linux/drivers/mtd/chips/cfi_cmdset_0002.c
<<
>>
Prefs
   1/*
   2 * Common Flash Interface support:
   3 *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
   4 *
   5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
   6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
   7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
   8 *
   9 * 2_by_8 routines added by Simon Munton
  10 *
  11 * 4_by_16 work by Carolyn J. Smith
  12 *
  13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
  14 * by Nicolas Pitre)
  15 *
  16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
  17 *
  18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
  19 *
  20 * This code is GPL
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/sched.h>
  27#include <asm/io.h>
  28#include <asm/byteorder.h>
  29
  30#include <linux/errno.h>
  31#include <linux/slab.h>
  32#include <linux/delay.h>
  33#include <linux/interrupt.h>
  34#include <linux/reboot.h>
  35#include <linux/of.h>
  36#include <linux/of_platform.h>
  37#include <linux/mtd/map.h>
  38#include <linux/mtd/mtd.h>
  39#include <linux/mtd/cfi.h>
  40#include <linux/mtd/xip.h>
  41
  42#define AMD_BOOTLOC_BUG
  43#define FORCE_WORD_WRITE 0
  44
  45#define MAX_RETRIES 3
  46
  47#define SST49LF004B             0x0060
  48#define SST49LF040B             0x0050
  49#define SST49LF008A             0x005a
  50#define AT49BV6416              0x00d6
  51
  52/*
  53 * Status Register bit description. Used by flash devices that don't
  54 * support DQ polling (e.g. HyperFlash)
  55 */
  56#define CFI_SR_DRB              BIT(7)
  57#define CFI_SR_ESB              BIT(5)
  58#define CFI_SR_PSB              BIT(4)
  59#define CFI_SR_WBASB            BIT(3)
  60#define CFI_SR_SLSB             BIT(1)
  61
  62static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  63static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  64#if !FORCE_WORD_WRITE
  65static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  66#endif
  67static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
  68static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
  69static void cfi_amdstd_sync (struct mtd_info *);
  70static int cfi_amdstd_suspend (struct mtd_info *);
  71static void cfi_amdstd_resume (struct mtd_info *);
  72static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
  73static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
  74                                         size_t *, struct otp_info *);
  75static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
  76                                         size_t *, struct otp_info *);
  77static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  78static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
  79                                         size_t *, u_char *);
  80static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
  81                                         size_t *, u_char *);
  82static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
  83                                          size_t *, u_char *);
  84static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
  85
  86static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  87                                  size_t *retlen, const u_char *buf);
  88
  89static void cfi_amdstd_destroy(struct mtd_info *);
  90
  91struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
  92static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
  93
  94static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
  95static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
  96#include "fwh_lock.h"
  97
  98static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  99static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 100
 101static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 102static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 103static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 104
 105static struct mtd_chip_driver cfi_amdstd_chipdrv = {
 106        .probe          = NULL, /* Not usable directly */
 107        .destroy        = cfi_amdstd_destroy,
 108        .name           = "cfi_cmdset_0002",
 109        .module         = THIS_MODULE
 110};
 111
 112/*
 113 * Use status register to poll for Erase/write completion when DQ is not
 114 * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
 115 * CFI Primary Vendor-Specific Extended Query table 1.5
 116 */
 117static int cfi_use_status_reg(struct cfi_private *cfi)
 118{
 119        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 120        u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
 121
 122        return extp->MinorVersion >= '5' &&
 123                (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
 124}
 125
 126static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
 127                                unsigned long adr)
 128{
 129        struct cfi_private *cfi = map->fldrv_priv;
 130        map_word status;
 131
 132        if (!cfi_use_status_reg(cfi))
 133                return 0;
 134
 135        cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
 136                         cfi->device_type, NULL);
 137        status = map_read(map, adr);
 138
 139        /* The error bits are invalid while the chip's busy */
 140        if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
 141                return 0;
 142
 143        if (map_word_bitsset(map, status, CMD(0x3a))) {
 144                unsigned long chipstatus = MERGESTATUS(status);
 145
 146                if (chipstatus & CFI_SR_ESB)
 147                        pr_err("%s erase operation failed, status %lx\n",
 148                               map->name, chipstatus);
 149                if (chipstatus & CFI_SR_PSB)
 150                        pr_err("%s program operation failed, status %lx\n",
 151                               map->name, chipstatus);
 152                if (chipstatus & CFI_SR_WBASB)
 153                        pr_err("%s buffer program command aborted, status %lx\n",
 154                               map->name, chipstatus);
 155                if (chipstatus & CFI_SR_SLSB)
 156                        pr_err("%s sector write protected, status %lx\n",
 157                               map->name, chipstatus);
 158
 159                /* Erase/Program status bits are set on the operation failure */
 160                if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
 161                        return 1;
 162        }
 163        return 0;
 164}
 165
 166/* #define DEBUG_CFI_FEATURES */
 167
 168
 169#ifdef DEBUG_CFI_FEATURES
 170static void cfi_tell_features(struct cfi_pri_amdstd *extp)
 171{
 172        const char* erase_suspend[3] = {
 173                "Not supported", "Read only", "Read/write"
 174        };
 175        const char* top_bottom[6] = {
 176                "No WP", "8x8KiB sectors at top & bottom, no WP",
 177                "Bottom boot", "Top boot",
 178                "Uniform, Bottom WP", "Uniform, Top WP"
 179        };
 180
 181        printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
 182        printk("  Address sensitive unlock: %s\n",
 183               (extp->SiliconRevision & 1) ? "Not required" : "Required");
 184
 185        if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
 186                printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
 187        else
 188                printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
 189
 190        if (extp->BlkProt == 0)
 191                printk("  Block protection: Not supported\n");
 192        else
 193                printk("  Block protection: %d sectors per group\n", extp->BlkProt);
 194
 195
 196        printk("  Temporary block unprotect: %s\n",
 197               extp->TmpBlkUnprotect ? "Supported" : "Not supported");
 198        printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
 199        printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
 200        printk("  Burst mode: %s\n",
 201               extp->BurstMode ? "Supported" : "Not supported");
 202        if (extp->PageMode == 0)
 203                printk("  Page mode: Not supported\n");
 204        else
 205                printk("  Page mode: %d word page\n", extp->PageMode << 2);
 206
 207        printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
 208               extp->VppMin >> 4, extp->VppMin & 0xf);
 209        printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
 210               extp->VppMax >> 4, extp->VppMax & 0xf);
 211
 212        if (extp->TopBottom < ARRAY_SIZE(top_bottom))
 213                printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
 214        else
 215                printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
 216}
 217#endif
 218
 219#ifdef AMD_BOOTLOC_BUG
 220/* Wheee. Bring me the head of someone at AMD. */
 221static void fixup_amd_bootblock(struct mtd_info *mtd)
 222{
 223        struct map_info *map = mtd->priv;
 224        struct cfi_private *cfi = map->fldrv_priv;
 225        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 226        __u8 major = extp->MajorVersion;
 227        __u8 minor = extp->MinorVersion;
 228
 229        if (((major << 8) | minor) < 0x3131) {
 230                /* CFI version 1.0 => don't trust bootloc */
 231
 232                pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
 233                        map->name, cfi->mfr, cfi->id);
 234
 235                /* AFAICS all 29LV400 with a bottom boot block have a device ID
 236                 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
 237                 * These were badly detected as they have the 0x80 bit set
 238                 * so treat them as a special case.
 239                 */
 240                if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
 241
 242                        /* Macronix added CFI to their 2nd generation
 243                         * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
 244                         * Fujitsu, Spansion, EON, ESI and older Macronix)
 245                         * has CFI.
 246                         *
 247                         * Therefore also check the manufacturer.
 248                         * This reduces the risk of false detection due to
 249                         * the 8-bit device ID.
 250                         */
 251                        (cfi->mfr == CFI_MFR_MACRONIX)) {
 252                        pr_debug("%s: Macronix MX29LV400C with bottom boot block"
 253                                " detected\n", map->name);
 254                        extp->TopBottom = 2;    /* bottom boot */
 255                } else
 256                if (cfi->id & 0x80) {
 257                        printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
 258                        extp->TopBottom = 3;    /* top boot */
 259                } else {
 260                        extp->TopBottom = 2;    /* bottom boot */
 261                }
 262
 263                pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
 264                        " deduced %s from Device ID\n", map->name, major, minor,
 265                        extp->TopBottom == 2 ? "bottom" : "top");
 266        }
 267}
 268#endif
 269
 270#if !FORCE_WORD_WRITE
 271static void fixup_use_write_buffers(struct mtd_info *mtd)
 272{
 273        struct map_info *map = mtd->priv;
 274        struct cfi_private *cfi = map->fldrv_priv;
 275        if (cfi->cfiq->BufWriteTimeoutTyp) {
 276                pr_debug("Using buffer write method\n");
 277                mtd->_write = cfi_amdstd_write_buffers;
 278        }
 279}
 280#endif /* !FORCE_WORD_WRITE */
 281
 282/* Atmel chips don't use the same PRI format as AMD chips */
 283static void fixup_convert_atmel_pri(struct mtd_info *mtd)
 284{
 285        struct map_info *map = mtd->priv;
 286        struct cfi_private *cfi = map->fldrv_priv;
 287        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 288        struct cfi_pri_atmel atmel_pri;
 289
 290        memcpy(&atmel_pri, extp, sizeof(atmel_pri));
 291        memset((char *)extp + 5, 0, sizeof(*extp) - 5);
 292
 293        if (atmel_pri.Features & 0x02)
 294                extp->EraseSuspend = 2;
 295
 296        /* Some chips got it backwards... */
 297        if (cfi->id == AT49BV6416) {
 298                if (atmel_pri.BottomBoot)
 299                        extp->TopBottom = 3;
 300                else
 301                        extp->TopBottom = 2;
 302        } else {
 303                if (atmel_pri.BottomBoot)
 304                        extp->TopBottom = 2;
 305                else
 306                        extp->TopBottom = 3;
 307        }
 308
 309        /* burst write mode not supported */
 310        cfi->cfiq->BufWriteTimeoutTyp = 0;
 311        cfi->cfiq->BufWriteTimeoutMax = 0;
 312}
 313
 314static void fixup_use_secsi(struct mtd_info *mtd)
 315{
 316        /* Setup for chips with a secsi area */
 317        mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
 318        mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
 319}
 320
 321static void fixup_use_erase_chip(struct mtd_info *mtd)
 322{
 323        struct map_info *map = mtd->priv;
 324        struct cfi_private *cfi = map->fldrv_priv;
 325        if ((cfi->cfiq->NumEraseRegions == 1) &&
 326                ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
 327                mtd->_erase = cfi_amdstd_erase_chip;
 328        }
 329
 330}
 331
 332/*
 333 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
 334 * locked by default.
 335 */
 336static void fixup_use_atmel_lock(struct mtd_info *mtd)
 337{
 338        mtd->_lock = cfi_atmel_lock;
 339        mtd->_unlock = cfi_atmel_unlock;
 340        mtd->flags |= MTD_POWERUP_LOCK;
 341}
 342
 343static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
 344{
 345        struct map_info *map = mtd->priv;
 346        struct cfi_private *cfi = map->fldrv_priv;
 347
 348        /*
 349         * These flashes report two separate eraseblock regions based on the
 350         * sector_erase-size and block_erase-size, although they both operate on the
 351         * same memory. This is not allowed according to CFI, so we just pick the
 352         * sector_erase-size.
 353         */
 354        cfi->cfiq->NumEraseRegions = 1;
 355}
 356
 357static void fixup_sst39vf(struct mtd_info *mtd)
 358{
 359        struct map_info *map = mtd->priv;
 360        struct cfi_private *cfi = map->fldrv_priv;
 361
 362        fixup_old_sst_eraseregion(mtd);
 363
 364        cfi->addr_unlock1 = 0x5555;
 365        cfi->addr_unlock2 = 0x2AAA;
 366}
 367
 368static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
 369{
 370        struct map_info *map = mtd->priv;
 371        struct cfi_private *cfi = map->fldrv_priv;
 372
 373        fixup_old_sst_eraseregion(mtd);
 374
 375        cfi->addr_unlock1 = 0x555;
 376        cfi->addr_unlock2 = 0x2AA;
 377
 378        cfi->sector_erase_cmd = CMD(0x50);
 379}
 380
 381static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
 382{
 383        struct map_info *map = mtd->priv;
 384        struct cfi_private *cfi = map->fldrv_priv;
 385
 386        fixup_sst39vf_rev_b(mtd);
 387
 388        /*
 389         * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
 390         * it should report a size of 8KBytes (0x0020*256).
 391         */
 392        cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
 393        pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
 394                mtd->name);
 395}
 396
 397static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
 398{
 399        struct map_info *map = mtd->priv;
 400        struct cfi_private *cfi = map->fldrv_priv;
 401
 402        if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
 403                cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
 404                pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
 405                        mtd->name);
 406        }
 407}
 408
 409static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
 410{
 411        struct map_info *map = mtd->priv;
 412        struct cfi_private *cfi = map->fldrv_priv;
 413
 414        if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
 415                cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
 416                pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
 417                        mtd->name);
 418        }
 419}
 420
 421static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
 422{
 423        struct map_info *map = mtd->priv;
 424        struct cfi_private *cfi = map->fldrv_priv;
 425
 426        /*
 427         *  S29NS512P flash uses more than 8bits to report number of sectors,
 428         * which is not permitted by CFI.
 429         */
 430        cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
 431        pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
 432                mtd->name);
 433}
 434
 435/* Used to fix CFI-Tables of chips without Extended Query Tables */
 436static struct cfi_fixup cfi_nopri_fixup_table[] = {
 437        { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
 438        { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
 439        { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
 440        { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
 441        { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
 442        { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
 443        { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
 444        { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
 445        { 0, 0, NULL }
 446};
 447
 448static struct cfi_fixup cfi_fixup_table[] = {
 449        { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
 450#ifdef AMD_BOOTLOC_BUG
 451        { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
 452        { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
 453        { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
 454#endif
 455        { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
 456        { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
 457        { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
 458        { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
 459        { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
 460        { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
 461        { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
 462        { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
 463        { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
 464        { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
 465        { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
 466        { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
 467        { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
 468        { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
 469        { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
 470#if !FORCE_WORD_WRITE
 471        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
 472#endif
 473        { 0, 0, NULL }
 474};
 475static struct cfi_fixup jedec_fixup_table[] = {
 476        { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
 477        { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
 478        { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
 479        { 0, 0, NULL }
 480};
 481
 482static struct cfi_fixup fixup_table[] = {
 483        /* The CFI vendor ids and the JEDEC vendor IDs appear
 484         * to be common.  It is like the devices id's are as
 485         * well.  This table is to pick all cases where
 486         * we know that is the case.
 487         */
 488        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
 489        { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
 490        { 0, 0, NULL }
 491};
 492
 493
 494static void cfi_fixup_major_minor(struct cfi_private *cfi,
 495                                  struct cfi_pri_amdstd *extp)
 496{
 497        if (cfi->mfr == CFI_MFR_SAMSUNG) {
 498                if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
 499                    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
 500                        /*
 501                         * Samsung K8P2815UQB and K8D6x16UxM chips
 502                         * report major=0 / minor=0.
 503                         * K8D3x16UxC chips report major=3 / minor=3.
 504                         */
 505                        printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
 506                               " Extended Query version to 1.%c\n",
 507                               extp->MinorVersion);
 508                        extp->MajorVersion = '1';
 509                }
 510        }
 511
 512        /*
 513         * SST 38VF640x chips report major=0xFF / minor=0xFF.
 514         */
 515        if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
 516                extp->MajorVersion = '1';
 517                extp->MinorVersion = '0';
 518        }
 519}
 520
 521static int is_m29ew(struct cfi_private *cfi)
 522{
 523        if (cfi->mfr == CFI_MFR_INTEL &&
 524            ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
 525             (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
 526                return 1;
 527        return 0;
 528}
 529
 530/*
 531 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
 532 * Some revisions of the M29EW suffer from erase suspend hang ups. In
 533 * particular, it can occur when the sequence
 534 * Erase Confirm -> Suspend -> Program -> Resume
 535 * causes a lockup due to internal timing issues. The consequence is that the
 536 * erase cannot be resumed without inserting a dummy command after programming
 537 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
 538 * that writes an F0 command code before the RESUME command.
 539 */
 540static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
 541                                          unsigned long adr)
 542{
 543        struct cfi_private *cfi = map->fldrv_priv;
 544        /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
 545        if (is_m29ew(cfi))
 546                map_write(map, CMD(0xF0), adr);
 547}
 548
 549/*
 550 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
 551 *
 552 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
 553 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
 554 * command is issued after an ERASE RESUME operation without waiting for a
 555 * minimum delay.  The result is that once the ERASE seems to be completed
 556 * (no bits are toggling), the contents of the Flash memory block on which
 557 * the erase was ongoing could be inconsistent with the expected values
 558 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
 559 * values), causing a consequent failure of the ERASE operation.
 560 * The occurrence of this issue could be high, especially when file system
 561 * operations on the Flash are intensive.  As a result, it is recommended
 562 * that a patch be applied.  Intensive file system operations can cause many
 563 * calls to the garbage routine to free Flash space (also by erasing physical
 564 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
 565 * commands can occur.  The problem disappears when a delay is inserted after
 566 * the RESUME command by using the udelay() function available in Linux.
 567 * The DELAY value must be tuned based on the customer's platform.
 568 * The maximum value that fixes the problem in all cases is 500us.
 569 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
 570 * in most cases.
 571 * We have chosen 500µs because this latency is acceptable.
 572 */
 573static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
 574{
 575        /*
 576         * Resolving the Delay After Resume Issue see Micron TN-13-07
 577         * Worst case delay must be 500µs but 30-50µs should be ok as well
 578         */
 579        if (is_m29ew(cfi))
 580                cfi_udelay(500);
 581}
 582
 583struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
 584{
 585        struct cfi_private *cfi = map->fldrv_priv;
 586        struct device_node __maybe_unused *np = map->device_node;
 587        struct mtd_info *mtd;
 588        int i;
 589
 590        mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 591        if (!mtd)
 592                return NULL;
 593        mtd->priv = map;
 594        mtd->type = MTD_NORFLASH;
 595
 596        /* Fill in the default mtd operations */
 597        mtd->_erase   = cfi_amdstd_erase_varsize;
 598        mtd->_write   = cfi_amdstd_write_words;
 599        mtd->_read    = cfi_amdstd_read;
 600        mtd->_sync    = cfi_amdstd_sync;
 601        mtd->_suspend = cfi_amdstd_suspend;
 602        mtd->_resume  = cfi_amdstd_resume;
 603        mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
 604        mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
 605        mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
 606        mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
 607        mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
 608        mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
 609        mtd->flags   = MTD_CAP_NORFLASH;
 610        mtd->name    = map->name;
 611        mtd->writesize = 1;
 612        mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
 613
 614        pr_debug("MTD %s(): write buffer size %d\n", __func__,
 615                        mtd->writebufsize);
 616
 617        mtd->_panic_write = cfi_amdstd_panic_write;
 618        mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
 619
 620        if (cfi->cfi_mode==CFI_MODE_CFI){
 621                unsigned char bootloc;
 622                __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
 623                struct cfi_pri_amdstd *extp;
 624
 625                extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
 626                if (extp) {
 627                        /*
 628                         * It's a real CFI chip, not one for which the probe
 629                         * routine faked a CFI structure.
 630                         */
 631                        cfi_fixup_major_minor(cfi, extp);
 632
 633                        /*
 634                         * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 635                         * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
 636                         *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
 637                         *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
 638                         *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
 639                         */
 640                        if (extp->MajorVersion != '1' ||
 641                            (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
 642                                printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
 643                                       "version %c.%c (%#02x/%#02x).\n",
 644                                       extp->MajorVersion, extp->MinorVersion,
 645                                       extp->MajorVersion, extp->MinorVersion);
 646                                kfree(extp);
 647                                kfree(mtd);
 648                                return NULL;
 649                        }
 650
 651                        printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
 652                               extp->MajorVersion, extp->MinorVersion);
 653
 654                        /* Install our own private info structure */
 655                        cfi->cmdset_priv = extp;
 656
 657                        /* Apply cfi device specific fixups */
 658                        cfi_fixup(mtd, cfi_fixup_table);
 659
 660#ifdef DEBUG_CFI_FEATURES
 661                        /* Tell the user about it in lots of lovely detail */
 662                        cfi_tell_features(extp);
 663#endif
 664
 665#ifdef CONFIG_OF
 666                        if (np && of_property_read_bool(
 667                                    np, "use-advanced-sector-protection")
 668                            && extp->BlkProtUnprot == 8) {
 669                                printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
 670                                mtd->_lock = cfi_ppb_lock;
 671                                mtd->_unlock = cfi_ppb_unlock;
 672                                mtd->_is_locked = cfi_ppb_is_locked;
 673                        }
 674#endif
 675
 676                        bootloc = extp->TopBottom;
 677                        if ((bootloc < 2) || (bootloc > 5)) {
 678                                printk(KERN_WARNING "%s: CFI contains unrecognised boot "
 679                                       "bank location (%d). Assuming bottom.\n",
 680                                       map->name, bootloc);
 681                                bootloc = 2;
 682                        }
 683
 684                        if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
 685                                printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
 686
 687                                for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
 688                                        int j = (cfi->cfiq->NumEraseRegions-1)-i;
 689
 690                                        swap(cfi->cfiq->EraseRegionInfo[i],
 691                                             cfi->cfiq->EraseRegionInfo[j]);
 692                                }
 693                        }
 694                        /* Set the default CFI lock/unlock addresses */
 695                        cfi->addr_unlock1 = 0x555;
 696                        cfi->addr_unlock2 = 0x2aa;
 697                }
 698                cfi_fixup(mtd, cfi_nopri_fixup_table);
 699
 700                if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
 701                        kfree(mtd);
 702                        return NULL;
 703                }
 704
 705        } /* CFI mode */
 706        else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
 707                /* Apply jedec specific fixups */
 708                cfi_fixup(mtd, jedec_fixup_table);
 709        }
 710        /* Apply generic fixups */
 711        cfi_fixup(mtd, fixup_table);
 712
 713        for (i=0; i< cfi->numchips; i++) {
 714                cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
 715                cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
 716                cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
 717                /*
 718                 * First calculate the timeout max according to timeout field
 719                 * of struct cfi_ident that probed from chip's CFI aera, if
 720                 * available. Specify a minimum of 2000us, in case the CFI data
 721                 * is wrong.
 722                 */
 723                if (cfi->cfiq->BufWriteTimeoutTyp &&
 724                    cfi->cfiq->BufWriteTimeoutMax)
 725                        cfi->chips[i].buffer_write_time_max =
 726                                1 << (cfi->cfiq->BufWriteTimeoutTyp +
 727                                      cfi->cfiq->BufWriteTimeoutMax);
 728                else
 729                        cfi->chips[i].buffer_write_time_max = 0;
 730
 731                cfi->chips[i].buffer_write_time_max =
 732                        max(cfi->chips[i].buffer_write_time_max, 2000);
 733
 734                cfi->chips[i].ref_point_counter = 0;
 735                init_waitqueue_head(&(cfi->chips[i].wq));
 736        }
 737
 738        map->fldrv = &cfi_amdstd_chipdrv;
 739
 740        return cfi_amdstd_setup(mtd);
 741}
 742struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 743struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 744EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
 745EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
 746EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
 747
 748static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
 749{
 750        struct map_info *map = mtd->priv;
 751        struct cfi_private *cfi = map->fldrv_priv;
 752        unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
 753        unsigned long offset = 0;
 754        int i,j;
 755
 756        printk(KERN_NOTICE "number of %s chips: %d\n",
 757               (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
 758        /* Select the correct geometry setup */
 759        mtd->size = devsize * cfi->numchips;
 760
 761        mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
 762        mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
 763                                          sizeof(struct mtd_erase_region_info),
 764                                          GFP_KERNEL);
 765        if (!mtd->eraseregions)
 766                goto setup_err;
 767
 768        for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
 769                unsigned long ernum, ersize;
 770                ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
 771                ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
 772
 773                if (mtd->erasesize < ersize) {
 774                        mtd->erasesize = ersize;
 775                }
 776                for (j=0; j<cfi->numchips; j++) {
 777                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
 778                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
 779                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
 780                }
 781                offset += (ersize * ernum);
 782        }
 783        if (offset != devsize) {
 784                /* Argh */
 785                printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
 786                goto setup_err;
 787        }
 788
 789        __module_get(THIS_MODULE);
 790        register_reboot_notifier(&mtd->reboot_notifier);
 791        return mtd;
 792
 793 setup_err:
 794        kfree(mtd->eraseregions);
 795        kfree(mtd);
 796        kfree(cfi->cmdset_priv);
 797        return NULL;
 798}
 799
 800/*
 801 * Return true if the chip is ready.
 802 *
 803 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 804 * non-suspended sector) and is indicated by no toggle bits toggling.
 805 *
 806 * Note that anything more complicated than checking if no bits are toggling
 807 * (including checking DQ5 for an error status) is tricky to get working
 808 * correctly and is therefore not done  (particularly with interleaved chips
 809 * as each chip must be checked independently of the others).
 810 */
 811static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
 812                               unsigned long addr)
 813{
 814        struct cfi_private *cfi = map->fldrv_priv;
 815        map_word d, t;
 816
 817        if (cfi_use_status_reg(cfi)) {
 818                map_word ready = CMD(CFI_SR_DRB);
 819                /*
 820                 * For chips that support status register, check device
 821                 * ready bit
 822                 */
 823                cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
 824                                 cfi->device_type, NULL);
 825                d = map_read(map, addr);
 826
 827                return map_word_andequal(map, d, ready, ready);
 828        }
 829
 830        d = map_read(map, addr);
 831        t = map_read(map, addr);
 832
 833        return map_word_equal(map, d, t);
 834}
 835
 836/*
 837 * Return true if the chip is ready and has the correct value.
 838 *
 839 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 840 * non-suspended sector) and it is indicated by no bits toggling.
 841 *
 842 * Error are indicated by toggling bits or bits held with the wrong value,
 843 * or with bits toggling.
 844 *
 845 * Note that anything more complicated than checking if no bits are toggling
 846 * (including checking DQ5 for an error status) is tricky to get working
 847 * correctly and is therefore not done  (particularly with interleaved chips
 848 * as each chip must be checked independently of the others).
 849 *
 850 */
 851static int __xipram chip_good(struct map_info *map, struct flchip *chip,
 852                              unsigned long addr, map_word expected)
 853{
 854        struct cfi_private *cfi = map->fldrv_priv;
 855        map_word oldd, curd;
 856
 857        if (cfi_use_status_reg(cfi)) {
 858                map_word ready = CMD(CFI_SR_DRB);
 859
 860                /*
 861                 * For chips that support status register, check device
 862                 * ready bit
 863                 */
 864                cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
 865                                 cfi->device_type, NULL);
 866                curd = map_read(map, addr);
 867
 868                return map_word_andequal(map, curd, ready, ready);
 869        }
 870
 871        oldd = map_read(map, addr);
 872        curd = map_read(map, addr);
 873
 874        return  map_word_equal(map, oldd, curd) &&
 875                map_word_equal(map, curd, expected);
 876}
 877
 878static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
 879{
 880        DECLARE_WAITQUEUE(wait, current);
 881        struct cfi_private *cfi = map->fldrv_priv;
 882        unsigned long timeo;
 883        struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
 884
 885 resettime:
 886        timeo = jiffies + HZ;
 887 retry:
 888        switch (chip->state) {
 889
 890        case FL_STATUS:
 891                for (;;) {
 892                        if (chip_ready(map, chip, adr))
 893                                break;
 894
 895                        if (time_after(jiffies, timeo)) {
 896                                printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
 897                                return -EIO;
 898                        }
 899                        mutex_unlock(&chip->mutex);
 900                        cfi_udelay(1);
 901                        mutex_lock(&chip->mutex);
 902                        /* Someone else might have been playing with it. */
 903                        goto retry;
 904                }
 905
 906        case FL_READY:
 907        case FL_CFI_QUERY:
 908        case FL_JEDEC_QUERY:
 909                return 0;
 910
 911        case FL_ERASING:
 912                if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
 913                    !(mode == FL_READY || mode == FL_POINT ||
 914                    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
 915                        goto sleep;
 916
 917                /* Do not allow suspend iff read/write to EB address */
 918                if ((adr & chip->in_progress_block_mask) ==
 919                    chip->in_progress_block_addr)
 920                        goto sleep;
 921
 922                /* Erase suspend */
 923                /* It's harmless to issue the Erase-Suspend and Erase-Resume
 924                 * commands when the erase algorithm isn't in progress. */
 925                map_write(map, CMD(0xB0), chip->in_progress_block_addr);
 926                chip->oldstate = FL_ERASING;
 927                chip->state = FL_ERASE_SUSPENDING;
 928                chip->erase_suspended = 1;
 929                for (;;) {
 930                        if (chip_ready(map, chip, adr))
 931                                break;
 932
 933                        if (time_after(jiffies, timeo)) {
 934                                /* Should have suspended the erase by now.
 935                                 * Send an Erase-Resume command as either
 936                                 * there was an error (so leave the erase
 937                                 * routine to recover from it) or we trying to
 938                                 * use the erase-in-progress sector. */
 939                                put_chip(map, chip, adr);
 940                                printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
 941                                return -EIO;
 942                        }
 943
 944                        mutex_unlock(&chip->mutex);
 945                        cfi_udelay(1);
 946                        mutex_lock(&chip->mutex);
 947                        /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
 948                           So we can just loop here. */
 949                }
 950                chip->state = FL_READY;
 951                return 0;
 952
 953        case FL_XIP_WHILE_ERASING:
 954                if (mode != FL_READY && mode != FL_POINT &&
 955                    (!cfip || !(cfip->EraseSuspend&2)))
 956                        goto sleep;
 957                chip->oldstate = chip->state;
 958                chip->state = FL_READY;
 959                return 0;
 960
 961        case FL_SHUTDOWN:
 962                /* The machine is rebooting */
 963                return -EIO;
 964
 965        case FL_POINT:
 966                /* Only if there's no operation suspended... */
 967                if (mode == FL_READY && chip->oldstate == FL_READY)
 968                        return 0;
 969                /* fall through */
 970
 971        default:
 972        sleep:
 973                set_current_state(TASK_UNINTERRUPTIBLE);
 974                add_wait_queue(&chip->wq, &wait);
 975                mutex_unlock(&chip->mutex);
 976                schedule();
 977                remove_wait_queue(&chip->wq, &wait);
 978                mutex_lock(&chip->mutex);
 979                goto resettime;
 980        }
 981}
 982
 983
 984static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
 985{
 986        struct cfi_private *cfi = map->fldrv_priv;
 987
 988        switch(chip->oldstate) {
 989        case FL_ERASING:
 990                cfi_fixup_m29ew_erase_suspend(map,
 991                        chip->in_progress_block_addr);
 992                map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
 993                cfi_fixup_m29ew_delay_after_resume(cfi);
 994                chip->oldstate = FL_READY;
 995                chip->state = FL_ERASING;
 996                break;
 997
 998        case FL_XIP_WHILE_ERASING:
 999                chip->state = chip->oldstate;
1000                chip->oldstate = FL_READY;
1001                break;
1002
1003        case FL_READY:
1004        case FL_STATUS:
1005                break;
1006        default:
1007                printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1008        }
1009        wake_up(&chip->wq);
1010}
1011
1012#ifdef CONFIG_MTD_XIP
1013
1014/*
1015 * No interrupt what so ever can be serviced while the flash isn't in array
1016 * mode.  This is ensured by the xip_disable() and xip_enable() functions
1017 * enclosing any code path where the flash is known not to be in array mode.
1018 * And within a XIP disabled code path, only functions marked with __xipram
1019 * may be called and nothing else (it's a good thing to inspect generated
1020 * assembly to make sure inline functions were actually inlined and that gcc
1021 * didn't emit calls to its own support functions). Also configuring MTD CFI
1022 * support to a single buswidth and a single interleave is also recommended.
1023 */
1024
1025static void xip_disable(struct map_info *map, struct flchip *chip,
1026                        unsigned long adr)
1027{
1028        /* TODO: chips with no XIP use should ignore and return */
1029        (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1030        local_irq_disable();
1031}
1032
1033static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1034                                unsigned long adr)
1035{
1036        struct cfi_private *cfi = map->fldrv_priv;
1037
1038        if (chip->state != FL_POINT && chip->state != FL_READY) {
1039                map_write(map, CMD(0xf0), adr);
1040                chip->state = FL_READY;
1041        }
1042        (void) map_read(map, adr);
1043        xip_iprefetch();
1044        local_irq_enable();
1045}
1046
1047/*
1048 * When a delay is required for the flash operation to complete, the
1049 * xip_udelay() function is polling for both the given timeout and pending
1050 * (but still masked) hardware interrupts.  Whenever there is an interrupt
1051 * pending then the flash erase operation is suspended, array mode restored
1052 * and interrupts unmasked.  Task scheduling might also happen at that
1053 * point.  The CPU eventually returns from the interrupt or the call to
1054 * schedule() and the suspended flash operation is resumed for the remaining
1055 * of the delay period.
1056 *
1057 * Warning: this function _will_ fool interrupt latency tracing tools.
1058 */
1059
1060static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1061                                unsigned long adr, int usec)
1062{
1063        struct cfi_private *cfi = map->fldrv_priv;
1064        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1065        map_word status, OK = CMD(0x80);
1066        unsigned long suspended, start = xip_currtime();
1067        flstate_t oldstate;
1068
1069        do {
1070                cpu_relax();
1071                if (xip_irqpending() && extp &&
1072                    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1073                    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1074                        /*
1075                         * Let's suspend the erase operation when supported.
1076                         * Note that we currently don't try to suspend
1077                         * interleaved chips if there is already another
1078                         * operation suspended (imagine what happens
1079                         * when one chip was already done with the current
1080                         * operation while another chip suspended it, then
1081                         * we resume the whole thing at once).  Yes, it
1082                         * can happen!
1083                         */
1084                        map_write(map, CMD(0xb0), adr);
1085                        usec -= xip_elapsed_since(start);
1086                        suspended = xip_currtime();
1087                        do {
1088                                if (xip_elapsed_since(suspended) > 100000) {
1089                                        /*
1090                                         * The chip doesn't want to suspend
1091                                         * after waiting for 100 msecs.
1092                                         * This is a critical error but there
1093                                         * is not much we can do here.
1094                                         */
1095                                        return;
1096                                }
1097                                status = map_read(map, adr);
1098                        } while (!map_word_andequal(map, status, OK, OK));
1099
1100                        /* Suspend succeeded */
1101                        oldstate = chip->state;
1102                        if (!map_word_bitsset(map, status, CMD(0x40)))
1103                                break;
1104                        chip->state = FL_XIP_WHILE_ERASING;
1105                        chip->erase_suspended = 1;
1106                        map_write(map, CMD(0xf0), adr);
1107                        (void) map_read(map, adr);
1108                        xip_iprefetch();
1109                        local_irq_enable();
1110                        mutex_unlock(&chip->mutex);
1111                        xip_iprefetch();
1112                        cond_resched();
1113
1114                        /*
1115                         * We're back.  However someone else might have
1116                         * decided to go write to the chip if we are in
1117                         * a suspended erase state.  If so let's wait
1118                         * until it's done.
1119                         */
1120                        mutex_lock(&chip->mutex);
1121                        while (chip->state != FL_XIP_WHILE_ERASING) {
1122                                DECLARE_WAITQUEUE(wait, current);
1123                                set_current_state(TASK_UNINTERRUPTIBLE);
1124                                add_wait_queue(&chip->wq, &wait);
1125                                mutex_unlock(&chip->mutex);
1126                                schedule();
1127                                remove_wait_queue(&chip->wq, &wait);
1128                                mutex_lock(&chip->mutex);
1129                        }
1130                        /* Disallow XIP again */
1131                        local_irq_disable();
1132
1133                        /* Correct Erase Suspend Hangups for M29EW */
1134                        cfi_fixup_m29ew_erase_suspend(map, adr);
1135                        /* Resume the write or erase operation */
1136                        map_write(map, cfi->sector_erase_cmd, adr);
1137                        chip->state = oldstate;
1138                        start = xip_currtime();
1139                } else if (usec >= 1000000/HZ) {
1140                        /*
1141                         * Try to save on CPU power when waiting delay
1142                         * is at least a system timer tick period.
1143                         * No need to be extremely accurate here.
1144                         */
1145                        xip_cpu_idle();
1146                }
1147                status = map_read(map, adr);
1148        } while (!map_word_andequal(map, status, OK, OK)
1149                 && xip_elapsed_since(start) < usec);
1150}
1151
1152#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1153
1154/*
1155 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1156 * the flash is actively programming or erasing since we have to poll for
1157 * the operation to complete anyway.  We can't do that in a generic way with
1158 * a XIP setup so do it before the actual flash operation in this case
1159 * and stub it out from INVALIDATE_CACHE_UDELAY.
1160 */
1161#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1162        INVALIDATE_CACHED_RANGE(map, from, size)
1163
1164#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1165        UDELAY(map, chip, adr, usec)
1166
1167/*
1168 * Extra notes:
1169 *
1170 * Activating this XIP support changes the way the code works a bit.  For
1171 * example the code to suspend the current process when concurrent access
1172 * happens is never executed because xip_udelay() will always return with the
1173 * same chip state as it was entered with.  This is why there is no care for
1174 * the presence of add_wait_queue() or schedule() calls from within a couple
1175 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1176 * The queueing and scheduling are always happening within xip_udelay().
1177 *
1178 * Similarly, get_chip() and put_chip() just happen to always be executed
1179 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1180 * is in array mode, therefore never executing many cases therein and not
1181 * causing any problem with XIP.
1182 */
1183
1184#else
1185
1186#define xip_disable(map, chip, adr)
1187#define xip_enable(map, chip, adr)
1188#define XIP_INVAL_CACHED_RANGE(x...)
1189
1190#define UDELAY(map, chip, adr, usec)  \
1191do {  \
1192        mutex_unlock(&chip->mutex);  \
1193        cfi_udelay(usec);  \
1194        mutex_lock(&chip->mutex);  \
1195} while (0)
1196
1197#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1198do {  \
1199        mutex_unlock(&chip->mutex);  \
1200        INVALIDATE_CACHED_RANGE(map, adr, len);  \
1201        cfi_udelay(usec);  \
1202        mutex_lock(&chip->mutex);  \
1203} while (0)
1204
1205#endif
1206
1207static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1208{
1209        unsigned long cmd_addr;
1210        struct cfi_private *cfi = map->fldrv_priv;
1211        int ret;
1212
1213        adr += chip->start;
1214
1215        /* Ensure cmd read/writes are aligned. */
1216        cmd_addr = adr & ~(map_bankwidth(map)-1);
1217
1218        mutex_lock(&chip->mutex);
1219        ret = get_chip(map, chip, cmd_addr, FL_READY);
1220        if (ret) {
1221                mutex_unlock(&chip->mutex);
1222                return ret;
1223        }
1224
1225        if (chip->state != FL_POINT && chip->state != FL_READY) {
1226                map_write(map, CMD(0xf0), cmd_addr);
1227                chip->state = FL_READY;
1228        }
1229
1230        map_copy_from(map, buf, adr, len);
1231
1232        put_chip(map, chip, cmd_addr);
1233
1234        mutex_unlock(&chip->mutex);
1235        return 0;
1236}
1237
1238
1239static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1240{
1241        struct map_info *map = mtd->priv;
1242        struct cfi_private *cfi = map->fldrv_priv;
1243        unsigned long ofs;
1244        int chipnum;
1245        int ret = 0;
1246
1247        /* ofs: offset within the first chip that the first read should start */
1248        chipnum = (from >> cfi->chipshift);
1249        ofs = from - (chipnum <<  cfi->chipshift);
1250
1251        while (len) {
1252                unsigned long thislen;
1253
1254                if (chipnum >= cfi->numchips)
1255                        break;
1256
1257                if ((len + ofs -1) >> cfi->chipshift)
1258                        thislen = (1<<cfi->chipshift) - ofs;
1259                else
1260                        thislen = len;
1261
1262                ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1263                if (ret)
1264                        break;
1265
1266                *retlen += thislen;
1267                len -= thislen;
1268                buf += thislen;
1269
1270                ofs = 0;
1271                chipnum++;
1272        }
1273        return ret;
1274}
1275
1276typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1277                        loff_t adr, size_t len, u_char *buf, size_t grouplen);
1278
1279static inline void otp_enter(struct map_info *map, struct flchip *chip,
1280                             loff_t adr, size_t len)
1281{
1282        struct cfi_private *cfi = map->fldrv_priv;
1283
1284        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1285                         cfi->device_type, NULL);
1286        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1287                         cfi->device_type, NULL);
1288        cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1289                         cfi->device_type, NULL);
1290
1291        INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1292}
1293
1294static inline void otp_exit(struct map_info *map, struct flchip *chip,
1295                            loff_t adr, size_t len)
1296{
1297        struct cfi_private *cfi = map->fldrv_priv;
1298
1299        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1300                         cfi->device_type, NULL);
1301        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1302                         cfi->device_type, NULL);
1303        cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1304                         cfi->device_type, NULL);
1305        cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1306                         cfi->device_type, NULL);
1307
1308        INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1309}
1310
1311static inline int do_read_secsi_onechip(struct map_info *map,
1312                                        struct flchip *chip, loff_t adr,
1313                                        size_t len, u_char *buf,
1314                                        size_t grouplen)
1315{
1316        DECLARE_WAITQUEUE(wait, current);
1317
1318 retry:
1319        mutex_lock(&chip->mutex);
1320
1321        if (chip->state != FL_READY){
1322                set_current_state(TASK_UNINTERRUPTIBLE);
1323                add_wait_queue(&chip->wq, &wait);
1324
1325                mutex_unlock(&chip->mutex);
1326
1327                schedule();
1328                remove_wait_queue(&chip->wq, &wait);
1329
1330                goto retry;
1331        }
1332
1333        adr += chip->start;
1334
1335        chip->state = FL_READY;
1336
1337        otp_enter(map, chip, adr, len);
1338        map_copy_from(map, buf, adr, len);
1339        otp_exit(map, chip, adr, len);
1340
1341        wake_up(&chip->wq);
1342        mutex_unlock(&chip->mutex);
1343
1344        return 0;
1345}
1346
1347static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1348{
1349        struct map_info *map = mtd->priv;
1350        struct cfi_private *cfi = map->fldrv_priv;
1351        unsigned long ofs;
1352        int chipnum;
1353        int ret = 0;
1354
1355        /* ofs: offset within the first chip that the first read should start */
1356        /* 8 secsi bytes per chip */
1357        chipnum=from>>3;
1358        ofs=from & 7;
1359
1360        while (len) {
1361                unsigned long thislen;
1362
1363                if (chipnum >= cfi->numchips)
1364                        break;
1365
1366                if ((len + ofs -1) >> 3)
1367                        thislen = (1<<3) - ofs;
1368                else
1369                        thislen = len;
1370
1371                ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1372                                            thislen, buf, 0);
1373                if (ret)
1374                        break;
1375
1376                *retlen += thislen;
1377                len -= thislen;
1378                buf += thislen;
1379
1380                ofs = 0;
1381                chipnum++;
1382        }
1383        return ret;
1384}
1385
1386static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1387                                     unsigned long adr, map_word datum,
1388                                     int mode);
1389
1390static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1391                        size_t len, u_char *buf, size_t grouplen)
1392{
1393        int ret;
1394        while (len) {
1395                unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1396                int gap = adr - bus_ofs;
1397                int n = min_t(int, len, map_bankwidth(map) - gap);
1398                map_word datum = map_word_ff(map);
1399
1400                if (n != map_bankwidth(map)) {
1401                        /* partial write of a word, load old contents */
1402                        otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1403                        datum = map_read(map, bus_ofs);
1404                        otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1405                }
1406
1407                datum = map_word_load_partial(map, datum, buf, gap, n);
1408                ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1409                if (ret)
1410                        return ret;
1411
1412                adr += n;
1413                buf += n;
1414                len -= n;
1415        }
1416
1417        return 0;
1418}
1419
1420static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1421                       size_t len, u_char *buf, size_t grouplen)
1422{
1423        struct cfi_private *cfi = map->fldrv_priv;
1424        uint8_t lockreg;
1425        unsigned long timeo;
1426        int ret;
1427
1428        /* make sure area matches group boundaries */
1429        if ((adr != 0) || (len != grouplen))
1430                return -EINVAL;
1431
1432        mutex_lock(&chip->mutex);
1433        ret = get_chip(map, chip, chip->start, FL_LOCKING);
1434        if (ret) {
1435                mutex_unlock(&chip->mutex);
1436                return ret;
1437        }
1438        chip->state = FL_LOCKING;
1439
1440        /* Enter lock register command */
1441        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1442                         cfi->device_type, NULL);
1443        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1444                         cfi->device_type, NULL);
1445        cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1446                         cfi->device_type, NULL);
1447
1448        /* read lock register */
1449        lockreg = cfi_read_query(map, 0);
1450
1451        /* set bit 0 to protect extended memory block */
1452        lockreg &= ~0x01;
1453
1454        /* set bit 0 to protect extended memory block */
1455        /* write lock register */
1456        map_write(map, CMD(0xA0), chip->start);
1457        map_write(map, CMD(lockreg), chip->start);
1458
1459        /* wait for chip to become ready */
1460        timeo = jiffies + msecs_to_jiffies(2);
1461        for (;;) {
1462                if (chip_ready(map, chip, adr))
1463                        break;
1464
1465                if (time_after(jiffies, timeo)) {
1466                        pr_err("Waiting for chip to be ready timed out.\n");
1467                        ret = -EIO;
1468                        break;
1469                }
1470                UDELAY(map, chip, 0, 1);
1471        }
1472
1473        /* exit protection commands */
1474        map_write(map, CMD(0x90), chip->start);
1475        map_write(map, CMD(0x00), chip->start);
1476
1477        chip->state = FL_READY;
1478        put_chip(map, chip, chip->start);
1479        mutex_unlock(&chip->mutex);
1480
1481        return ret;
1482}
1483
1484static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1485                               size_t *retlen, u_char *buf,
1486                               otp_op_t action, int user_regs)
1487{
1488        struct map_info *map = mtd->priv;
1489        struct cfi_private *cfi = map->fldrv_priv;
1490        int ofs_factor = cfi->interleave * cfi->device_type;
1491        unsigned long base;
1492        int chipnum;
1493        struct flchip *chip;
1494        uint8_t otp, lockreg;
1495        int ret;
1496
1497        size_t user_size, factory_size, otpsize;
1498        loff_t user_offset, factory_offset, otpoffset;
1499        int user_locked = 0, otplocked;
1500
1501        *retlen = 0;
1502
1503        for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1504                chip = &cfi->chips[chipnum];
1505                factory_size = 0;
1506                user_size = 0;
1507
1508                /* Micron M29EW family */
1509                if (is_m29ew(cfi)) {
1510                        base = chip->start;
1511
1512                        /* check whether secsi area is factory locked
1513                           or user lockable */
1514                        mutex_lock(&chip->mutex);
1515                        ret = get_chip(map, chip, base, FL_CFI_QUERY);
1516                        if (ret) {
1517                                mutex_unlock(&chip->mutex);
1518                                return ret;
1519                        }
1520                        cfi_qry_mode_on(base, map, cfi);
1521                        otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1522                        cfi_qry_mode_off(base, map, cfi);
1523                        put_chip(map, chip, base);
1524                        mutex_unlock(&chip->mutex);
1525
1526                        if (otp & 0x80) {
1527                                /* factory locked */
1528                                factory_offset = 0;
1529                                factory_size = 0x100;
1530                        } else {
1531                                /* customer lockable */
1532                                user_offset = 0;
1533                                user_size = 0x100;
1534
1535                                mutex_lock(&chip->mutex);
1536                                ret = get_chip(map, chip, base, FL_LOCKING);
1537                                if (ret) {
1538                                        mutex_unlock(&chip->mutex);
1539                                        return ret;
1540                                }
1541
1542                                /* Enter lock register command */
1543                                cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1544                                                 chip->start, map, cfi,
1545                                                 cfi->device_type, NULL);
1546                                cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1547                                                 chip->start, map, cfi,
1548                                                 cfi->device_type, NULL);
1549                                cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1550                                                 chip->start, map, cfi,
1551                                                 cfi->device_type, NULL);
1552                                /* read lock register */
1553                                lockreg = cfi_read_query(map, 0);
1554                                /* exit protection commands */
1555                                map_write(map, CMD(0x90), chip->start);
1556                                map_write(map, CMD(0x00), chip->start);
1557                                put_chip(map, chip, chip->start);
1558                                mutex_unlock(&chip->mutex);
1559
1560                                user_locked = ((lockreg & 0x01) == 0x00);
1561                        }
1562                }
1563
1564                otpsize = user_regs ? user_size : factory_size;
1565                if (!otpsize)
1566                        continue;
1567                otpoffset = user_regs ? user_offset : factory_offset;
1568                otplocked = user_regs ? user_locked : 1;
1569
1570                if (!action) {
1571                        /* return otpinfo */
1572                        struct otp_info *otpinfo;
1573                        len -= sizeof(*otpinfo);
1574                        if (len <= 0)
1575                                return -ENOSPC;
1576                        otpinfo = (struct otp_info *)buf;
1577                        otpinfo->start = from;
1578                        otpinfo->length = otpsize;
1579                        otpinfo->locked = otplocked;
1580                        buf += sizeof(*otpinfo);
1581                        *retlen += sizeof(*otpinfo);
1582                        from += otpsize;
1583                } else if ((from < otpsize) && (len > 0)) {
1584                        size_t size;
1585                        size = (len < otpsize - from) ? len : otpsize - from;
1586                        ret = action(map, chip, otpoffset + from, size, buf,
1587                                     otpsize);
1588                        if (ret < 0)
1589                                return ret;
1590
1591                        buf += size;
1592                        len -= size;
1593                        *retlen += size;
1594                        from = 0;
1595                } else {
1596                        from -= otpsize;
1597                }
1598        }
1599        return 0;
1600}
1601
1602static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1603                                         size_t *retlen, struct otp_info *buf)
1604{
1605        return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1606                                   NULL, 0);
1607}
1608
1609static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1610                                         size_t *retlen, struct otp_info *buf)
1611{
1612        return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1613                                   NULL, 1);
1614}
1615
1616static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1617                                         size_t len, size_t *retlen,
1618                                         u_char *buf)
1619{
1620        return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1621                                   buf, do_read_secsi_onechip, 0);
1622}
1623
1624static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1625                                         size_t len, size_t *retlen,
1626                                         u_char *buf)
1627{
1628        return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1629                                   buf, do_read_secsi_onechip, 1);
1630}
1631
1632static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1633                                          size_t len, size_t *retlen,
1634                                          u_char *buf)
1635{
1636        return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1637                                   do_otp_write, 1);
1638}
1639
1640static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1641                                         size_t len)
1642{
1643        size_t retlen;
1644        return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1645                                   do_otp_lock, 1);
1646}
1647
1648static int __xipram do_write_oneword_once(struct map_info *map,
1649                                          struct flchip *chip,
1650                                          unsigned long adr, map_word datum,
1651                                          int mode, struct cfi_private *cfi)
1652{
1653        unsigned long timeo = jiffies + HZ;
1654        /*
1655         * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1656         * have a max write time of a few hundreds usec). However, we should
1657         * use the maximum timeout value given by the chip at probe time
1658         * instead.  Unfortunately, struct flchip does have a field for
1659         * maximum timeout, only for typical which can be far too short
1660         * depending of the conditions.  The ' + 1' is to avoid having a
1661         * timeout of 0 jiffies if HZ is smaller than 1000.
1662         */
1663        unsigned long uWriteTimeout = (HZ / 1000) + 1;
1664        int ret = 0;
1665
1666        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1667        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1668        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1669        map_write(map, datum, adr);
1670        chip->state = mode;
1671
1672        INVALIDATE_CACHE_UDELAY(map, chip,
1673                                adr, map_bankwidth(map),
1674                                chip->word_write_time);
1675
1676        /* See comment above for timeout value. */
1677        timeo = jiffies + uWriteTimeout;
1678        for (;;) {
1679                if (chip->state != mode) {
1680                        /* Someone's suspended the write. Sleep */
1681                        DECLARE_WAITQUEUE(wait, current);
1682
1683                        set_current_state(TASK_UNINTERRUPTIBLE);
1684                        add_wait_queue(&chip->wq, &wait);
1685                        mutex_unlock(&chip->mutex);
1686                        schedule();
1687                        remove_wait_queue(&chip->wq, &wait);
1688                        timeo = jiffies + (HZ / 2); /* FIXME */
1689                        mutex_lock(&chip->mutex);
1690                        continue;
1691                }
1692
1693                /*
1694                 * We check "time_after" and "!chip_good" before checking
1695                 * "chip_good" to avoid the failure due to scheduling.
1696                 */
1697                if (time_after(jiffies, timeo) &&
1698                    !chip_good(map, chip, adr, datum)) {
1699                        xip_enable(map, chip, adr);
1700                        printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1701                        xip_disable(map, chip, adr);
1702                        ret = -EIO;
1703                        break;
1704                }
1705
1706                if (chip_good(map, chip, adr, datum)) {
1707                        if (cfi_check_err_status(map, chip, adr))
1708                                ret = -EIO;
1709                        break;
1710                }
1711
1712                /* Latency issues. Drop the lock, wait a while and retry */
1713                UDELAY(map, chip, adr, 1);
1714        }
1715
1716        return ret;
1717}
1718
1719static int __xipram do_write_oneword_start(struct map_info *map,
1720                                           struct flchip *chip,
1721                                           unsigned long adr, int mode)
1722{
1723        int ret;
1724
1725        mutex_lock(&chip->mutex);
1726
1727        ret = get_chip(map, chip, adr, mode);
1728        if (ret) {
1729                mutex_unlock(&chip->mutex);
1730                return ret;
1731        }
1732
1733        if (mode == FL_OTP_WRITE)
1734                otp_enter(map, chip, adr, map_bankwidth(map));
1735
1736        return ret;
1737}
1738
1739static void __xipram do_write_oneword_done(struct map_info *map,
1740                                           struct flchip *chip,
1741                                           unsigned long adr, int mode)
1742{
1743        if (mode == FL_OTP_WRITE)
1744                otp_exit(map, chip, adr, map_bankwidth(map));
1745
1746        chip->state = FL_READY;
1747        DISABLE_VPP(map);
1748        put_chip(map, chip, adr);
1749
1750        mutex_unlock(&chip->mutex);
1751}
1752
1753static int __xipram do_write_oneword_retry(struct map_info *map,
1754                                           struct flchip *chip,
1755                                           unsigned long adr, map_word datum,
1756                                           int mode)
1757{
1758        struct cfi_private *cfi = map->fldrv_priv;
1759        int ret = 0;
1760        map_word oldd;
1761        int retry_cnt = 0;
1762
1763        /*
1764         * Check for a NOP for the case when the datum to write is already
1765         * present - it saves time and works around buggy chips that corrupt
1766         * data at other locations when 0xff is written to a location that
1767         * already contains 0xff.
1768         */
1769        oldd = map_read(map, adr);
1770        if (map_word_equal(map, oldd, datum)) {
1771                pr_debug("MTD %s(): NOP\n", __func__);
1772                return ret;
1773        }
1774
1775        XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1776        ENABLE_VPP(map);
1777        xip_disable(map, chip, adr);
1778
1779 retry:
1780        ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1781        if (ret) {
1782                /* reset on all failures. */
1783                map_write(map, CMD(0xF0), chip->start);
1784                /* FIXME - should have reset delay before continuing */
1785
1786                if (++retry_cnt <= MAX_RETRIES) {
1787                        ret = 0;
1788                        goto retry;
1789                }
1790        }
1791        xip_enable(map, chip, adr);
1792
1793        return ret;
1794}
1795
1796static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1797                                     unsigned long adr, map_word datum,
1798                                     int mode)
1799{
1800        int ret;
1801
1802        adr += chip->start;
1803
1804        pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1805                 datum.x[0]);
1806
1807        ret = do_write_oneword_start(map, chip, adr, mode);
1808        if (ret)
1809                return ret;
1810
1811        ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1812
1813        do_write_oneword_done(map, chip, adr, mode);
1814
1815        return ret;
1816}
1817
1818
1819static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1820                                  size_t *retlen, const u_char *buf)
1821{
1822        struct map_info *map = mtd->priv;
1823        struct cfi_private *cfi = map->fldrv_priv;
1824        int ret;
1825        int chipnum;
1826        unsigned long ofs, chipstart;
1827        DECLARE_WAITQUEUE(wait, current);
1828
1829        chipnum = to >> cfi->chipshift;
1830        ofs = to  - (chipnum << cfi->chipshift);
1831        chipstart = cfi->chips[chipnum].start;
1832
1833        /* If it's not bus-aligned, do the first byte write */
1834        if (ofs & (map_bankwidth(map)-1)) {
1835                unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1836                int i = ofs - bus_ofs;
1837                int n = 0;
1838                map_word tmp_buf;
1839
1840 retry:
1841                mutex_lock(&cfi->chips[chipnum].mutex);
1842
1843                if (cfi->chips[chipnum].state != FL_READY) {
1844                        set_current_state(TASK_UNINTERRUPTIBLE);
1845                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1846
1847                        mutex_unlock(&cfi->chips[chipnum].mutex);
1848
1849                        schedule();
1850                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1851                        goto retry;
1852                }
1853
1854                /* Load 'tmp_buf' with old contents of flash */
1855                tmp_buf = map_read(map, bus_ofs+chipstart);
1856
1857                mutex_unlock(&cfi->chips[chipnum].mutex);
1858
1859                /* Number of bytes to copy from buffer */
1860                n = min_t(int, len, map_bankwidth(map)-i);
1861
1862                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1863
1864                ret = do_write_oneword(map, &cfi->chips[chipnum],
1865                                       bus_ofs, tmp_buf, FL_WRITING);
1866                if (ret)
1867                        return ret;
1868
1869                ofs += n;
1870                buf += n;
1871                (*retlen) += n;
1872                len -= n;
1873
1874                if (ofs >> cfi->chipshift) {
1875                        chipnum ++;
1876                        ofs = 0;
1877                        if (chipnum == cfi->numchips)
1878                                return 0;
1879                }
1880        }
1881
1882        /* We are now aligned, write as much as possible */
1883        while(len >= map_bankwidth(map)) {
1884                map_word datum;
1885
1886                datum = map_word_load(map, buf);
1887
1888                ret = do_write_oneword(map, &cfi->chips[chipnum],
1889                                       ofs, datum, FL_WRITING);
1890                if (ret)
1891                        return ret;
1892
1893                ofs += map_bankwidth(map);
1894                buf += map_bankwidth(map);
1895                (*retlen) += map_bankwidth(map);
1896                len -= map_bankwidth(map);
1897
1898                if (ofs >> cfi->chipshift) {
1899                        chipnum ++;
1900                        ofs = 0;
1901                        if (chipnum == cfi->numchips)
1902                                return 0;
1903                        chipstart = cfi->chips[chipnum].start;
1904                }
1905        }
1906
1907        /* Write the trailing bytes if any */
1908        if (len & (map_bankwidth(map)-1)) {
1909                map_word tmp_buf;
1910
1911 retry1:
1912                mutex_lock(&cfi->chips[chipnum].mutex);
1913
1914                if (cfi->chips[chipnum].state != FL_READY) {
1915                        set_current_state(TASK_UNINTERRUPTIBLE);
1916                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1917
1918                        mutex_unlock(&cfi->chips[chipnum].mutex);
1919
1920                        schedule();
1921                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1922                        goto retry1;
1923                }
1924
1925                tmp_buf = map_read(map, ofs + chipstart);
1926
1927                mutex_unlock(&cfi->chips[chipnum].mutex);
1928
1929                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1930
1931                ret = do_write_oneword(map, &cfi->chips[chipnum],
1932                                       ofs, tmp_buf, FL_WRITING);
1933                if (ret)
1934                        return ret;
1935
1936                (*retlen) += len;
1937        }
1938
1939        return 0;
1940}
1941
1942#if !FORCE_WORD_WRITE
1943static int __xipram do_write_buffer_wait(struct map_info *map,
1944                                         struct flchip *chip, unsigned long adr,
1945                                         map_word datum)
1946{
1947        unsigned long timeo;
1948        unsigned long u_write_timeout;
1949        int ret = 0;
1950
1951        /*
1952         * Timeout is calculated according to CFI data, if available.
1953         * See more comments in cfi_cmdset_0002().
1954         */
1955        u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1956        timeo = jiffies + u_write_timeout;
1957
1958        for (;;) {
1959                if (chip->state != FL_WRITING) {
1960                        /* Someone's suspended the write. Sleep */
1961                        DECLARE_WAITQUEUE(wait, current);
1962
1963                        set_current_state(TASK_UNINTERRUPTIBLE);
1964                        add_wait_queue(&chip->wq, &wait);
1965                        mutex_unlock(&chip->mutex);
1966                        schedule();
1967                        remove_wait_queue(&chip->wq, &wait);
1968                        timeo = jiffies + (HZ / 2); /* FIXME */
1969                        mutex_lock(&chip->mutex);
1970                        continue;
1971                }
1972
1973                /*
1974                 * We check "time_after" and "!chip_good" before checking
1975                 * "chip_good" to avoid the failure due to scheduling.
1976                 */
1977                if (time_after(jiffies, timeo) &&
1978                    !chip_good(map, chip, adr, datum)) {
1979                        pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1980                               __func__, adr);
1981                        ret = -EIO;
1982                        break;
1983                }
1984
1985                if (chip_good(map, chip, adr, datum)) {
1986                        if (cfi_check_err_status(map, chip, adr))
1987                                ret = -EIO;
1988                        break;
1989                }
1990
1991                /* Latency issues. Drop the lock, wait a while and retry */
1992                UDELAY(map, chip, adr, 1);
1993        }
1994
1995        return ret;
1996}
1997
1998static void __xipram do_write_buffer_reset(struct map_info *map,
1999                                           struct flchip *chip,
2000                                           struct cfi_private *cfi)
2001{
2002        /*
2003         * Recovery from write-buffer programming failures requires
2004         * the write-to-buffer-reset sequence.  Since the last part
2005         * of the sequence also works as a normal reset, we can run
2006         * the same commands regardless of why we are here.
2007         * See e.g.
2008         * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2009         */
2010        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2011                         cfi->device_type, NULL);
2012        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2013                         cfi->device_type, NULL);
2014        cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2015                         cfi->device_type, NULL);
2016
2017        /* FIXME - should have reset delay before continuing */
2018}
2019
2020/*
2021 * FIXME: interleaved mode not tested, and probably not supported!
2022 */
2023static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2024                                    unsigned long adr, const u_char *buf,
2025                                    int len)
2026{
2027        struct cfi_private *cfi = map->fldrv_priv;
2028        int ret;
2029        unsigned long cmd_adr;
2030        int z, words;
2031        map_word datum;
2032
2033        adr += chip->start;
2034        cmd_adr = adr;
2035
2036        mutex_lock(&chip->mutex);
2037        ret = get_chip(map, chip, adr, FL_WRITING);
2038        if (ret) {
2039                mutex_unlock(&chip->mutex);
2040                return ret;
2041        }
2042
2043        datum = map_word_load(map, buf);
2044
2045        pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2046                 __func__, adr, datum.x[0]);
2047
2048        XIP_INVAL_CACHED_RANGE(map, adr, len);
2049        ENABLE_VPP(map);
2050        xip_disable(map, chip, cmd_adr);
2051
2052        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2053        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2054
2055        /* Write Buffer Load */
2056        map_write(map, CMD(0x25), cmd_adr);
2057
2058        chip->state = FL_WRITING_TO_BUFFER;
2059
2060        /* Write length of data to come */
2061        words = len / map_bankwidth(map);
2062        map_write(map, CMD(words - 1), cmd_adr);
2063        /* Write data */
2064        z = 0;
2065        while(z < words * map_bankwidth(map)) {
2066                datum = map_word_load(map, buf);
2067                map_write(map, datum, adr + z);
2068
2069                z += map_bankwidth(map);
2070                buf += map_bankwidth(map);
2071        }
2072        z -= map_bankwidth(map);
2073
2074        adr += z;
2075
2076        /* Write Buffer Program Confirm: GO GO GO */
2077        map_write(map, CMD(0x29), cmd_adr);
2078        chip->state = FL_WRITING;
2079
2080        INVALIDATE_CACHE_UDELAY(map, chip,
2081                                adr, map_bankwidth(map),
2082                                chip->word_write_time);
2083
2084        ret = do_write_buffer_wait(map, chip, adr, datum);
2085        if (ret)
2086                do_write_buffer_reset(map, chip, cfi);
2087
2088        xip_enable(map, chip, adr);
2089
2090        chip->state = FL_READY;
2091        DISABLE_VPP(map);
2092        put_chip(map, chip, adr);
2093        mutex_unlock(&chip->mutex);
2094
2095        return ret;
2096}
2097
2098
2099static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2100                                    size_t *retlen, const u_char *buf)
2101{
2102        struct map_info *map = mtd->priv;
2103        struct cfi_private *cfi = map->fldrv_priv;
2104        int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2105        int ret;
2106        int chipnum;
2107        unsigned long ofs;
2108
2109        chipnum = to >> cfi->chipshift;
2110        ofs = to  - (chipnum << cfi->chipshift);
2111
2112        /* If it's not bus-aligned, do the first word write */
2113        if (ofs & (map_bankwidth(map)-1)) {
2114                size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2115                if (local_len > len)
2116                        local_len = len;
2117                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2118                                             local_len, retlen, buf);
2119                if (ret)
2120                        return ret;
2121                ofs += local_len;
2122                buf += local_len;
2123                len -= local_len;
2124
2125                if (ofs >> cfi->chipshift) {
2126                        chipnum ++;
2127                        ofs = 0;
2128                        if (chipnum == cfi->numchips)
2129                                return 0;
2130                }
2131        }
2132
2133        /* Write buffer is worth it only if more than one word to write... */
2134        while (len >= map_bankwidth(map) * 2) {
2135                /* We must not cross write block boundaries */
2136                int size = wbufsize - (ofs & (wbufsize-1));
2137
2138                if (size > len)
2139                        size = len;
2140                if (size % map_bankwidth(map))
2141                        size -= size % map_bankwidth(map);
2142
2143                ret = do_write_buffer(map, &cfi->chips[chipnum],
2144                                      ofs, buf, size);
2145                if (ret)
2146                        return ret;
2147
2148                ofs += size;
2149                buf += size;
2150                (*retlen) += size;
2151                len -= size;
2152
2153                if (ofs >> cfi->chipshift) {
2154                        chipnum ++;
2155                        ofs = 0;
2156                        if (chipnum == cfi->numchips)
2157                                return 0;
2158                }
2159        }
2160
2161        if (len) {
2162                size_t retlen_dregs = 0;
2163
2164                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2165                                             len, &retlen_dregs, buf);
2166
2167                *retlen += retlen_dregs;
2168                return ret;
2169        }
2170
2171        return 0;
2172}
2173#endif /* !FORCE_WORD_WRITE */
2174
2175/*
2176 * Wait for the flash chip to become ready to write data
2177 *
2178 * This is only called during the panic_write() path. When panic_write()
2179 * is called, the kernel is in the process of a panic, and will soon be
2180 * dead. Therefore we don't take any locks, and attempt to get access
2181 * to the chip as soon as possible.
2182 */
2183static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2184                                 unsigned long adr)
2185{
2186        struct cfi_private *cfi = map->fldrv_priv;
2187        int retries = 10;
2188        int i;
2189
2190        /*
2191         * If the driver thinks the chip is idle, and no toggle bits
2192         * are changing, then the chip is actually idle for sure.
2193         */
2194        if (chip->state == FL_READY && chip_ready(map, chip, adr))
2195                return 0;
2196
2197        /*
2198         * Try several times to reset the chip and then wait for it
2199         * to become idle. The upper limit of a few milliseconds of
2200         * delay isn't a big problem: the kernel is dying anyway. It
2201         * is more important to save the messages.
2202         */
2203        while (retries > 0) {
2204                const unsigned long timeo = (HZ / 1000) + 1;
2205
2206                /* send the reset command */
2207                map_write(map, CMD(0xF0), chip->start);
2208
2209                /* wait for the chip to become ready */
2210                for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2211                        if (chip_ready(map, chip, adr))
2212                                return 0;
2213
2214                        udelay(1);
2215                }
2216
2217                retries--;
2218        }
2219
2220        /* the chip never became ready */
2221        return -EBUSY;
2222}
2223
2224/*
2225 * Write out one word of data to a single flash chip during a kernel panic
2226 *
2227 * This is only called during the panic_write() path. When panic_write()
2228 * is called, the kernel is in the process of a panic, and will soon be
2229 * dead. Therefore we don't take any locks, and attempt to get access
2230 * to the chip as soon as possible.
2231 *
2232 * The implementation of this routine is intentionally similar to
2233 * do_write_oneword(), in order to ease code maintenance.
2234 */
2235static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2236                                  unsigned long adr, map_word datum)
2237{
2238        const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2239        struct cfi_private *cfi = map->fldrv_priv;
2240        int retry_cnt = 0;
2241        map_word oldd;
2242        int ret;
2243        int i;
2244
2245        adr += chip->start;
2246
2247        ret = cfi_amdstd_panic_wait(map, chip, adr);
2248        if (ret)
2249                return ret;
2250
2251        pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2252                        __func__, adr, datum.x[0]);
2253
2254        /*
2255         * Check for a NOP for the case when the datum to write is already
2256         * present - it saves time and works around buggy chips that corrupt
2257         * data at other locations when 0xff is written to a location that
2258         * already contains 0xff.
2259         */
2260        oldd = map_read(map, adr);
2261        if (map_word_equal(map, oldd, datum)) {
2262                pr_debug("MTD %s(): NOP\n", __func__);
2263                goto op_done;
2264        }
2265
2266        ENABLE_VPP(map);
2267
2268retry:
2269        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2270        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2271        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2272        map_write(map, datum, adr);
2273
2274        for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2275                if (chip_ready(map, chip, adr))
2276                        break;
2277
2278                udelay(1);
2279        }
2280
2281        if (!chip_good(map, chip, adr, datum) ||
2282            cfi_check_err_status(map, chip, adr)) {
2283                /* reset on all failures. */
2284                map_write(map, CMD(0xF0), chip->start);
2285                /* FIXME - should have reset delay before continuing */
2286
2287                if (++retry_cnt <= MAX_RETRIES)
2288                        goto retry;
2289
2290                ret = -EIO;
2291        }
2292
2293op_done:
2294        DISABLE_VPP(map);
2295        return ret;
2296}
2297
2298/*
2299 * Write out some data during a kernel panic
2300 *
2301 * This is used by the mtdoops driver to save the dying messages from a
2302 * kernel which has panic'd.
2303 *
2304 * This routine ignores all of the locking used throughout the rest of the
2305 * driver, in order to ensure that the data gets written out no matter what
2306 * state this driver (and the flash chip itself) was in when the kernel crashed.
2307 *
2308 * The implementation of this routine is intentionally similar to
2309 * cfi_amdstd_write_words(), in order to ease code maintenance.
2310 */
2311static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2312                                  size_t *retlen, const u_char *buf)
2313{
2314        struct map_info *map = mtd->priv;
2315        struct cfi_private *cfi = map->fldrv_priv;
2316        unsigned long ofs, chipstart;
2317        int ret;
2318        int chipnum;
2319
2320        chipnum = to >> cfi->chipshift;
2321        ofs = to - (chipnum << cfi->chipshift);
2322        chipstart = cfi->chips[chipnum].start;
2323
2324        /* If it's not bus aligned, do the first byte write */
2325        if (ofs & (map_bankwidth(map) - 1)) {
2326                unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2327                int i = ofs - bus_ofs;
2328                int n = 0;
2329                map_word tmp_buf;
2330
2331                ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2332                if (ret)
2333                        return ret;
2334
2335                /* Load 'tmp_buf' with old contents of flash */
2336                tmp_buf = map_read(map, bus_ofs + chipstart);
2337
2338                /* Number of bytes to copy from buffer */
2339                n = min_t(int, len, map_bankwidth(map) - i);
2340
2341                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2342
2343                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2344                                             bus_ofs, tmp_buf);
2345                if (ret)
2346                        return ret;
2347
2348                ofs += n;
2349                buf += n;
2350                (*retlen) += n;
2351                len -= n;
2352
2353                if (ofs >> cfi->chipshift) {
2354                        chipnum++;
2355                        ofs = 0;
2356                        if (chipnum == cfi->numchips)
2357                                return 0;
2358                }
2359        }
2360
2361        /* We are now aligned, write as much as possible */
2362        while (len >= map_bankwidth(map)) {
2363                map_word datum;
2364
2365                datum = map_word_load(map, buf);
2366
2367                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2368                                             ofs, datum);
2369                if (ret)
2370                        return ret;
2371
2372                ofs += map_bankwidth(map);
2373                buf += map_bankwidth(map);
2374                (*retlen) += map_bankwidth(map);
2375                len -= map_bankwidth(map);
2376
2377                if (ofs >> cfi->chipshift) {
2378                        chipnum++;
2379                        ofs = 0;
2380                        if (chipnum == cfi->numchips)
2381                                return 0;
2382
2383                        chipstart = cfi->chips[chipnum].start;
2384                }
2385        }
2386
2387        /* Write the trailing bytes if any */
2388        if (len & (map_bankwidth(map) - 1)) {
2389                map_word tmp_buf;
2390
2391                ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2392                if (ret)
2393                        return ret;
2394
2395                tmp_buf = map_read(map, ofs + chipstart);
2396
2397                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2398
2399                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2400                                             ofs, tmp_buf);
2401                if (ret)
2402                        return ret;
2403
2404                (*retlen) += len;
2405        }
2406
2407        return 0;
2408}
2409
2410
2411/*
2412 * Handle devices with one erase region, that only implement
2413 * the chip erase command.
2414 */
2415static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2416{
2417        struct cfi_private *cfi = map->fldrv_priv;
2418        unsigned long timeo = jiffies + HZ;
2419        unsigned long int adr;
2420        DECLARE_WAITQUEUE(wait, current);
2421        int ret;
2422        int retry_cnt = 0;
2423
2424        adr = cfi->addr_unlock1;
2425
2426        mutex_lock(&chip->mutex);
2427        ret = get_chip(map, chip, adr, FL_ERASING);
2428        if (ret) {
2429                mutex_unlock(&chip->mutex);
2430                return ret;
2431        }
2432
2433        pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2434               __func__, chip->start);
2435
2436        XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2437        ENABLE_VPP(map);
2438        xip_disable(map, chip, adr);
2439
2440 retry:
2441        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2442        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2443        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2444        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2445        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2446        cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2447
2448        chip->state = FL_ERASING;
2449        chip->erase_suspended = 0;
2450        chip->in_progress_block_addr = adr;
2451        chip->in_progress_block_mask = ~(map->size - 1);
2452
2453        INVALIDATE_CACHE_UDELAY(map, chip,
2454                                adr, map->size,
2455                                chip->erase_time*500);
2456
2457        timeo = jiffies + (HZ*20);
2458
2459        for (;;) {
2460                if (chip->state != FL_ERASING) {
2461                        /* Someone's suspended the erase. Sleep */
2462                        set_current_state(TASK_UNINTERRUPTIBLE);
2463                        add_wait_queue(&chip->wq, &wait);
2464                        mutex_unlock(&chip->mutex);
2465                        schedule();
2466                        remove_wait_queue(&chip->wq, &wait);
2467                        mutex_lock(&chip->mutex);
2468                        continue;
2469                }
2470                if (chip->erase_suspended) {
2471                        /* This erase was suspended and resumed.
2472                           Adjust the timeout */
2473                        timeo = jiffies + (HZ*20); /* FIXME */
2474                        chip->erase_suspended = 0;
2475                }
2476
2477                if (chip_good(map, chip, adr, map_word_ff(map))) {
2478                        if (cfi_check_err_status(map, chip, adr))
2479                                ret = -EIO;
2480                        break;
2481                }
2482
2483                if (time_after(jiffies, timeo)) {
2484                        printk(KERN_WARNING "MTD %s(): software timeout\n",
2485                               __func__);
2486                        ret = -EIO;
2487                        break;
2488                }
2489
2490                /* Latency issues. Drop the lock, wait a while and retry */
2491                UDELAY(map, chip, adr, 1000000/HZ);
2492        }
2493        /* Did we succeed? */
2494        if (ret) {
2495                /* reset on all failures. */
2496                map_write(map, CMD(0xF0), chip->start);
2497                /* FIXME - should have reset delay before continuing */
2498
2499                if (++retry_cnt <= MAX_RETRIES) {
2500                        ret = 0;
2501                        goto retry;
2502                }
2503        }
2504
2505        chip->state = FL_READY;
2506        xip_enable(map, chip, adr);
2507        DISABLE_VPP(map);
2508        put_chip(map, chip, adr);
2509        mutex_unlock(&chip->mutex);
2510
2511        return ret;
2512}
2513
2514
2515static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2516{
2517        struct cfi_private *cfi = map->fldrv_priv;
2518        unsigned long timeo = jiffies + HZ;
2519        DECLARE_WAITQUEUE(wait, current);
2520        int ret;
2521        int retry_cnt = 0;
2522
2523        adr += chip->start;
2524
2525        mutex_lock(&chip->mutex);
2526        ret = get_chip(map, chip, adr, FL_ERASING);
2527        if (ret) {
2528                mutex_unlock(&chip->mutex);
2529                return ret;
2530        }
2531
2532        pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2533                 __func__, adr);
2534
2535        XIP_INVAL_CACHED_RANGE(map, adr, len);
2536        ENABLE_VPP(map);
2537        xip_disable(map, chip, adr);
2538
2539 retry:
2540        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2541        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2542        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2543        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2544        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2545        map_write(map, cfi->sector_erase_cmd, adr);
2546
2547        chip->state = FL_ERASING;
2548        chip->erase_suspended = 0;
2549        chip->in_progress_block_addr = adr;
2550        chip->in_progress_block_mask = ~(len - 1);
2551
2552        INVALIDATE_CACHE_UDELAY(map, chip,
2553                                adr, len,
2554                                chip->erase_time*500);
2555
2556        timeo = jiffies + (HZ*20);
2557
2558        for (;;) {
2559                if (chip->state != FL_ERASING) {
2560                        /* Someone's suspended the erase. Sleep */
2561                        set_current_state(TASK_UNINTERRUPTIBLE);
2562                        add_wait_queue(&chip->wq, &wait);
2563                        mutex_unlock(&chip->mutex);
2564                        schedule();
2565                        remove_wait_queue(&chip->wq, &wait);
2566                        mutex_lock(&chip->mutex);
2567                        continue;
2568                }
2569                if (chip->erase_suspended) {
2570                        /* This erase was suspended and resumed.
2571                           Adjust the timeout */
2572                        timeo = jiffies + (HZ*20); /* FIXME */
2573                        chip->erase_suspended = 0;
2574                }
2575
2576                if (chip_good(map, chip, adr, map_word_ff(map))) {
2577                        if (cfi_check_err_status(map, chip, adr))
2578                                ret = -EIO;
2579                        break;
2580                }
2581
2582                if (time_after(jiffies, timeo)) {
2583                        printk(KERN_WARNING "MTD %s(): software timeout\n",
2584                               __func__);
2585                        ret = -EIO;
2586                        break;
2587                }
2588
2589                /* Latency issues. Drop the lock, wait a while and retry */
2590                UDELAY(map, chip, adr, 1000000/HZ);
2591        }
2592        /* Did we succeed? */
2593        if (ret) {
2594                /* reset on all failures. */
2595                map_write(map, CMD(0xF0), chip->start);
2596                /* FIXME - should have reset delay before continuing */
2597
2598                if (++retry_cnt <= MAX_RETRIES) {
2599                        ret = 0;
2600                        goto retry;
2601                }
2602        }
2603
2604        chip->state = FL_READY;
2605        xip_enable(map, chip, adr);
2606        DISABLE_VPP(map);
2607        put_chip(map, chip, adr);
2608        mutex_unlock(&chip->mutex);
2609        return ret;
2610}
2611
2612
2613static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2614{
2615        return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2616                                instr->len, NULL);
2617}
2618
2619
2620static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2621{
2622        struct map_info *map = mtd->priv;
2623        struct cfi_private *cfi = map->fldrv_priv;
2624
2625        if (instr->addr != 0)
2626                return -EINVAL;
2627
2628        if (instr->len != mtd->size)
2629                return -EINVAL;
2630
2631        return do_erase_chip(map, &cfi->chips[0]);
2632}
2633
2634static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2635                         unsigned long adr, int len, void *thunk)
2636{
2637        struct cfi_private *cfi = map->fldrv_priv;
2638        int ret;
2639
2640        mutex_lock(&chip->mutex);
2641        ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2642        if (ret)
2643                goto out_unlock;
2644        chip->state = FL_LOCKING;
2645
2646        pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2647
2648        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2649                         cfi->device_type, NULL);
2650        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2651                         cfi->device_type, NULL);
2652        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2653                         cfi->device_type, NULL);
2654        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2655                         cfi->device_type, NULL);
2656        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2657                         cfi->device_type, NULL);
2658        map_write(map, CMD(0x40), chip->start + adr);
2659
2660        chip->state = FL_READY;
2661        put_chip(map, chip, adr + chip->start);
2662        ret = 0;
2663
2664out_unlock:
2665        mutex_unlock(&chip->mutex);
2666        return ret;
2667}
2668
2669static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2670                           unsigned long adr, int len, void *thunk)
2671{
2672        struct cfi_private *cfi = map->fldrv_priv;
2673        int ret;
2674
2675        mutex_lock(&chip->mutex);
2676        ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2677        if (ret)
2678                goto out_unlock;
2679        chip->state = FL_UNLOCKING;
2680
2681        pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2682
2683        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2684                         cfi->device_type, NULL);
2685        map_write(map, CMD(0x70), adr);
2686
2687        chip->state = FL_READY;
2688        put_chip(map, chip, adr + chip->start);
2689        ret = 0;
2690
2691out_unlock:
2692        mutex_unlock(&chip->mutex);
2693        return ret;
2694}
2695
2696static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2697{
2698        return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2699}
2700
2701static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2702{
2703        return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2704}
2705
2706/*
2707 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2708 */
2709
2710struct ppb_lock {
2711        struct flchip *chip;
2712        unsigned long adr;
2713        int locked;
2714};
2715
2716#define DO_XXLOCK_ONEBLOCK_LOCK         ((void *)1)
2717#define DO_XXLOCK_ONEBLOCK_UNLOCK       ((void *)2)
2718#define DO_XXLOCK_ONEBLOCK_GETLOCK      ((void *)3)
2719
2720static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2721                                        struct flchip *chip,
2722                                        unsigned long adr, int len, void *thunk)
2723{
2724        struct cfi_private *cfi = map->fldrv_priv;
2725        unsigned long timeo;
2726        int ret;
2727
2728        adr += chip->start;
2729        mutex_lock(&chip->mutex);
2730        ret = get_chip(map, chip, adr, FL_LOCKING);
2731        if (ret) {
2732                mutex_unlock(&chip->mutex);
2733                return ret;
2734        }
2735
2736        pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2737
2738        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2739                         cfi->device_type, NULL);
2740        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2741                         cfi->device_type, NULL);
2742        /* PPB entry command */
2743        cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2744                         cfi->device_type, NULL);
2745
2746        if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2747                chip->state = FL_LOCKING;
2748                map_write(map, CMD(0xA0), adr);
2749                map_write(map, CMD(0x00), adr);
2750        } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2751                /*
2752                 * Unlocking of one specific sector is not supported, so we
2753                 * have to unlock all sectors of this device instead
2754                 */
2755                chip->state = FL_UNLOCKING;
2756                map_write(map, CMD(0x80), chip->start);
2757                map_write(map, CMD(0x30), chip->start);
2758        } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2759                chip->state = FL_JEDEC_QUERY;
2760                /* Return locked status: 0->locked, 1->unlocked */
2761                ret = !cfi_read_query(map, adr);
2762        } else
2763                BUG();
2764
2765        /*
2766         * Wait for some time as unlocking of all sectors takes quite long
2767         */
2768        timeo = jiffies + msecs_to_jiffies(2000);       /* 2s max (un)locking */
2769        for (;;) {
2770                if (chip_ready(map, chip, adr))
2771                        break;
2772
2773                if (time_after(jiffies, timeo)) {
2774                        printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2775                        ret = -EIO;
2776                        break;
2777                }
2778
2779                UDELAY(map, chip, adr, 1);
2780        }
2781
2782        /* Exit BC commands */
2783        map_write(map, CMD(0x90), chip->start);
2784        map_write(map, CMD(0x00), chip->start);
2785
2786        chip->state = FL_READY;
2787        put_chip(map, chip, adr);
2788        mutex_unlock(&chip->mutex);
2789
2790        return ret;
2791}
2792
2793static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2794                                       uint64_t len)
2795{
2796        return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2797                                DO_XXLOCK_ONEBLOCK_LOCK);
2798}
2799
2800static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2801                                         uint64_t len)
2802{
2803        struct mtd_erase_region_info *regions = mtd->eraseregions;
2804        struct map_info *map = mtd->priv;
2805        struct cfi_private *cfi = map->fldrv_priv;
2806        struct ppb_lock *sect;
2807        unsigned long adr;
2808        loff_t offset;
2809        uint64_t length;
2810        int chipnum;
2811        int i;
2812        int sectors;
2813        int ret;
2814        int max_sectors;
2815
2816        /*
2817         * PPB unlocking always unlocks all sectors of the flash chip.
2818         * We need to re-lock all previously locked sectors. So lets
2819         * first check the locking status of all sectors and save
2820         * it for future use.
2821         */
2822        max_sectors = 0;
2823        for (i = 0; i < mtd->numeraseregions; i++)
2824                max_sectors += regions[i].numblocks;
2825
2826        sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2827        if (!sect)
2828                return -ENOMEM;
2829
2830        /*
2831         * This code to walk all sectors is a slightly modified version
2832         * of the cfi_varsize_frob() code.
2833         */
2834        i = 0;
2835        chipnum = 0;
2836        adr = 0;
2837        sectors = 0;
2838        offset = 0;
2839        length = mtd->size;
2840
2841        while (length) {
2842                int size = regions[i].erasesize;
2843
2844                /*
2845                 * Only test sectors that shall not be unlocked. The other
2846                 * sectors shall be unlocked, so lets keep their locking
2847                 * status at "unlocked" (locked=0) for the final re-locking.
2848                 */
2849                if ((offset < ofs) || (offset >= (ofs + len))) {
2850                        sect[sectors].chip = &cfi->chips[chipnum];
2851                        sect[sectors].adr = adr;
2852                        sect[sectors].locked = do_ppb_xxlock(
2853                                map, &cfi->chips[chipnum], adr, 0,
2854                                DO_XXLOCK_ONEBLOCK_GETLOCK);
2855                }
2856
2857                adr += size;
2858                offset += size;
2859                length -= size;
2860
2861                if (offset == regions[i].offset + size * regions[i].numblocks)
2862                        i++;
2863
2864                if (adr >> cfi->chipshift) {
2865                        if (offset >= (ofs + len))
2866                                break;
2867                        adr = 0;
2868                        chipnum++;
2869
2870                        if (chipnum >= cfi->numchips)
2871                                break;
2872                }
2873
2874                sectors++;
2875                if (sectors >= max_sectors) {
2876                        printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2877                               max_sectors);
2878                        kfree(sect);
2879                        return -EINVAL;
2880                }
2881        }
2882
2883        /* Now unlock the whole chip */
2884        ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2885                               DO_XXLOCK_ONEBLOCK_UNLOCK);
2886        if (ret) {
2887                kfree(sect);
2888                return ret;
2889        }
2890
2891        /*
2892         * PPB unlocking always unlocks all sectors of the flash chip.
2893         * We need to re-lock all previously locked sectors.
2894         */
2895        for (i = 0; i < sectors; i++) {
2896                if (sect[i].locked)
2897                        do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2898                                      DO_XXLOCK_ONEBLOCK_LOCK);
2899        }
2900
2901        kfree(sect);
2902        return ret;
2903}
2904
2905static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2906                                            uint64_t len)
2907{
2908        return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2909                                DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2910}
2911
2912static void cfi_amdstd_sync (struct mtd_info *mtd)
2913{
2914        struct map_info *map = mtd->priv;
2915        struct cfi_private *cfi = map->fldrv_priv;
2916        int i;
2917        struct flchip *chip;
2918        int ret = 0;
2919        DECLARE_WAITQUEUE(wait, current);
2920
2921        for (i=0; !ret && i<cfi->numchips; i++) {
2922                chip = &cfi->chips[i];
2923
2924        retry:
2925                mutex_lock(&chip->mutex);
2926
2927                switch(chip->state) {
2928                case FL_READY:
2929                case FL_STATUS:
2930                case FL_CFI_QUERY:
2931                case FL_JEDEC_QUERY:
2932                        chip->oldstate = chip->state;
2933                        chip->state = FL_SYNCING;
2934                        /* No need to wake_up() on this state change -
2935                         * as the whole point is that nobody can do anything
2936                         * with the chip now anyway.
2937                         */
2938                        /* fall through */
2939                case FL_SYNCING:
2940                        mutex_unlock(&chip->mutex);
2941                        break;
2942
2943                default:
2944                        /* Not an idle state */
2945                        set_current_state(TASK_UNINTERRUPTIBLE);
2946                        add_wait_queue(&chip->wq, &wait);
2947
2948                        mutex_unlock(&chip->mutex);
2949
2950                        schedule();
2951
2952                        remove_wait_queue(&chip->wq, &wait);
2953
2954                        goto retry;
2955                }
2956        }
2957
2958        /* Unlock the chips again */
2959
2960        for (i--; i >=0; i--) {
2961                chip = &cfi->chips[i];
2962
2963                mutex_lock(&chip->mutex);
2964
2965                if (chip->state == FL_SYNCING) {
2966                        chip->state = chip->oldstate;
2967                        wake_up(&chip->wq);
2968                }
2969                mutex_unlock(&chip->mutex);
2970        }
2971}
2972
2973
2974static int cfi_amdstd_suspend(struct mtd_info *mtd)
2975{
2976        struct map_info *map = mtd->priv;
2977        struct cfi_private *cfi = map->fldrv_priv;
2978        int i;
2979        struct flchip *chip;
2980        int ret = 0;
2981
2982        for (i=0; !ret && i<cfi->numchips; i++) {
2983                chip = &cfi->chips[i];
2984
2985                mutex_lock(&chip->mutex);
2986
2987                switch(chip->state) {
2988                case FL_READY:
2989                case FL_STATUS:
2990                case FL_CFI_QUERY:
2991                case FL_JEDEC_QUERY:
2992                        chip->oldstate = chip->state;
2993                        chip->state = FL_PM_SUSPENDED;
2994                        /* No need to wake_up() on this state change -
2995                         * as the whole point is that nobody can do anything
2996                         * with the chip now anyway.
2997                         */
2998                case FL_PM_SUSPENDED:
2999                        break;
3000
3001                default:
3002                        ret = -EAGAIN;
3003                        break;
3004                }
3005                mutex_unlock(&chip->mutex);
3006        }
3007
3008        /* Unlock the chips again */
3009
3010        if (ret) {
3011                for (i--; i >=0; i--) {
3012                        chip = &cfi->chips[i];
3013
3014                        mutex_lock(&chip->mutex);
3015
3016                        if (chip->state == FL_PM_SUSPENDED) {
3017                                chip->state = chip->oldstate;
3018                                wake_up(&chip->wq);
3019                        }
3020                        mutex_unlock(&chip->mutex);
3021                }
3022        }
3023
3024        return ret;
3025}
3026
3027
3028static void cfi_amdstd_resume(struct mtd_info *mtd)
3029{
3030        struct map_info *map = mtd->priv;
3031        struct cfi_private *cfi = map->fldrv_priv;
3032        int i;
3033        struct flchip *chip;
3034
3035        for (i=0; i<cfi->numchips; i++) {
3036
3037                chip = &cfi->chips[i];
3038
3039                mutex_lock(&chip->mutex);
3040
3041                if (chip->state == FL_PM_SUSPENDED) {
3042                        chip->state = FL_READY;
3043                        map_write(map, CMD(0xF0), chip->start);
3044                        wake_up(&chip->wq);
3045                }
3046                else
3047                        printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3048
3049                mutex_unlock(&chip->mutex);
3050        }
3051}
3052
3053
3054/*
3055 * Ensure that the flash device is put back into read array mode before
3056 * unloading the driver or rebooting.  On some systems, rebooting while
3057 * the flash is in query/program/erase mode will prevent the CPU from
3058 * fetching the bootloader code, requiring a hard reset or power cycle.
3059 */
3060static int cfi_amdstd_reset(struct mtd_info *mtd)
3061{
3062        struct map_info *map = mtd->priv;
3063        struct cfi_private *cfi = map->fldrv_priv;
3064        int i, ret;
3065        struct flchip *chip;
3066
3067        for (i = 0; i < cfi->numchips; i++) {
3068
3069                chip = &cfi->chips[i];
3070
3071                mutex_lock(&chip->mutex);
3072
3073                ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3074                if (!ret) {
3075                        map_write(map, CMD(0xF0), chip->start);
3076                        chip->state = FL_SHUTDOWN;
3077                        put_chip(map, chip, chip->start);
3078                }
3079
3080                mutex_unlock(&chip->mutex);
3081        }
3082
3083        return 0;
3084}
3085
3086
3087static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3088                               void *v)
3089{
3090        struct mtd_info *mtd;
3091
3092        mtd = container_of(nb, struct mtd_info, reboot_notifier);
3093        cfi_amdstd_reset(mtd);
3094        return NOTIFY_DONE;
3095}
3096
3097
3098static void cfi_amdstd_destroy(struct mtd_info *mtd)
3099{
3100        struct map_info *map = mtd->priv;
3101        struct cfi_private *cfi = map->fldrv_priv;
3102
3103        cfi_amdstd_reset(mtd);
3104        unregister_reboot_notifier(&mtd->reboot_notifier);
3105        kfree(cfi->cmdset_priv);
3106        kfree(cfi->cfiq);
3107        kfree(cfi);
3108        kfree(mtd->eraseregions);
3109}
3110
3111MODULE_LICENSE("GPL");
3112MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3113MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3114MODULE_ALIAS("cfi_cmdset_0006");
3115MODULE_ALIAS("cfi_cmdset_0701");
3116