return old_keycode;
 318}
 319
 320/**
 321 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 322 * @dev:        the struct rc_dev device descriptor
 323 * @rc_map:     scancode table to be searched
 324 * @scancode:   the desired scancode
 325 * @resize:     controls whether we allowed to resize the table to
 326 *              accommodate not yet present scancodes
 327 *
 328 * This routine is used to locate given scancode in rc_map.
 329 * If scancode is not yet present the routine will allocate a new slot
 330 * for it.
 331 *
 332 * return:      index of the mapping containing scancode in question
 333 *              or -1U in case of failure.
 334 */
 335static unsigned int ir_establish_scancode(struct rc_dev *dev,
 336                                          struct rc_map *rc_map,
 337                                          unsigned int scancode,
 338                                          bool resize)
 339{
 340        unsigned int i;
 341
 342        /*
 343         * Unfortunately, some hardware-based IR decoders don't provide
 344         * all bits for the complete IR code. In general, they provide only
 345         * the command part of the IR code. Yet, as it is possible to replace
 346         * the provided IR with another one, it is needed to allow loading
 347         * IR tables from other remotes. So, we support specifying a mask to
 348         * indicate the valid bits of the scancodes.
 349         */
 350        if (dev->scancode_mask)
 351                scancode &= dev->scancode_mask;
 352
 353        /* First check if we already have a mapping for this ir command */
 354        for (i = 0; i < rc_map->len; i++) {
 355                if (rc_map->scan[i].scancode == scancode)
 356                        return i;
 357
 358                /* Keytable is sorted from lowest to highest scancode */
 359                if (rc_map->scan[i].scancode >= scancode)
 360                        break;
 361        }
 362
 363        /* No previous mapping found, we might need to grow the table */
 364        if (rc_map->size == rc_map->len) {
 365                if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
 366                        return -1U;
 367        }
 368
 369        /* i is the proper index to insert our new keycode */
 370        if (i < rc_map->len)
 371                memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 372                        (rc_map->len - i) * sizeof(struct rc_map_table));
 373        rc_map->scan[i].scancode = scancode;
 374        rc_map->scan[i].keycode = KEY_RESERVED;
 375        rc_map->len++;
 376
 377        return i;
 378}
 379
 380/**
 381 * ir_setkeycode() - set a keycode in the scancode->keycode table
 382 * @idev:       the struct input_dev device descriptor
 383 * @ke:         Input keymap entry
 384 * @old_keycode: result
 385 *
 386 * This routine is used to handle evdev EVIOCSKEY ioctl.
 387 *
 388 * return:      -EINVAL if the keycode could not be inserted, otherwise zero.
 389 */
 390static int ir_setkeycode(struct input_dev *idev,
 391                         const struct input_keymap_entry *ke,
 392                         unsigned int *old_keycode)
 393{
 394        struct rc_dev *rdev = input_get_drvdata(idev);
 395        struct rc_map *rc_map = &rdev->rc_map;
 396        unsigned int index;
 397        unsigned int scancode;
 398        int retval = 0;
 399        unsigned long flags;
 400
 401        spin_lock_irqsave(&rc_map->lock, flags);
 402
 403        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 404                index = ke->index;
 405                if (index >= rc_map->len) {
 406                        retval = -EINVAL;
 407                        goto out;
 408                }
 409        } else {
 410                retval = input_scancode_to_scalar(ke, &scancode);
 411                if (retval)
 412                        goto out;
 413
 414                index = ir_establish_scancode(rdev, rc_map, scancode, true);
 415                if (index >= rc_map->len) {
 416                        retval = -ENOMEM;
 417                        goto out;
 418                }
 419        }
 420
 421        *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 422
 423out:
 424        spin_unlock_irqrestore(&rc_map->lock, flags);
 425        return retval;
 426}
 427
 428/**
 429 * ir_setkeytable() - sets several entries in the scancode->keycode table
 430 * @dev:        the struct rc_dev device descriptor
 431 * @from:       the struct rc_map to copy entries from
 432 *
 433 * This routine is used to handle table initialization.
 434 *
 435 * return:      -ENOMEM if all keycodes could not be inserted, otherwise zero.
 436 */
 437static int ir_setkeytable(struct rc_dev *dev,
 438                          const struct rc_map *from)
 439{
 440        struct rc_map *rc_map = &dev->rc_map;
 441        unsigned int i, index;
 442        int rc;
 443
 444        rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
 445                             from->size);
 446        if (rc)
 447                return rc;
 448
 449        for (i = 0; i < from->size; i++) {
 450                index = ir_establish_scancode(dev, rc_map,
 451                                              from->scan[i].scancode, false);
 452                if (index >= rc_map->len) {
 453                        rc = -ENOMEM;
 454                        break;
 455                }
 456
 457                ir_update_mapping(dev, rc_map, index,
 458                                  from->scan[i].keycode);
 459        }
 460
 461        if (rc)
 462                ir_free_table(rc_map);
 463
 464        return rc;
 465}
 466
 467static int rc_map_cmp(const void *key, const void *elt)
 468{
 469        const unsigned int *scancode = key;
 470        const struct rc_map_table *e = elt;
 471
 472        if (*scancode < e->scancode)
 473                return -1;
 474        else if (*scancode > e->scancode)
 475                return 1;
 476        return 0;
 477}
 478
 479/**
 480 * ir_lookup_by_scancode() - locate mapping by scancode
 481 * @rc_map:     the struct rc_map to search
 482 * @scancode:   scancode to look for in the table
 483 *
 484 * This routine performs binary search in RC keykeymap table for
 485 * given scancode.
 486 *
 487 * return:      index in the table, -1U if not found
 488 */
 489static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 490                                          unsigned int scancode)
 491{
 492        struct rc_map_table *res;
 493
 494        res = bsearch(&scancode, rc_map->scan, rc_map->len,
 495                      sizeof(struct rc_map_table), rc_map_cmp);
 496        if (!res)
 497                return -1U;
 498        else
 499                return res - rc_map->scan;
 500}
 501
 502/**
 503 * ir_getkeycode() - get a keycode from the scancode->keycode table
 504 * @idev:       the struct input_dev device descriptor
 505 * @ke:         Input keymap entry
 506 *
 507 * This routine is used to handle evdev EVIOCGKEY ioctl.
 508 *
 509 * return:      always returns zero.
 510 */
 511static int ir_getkeycode(struct input_dev *idev,
 512                         struct input_keymap_entry *ke)
 513{
 514        struct rc_dev *rdev = input_get_drvdata(idev);
 515        struct rc_map *rc_map = &rdev->rc_map;
 516        struct rc_map_table *entry;
 517        unsigned long flags;
 518        unsigned int index;
 519        unsigned int scancode;
 520        int retval;
 521
 522        spin_lock_irqsave(&rc_map->lock, flags);
 523
 524        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 525                index = ke->index;
 526        } else {
 527                retval = input_scancode_to_scalar(ke, &scancode);
 528                if (retval)
 529                        goto out;
 530
 531                index = ir_lookup_by_scancode(rc_map, scancode);
 532        }
 533
 534        if (index < rc_map->len) {
 535                entry = &rc_map->scan[index];
 536
 537                ke->index = index;
 538                ke->keycode = entry->keycode;
 539                ke->len = sizeof(entry->scancode);
 540                memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 541
 542        } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 543                /*
 544                 * We do not really know the valid range of scancodes
 545                 * so let's respond with KEY_RESERVED to anything we
 546                 * do not have mapping for [yet].
 547                 */
 548                ke->index = index;
 549                ke->keycode = KEY_RESERVED;
 550        } else {
 551                retval = -EINVAL;
 552                goto out;
 553        }
 554
 555        retval = 0;
 556
 557out:
 558        spin_unlock_irqrestore(&rc_map->lock, flags);
 559        return retval;
 560}
 561
 562/**
 563 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 564 * @dev:        the struct rc_dev descriptor of the device
 565 * @scancode:   the scancode to look for
 566 *
 567 * This routine is used by drivers which need to convert a scancode to a
 568 * keycode. Normally it should not be used since drivers should have no
 569 * interest in keycodes.
 570 *
 571 * return:      the corresponding keycode, or KEY_RESERVED
 572 */
 573u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
 574{
 575        struct rc_map *rc_map = &dev->rc_map;
 576        unsigned int keycode;
 577        unsigned int index;
 578        unsigned long flags;
 579
 580        spin_lock_irqsave(&rc_map->lock, flags);
 581
 582        index = ir_lookup_by_scancode(rc_map, scancode);
 583        keycode = index < rc_map->len ?
 584                        rc_map->scan[index].keycode : KEY_RESERVED;
 585
 586        spin_unlock_irqrestore(&rc_map->lock, flags);
 587
 588        if (keycode != KEY_RESERVED)
 589                dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
 590                        dev->device_name, scancode, keycode);
 591
 592        return keycode;
 593}
 594EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 595
 596/**
 597 * ir_do_keyup() - internal function to signal the release of a keypress
 598 * @dev:        the struct rc_dev descriptor of the device
 599 * @sync:       whether or not to call input_sync
 600 *
 601 * This function is used internally to release a keypress, it must be
 602 * called with keylock held.
 603 */
 604static void ir_do_keyup(struct rc_dev *dev, bool sync)
 605{
 606        if (!dev->keypressed)
 607                return;
 608
 609        dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
 610        del_timer(&dev->timer_repeat);
 611        input_report_key(dev->input_dev, dev->last_keycode, 0);
 612        led_trigger_event(led_feedback, LED_OFF);
 613        if (sync)
 614                input_sync(dev->input_dev);
 615        dev->keypressed = false;
 616}
 617
 618/**
 619 * rc_keyup() - signals the release of a keypress
 620 * @dev:        the struct rc_dev descriptor of the device
 621 *
 622 * This routine is used to signal that a key has been released on the
 623 * remote control.
 624 */
 625void rc_keyup(struct rc_dev *dev)
 626{
 627        unsigned long flags;
 628
 629        spin_lock_irqsave(&dev->keylock, flags);
 630        ir_do_keyup(dev, true);
 631        spin_unlock_irqrestore(&dev->keylock, flags);
 632}
 633EXPORT_SYMBOL_GPL(rc_keyup);
 634
 635/**
 636 * ir_timer_keyup() - generates a keyup event after a timeout
 637 *
 638 * @t:          a pointer to the struct timer_list
 639 *
 640 * This routine will generate a keyup event some time after a keydown event
 641 * is generated when no further activity has been detected.
 642 */
 643static void ir_timer_keyup(struct timer_list *t)
 644{
 645        struct rc_dev *dev = from_timer(dev, t, timer_keyup);
 646        unsigned long flags;
 647
 648        /*
 649         * ir->keyup_jiffies is used to prevent a race condition if a
 650         * hardware interrupt occurs at this point and the keyup timer
 651         * event is moved further into the future as a result.
 652         *
 653         * The timer will then be reactivated and this function called
 654         * again in the future. We need to exit gracefully in that case
 655         * to allow the input subsystem to do its auto-repeat magic or
 656         * a keyup event might follow immediately after the keydown.
 657         */
 658        spin_lock_irqsave(&dev->keylock, flags);
 659        if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 660                ir_do_keyup(dev, true);
 661        spin_unlock_irqrestore(&dev->keylock, flags);
 662}
 663
 664/**
 665 * ir_timer_repeat() - generates a repeat event after a timeout
 666 *
 667 * @t:          a pointer to the struct timer_list
 668 *
 669 * This routine will generate a soft repeat event every REP_PERIOD
 670 * milliseconds.
 671 */
 672static void ir_timer_repeat(struct timer_list *t)
 673{
 674        struct rc_dev *dev = from_timer(dev, t, timer_repeat);
 675        struct input_dev *input = dev->input_dev;
 676        unsigned long flags;
 677
 678        spin_lock_irqsave(&dev->keylock, flags);
 679        if (dev->keypressed) {
 680                input_event(input, EV_KEY, dev->last_keycode, 2);
 681                input_sync(input);
 682                if (input->rep[REP_PERIOD])
 683                        mod_timer(&dev->timer_repeat, jiffies +
 684                                  msecs_to_jiffies(input->rep[REP_PERIOD]));
 685        }
 686        spin_unlock_irqrestore(&dev->keylock, flags);
 687}
 688
 689static unsigned int repeat_period(int protocol)
 690{
 691        if (protocol >= ARRAY_SIZE(protocols))
 692                return 100;
 693
 694        return protocols[protocol].repeat_period;
 695}
 696
 697/**
 698 * rc_repeat() - signals that a key is still pressed
 699 * @dev:        the struct rc_dev descriptor of the device
 700 *
 701 * This routine is used by IR decoders when a repeat message which does
 702 * not include the necessary bits to reproduce the scancode has been
 703 * received.
 704 */
 705void rc_repeat(struct rc_dev *dev)
 706{
 707        unsigned long flags;
 708        unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
 709                msecs_to_jiffies(repeat_period(dev->last_protocol));
 710        struct lirc_scancode sc = {
 711                .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
 712                .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
 713                .flags = LIRC_SCANCODE_FLAG_REPEAT |
 714                         (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
 715        };
 716
 717        if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 718                ir_lirc_scancode_event(dev, &sc);
 719
 720        spin_lock_irqsave(&dev->keylock, flags);
 721
 722        input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
 723        input_sync(dev->input_dev);
 724
 725        if (dev->keypressed) {
 726                dev->keyup_jiffies = jiffies + timeout;
 727                mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 728        }
 729
 730        spin_unlock_irqrestore(&dev->keylock, flags);
 731}
 732EXPORT_SYMBOL_GPL(rc_repeat);
 733
 734/**
 735 * ir_do_keydown() - internal function to process a keypress
 736 * @dev:        the struct rc_dev descriptor of the device
 737 * @protocol:   the protocol of the keypress
 738 * @scancode:   the scancode of the keypress
 739 * @keycode:    the keycode of the keypress
 740 * @toggle:     the toggle value of the keypress
 741 *
 742 * This function is used internally to register a keypress, it must be
 743 * called with keylock held.
 744 */
 745static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
 746                          u32 scancode, u32 keycode, u8 toggle)
 747{
 748        bool new_event = (!dev->keypressed               ||
 749                          dev->last_protocol != protocol ||
 750                          dev->last_scancode != scancode ||
 751                          dev->last_toggle   != toggle);
 752        struct lirc_scancode sc = {
 753                .scancode = scancode, .rc_proto = protocol,
 754                .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
 755                .keycode = keycode
 756        };
 757
 758        if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 759                ir_lirc_scancode_event(dev, &sc);
 760
 761        if (new_event && dev->keypressed)
 762                ir_do_keyup(dev, false);
 763
 764        input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 765
 766        dev->last_protocol = protocol;
 767        dev->last_scancode = scancode;
 768        dev->last_toggle = toggle;
 769        dev->last_keycode = keycode;
 770
 771        if (new_event && keycode != KEY_RESERVED) {
 772                /* Register a keypress */
 773                dev->keypressed = true;
 774
 775                dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
 776                        dev->device_name, keycode, protocol, scancode);
 777                input_report_key(dev->input_dev, keycode, 1);
 778
 779                led_trigger_event(led_feedback, LED_FULL);
 780        }
 781
 782        /*
 783         * For CEC, start sending repeat messages as soon as the first
 784         * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
 785         * is non-zero. Otherwise, the input layer will generate repeat
 786         * messages.
 787         */
 788        if (!new_event && keycode != KEY_RESERVED &&
 789            dev->allowed_protocols == RC_PROTO_BIT_CEC &&
 790            !timer_pending(&dev->timer_repeat) &&
 791            dev->input_dev->rep[REP_PERIOD] &&
 792            !dev->input_dev->rep[REP_DELAY]) {
 793                input_event(dev->input_dev, EV_KEY, keycode, 2);
 794                mod_timer(&dev->timer_repeat, jiffies +
 795                          msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
 796        }
 797
 798        input_sync(dev->input_dev);
 799}
 800
 801/**
 802 * rc_keydown() - generates input event for a key press
 803 * @dev:        the struct rc_dev descriptor of the device
 804 * @protocol:   the protocol for the keypress
 805 * @scancode:   the scancode for the keypress
 806 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 807 *              support toggle values, this should be set to zero)
 808 *
 809 * This routine is used to signal that a key has been pressed on the
 810 * remote control.
 811 */
 812void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
 813                u8 toggle)
 814{
 815        unsigned long flags;
 816        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 817
 818        spin_lock_irqsave(&dev->keylock, flags);
 819        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 820
 821        if (dev->keypressed) {
 822                dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
 823                        msecs_to_jiffies(repeat_period(protocol));
 824                mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 825        }
 826        spin_unlock_irqrestore(&dev->keylock, flags);
 827}
 828EXPORT_SYMBOL_GPL(rc_keydown);
 829
 830/**
 831 * rc_keydown_notimeout() - generates input event for a key press without
 832 *                          an automatic keyup event at a later time
 833 * @dev:        the struct rc_dev descriptor of the device
 834 * @protocol:   the protocol for the keypress
 835 * @scancode:   the scancode for the keypress
 836 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 837 *              support toggle values, this should be set to zero)
 838 *
 839 * This routine is used to signal that a key has been pressed on the
 840 * remote control. The driver must manually call rc_keyup() at a later stage.
 841 */
 842void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
 843                          u32 scancode, u8 toggle)
 844{
 845        unsigned long flags;
 846        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 847
 848        spin_lock_irqsave(&dev->keylock, flags);
 849        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 850        spin_unlock_irqrestore(&dev->keylock, flags);
 851}
 852EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 853
 854/**
 855 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
 856 *      For nec, it should do the opposite of ir_nec_bytes_to_scancode()
 857 * @proto:      protocol
 858 * @scancode:   scancode
 859 */
 860bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
 861{
 862        switch (proto) {
 863        /*
 864         * NECX has a 16-bit address; if the lower 8 bits match the upper
 865         * 8 bits inverted, then the address would match regular nec.
 866         */
 867        case RC_PROTO_NECX:
 868                if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
 869                        return false;
 870                break;
 871        /*
 872         * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
 873         * of the command match the upper 8 bits inverted, then it would
 874         * be either NEC or NECX.
 875         */
 876        case RC_PROTO_NEC32:
 877                if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
 878                        return false;
 879                break;
 880        /*
 881         * If the customer code (top 32-bit) is 0x800f, it is MCE else it
 882         * is regular mode-6a 32 bit
 883         */
 884        case RC_PROTO_RC6_MCE:
 885                if ((scancode & 0xffff0000) != 0x800f0000)
 886                        return false;
 887                break;
 888        case RC_PROTO_RC6_6A_32:
 889                if ((scancode & 0xffff0000) == 0x800f0000)
 890                        return false;
 891                break;
 892        default:
 893                break;
 894        }
 895
 896        return true;
 897}
 898
 899/**
 900 * rc_validate_filter() - checks that the scancode and mask are valid and
 901 *                        provides sensible defaults
 902 * @dev:        the struct rc_dev descriptor of the device
 903 * @filter:     the scancode and mask
 904 *
 905 * return:      0 or -EINVAL if the filter is not valid
 906 */
 907static int rc_validate_filter(struct rc_dev *dev,
 908                              struct rc_scancode_filter *filter)
 909{
 910        u32 mask, s = filter->data;
 911        enum rc_proto protocol = dev->wakeup_protocol;
 912
 913        if (protocol >= ARRAY_SIZE(protocols))
 914                return -EINVAL;
 915
 916        mask = protocols[protocol].scancode_bits;
 917
 918        if (!rc_validate_scancode(protocol, s))
 919                return -EINVAL;
 920
 921        filter->data &= mask;
 922        filter->mask &= mask;
 923
 924        /*
 925         * If we have to raw encode the IR for wakeup, we cannot have a mask
 926         */
 927        if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
 928                return -EINVAL;
 929
 930        return 0;
 931}
 932
 933int rc_open(struct rc_dev *rdev)
 934{
 935        int rval = 0;
 936
 937        if (!rdev)
 938                return -EINVAL;
 939
 940        mutex_lock(&rdev->lock);
 941
 942        if (!rdev->registered) {
 943                rval = -ENODEV;
 944        } else {
 945                if (!rdev->users++ && rdev->open)
 946                        rval = rdev->open(rdev);
 947
 948                if (rval)
 949                        rdev->users--;
 950        }
 951
 952        mutex_unlock(&rdev->lock);
 953
 954        return rval;
 955}
 956
 957static int ir_open(struct input_dev *idev)
 958{
 959        struct rc_dev *rdev = input_get_drvdata(idev);
 960
 961        return rc_open(rdev);
 962}
 963
 964void rc_close(struct rc_dev *rdev)
 965{
 966        if (rdev) {
 967                mutex_lock(&rdev->lock);
 968
 969                if (!--rdev->users && rdev->close && rdev->registered)
 970                        rdev->close(rdev);
 971
 972                mutex_unlock(&rdev->lock);
 973        }
 974}
 975
 976static void ir_close(struct input_dev *idev)
 977{
 978        struct rc_dev *rdev = input_get_drvdata(idev);
 979        rc_close(rdev);
 980}
 981
 982/* class for /sys/class/rc */
 983static char *rc_devnode(struct device *dev, umode_t *mode)
 984{
 985        return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 986}
 987
 988static struct class rc_class = {
 989        .name           = "rc",
 990        .devnode        = rc_devnode,
 991};
 992
 993/*
 994 * These are the protocol textual descriptions that are
 995 * used by the sysfs protocols file. Note that the order
 996 * of the entries is relevant.
 997 */
 998static const struct {
 999        u64     type;
1000        const char      *name;
1001        const char      *module_name;
1002} proto_names[] = {
1003        { RC_PROTO_BIT_NONE,    "none",         NULL                    },
1004        { RC_PROTO_BIT_OTHER,   "other",        NULL                    },
1005        { RC_PROTO_BIT_UNKNOWN, "unknown",      NULL                    },
1006        { RC_PROTO_BIT_RC5 |
1007          RC_PROTO_BIT_RC5X_20, "rc-5",         "ir-rc5-decoder"        },
1008        { RC_PROTO_BIT_NEC |
1009          RC_PROTO_BIT_NECX |
1010          RC_PROTO_BIT_NEC32,   "nec",          "ir-nec-decoder"        },
1011        { RC_PROTO_BIT_RC6_0 |
1012          RC_PROTO_BIT_RC6_6A_20 |
1013          RC_PROTO_BIT_RC6_6A_24 |
1014          RC_PROTO_BIT_RC6_6A_32 |
1015          RC_PROTO_BIT_RC6_MCE, "rc-6",         "ir-rc6-decoder"        },
1016        { RC_PROTO_BIT_JVC,     "jvc",          "ir-jvc-decoder"        },
1017        { RC_PROTO_BIT_SONY12 |
1018          RC_PROTO_BIT_SONY15 |
1019          RC_PROTO_BIT_SONY20,  "sony",         "ir-sony-decoder"       },
1020        { RC_PROTO_BIT_RC5_SZ,  "rc-5-sz",      "ir-rc5-decoder"        },
1021        { RC_PROTO_BIT_SANYO,   "sanyo",        "ir-sanyo-decoder"      },
1022        { RC_PROTO_BIT_SHARP,   "sharp",        "ir-sharp-decoder"      },
1023        { RC_PROTO_BIT_MCIR2_KBD |
1024          RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",    "ir-mce_kbd-decoder"    },
1025        { RC_PROTO_BIT_XMP,     "xmp",          "ir-xmp-decoder"        },
1026        { RC_PROTO_BIT_CEC,     "cec",          NULL                    },
1027        { RC_PROTO_BIT_IMON,    "imon",         "ir-imon-decoder"       },
1028        { RC_PROTO_BIT_RCMM12 |
1029          RC_PROTO_BIT_RCMM24 |
1030          RC_PROTO_BIT_RCMM32,  "rc-mm",        "ir-rcmm-decoder"       },
1031        { RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",    NULL                    },
1032};
1033
1034/**
1035 * struct rc_filter_attribute - Device attribute relating to a filter type.
1036 * @attr:       Device attribute.
1037 * @type:       Filter type.
1038 * @mask:       false for filter value, true for filter mask.
1039 */
1040struct rc_filter_attribute {
1041        struct device_attribute         attr;
1042        enum rc_filter_type             type;
1043        bool                            mask;
1044};
1045#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1046
1047#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)       \
1048        struct rc_filter_attribute dev_attr_##_name = {                 \
1049                .attr = __ATTR(_name, _mode, _show, _store),            \
1050                .type = (_type),                                        \
1051                .mask = (_mask),                                        \
1052        }
1053
1054/**
1055 * show_protocols() - shows the current IR protocol(s)
1056 * @device:     the device descriptor
1057 * @mattr:      the device attribute struct
1058 * @buf:        a pointer to the output buffer
1059 *
1060 * This routine is a callback routine for input read the IR protocol type(s).
1061 * it is triggered by reading /sys/class/rc/rc?/protocols.
1062 * It returns the protocol names of supported protocols.
1063 * Enabled protocols are printed in brackets.
1064 *
1065 * dev->lock is taken to guard against races between
1066 * store_protocols and show_protocols.
1067 */
1068static ssize_t show_protocols(struct device *device,
1069                              struct device_attribute *mattr, char *buf)
1070{
1071        struct rc_dev *dev = to_rc_dev(device);
1072        u64 allowed, enabled;
1073        char *tmp = buf;
1074        int i;
1075
1076        mutex_lock(&dev->lock);
1077
1078        enabled = dev->enabled_protocols;
1079        allowed = dev->allowed_protocols;
1080        if (dev->raw && !allowed)
1081                allowed = ir_raw_get_allowed_protocols();
1082
1083        mutex_unlock(&dev->lock);
1084
1085        dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1086                __func__, (long long)allowed, (long long)enabled);
1087
1088        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1089                if (allowed & enabled & proto_names[i].type)
1090                        tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1091                else if (allowed & proto_names[i].type)
1092                        tmp += sprintf(tmp, "%s ", proto_names[i].name);
1093
1094                if (allowed & proto_names[i].type)
1095                        allowed &= ~proto_names[i].type;
1096        }
1097
1098#ifdef CONFIG_LIRC
1099        if (dev->driver_type == RC_DRIVER_IR_RAW)
1100                tmp += sprintf(tmp, "[lirc] ");
1101#endif
1102
1103        if (tmp != buf)
1104                tmp--;
1105        *tmp = '\n';
1106
1107        return tmp + 1 - buf;
1108}
1109
1110/**
1111 * parse_protocol_change() - parses a protocol change request
1112 * @dev:        rc_dev device
1113 * @protocols:  pointer to the bitmask of current protocols
1114 * @buf:        pointer to the buffer with a list of changes
1115 *
1116 * Writing "+proto" will add a protocol to the protocol mask.
1117 * Writing "-proto" will remove a protocol from protocol mask.
1118 * Writing "proto" will enable only "proto".
1119 * Writing "none" will disable all protocols.
1120 * Returns the number of changes performed or a negative error code.
1121 */
1122static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1123                                 const char *buf)
1124{
1125        const char *tmp;
1126        unsigned count = 0;
1127        bool enable, disable;
1128        u64 mask;
1129        int i;
1130
1131        while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1132                if (!*tmp)
1133                        break;
1134
1135                if (*tmp == '+') {
1136                        enable = true;
1137                        disable = false;
1138                        tmp++;
1139                } else if (*tmp == '-') {
1140                        enable = false;
1141                        disable = true;
1142                        tmp++;
1143                } else {
1144                        enable = false;
1145                        disable = false;
1146                }
1147
1148                for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1149                        if (!strcasecmp(tmp, proto_names[i].name)) {
1150                                mask = proto_names[i].type;
1151                                break;
1152                        }
1153                }
1154
1155                if (i == ARRAY_SIZE(proto_names)) {
1156                        if (!strcasecmp(tmp, "lirc"))
1157                                mask = 0;
1158                        else {
1159                                dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1160                                        tmp);
1161                                return -EINVAL;
1162                        }
1163                }
1164
1165                count++;
1166
1167                if (enable)
1168                        *protocols |= mask;
1169                else if (disable)
1170                        *protocols &= ~mask;
1171                else
1172                        *protocols = mask;
1173        }
1174
1175        if (!count) {
1176                dev_dbg(&dev->dev, "Protocol not specified\n");
1177                return -EINVAL;
1178        }
1179
1180        return count;
1181}
1182
1183void ir_raw_load_modules(u64 *protocols)
1184{
1185        u64 available;
1186        int i, ret;
1187
1188        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1189                if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1190                    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1191                                           RC_PROTO_BIT_UNKNOWN))
1192                        continue;
1193
1194                available = ir_raw_get_allowed_protocols();
1195                if (!(*protocols & proto_names[i].type & ~available))
1196                        continue;
1197
1198                if (!proto_names[i].module_name) {
1199                        pr_err("Can't enable IR protocol %s\n",
1200                               proto_names[i].name);
1201                        *protocols &= ~proto_names[i].type;
1202                        continue;
1203                }
1204
1205                ret = request_module("%s", proto_names[i].module_name);
1206                if (ret < 0) {
1207                        pr_err("Couldn't load IR protocol module %s\n",
1208                               proto_names[i].module_name);
1209                        *protocols &= ~proto_names[i].type;
1210                        continue;
1211                }
1212                msleep(20);
1213                available = ir_raw_get_allowed_protocols();
1214                if (!(*protocols & proto_names[i].type & ~available))
1215                        continue;
1216
1217                pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1218                       proto_names[i].module_name,
1219                       proto_names[i].name);
1220                *protocols &= ~proto_names[i].type;
1221        }
1222}
1223
1224/**
1225 * store_protocols() - changes the current/wakeup IR protocol(s)
1226 * @device:     the device descriptor
1227 * @mattr:      the device attribute struct
1228 * @buf:        a pointer to the input buffer
1229 * @len:        length of the input buffer
1230 *
1231 * This routine is for changing the IR protocol type.
1232 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1233 * See parse_protocol_change() for the valid commands.
1234 * Returns @len on success or a negative error code.
1235 *
1236 * dev->lock is taken to guard against races between
1237 * store_protocols and show_protocols.
1238 */
1239static ssize_t store_protocols(struct device *device,
1240                               struct device_attribute *mattr,
1241                               const char *buf, size_t len)
1242{
1243        struct rc_dev *dev = to_rc_dev(device);
1244        u64 *current_protocols;
1245        struct rc_scancode_filter *filter;
1246        u64 old_protocols, new_protocols;
1247        ssize_t rc;
1248
1249        dev_dbg(&dev->dev, "Normal protocol change requested\n");
1250        current_protocols = &dev->enabled_protocols;
1251        filter = &dev->scancode_filter;
1252
1253        if (!dev->change_protocol) {
1254                dev_dbg(&dev->dev, "Protocol switching not supported\n");
1255                return -EINVAL;
1256        }
1257
1258        mutex_lock(&dev->lock);
1259
1260        old_protocols = *current_protocols;
1261        new_protocols = old_protocols;
1262        rc = parse_protocol_change(dev, &new_protocols, buf);
1263        if (rc < 0)
1264                goto out;
1265
1266        if (dev->driver_type == RC_DRIVER_IR_RAW)
1267                ir_raw_load_modules(&new_protocols);
1268
1269        rc = dev->change_protocol(dev, &new_protocols);
1270        if (rc < 0) {
1271                dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1272                        (long long)new_protocols);
1273                goto out;
1274        }
1275
1276        if (new_protocols != old_protocols) {
1277                *current_protocols = new_protocols;
1278                dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1279                        (long long)new_protocols);
1280        }
1281
1282        /*
1283         * If a protocol change was attempted the filter may need updating, even
1284         * if the actual protocol mask hasn't changed (since the driver may have
1285         * cleared the filter).
1286         * Try setting the same filter with the new protocol (if any).
1287         * Fall back to clearing the filter.
1288         */
1289        if (dev->s_filter && filter->mask) {
1290                if (new_protocols)
1291                        rc = dev->s_filter(dev, filter);
1292                else
1293                        rc = -1;
1294
1295                if (rc < 0) {
1296                        filter->data = 0;
1297                        filter->mask = 0;
1298                        dev->s_filter(dev, filter);
1299                }
1300        }
1301
1302        rc = len;
1303
1304out:
1305        mutex_unlock(&dev->lock);
1306        return rc;
1307}
1308
1309/**
1310 * show_filter() - shows the current scancode filter value or mask
1311 * @device:     the device descriptor
1312 * @attr:       the device attribute struct
1313 * @buf:        a pointer to the output buffer
1314 *
1315 * This routine is a callback routine to read a scancode filter value or mask.
1316 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1317 * It prints the current scancode filter value or mask of the appropriate filter
1318 * type in hexadecimal into @buf and returns the size of the buffer.
1319 *
1320 * Bits of the filter value corresponding to set bits in the filter mask are
1321 * compared against input scancodes and non-matching scancodes are discarded.
1322 *
1323 * dev->lock is taken to guard against races between
1324 * store_filter and show_filter.
1325 */
1326static ssize_t show_filter(struct device *device,
1327                           struct device_attribute *attr,
1328                           char *buf)
1329{
1330        struct rc_dev *dev = to_rc_dev(device);
1331        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1332        struct rc_scancode_filter *filter;
1333        u32 val;
1334
1335        mutex_lock(&dev->lock);
1336
1337        if (fattr->type == RC_FILTER_NORMAL)
1338                filter = &dev->scancode_filter;
1339        else
1340                filter = &dev->scancode_wakeup_filter;
1341
1342        if (fattr->mask)
1343                val = filter->mask;
1344        else
1345                val = filter->data;
1346        mutex_unlock(&dev->lock);
1347
1348        return sprintf(buf, "%#x\n", val);
1349}
1350
1351/**
1352 * store_filter() - changes the scancode filter value
1353 * @device:     the device descriptor
1354 * @attr:       the device attribute struct
1355 * @buf:        a pointer to the input buffer
1356 * @len:        length of the input buffer
1357 *
1358 * This routine is for changing a scancode filter value or mask.
1359 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1360 * Returns -EINVAL if an invalid filter value for the current protocol was
1361 * specified or if scancode filtering is not supported by the driver, otherwise
1362 * returns @len.
1363 *
1364 * Bits of the filter value corresponding to set bits in the filter mask are
1365 * compared against input scancodes and non-matching scancodes are discarded.
1366 *
1367 * dev->lock is taken to guard against races between
1368 * store_filter and show_filter.
1369 */
1370static ssize_t store_filter(struct device *device,
1371                            struct device_attribute *attr,
1372                            const char *buf, size_t len)
1373{
1374        struct rc_dev *dev = to_rc_dev(device);
1375        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1376        struct rc_scancode_filter new_filter, *filter;
1377        int ret;
1378        unsigned long val;
1379        int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1380
1381        ret = kstrtoul(buf, 0, &val);
1382        if (ret < 0)
1383                return ret;
1384
1385        if (fattr->type == RC_FILTER_NORMAL) {
1386                set_filter = dev->s_filter;
1387                filter = &dev->scancode_filter;
1388        } else {
1389                set_filter = dev->s_wakeup_filter;
1390                filter = &dev->scancode_wakeup_filter;
1391        }
1392
1393        if (!set_filter)
1394                return -EINVAL;
1395
1396        mutex_lock(&dev->lock);
1397
1398        new_filter = *filter;
1399        if (fattr->mask)
1400                new_filter.mask = val;
1401        else
1402                new_filter.data = val;
1403
1404        if (fattr->type == RC_FILTER_WAKEUP) {
1405                /*
1406                 * Refuse to set a filter unless a protocol is enabled
1407                 * and the filter is valid for that protocol
1408                 */
1409                if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1410                        ret = rc_validate_filter(dev, &new_filter);
1411                else
1412                        ret = -EINVAL;
1413
1414                if (ret != 0)
1415                        goto unlock;
1416        }
1417
1418        if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1419            val) {
1420                /* refuse to set a filter unless a protocol is enabled */
1421                ret = -EINVAL;
1422                goto unlock;
1423        }
1424
1425        ret = set_filter(dev, &new_filter);
1426        if (ret < 0)
1427                goto unlock;
1428
1429        *filter = new_filter;
1430
1431unlock:
1432        mutex_unlock(&dev->lock);
1433        return (ret < 0) ? ret : len;
1434}
1435
1436/**
1437 * show_wakeup_protocols() - shows the wakeup IR protocol
1438 * @device:     the device descriptor
1439 * @mattr:      the device attribute struct
1440 * @buf:        a pointer to the output buffer
1441 *
1442 * This routine is a callback routine for input read the IR protocol type(s).
1443 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1444 * It returns the protocol names of supported protocols.
1445 * The enabled protocols are printed in brackets.
1446 *
1447 * dev->lock is taken to guard against races between
1448 * store_wakeup_protocols and show_wakeup_protocols.
1449 */
1450static ssize_t show_wakeup_protocols(struct device *device,
1451                                     struct device_attribute *mattr,
1452                                     char *buf)
1453{
1454        struct rc_dev *dev = to_rc_dev(device);
1455        u64 allowed;
1456        enum rc_proto enabled;
1457        char *tmp = buf;
1458        int i;
1459
1460        mutex_lock(&dev->lock);
1461
1462        allowed = dev->allowed_wakeup_protocols;
1463        enabled = dev->wakeup_protocol;
1464
1465        mutex_unlock(&dev->lock);
1466
1467        dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1468                __func__, (long long)allowed, enabled);
1469
1470        for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1471                if (allowed & (1ULL << i)) {
1472                        if (i == enabled)
1473                                tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1474                        else
1475                                tmp += sprintf(tmp, "%s ", protocols[i].name);
1476                }
1477        }
1478
1479        if (tmp != buf)
1480                tmp--;
1481        *tmp = '\n';
1482
1483        return tmp + 1 - buf;
1484}
1485
1486/**
1487 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1488 * @device:     the device descriptor
1489 * @mattr:      the device attribute struct
1490 * @buf:        a pointer to the input buffer
1491 * @len:        length of the input buffer
1492 *
1493 * This routine is for changing the IR protocol type.
1494 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1495 * Returns @len on success or a negative error code.
1496 *
1497 * dev->lock is taken to guard against races between
1498 * store_wakeup_protocols and show_wakeup_protocols.
1499 */
1500static ssize_t store_wakeup_protocols(struct device *device,
1501                                      struct device_attribute *mattr,
1502                                      const char *buf, size_t len)
1503{
1504        struct rc_dev *dev = to_rc_dev(device);
1505        enum rc_proto protocol = RC_PROTO_UNKNOWN;
1506        ssize_t rc;
1507        u64 allowed;
1508        int i;
1509
1510        mutex_lock(&dev->lock);
1511
1512        allowed = dev->allowed_wakeup_protocols;
1513
1514        if (!sysfs_streq(buf, "none")) {
1515                for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1516                        if ((allowed & (1ULL << i)) &&
1517                            sysfs_streq(buf, protocols[i].name)) {
1518                                protocol = i;
1519                                break;
1520                        }
1521                }
1522
1523                if (i == ARRAY_SIZE(protocols)) {
1524                        rc = -EINVAL;
1525                        goto out;
1526                }
1527
1528                if (dev->encode_wakeup) {
1529                        u64 mask = 1ULL << protocol;
1530
1531                        ir_raw_load_modules(&mask);
1532                        if (!mask) {
1533                                rc = -EINVAL;
1534                                goto out;
1535                        }
1536                }
1537        }
1538
1539        if (dev->wakeup_protocol != protocol) {
1540                dev->wakeup_protocol = protocol;
1541                dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1542
1543                if (protocol == RC_PROTO_RC6_MCE)
1544                        dev->scancode_wakeup_filter.data = 0x800f0000;
1545                else
1546                        dev->scancode_wakeup_filter.data = 0;
1547                dev->scancode_wakeup_filter.mask = 0;
1548
1549                rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1550                if (rc == 0)
1551                        rc = len;
1552        } else {
1553                rc = len;
1554        }
1555
1556out:
1557        mutex_unlock(&dev->lock);
1558        return rc;
1559}
1560
1561static void rc_dev_release(struct device *device)
1562{
1563        struct rc_dev *dev = to_rc_dev(device);
1564
1565        kfree(dev);
1566}
1567
1568#define ADD_HOTPLUG_VAR(fmt, val...)                                    \
1569        do {                                                            \
1570                int err = add_uevent_var(env, fmt, val);                \
1571                if (err)                                                \
1572                        return err;                                     \
1573        } while (0)
1574
1575static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1576{
1577        struct rc_dev *dev = to_rc_dev(device);
1578
1579        if (dev->rc_map.name)
1580                ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1581        if (dev->driver_name)
1582                ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1583        if (dev->device_name)
1584                ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1585
1586        return 0;
1587}
1588
1589/*
1590 * Static device attribute struct with the sysfs attributes for IR's
1591 */
1592static struct device_attribute dev_attr_ro_protocols =
1593__ATTR(protocols, 0444, show_protocols, NULL);
1594static struct device_attribute dev_attr_rw_protocols =
1595__ATTR(protocols, 0644, show_protocols, store_protocols);
1596static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1597                   store_wakeup_protocols);
1598static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1599                      show_filter, store_filter, RC_FILTER_NORMAL, false);
1600static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1601                      show_filter, store_filter, RC_FILTER_NORMAL, true);
1602static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1603                      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1604static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1605                      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1606
1607static struct attribute *rc_dev_rw_protocol_attrs[] = {
1608        &dev_attr_rw_protocols.attr,
1609        NULL,
1610};
1611
1612static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1613        .attrs  = rc_dev_rw_protocol_attrs,
1614};
1615
1616static struct attribute *rc_dev_ro_protocol_attrs[] = {
1617        &dev_attr_ro_protocols.attr,
1618        NULL,
1619};
1620
1621static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1622        .attrs  = rc_dev_ro_protocol_attrs,
1623};
1624
1625static struct attribute *rc_dev_filter_attrs[] = {
1626        &dev_attr_filter.attr.attr,
1627        &dev_attr_filter_mask.attr.attr,
1628        NULL,
1629};
1630
1631static const struct attribute_group rc_dev_filter_attr_grp = {
1632        .attrs  = rc_dev_filter_attrs,
1633};
1634
1635static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1636        &dev_attr_wakeup_filter.attr.attr,
1637        &dev_attr_wakeup_filter_mask.attr.attr,
1638        &dev_attr_wakeup_protocols.attr,
1639        NULL,
1640};
1641
1642static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1643        .attrs  = rc_dev_wakeup_filter_attrs,
1644};
1645
1646static const struct device_type rc_dev_type = {
1647        .release        = rc_dev_release,
1648        .uevent         = rc_dev_uevent,
1649};
1650
1651struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1652{
1653        struct rc_dev *dev;
1654
1655        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1656        if (!dev)
1657                return NULL;
1658
1659        if (type != RC_DRIVER_IR_RAW_TX) {
1660                dev->input_dev = input_allocate_device();
1661                if (!dev->input_dev) {
1662                        kfree(dev);
1663                        return NULL;
1664                }
1665
1666                dev->input_dev->getkeycode = ir_getkeycode;
1667                dev->input_dev->setkeycode = ir_setkeycode;
1668                input_set_drvdata(dev->input_dev, dev);
1669
1670                dev->timeout = IR_DEFAULT_TIMEOUT;
1671                timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1672                timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1673
1674                spin_lock_init(&dev->rc_map.lock);
1675                spin_lock_init(&dev->keylock);
1676        }
1677        mutex_init(&dev->lock);
1678
1679        dev->dev.type = &rc_dev_type;
1680        dev->dev.class = &rc_class;
1681        device_initialize(&dev->dev);
1682
1683        dev->driver_type = type;
1684
1685        __module_get(THIS_MODULE);
1686        return dev;
1687}
1688EXPORT_SYMBOL_GPL(rc_allocate_device);
1689
1690void rc_free_device(struct rc_dev *dev)
1691{
1692        if (!dev)
1693                return;
1694
1695        input_free_device(dev->input_dev);
1696
1697        put_device(&dev->dev);
1698
1699        /* kfree(dev) will be called by the callback function
1700           rc_dev_release() */
1701
1702        module_put(THIS_MODULE);
1703}
1704EXPORT_SYMBOL_GPL(rc_free_device);
1705
1706static void devm_rc_alloc_release(struct device *dev, void *res)
1707{
1708        rc_free_device(*(struct rc_dev **)res);
1709}
1710
1711struct rc_dev *devm_rc_allocate_device(struct device *dev,
1712                                       enum rc_driver_type type)
1713{
1714        struct rc_dev **dr, *rc;
1715
1716        dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1717        if (!dr)
1718                return NULL;
1719
1720        rc = rc_allocate_device(type);
1721        if (!rc) {
1722                devres_free(dr);
1723                return NULL;
1724        }
1725
1726        rc->dev.parent = dev;
1727        rc->managed_alloc = true;
1728        *dr = rc;
1729        devres_add(dev, dr);
1730
1731        return rc;
1732}
1733EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1734
1735static int rc_prepare_rx_device(struct rc_dev *dev)
1736{
1737        int rc;
1738        struct rc_map *rc_map;
1739        u64 rc_proto;
1740
1741        if (!dev->map_name)
1742                return -EINVAL;
1743
1744        rc_map = rc_map_get(dev->map_name);
1745        if (!rc_map)
1746                rc_map = rc_map_get(RC_MAP_EMPTY);
1747        if (!rc_map || !rc_map->scan || rc_map->size == 0)
1748                return -EINVAL;
1749
1750        rc = ir_setkeytable(dev, rc_map);
1751        if (rc)
1752                return rc;
1753
1754        rc_proto = BIT_ULL(rc_map->rc_proto);
1755
1756        if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1757                dev->enabled_protocols = dev->allowed_protocols;
1758
1759        if (dev->driver_type == RC_DRIVER_IR_RAW)
1760                ir_raw_load_modules(&rc_proto);
1761
1762        if (dev->change_protocol) {
1763                rc = dev->change_protocol(dev, &rc_proto);
1764                if (rc < 0)
1765                        goto out_table;
1766                dev->enabled_protocols = rc_proto;
1767        }
1768
1769        /* Keyboard events */
1770        set_bit(EV_KEY, dev->input_dev->evbit);
1771        set_bit(EV_REP, dev->input_dev->evbit);
1772        set_bit(EV_MSC, dev->input_dev->evbit);
1773        set_bit(MSC_SCAN, dev->input_dev->mscbit);
1774
1775        /* Pointer/mouse events */
1776        set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
1777        set_bit(EV_REL, dev->input_dev->evbit);
1778        set_bit(REL_X, dev->input_dev->relbit);
1779        set_bit(REL_Y, dev->input_dev->relbit);
1780
1781        if (dev->open)
1782                dev->input_dev->open = ir_open;
1783        if (dev->close)
1784                dev->input_dev->close = ir_close;
1785
1786        dev->input_dev->dev.parent = &dev->dev;
1787        memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1788        dev->input_dev->phys = dev->input_phys;
1789        dev->input_dev->name = dev->device_name;
1790
1791        return 0;
1792
1793out_table:
1794        ir_free_table(&dev->rc_map);
1795
1796        return rc;
1797}
1798
1799static int rc_setup_rx_device(struct rc_dev *dev)
1800{
1801        int rc;
1802
1803        /* rc_open will be called here */
1804        rc = input_register_device(dev->input_dev);
1805        if (rc)
1806                return rc;
1807
1808        /*
1809         * Default delay of 250ms is too short for some protocols, especially
1810         * since the timeout is currently set to 250ms. Increase it to 500ms,
1811         * to avoid wrong repetition of the keycodes. Note that this must be
1812         * set after the call to input_register_device().
1813         */
1814        if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1815                dev->input_dev->rep[REP_DELAY] = 0;
1816        else
1817                dev->input_dev->rep[REP_DELAY] = 500;
1818
1819        /*
1820         * As a repeat event on protocols like RC-5 and NEC take as long as
1821         * 110/114ms, using 33ms as a repeat period is not the right thing
1822         * to do.
1823         */
1824        dev->input_dev->rep[REP_PERIOD] = 125;
1825
1826        return 0;
1827}
1828
1829static void rc_free_rx_device(struct rc_dev *dev)
1830{
1831        if (!dev)
1832                return;
1833
1834        if (dev->input_dev) {
1835                input_unregister_device(dev->input_dev);
1836                dev->input_dev = NULL;
1837        }
1838
1839        ir_free_table(&dev->rc_map);
1840}
1841
1842int rc_register_device(struct rc_dev *dev)
1843{
1844        const char *path;
1845        int attr = 0;
1846        int minor;
1847        int rc;
1848
1849        if (!dev)
1850                return -EINVAL;
1851
1852        minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1853        if (minor < 0)
1854                return minor;
1855
1856        dev->minor = minor;
1857        dev_set_name(&dev->dev, "rc%u", dev->minor);
1858        dev_set_drvdata(&dev->dev, dev);
1859
1860        dev->dev.groups = dev->sysfs_groups;
1861        if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1862                dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1863        else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1864                dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1865        if (dev->s_filter)
1866                dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1867        if (dev->s_wakeup_filter)
1868                dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1869        dev->sysfs_groups[attr++] = NULL;
1870
1871        if (dev->driver_type == RC_DRIVER_IR_RAW) {
1872                rc = ir_raw_event_prepare(dev);
1873                if (rc < 0)
1874                        goto out_minor;
1875        }
1876
1877        if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1878                rc = rc_prepare_rx_device(dev);
1879                if (rc)
1880                        goto out_raw;
1881        }
1882
1883        rc = device_add(&dev->dev);
1884        if (rc)
1885                goto out_rx_free;
1886
1887        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1888        dev_info(&dev->dev, "%s as %s\n",
1889                 dev->device_name ?: "Unspecified device", path ?: "N/A");
1890        kfree(path);
1891
1892        dev->registered = true;
1893
1894        /*
1895         * once the the input device is registered in rc_setup_rx_device,
1896         * userspace can open the input device and rc_open() will be called
1897         * as a result. This results in driver code being allowed to submit
1898         * keycodes with rc_keydown, so lirc must be registered first.
1899         */
1900        if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1901                rc = ir_lirc_register(dev);
1902                if (rc < 0)
1903                        goto out_dev;
1904        }
1905
1906        if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1907                rc = rc_setup_rx_device(dev);
1908                if (rc)
1909                        goto out_lirc;
1910        }
1911
1912        if (dev->driver_type == RC_DRIVER_IR_RAW) {
1913                rc = ir_raw_event_register(dev);
1914                if (rc < 0)
1915                        goto out_rx;
1916        }
1917
1918        dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1919                dev->driver_name ? dev->driver_name : "unknown");
1920
1921        return 0;
1922
1923out_rx:
1924        rc_free_rx_device(dev);
1925out_lirc:
1926        if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1927                ir_lirc_unregister(dev);
1928out_dev:
1929        device_del(&dev->dev);
1930out_rx_free:
1931        ir_free_table(&dev->rc_map);
1932out_raw:
1933        ir_raw_event_free(dev);
1934out_minor:
1935        ida_simple_remove(&rc_ida, minor);
1936        return rc;
1937}
1938EXPORT_SYMBOL_GPL(rc_register_device);
1939
1940static void devm_rc_release(struct device *dev, void *res)
1941{
1942        rc_unregister_device(*(struct rc_dev **)res);
1943}
1944
1945int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1946{
1947        struct rc_dev **dr;
1948        int ret;
1949
1950        dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1951        if (!dr)
1952                return -ENOMEM;
1953
1954        ret = rc_register_device(dev);
1955        if (ret) {
1956                devres_free(dr);
1957                return ret;
1958        }
1959
1960        *dr = dev;
1961        devres_add(parent, dr);
1962
1963        return 0;
1964}
1965EXPORT_SYMBOL_GPL(devm_rc_register_device);
1966
1967void rc_unregister_device(struct rc_dev *dev)
1968{
1969        if (!dev)
1970                return;
1971
1972        if (dev->driver_type == RC_DRIVER_IR_RAW)
1973                ir_raw_event_unregister(dev);
1974
1975        del_timer_sync(&dev->timer_keyup);
1976        del_timer_sync(&dev->timer_repeat);
1977
1978        rc_free_rx_device(dev);
1979
1980        mutex_lock(&dev->lock);
1981        if (dev->users && dev->close)
1982                dev->close(dev);
1983        dev->registered = false;
1984        mutex_unlock(&dev->lock);
1985
1986        /*
1987         * lirc device should be freed with dev->registered = false, so
1988         * that userspace polling will get notified.
1989         */
1990        if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1991                ir_lirc_unregister(dev);
1992
1993        device_del(&dev->dev);
1994
1995        ida_simple_remove(&rc_ida, dev->minor);
1996
1997        if (!dev->managed_alloc)
1998                rc_free_device(dev);
1999}
2000
2001EXPORT_SYMBOL_GPL(rc_unregister_device);
2002
2003/*
2004 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2005 */
2006
2007static int __init rc_core_init(void)
2008{
2009        int rc = class_register(&rc_class);
2010        if (rc) {
2011                pr_err("rc_core: unable to register rc class\n");
2012                return rc;
2013        }
2014
2015        rc = lirc_dev_init();
2016        if (rc) {
2017                pr_err("rc_core: unable to init lirc\n");
2018                class_unregister(&rc_class);
2019                return 0;
2020        }
2021
2022        led_trigger_register_simple("rc-feedback", &led_feedback);
2023        rc_map_register(&empty_map);
2024
2025        return 0;
2026}
2027
2028static void __exit rc_core_exit(void)
2029{
2030        lirc_dev_exit();
2031        class_unregister(&rc_class);
2032        led_trigger_unregister_simple(led_feedback);
2033        rc_map_unregister(&empty_map);
2034}
2035
2036subsys_initcall(rc_core_init);
2037module_exit(rc_core_exit);
2038
2039MODULE_AUTHOR("Mauro Carvalho Chehab");
2040MODULE_LICENSE("GPL v2");
2041