linux/drivers/net/ethernet/intel/ice/ice_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
   8#include <linux/bpf_trace.h>
   9#include <net/xdp.h>
  10#include "ice_txrx_lib.h"
  11#include "ice_lib.h"
  12#include "ice.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_xsk.h"
  15
  16#define ICE_RX_HDR_SIZE         256
  17
  18/**
  19 * ice_unmap_and_free_tx_buf - Release a Tx buffer
  20 * @ring: the ring that owns the buffer
  21 * @tx_buf: the buffer to free
  22 */
  23static void
  24ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
  25{
  26        if (tx_buf->skb) {
  27                if (ice_ring_is_xdp(ring))
  28                        page_frag_free(tx_buf->raw_buf);
  29                else
  30                        dev_kfree_skb_any(tx_buf->skb);
  31                if (dma_unmap_len(tx_buf, len))
  32                        dma_unmap_single(ring->dev,
  33                                         dma_unmap_addr(tx_buf, dma),
  34                                         dma_unmap_len(tx_buf, len),
  35                                         DMA_TO_DEVICE);
  36        } else if (dma_unmap_len(tx_buf, len)) {
  37                dma_unmap_page(ring->dev,
  38                               dma_unmap_addr(tx_buf, dma),
  39                               dma_unmap_len(tx_buf, len),
  40                               DMA_TO_DEVICE);
  41        }
  42
  43        tx_buf->next_to_watch = NULL;
  44        tx_buf->skb = NULL;
  45        dma_unmap_len_set(tx_buf, len, 0);
  46        /* tx_buf must be completely set up in the transmit path */
  47}
  48
  49static struct netdev_queue *txring_txq(const struct ice_ring *ring)
  50{
  51        return netdev_get_tx_queue(ring->netdev, ring->q_index);
  52}
  53
  54/**
  55 * ice_clean_tx_ring - Free any empty Tx buffers
  56 * @tx_ring: ring to be cleaned
  57 */
  58void ice_clean_tx_ring(struct ice_ring *tx_ring)
  59{
  60        u16 i;
  61
  62        if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
  63                ice_xsk_clean_xdp_ring(tx_ring);
  64                goto tx_skip_free;
  65        }
  66
  67        /* ring already cleared, nothing to do */
  68        if (!tx_ring->tx_buf)
  69                return;
  70
  71        /* Free all the Tx ring sk_buffs */
  72        for (i = 0; i < tx_ring->count; i++)
  73                ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
  74
  75tx_skip_free:
  76        memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
  77
  78        /* Zero out the descriptor ring */
  79        memset(tx_ring->desc, 0, tx_ring->size);
  80
  81        tx_ring->next_to_use = 0;
  82        tx_ring->next_to_clean = 0;
  83
  84        if (!tx_ring->netdev)
  85                return;
  86
  87        /* cleanup Tx queue statistics */
  88        netdev_tx_reset_queue(txring_txq(tx_ring));
  89}
  90
  91/**
  92 * ice_free_tx_ring - Free Tx resources per queue
  93 * @tx_ring: Tx descriptor ring for a specific queue
  94 *
  95 * Free all transmit software resources
  96 */
  97void ice_free_tx_ring(struct ice_ring *tx_ring)
  98{
  99        ice_clean_tx_ring(tx_ring);
 100        devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 101        tx_ring->tx_buf = NULL;
 102
 103        if (tx_ring->desc) {
 104                dmam_free_coherent(tx_ring->dev, tx_ring->size,
 105                                   tx_ring->desc, tx_ring->dma);
 106                tx_ring->desc = NULL;
 107        }
 108}
 109
 110/**
 111 * ice_clean_tx_irq - Reclaim resources after transmit completes
 112 * @tx_ring: Tx ring to clean
 113 * @napi_budget: Used to determine if we are in netpoll
 114 *
 115 * Returns true if there's any budget left (e.g. the clean is finished)
 116 */
 117static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
 118{
 119        unsigned int total_bytes = 0, total_pkts = 0;
 120        unsigned int budget = ICE_DFLT_IRQ_WORK;
 121        struct ice_vsi *vsi = tx_ring->vsi;
 122        s16 i = tx_ring->next_to_clean;
 123        struct ice_tx_desc *tx_desc;
 124        struct ice_tx_buf *tx_buf;
 125
 126        tx_buf = &tx_ring->tx_buf[i];
 127        tx_desc = ICE_TX_DESC(tx_ring, i);
 128        i -= tx_ring->count;
 129
 130        prefetch(&vsi->state);
 131
 132        do {
 133                struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 134
 135                /* if next_to_watch is not set then there is no work pending */
 136                if (!eop_desc)
 137                        break;
 138
 139                smp_rmb();      /* prevent any other reads prior to eop_desc */
 140
 141                /* if the descriptor isn't done, no work yet to do */
 142                if (!(eop_desc->cmd_type_offset_bsz &
 143                      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 144                        break;
 145
 146                /* clear next_to_watch to prevent false hangs */
 147                tx_buf->next_to_watch = NULL;
 148
 149                /* update the statistics for this packet */
 150                total_bytes += tx_buf->bytecount;
 151                total_pkts += tx_buf->gso_segs;
 152
 153                if (ice_ring_is_xdp(tx_ring))
 154                        page_frag_free(tx_buf->raw_buf);
 155                else
 156                        /* free the skb */
 157                        napi_consume_skb(tx_buf->skb, napi_budget);
 158
 159                /* unmap skb header data */
 160                dma_unmap_single(tx_ring->dev,
 161                                 dma_unmap_addr(tx_buf, dma),
 162                                 dma_unmap_len(tx_buf, len),
 163                                 DMA_TO_DEVICE);
 164
 165                /* clear tx_buf data */
 166                tx_buf->skb = NULL;
 167                dma_unmap_len_set(tx_buf, len, 0);
 168
 169                /* unmap remaining buffers */
 170                while (tx_desc != eop_desc) {
 171                        tx_buf++;
 172                        tx_desc++;
 173                        i++;
 174                        if (unlikely(!i)) {
 175                                i -= tx_ring->count;
 176                                tx_buf = tx_ring->tx_buf;
 177                                tx_desc = ICE_TX_DESC(tx_ring, 0);
 178                        }
 179
 180                        /* unmap any remaining paged data */
 181                        if (dma_unmap_len(tx_buf, len)) {
 182                                dma_unmap_page(tx_ring->dev,
 183                                               dma_unmap_addr(tx_buf, dma),
 184                                               dma_unmap_len(tx_buf, len),
 185                                               DMA_TO_DEVICE);
 186                                dma_unmap_len_set(tx_buf, len, 0);
 187                        }
 188                }
 189
 190                /* move us one more past the eop_desc for start of next pkt */
 191                tx_buf++;
 192                tx_desc++;
 193                i++;
 194                if (unlikely(!i)) {
 195                        i -= tx_ring->count;
 196                        tx_buf = tx_ring->tx_buf;
 197                        tx_desc = ICE_TX_DESC(tx_ring, 0);
 198                }
 199
 200                prefetch(tx_desc);
 201
 202                /* update budget accounting */
 203                budget--;
 204        } while (likely(budget));
 205
 206        i += tx_ring->count;
 207        tx_ring->next_to_clean = i;
 208
 209        ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 210
 211        if (ice_ring_is_xdp(tx_ring))
 212                return !!budget;
 213
 214        netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 215                                  total_bytes);
 216
 217#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 218        if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 219                     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 220                /* Make sure that anybody stopping the queue after this
 221                 * sees the new next_to_clean.
 222                 */
 223                smp_mb();
 224                if (__netif_subqueue_stopped(tx_ring->netdev,
 225                                             tx_ring->q_index) &&
 226                    !test_bit(__ICE_DOWN, vsi->state)) {
 227                        netif_wake_subqueue(tx_ring->netdev,
 228                                            tx_ring->q_index);
 229                        ++tx_ring->tx_stats.restart_q;
 230                }
 231        }
 232
 233        return !!budget;
 234}
 235
 236/**
 237 * ice_setup_tx_ring - Allocate the Tx descriptors
 238 * @tx_ring: the Tx ring to set up
 239 *
 240 * Return 0 on success, negative on error
 241 */
 242int ice_setup_tx_ring(struct ice_ring *tx_ring)
 243{
 244        struct device *dev = tx_ring->dev;
 245
 246        if (!dev)
 247                return -ENOMEM;
 248
 249        /* warn if we are about to overwrite the pointer */
 250        WARN_ON(tx_ring->tx_buf);
 251        tx_ring->tx_buf =
 252                devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
 253                             GFP_KERNEL);
 254        if (!tx_ring->tx_buf)
 255                return -ENOMEM;
 256
 257        /* round up to nearest page */
 258        tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 259                              PAGE_SIZE);
 260        tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 261                                            GFP_KERNEL);
 262        if (!tx_ring->desc) {
 263                dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 264                        tx_ring->size);
 265                goto err;
 266        }
 267
 268        tx_ring->next_to_use = 0;
 269        tx_ring->next_to_clean = 0;
 270        tx_ring->tx_stats.prev_pkt = -1;
 271        return 0;
 272
 273err:
 274        devm_kfree(dev, tx_ring->tx_buf);
 275        tx_ring->tx_buf = NULL;
 276        return -ENOMEM;
 277}
 278
 279/**
 280 * ice_clean_rx_ring - Free Rx buffers
 281 * @rx_ring: ring to be cleaned
 282 */
 283void ice_clean_rx_ring(struct ice_ring *rx_ring)
 284{
 285        struct device *dev = rx_ring->dev;
 286        u16 i;
 287
 288        /* ring already cleared, nothing to do */
 289        if (!rx_ring->rx_buf)
 290                return;
 291
 292        if (rx_ring->xsk_umem) {
 293                ice_xsk_clean_rx_ring(rx_ring);
 294                goto rx_skip_free;
 295        }
 296
 297        /* Free all the Rx ring sk_buffs */
 298        for (i = 0; i < rx_ring->count; i++) {
 299                struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 300
 301                if (rx_buf->skb) {
 302                        dev_kfree_skb(rx_buf->skb);
 303                        rx_buf->skb = NULL;
 304                }
 305                if (!rx_buf->page)
 306                        continue;
 307
 308                /* Invalidate cache lines that may have been written to by
 309                 * device so that we avoid corrupting memory.
 310                 */
 311                dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 312                                              rx_buf->page_offset,
 313                                              rx_ring->rx_buf_len,
 314                                              DMA_FROM_DEVICE);
 315
 316                /* free resources associated with mapping */
 317                dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 318                                     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 319                __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 320
 321                rx_buf->page = NULL;
 322                rx_buf->page_offset = 0;
 323        }
 324
 325rx_skip_free:
 326        memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
 327
 328        /* Zero out the descriptor ring */
 329        memset(rx_ring->desc, 0, rx_ring->size);
 330
 331        rx_ring->next_to_alloc = 0;
 332        rx_ring->next_to_clean = 0;
 333        rx_ring->next_to_use = 0;
 334}
 335
 336/**
 337 * ice_free_rx_ring - Free Rx resources
 338 * @rx_ring: ring to clean the resources from
 339 *
 340 * Free all receive software resources
 341 */
 342void ice_free_rx_ring(struct ice_ring *rx_ring)
 343{
 344        ice_clean_rx_ring(rx_ring);
 345        if (rx_ring->vsi->type == ICE_VSI_PF)
 346                if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 347                        xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 348        rx_ring->xdp_prog = NULL;
 349        devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 350        rx_ring->rx_buf = NULL;
 351
 352        if (rx_ring->desc) {
 353                dmam_free_coherent(rx_ring->dev, rx_ring->size,
 354                                   rx_ring->desc, rx_ring->dma);
 355                rx_ring->desc = NULL;
 356        }
 357}
 358
 359/**
 360 * ice_setup_rx_ring - Allocate the Rx descriptors
 361 * @rx_ring: the Rx ring to set up
 362 *
 363 * Return 0 on success, negative on error
 364 */
 365int ice_setup_rx_ring(struct ice_ring *rx_ring)
 366{
 367        struct device *dev = rx_ring->dev;
 368
 369        if (!dev)
 370                return -ENOMEM;
 371
 372        /* warn if we are about to overwrite the pointer */
 373        WARN_ON(rx_ring->rx_buf);
 374        rx_ring->rx_buf =
 375                devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
 376                             GFP_KERNEL);
 377        if (!rx_ring->rx_buf)
 378                return -ENOMEM;
 379
 380        /* round up to nearest page */
 381        rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 382                              PAGE_SIZE);
 383        rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 384                                            GFP_KERNEL);
 385        if (!rx_ring->desc) {
 386                dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 387                        rx_ring->size);
 388                goto err;
 389        }
 390
 391        rx_ring->next_to_use = 0;
 392        rx_ring->next_to_clean = 0;
 393
 394        if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 395                WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 396
 397        if (rx_ring->vsi->type == ICE_VSI_PF &&
 398            !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 399                if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 400                                     rx_ring->q_index))
 401                        goto err;
 402        return 0;
 403
 404err:
 405        devm_kfree(dev, rx_ring->rx_buf);
 406        rx_ring->rx_buf = NULL;
 407        return -ENOMEM;
 408}
 409
 410/**
 411 * ice_rx_offset - Return expected offset into page to access data
 412 * @rx_ring: Ring we are requesting offset of
 413 *
 414 * Returns the offset value for ring into the data buffer.
 415 */
 416static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
 417{
 418        if (ice_ring_uses_build_skb(rx_ring))
 419                return ICE_SKB_PAD;
 420        else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 421                return XDP_PACKET_HEADROOM;
 422
 423        return 0;
 424}
 425
 426/**
 427 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 428 * @rx_ring: Rx ring
 429 * @xdp: xdp_buff used as input to the XDP program
 430 * @xdp_prog: XDP program to run
 431 *
 432 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 433 */
 434static int
 435ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
 436            struct bpf_prog *xdp_prog)
 437{
 438        int err, result = ICE_XDP_PASS;
 439        struct ice_ring *xdp_ring;
 440        u32 act;
 441
 442        act = bpf_prog_run_xdp(xdp_prog, xdp);
 443        switch (act) {
 444        case XDP_PASS:
 445                break;
 446        case XDP_TX:
 447                xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
 448                result = ice_xmit_xdp_buff(xdp, xdp_ring);
 449                break;
 450        case XDP_REDIRECT:
 451                err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 452                result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
 453                break;
 454        default:
 455                bpf_warn_invalid_xdp_action(act);
 456                /* fallthrough -- not supported action */
 457        case XDP_ABORTED:
 458                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 459                /* fallthrough -- handle aborts by dropping frame */
 460        case XDP_DROP:
 461                result = ICE_XDP_CONSUMED;
 462                break;
 463        }
 464
 465        return result;
 466}
 467
 468/**
 469 * ice_xdp_xmit - submit packets to XDP ring for transmission
 470 * @dev: netdev
 471 * @n: number of XDP frames to be transmitted
 472 * @frames: XDP frames to be transmitted
 473 * @flags: transmit flags
 474 *
 475 * Returns number of frames successfully sent. Frames that fail are
 476 * free'ed via XDP return API.
 477 * For error cases, a negative errno code is returned and no-frames
 478 * are transmitted (caller must handle freeing frames).
 479 */
 480int
 481ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 482             u32 flags)
 483{
 484        struct ice_netdev_priv *np = netdev_priv(dev);
 485        unsigned int queue_index = smp_processor_id();
 486        struct ice_vsi *vsi = np->vsi;
 487        struct ice_ring *xdp_ring;
 488        int drops = 0, i;
 489
 490        if (test_bit(__ICE_DOWN, vsi->state))
 491                return -ENETDOWN;
 492
 493        if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
 494                return -ENXIO;
 495
 496        if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 497                return -EINVAL;
 498
 499        xdp_ring = vsi->xdp_rings[queue_index];
 500        for (i = 0; i < n; i++) {
 501                struct xdp_frame *xdpf = frames[i];
 502                int err;
 503
 504                err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
 505                if (err != ICE_XDP_TX) {
 506                        xdp_return_frame_rx_napi(xdpf);
 507                        drops++;
 508                }
 509        }
 510
 511        if (unlikely(flags & XDP_XMIT_FLUSH))
 512                ice_xdp_ring_update_tail(xdp_ring);
 513
 514        return n - drops;
 515}
 516
 517/**
 518 * ice_alloc_mapped_page - recycle or make a new page
 519 * @rx_ring: ring to use
 520 * @bi: rx_buf struct to modify
 521 *
 522 * Returns true if the page was successfully allocated or
 523 * reused.
 524 */
 525static bool
 526ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
 527{
 528        struct page *page = bi->page;
 529        dma_addr_t dma;
 530
 531        /* since we are recycling buffers we should seldom need to alloc */
 532        if (likely(page)) {
 533                rx_ring->rx_stats.page_reuse_count++;
 534                return true;
 535        }
 536
 537        /* alloc new page for storage */
 538        page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 539        if (unlikely(!page)) {
 540                rx_ring->rx_stats.alloc_page_failed++;
 541                return false;
 542        }
 543
 544        /* map page for use */
 545        dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 546                                 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 547
 548        /* if mapping failed free memory back to system since
 549         * there isn't much point in holding memory we can't use
 550         */
 551        if (dma_mapping_error(rx_ring->dev, dma)) {
 552                __free_pages(page, ice_rx_pg_order(rx_ring));
 553                rx_ring->rx_stats.alloc_page_failed++;
 554                return false;
 555        }
 556
 557        bi->dma = dma;
 558        bi->page = page;
 559        bi->page_offset = ice_rx_offset(rx_ring);
 560        page_ref_add(page, USHRT_MAX - 1);
 561        bi->pagecnt_bias = USHRT_MAX;
 562
 563        return true;
 564}
 565
 566/**
 567 * ice_alloc_rx_bufs - Replace used receive buffers
 568 * @rx_ring: ring to place buffers on
 569 * @cleaned_count: number of buffers to replace
 570 *
 571 * Returns false if all allocations were successful, true if any fail. Returning
 572 * true signals to the caller that we didn't replace cleaned_count buffers and
 573 * there is more work to do.
 574 *
 575 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 576 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 577 * multiple tail writes per call.
 578 */
 579bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 580{
 581        union ice_32b_rx_flex_desc *rx_desc;
 582        u16 ntu = rx_ring->next_to_use;
 583        struct ice_rx_buf *bi;
 584
 585        /* do nothing if no valid netdev defined */
 586        if (!rx_ring->netdev || !cleaned_count)
 587                return false;
 588
 589        /* get the Rx descriptor and buffer based on next_to_use */
 590        rx_desc = ICE_RX_DESC(rx_ring, ntu);
 591        bi = &rx_ring->rx_buf[ntu];
 592
 593        do {
 594                /* if we fail here, we have work remaining */
 595                if (!ice_alloc_mapped_page(rx_ring, bi))
 596                        break;
 597
 598                /* sync the buffer for use by the device */
 599                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 600                                                 bi->page_offset,
 601                                                 rx_ring->rx_buf_len,
 602                                                 DMA_FROM_DEVICE);
 603
 604                /* Refresh the desc even if buffer_addrs didn't change
 605                 * because each write-back erases this info.
 606                 */
 607                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 608
 609                rx_desc++;
 610                bi++;
 611                ntu++;
 612                if (unlikely(ntu == rx_ring->count)) {
 613                        rx_desc = ICE_RX_DESC(rx_ring, 0);
 614                        bi = rx_ring->rx_buf;
 615                        ntu = 0;
 616                }
 617
 618                /* clear the status bits for the next_to_use descriptor */
 619                rx_desc->wb.status_error0 = 0;
 620
 621                cleaned_count--;
 622        } while (cleaned_count);
 623
 624        if (rx_ring->next_to_use != ntu)
 625                ice_release_rx_desc(rx_ring, ntu);
 626
 627        return !!cleaned_count;
 628}
 629
 630/**
 631 * ice_page_is_reserved - check if reuse is possible
 632 * @page: page struct to check
 633 */
 634static bool ice_page_is_reserved(struct page *page)
 635{
 636        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 637}
 638
 639/**
 640 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 641 * @rx_buf: Rx buffer to adjust
 642 * @size: Size of adjustment
 643 *
 644 * Update the offset within page so that Rx buf will be ready to be reused.
 645 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 646 * so the second half of page assigned to Rx buffer will be used, otherwise
 647 * the offset is moved by "size" bytes
 648 */
 649static void
 650ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 651{
 652#if (PAGE_SIZE < 8192)
 653        /* flip page offset to other buffer */
 654        rx_buf->page_offset ^= size;
 655#else
 656        /* move offset up to the next cache line */
 657        rx_buf->page_offset += size;
 658#endif
 659}
 660
 661/**
 662 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 663 * @rx_buf: buffer containing the page
 664 *
 665 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 666 * which will assign the current buffer to the buffer that next_to_alloc is
 667 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 668 * page freed
 669 */
 670static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
 671{
 672        unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 673        struct page *page = rx_buf->page;
 674
 675        /* avoid re-using remote pages */
 676        if (unlikely(ice_page_is_reserved(page)))
 677                return false;
 678
 679#if (PAGE_SIZE < 8192)
 680        /* if we are only owner of page we can reuse it */
 681        if (unlikely((page_count(page) - pagecnt_bias) > 1))
 682                return false;
 683#else
 684#define ICE_LAST_OFFSET \
 685        (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
 686        if (rx_buf->page_offset > ICE_LAST_OFFSET)
 687                return false;
 688#endif /* PAGE_SIZE < 8192) */
 689
 690        /* If we have drained the page fragment pool we need to update
 691         * the pagecnt_bias and page count so that we fully restock the
 692         * number of references the driver holds.
 693         */
 694        if (unlikely(pagecnt_bias == 1)) {
 695                page_ref_add(page, USHRT_MAX - 1);
 696                rx_buf->pagecnt_bias = USHRT_MAX;
 697        }
 698
 699        return true;
 700}
 701
 702/**
 703 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
 704 * @rx_ring: Rx descriptor ring to transact packets on
 705 * @rx_buf: buffer containing page to add
 706 * @skb: sk_buff to place the data into
 707 * @size: packet length from rx_desc
 708 *
 709 * This function will add the data contained in rx_buf->page to the skb.
 710 * It will just attach the page as a frag to the skb.
 711 * The function will then update the page offset.
 712 */
 713static void
 714ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 715                struct sk_buff *skb, unsigned int size)
 716{
 717#if (PAGE_SIZE >= 8192)
 718        unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
 719#else
 720        unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 721#endif
 722
 723        if (!size)
 724                return;
 725        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
 726                        rx_buf->page_offset, size, truesize);
 727
 728        /* page is being used so we must update the page offset */
 729        ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 730}
 731
 732/**
 733 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 734 * @rx_ring: Rx descriptor ring to store buffers on
 735 * @old_buf: donor buffer to have page reused
 736 *
 737 * Synchronizes page for reuse by the adapter
 738 */
 739static void
 740ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
 741{
 742        u16 nta = rx_ring->next_to_alloc;
 743        struct ice_rx_buf *new_buf;
 744
 745        new_buf = &rx_ring->rx_buf[nta];
 746
 747        /* update, and store next to alloc */
 748        nta++;
 749        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 750
 751        /* Transfer page from old buffer to new buffer.
 752         * Move each member individually to avoid possible store
 753         * forwarding stalls and unnecessary copy of skb.
 754         */
 755        new_buf->dma = old_buf->dma;
 756        new_buf->page = old_buf->page;
 757        new_buf->page_offset = old_buf->page_offset;
 758        new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 759}
 760
 761/**
 762 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 763 * @rx_ring: Rx descriptor ring to transact packets on
 764 * @skb: skb to be used
 765 * @size: size of buffer to add to skb
 766 *
 767 * This function will pull an Rx buffer from the ring and synchronize it
 768 * for use by the CPU.
 769 */
 770static struct ice_rx_buf *
 771ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
 772               const unsigned int size)
 773{
 774        struct ice_rx_buf *rx_buf;
 775
 776        rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 777        prefetchw(rx_buf->page);
 778        *skb = rx_buf->skb;
 779
 780        if (!size)
 781                return rx_buf;
 782        /* we are reusing so sync this buffer for CPU use */
 783        dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 784                                      rx_buf->page_offset, size,
 785                                      DMA_FROM_DEVICE);
 786
 787        /* We have pulled a buffer for use, so decrement pagecnt_bias */
 788        rx_buf->pagecnt_bias--;
 789
 790        return rx_buf;
 791}
 792
 793/**
 794 * ice_build_skb - Build skb around an existing buffer
 795 * @rx_ring: Rx descriptor ring to transact packets on
 796 * @rx_buf: Rx buffer to pull data from
 797 * @xdp: xdp_buff pointing to the data
 798 *
 799 * This function builds an skb around an existing Rx buffer, taking care
 800 * to set up the skb correctly and avoid any memcpy overhead.
 801 */
 802static struct sk_buff *
 803ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 804              struct xdp_buff *xdp)
 805{
 806        unsigned int metasize = xdp->data - xdp->data_meta;
 807#if (PAGE_SIZE < 8192)
 808        unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 809#else
 810        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 811                                SKB_DATA_ALIGN(xdp->data_end -
 812                                               xdp->data_hard_start);
 813#endif
 814        struct sk_buff *skb;
 815
 816        /* Prefetch first cache line of first page. If xdp->data_meta
 817         * is unused, this points exactly as xdp->data, otherwise we
 818         * likely have a consumer accessing first few bytes of meta
 819         * data, and then actual data.
 820         */
 821        prefetch(xdp->data_meta);
 822#if L1_CACHE_BYTES < 128
 823        prefetch((void *)(xdp->data + L1_CACHE_BYTES));
 824#endif
 825        /* build an skb around the page buffer */
 826        skb = build_skb(xdp->data_hard_start, truesize);
 827        if (unlikely(!skb))
 828                return NULL;
 829
 830        /* must to record Rx queue, otherwise OS features such as
 831         * symmetric queue won't work
 832         */
 833        skb_record_rx_queue(skb, rx_ring->q_index);
 834
 835        /* update pointers within the skb to store the data */
 836        skb_reserve(skb, xdp->data - xdp->data_hard_start);
 837        __skb_put(skb, xdp->data_end - xdp->data);
 838        if (metasize)
 839                skb_metadata_set(skb, metasize);
 840
 841        /* buffer is used by skb, update page_offset */
 842        ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 843
 844        return skb;
 845}
 846
 847/**
 848 * ice_construct_skb - Allocate skb and populate it
 849 * @rx_ring: Rx descriptor ring to transact packets on
 850 * @rx_buf: Rx buffer to pull data from
 851 * @xdp: xdp_buff pointing to the data
 852 *
 853 * This function allocates an skb. It then populates it with the page
 854 * data from the current receive descriptor, taking care to set up the
 855 * skb correctly.
 856 */
 857static struct sk_buff *
 858ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 859                  struct xdp_buff *xdp)
 860{
 861        unsigned int size = xdp->data_end - xdp->data;
 862        unsigned int headlen;
 863        struct sk_buff *skb;
 864
 865        /* prefetch first cache line of first page */
 866        prefetch(xdp->data);
 867#if L1_CACHE_BYTES < 128
 868        prefetch((void *)(xdp->data + L1_CACHE_BYTES));
 869#endif /* L1_CACHE_BYTES */
 870
 871        /* allocate a skb to store the frags */
 872        skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
 873                               GFP_ATOMIC | __GFP_NOWARN);
 874        if (unlikely(!skb))
 875                return NULL;
 876
 877        skb_record_rx_queue(skb, rx_ring->q_index);
 878        /* Determine available headroom for copy */
 879        headlen = size;
 880        if (headlen > ICE_RX_HDR_SIZE)
 881                headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
 882
 883        /* align pull length to size of long to optimize memcpy performance */
 884        memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
 885                                                         sizeof(long)));
 886
 887        /* if we exhaust the linear part then add what is left as a frag */
 888        size -= headlen;
 889        if (size) {
 890#if (PAGE_SIZE >= 8192)
 891                unsigned int truesize = SKB_DATA_ALIGN(size);
 892#else
 893                unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 894#endif
 895                skb_add_rx_frag(skb, 0, rx_buf->page,
 896                                rx_buf->page_offset + headlen, size, truesize);
 897                /* buffer is used by skb, update page_offset */
 898                ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 899        } else {
 900                /* buffer is unused, reset bias back to rx_buf; data was copied
 901                 * onto skb's linear part so there's no need for adjusting
 902                 * page offset and we can reuse this buffer as-is
 903                 */
 904                rx_buf->pagecnt_bias++;
 905        }
 906
 907        return skb;
 908}
 909
 910/**
 911 * ice_put_rx_buf - Clean up used buffer and either recycle or free
 912 * @rx_ring: Rx descriptor ring to transact packets on
 913 * @rx_buf: Rx buffer to pull data from
 914 *
 915 * This function will update next_to_clean and then clean up the contents
 916 * of the rx_buf. It will either recycle the buffer or unmap it and free
 917 * the associated resources.
 918 */
 919static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
 920{
 921        u32 ntc = rx_ring->next_to_clean + 1;
 922
 923        /* fetch, update, and store next to clean */
 924        ntc = (ntc < rx_ring->count) ? ntc : 0;
 925        rx_ring->next_to_clean = ntc;
 926
 927        if (!rx_buf)
 928                return;
 929
 930        if (ice_can_reuse_rx_page(rx_buf)) {
 931                /* hand second half of page back to the ring */
 932                ice_reuse_rx_page(rx_ring, rx_buf);
 933                rx_ring->rx_stats.page_reuse_count++;
 934        } else {
 935                /* we are not reusing the buffer so unmap it */
 936                dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
 937                                     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
 938                                     ICE_RX_DMA_ATTR);
 939                __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 940        }
 941
 942        /* clear contents of buffer_info */
 943        rx_buf->page = NULL;
 944        rx_buf->skb = NULL;
 945}
 946
 947/**
 948 * ice_is_non_eop - process handling of non-EOP buffers
 949 * @rx_ring: Rx ring being processed
 950 * @rx_desc: Rx descriptor for current buffer
 951 * @skb: Current socket buffer containing buffer in progress
 952 *
 953 * If the buffer is an EOP buffer, this function exits returning false,
 954 * otherwise return true indicating that this is in fact a non-EOP buffer.
 955 */
 956static bool
 957ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
 958               struct sk_buff *skb)
 959{
 960        /* if we are the last buffer then there is nothing else to do */
 961#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
 962        if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
 963                return false;
 964
 965        /* place skb in next buffer to be received */
 966        rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
 967        rx_ring->rx_stats.non_eop_descs++;
 968
 969        return true;
 970}
 971
 972/**
 973 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 974 * @rx_ring: Rx descriptor ring to transact packets on
 975 * @budget: Total limit on number of packets to process
 976 *
 977 * This function provides a "bounce buffer" approach to Rx interrupt
 978 * processing. The advantage to this is that on systems that have
 979 * expensive overhead for IOMMU access this provides a means of avoiding
 980 * it by maintaining the mapping of the page to the system.
 981 *
 982 * Returns amount of work completed
 983 */
 984static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
 985{
 986        unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
 987        u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
 988        unsigned int xdp_res, xdp_xmit = 0;
 989        struct bpf_prog *xdp_prog = NULL;
 990        struct xdp_buff xdp;
 991        bool failure;
 992
 993        xdp.rxq = &rx_ring->xdp_rxq;
 994
 995        /* start the loop to process Rx packets bounded by 'budget' */
 996        while (likely(total_rx_pkts < (unsigned int)budget)) {
 997                union ice_32b_rx_flex_desc *rx_desc;
 998                struct ice_rx_buf *rx_buf;
 999                struct sk_buff *skb;
1000                unsigned int size;
1001                u16 stat_err_bits;
1002                u16 vlan_tag = 0;
1003                u8 rx_ptype;
1004
1005                /* get the Rx desc from Rx ring based on 'next_to_clean' */
1006                rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1007
1008                /* status_error_len will always be zero for unused descriptors
1009                 * because it's cleared in cleanup, and overlaps with hdr_addr
1010                 * which is always zero because packet split isn't used, if the
1011                 * hardware wrote DD then it will be non-zero
1012                 */
1013                stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1014                if (!ice_test_staterr(rx_desc, stat_err_bits))
1015                        break;
1016
1017                /* This memory barrier is needed to keep us from reading
1018                 * any other fields out of the rx_desc until we know the
1019                 * DD bit is set.
1020                 */
1021                dma_rmb();
1022
1023                size = le16_to_cpu(rx_desc->wb.pkt_len) &
1024                        ICE_RX_FLX_DESC_PKT_LEN_M;
1025
1026                /* retrieve a buffer from the ring */
1027                rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1028
1029                if (!size) {
1030                        xdp.data = NULL;
1031                        xdp.data_end = NULL;
1032                        xdp.data_hard_start = NULL;
1033                        xdp.data_meta = NULL;
1034                        goto construct_skb;
1035                }
1036
1037                xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1038                xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1039                xdp.data_meta = xdp.data;
1040                xdp.data_end = xdp.data + size;
1041
1042                rcu_read_lock();
1043                xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1044                if (!xdp_prog) {
1045                        rcu_read_unlock();
1046                        goto construct_skb;
1047                }
1048
1049                xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1050                rcu_read_unlock();
1051                if (!xdp_res)
1052                        goto construct_skb;
1053                if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1054                        unsigned int truesize;
1055
1056#if (PAGE_SIZE < 8192)
1057                        truesize = ice_rx_pg_size(rx_ring) / 2;
1058#else
1059                        truesize = SKB_DATA_ALIGN(ice_rx_offset(rx_ring) +
1060                                                  size);
1061#endif
1062                        xdp_xmit |= xdp_res;
1063                        ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1064                } else {
1065                        rx_buf->pagecnt_bias++;
1066                }
1067                total_rx_bytes += size;
1068                total_rx_pkts++;
1069
1070                cleaned_count++;
1071                ice_put_rx_buf(rx_ring, rx_buf);
1072                continue;
1073construct_skb:
1074                if (skb) {
1075                        ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1076                } else if (likely(xdp.data)) {
1077                        if (ice_ring_uses_build_skb(rx_ring))
1078                                skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1079                        else
1080                                skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1081                }
1082                /* exit if we failed to retrieve a buffer */
1083                if (!skb) {
1084                        rx_ring->rx_stats.alloc_buf_failed++;
1085                        if (rx_buf)
1086                                rx_buf->pagecnt_bias++;
1087                        break;
1088                }
1089
1090                ice_put_rx_buf(rx_ring, rx_buf);
1091                cleaned_count++;
1092
1093                /* skip if it is NOP desc */
1094                if (ice_is_non_eop(rx_ring, rx_desc, skb))
1095                        continue;
1096
1097                stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1098                if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1099                        dev_kfree_skb_any(skb);
1100                        continue;
1101                }
1102
1103                stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1104                if (ice_test_staterr(rx_desc, stat_err_bits))
1105                        vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1106
1107                /* pad the skb if needed, to make a valid ethernet frame */
1108                if (eth_skb_pad(skb)) {
1109                        skb = NULL;
1110                        continue;
1111                }
1112
1113                /* probably a little skewed due to removing CRC */
1114                total_rx_bytes += skb->len;
1115
1116                /* populate checksum, VLAN, and protocol */
1117                rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1118                        ICE_RX_FLEX_DESC_PTYPE_M;
1119
1120                ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1121
1122                /* send completed skb up the stack */
1123                ice_receive_skb(rx_ring, skb, vlan_tag);
1124
1125                /* update budget accounting */
1126                total_rx_pkts++;
1127        }
1128
1129        /* return up to cleaned_count buffers to hardware */
1130        failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1131
1132        if (xdp_prog)
1133                ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1134
1135        ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1136
1137        /* guarantee a trip back through this routine if there was a failure */
1138        return failure ? budget : (int)total_rx_pkts;
1139}
1140
1141/**
1142 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1143 * @port_info: port_info structure containing the current link speed
1144 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1145 * @itr: ITR value to update
1146 *
1147 * Calculate how big of an increment should be applied to the ITR value passed
1148 * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1149 * link speed.
1150 *
1151 * The following is a calculation derived from:
1152 *  wmem_default / (size + overhead) = desired_pkts_per_int
1153 *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1154 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1155 *
1156 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1157 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1158 * formula down to:
1159 *
1160 *       wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1161 * ITR = -------------------------------------------- * --------------
1162 *                           rate                       pkt_size + 640
1163 */
1164static unsigned int
1165ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1166                                 unsigned int avg_pkt_size,
1167                                 unsigned int itr)
1168{
1169        switch (port_info->phy.link_info.link_speed) {
1170        case ICE_AQ_LINK_SPEED_100GB:
1171                itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1172                                    avg_pkt_size + 640);
1173                break;
1174        case ICE_AQ_LINK_SPEED_50GB:
1175                itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1176                                    avg_pkt_size + 640);
1177                break;
1178        case ICE_AQ_LINK_SPEED_40GB:
1179                itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1180                                    avg_pkt_size + 640);
1181                break;
1182        case ICE_AQ_LINK_SPEED_25GB:
1183                itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1184                                    avg_pkt_size + 640);
1185                break;
1186        case ICE_AQ_LINK_SPEED_20GB:
1187                itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1188                                    avg_pkt_size + 640);
1189                break;
1190        case ICE_AQ_LINK_SPEED_10GB:
1191                /* fall through */
1192        default:
1193                itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1194                                    avg_pkt_size + 640);
1195                break;
1196        }
1197
1198        if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1199                itr &= ICE_ITR_ADAPTIVE_LATENCY;
1200                itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1201        }
1202
1203        return itr;
1204}
1205
1206/**
1207 * ice_update_itr - update the adaptive ITR value based on statistics
1208 * @q_vector: structure containing interrupt and ring information
1209 * @rc: structure containing ring performance data
1210 *
1211 * Stores a new ITR value based on packets and byte
1212 * counts during the last interrupt.  The advantage of per interrupt
1213 * computation is faster updates and more accurate ITR for the current
1214 * traffic pattern.  Constants in this function were computed
1215 * based on theoretical maximum wire speed and thresholds were set based
1216 * on testing data as well as attempting to minimize response time
1217 * while increasing bulk throughput.
1218 */
1219static void
1220ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1221{
1222        unsigned long next_update = jiffies;
1223        unsigned int packets, bytes, itr;
1224        bool container_is_rx;
1225
1226        if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1227                return;
1228
1229        /* If itr_countdown is set it means we programmed an ITR within
1230         * the last 4 interrupt cycles. This has a side effect of us
1231         * potentially firing an early interrupt. In order to work around
1232         * this we need to throw out any data received for a few
1233         * interrupts following the update.
1234         */
1235        if (q_vector->itr_countdown) {
1236                itr = rc->target_itr;
1237                goto clear_counts;
1238        }
1239
1240        container_is_rx = (&q_vector->rx == rc);
1241        /* For Rx we want to push the delay up and default to low latency.
1242         * for Tx we want to pull the delay down and default to high latency.
1243         */
1244        itr = container_is_rx ?
1245                ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1246                ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1247
1248        /* If we didn't update within up to 1 - 2 jiffies we can assume
1249         * that either packets are coming in so slow there hasn't been
1250         * any work, or that there is so much work that NAPI is dealing
1251         * with interrupt moderation and we don't need to do anything.
1252         */
1253        if (time_after(next_update, rc->next_update))
1254                goto clear_counts;
1255
1256        prefetch(q_vector->vsi->port_info);
1257
1258        packets = rc->total_pkts;
1259        bytes = rc->total_bytes;
1260
1261        if (container_is_rx) {
1262                /* If Rx there are 1 to 4 packets and bytes are less than
1263                 * 9000 assume insufficient data to use bulk rate limiting
1264                 * approach unless Tx is already in bulk rate limiting. We
1265                 * are likely latency driven.
1266                 */
1267                if (packets && packets < 4 && bytes < 9000 &&
1268                    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1269                        itr = ICE_ITR_ADAPTIVE_LATENCY;
1270                        goto adjust_by_size_and_speed;
1271                }
1272        } else if (packets < 4) {
1273                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1274                 * bulk mode and we are receiving 4 or fewer packets just
1275                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1276                 * that the Rx can relax.
1277                 */
1278                if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1279                    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1280                    ICE_ITR_ADAPTIVE_MAX_USECS)
1281                        goto clear_counts;
1282        } else if (packets > 32) {
1283                /* If we have processed over 32 packets in a single interrupt
1284                 * for Tx assume we need to switch over to "bulk" mode.
1285                 */
1286                rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1287        }
1288
1289        /* We have no packets to actually measure against. This means
1290         * either one of the other queues on this vector is active or
1291         * we are a Tx queue doing TSO with too high of an interrupt rate.
1292         *
1293         * Between 4 and 56 we can assume that our current interrupt delay
1294         * is only slightly too low. As such we should increase it by a small
1295         * fixed amount.
1296         */
1297        if (packets < 56) {
1298                itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1299                if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1300                        itr &= ICE_ITR_ADAPTIVE_LATENCY;
1301                        itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1302                }
1303                goto clear_counts;
1304        }
1305
1306        if (packets <= 256) {
1307                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1308                itr &= ICE_ITR_MASK;
1309
1310                /* Between 56 and 112 is our "goldilocks" zone where we are
1311                 * working out "just right". Just report that our current
1312                 * ITR is good for us.
1313                 */
1314                if (packets <= 112)
1315                        goto clear_counts;
1316
1317                /* If packet count is 128 or greater we are likely looking
1318                 * at a slight overrun of the delay we want. Try halving
1319                 * our delay to see if that will cut the number of packets
1320                 * in half per interrupt.
1321                 */
1322                itr >>= 1;
1323                itr &= ICE_ITR_MASK;
1324                if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1325                        itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1326
1327                goto clear_counts;
1328        }
1329
1330        /* The paths below assume we are dealing with a bulk ITR since
1331         * number of packets is greater than 256. We are just going to have
1332         * to compute a value and try to bring the count under control,
1333         * though for smaller packet sizes there isn't much we can do as
1334         * NAPI polling will likely be kicking in sooner rather than later.
1335         */
1336        itr = ICE_ITR_ADAPTIVE_BULK;
1337
1338adjust_by_size_and_speed:
1339
1340        /* based on checks above packets cannot be 0 so division is safe */
1341        itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1342                                               bytes / packets, itr);
1343
1344clear_counts:
1345        /* write back value */
1346        rc->target_itr = itr;
1347
1348        /* next update should occur within next jiffy */
1349        rc->next_update = next_update + 1;
1350
1351        rc->total_bytes = 0;
1352        rc->total_pkts = 0;
1353}
1354
1355/**
1356 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1357 * @itr_idx: interrupt throttling index
1358 * @itr: interrupt throttling value in usecs
1359 */
1360static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1361{
1362        /* The ITR value is reported in microseconds, and the register value is
1363         * recorded in 2 microsecond units. For this reason we only need to
1364         * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1365         * granularity as a shift instead of division. The mask makes sure the
1366         * ITR value is never odd so we don't accidentally write into the field
1367         * prior to the ITR field.
1368         */
1369        itr &= ICE_ITR_MASK;
1370
1371        return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1372                (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1373                (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1374}
1375
1376/* The act of updating the ITR will cause it to immediately trigger. In order
1377 * to prevent this from throwing off adaptive update statistics we defer the
1378 * update so that it can only happen so often. So after either Tx or Rx are
1379 * updated we make the adaptive scheme wait until either the ITR completely
1380 * expires via the next_update expiration or we have been through at least
1381 * 3 interrupts.
1382 */
1383#define ITR_COUNTDOWN_START 3
1384
1385/**
1386 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1387 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1388 */
1389static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1390{
1391        struct ice_ring_container *tx = &q_vector->tx;
1392        struct ice_ring_container *rx = &q_vector->rx;
1393        struct ice_vsi *vsi = q_vector->vsi;
1394        u32 itr_val;
1395
1396        /* when exiting WB_ON_ITR lets set a low ITR value and trigger
1397         * interrupts to expire right away in case we have more work ready to go
1398         * already
1399         */
1400        if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1401                itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1402                wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1403                /* set target back to last user set value */
1404                rx->target_itr = rx->itr_setting;
1405                /* set current to what we just wrote and dynamic if needed */
1406                rx->current_itr = ICE_WB_ON_ITR_USECS |
1407                        (rx->itr_setting & ICE_ITR_DYNAMIC);
1408                /* allow normal interrupt flow to start */
1409                q_vector->itr_countdown = 0;
1410                return;
1411        }
1412
1413        /* This will do nothing if dynamic updates are not enabled */
1414        ice_update_itr(q_vector, tx);
1415        ice_update_itr(q_vector, rx);
1416
1417        /* This block of logic allows us to get away with only updating
1418         * one ITR value with each interrupt. The idea is to perform a
1419         * pseudo-lazy update with the following criteria.
1420         *
1421         * 1. Rx is given higher priority than Tx if both are in same state
1422         * 2. If we must reduce an ITR that is given highest priority.
1423         * 3. We then give priority to increasing ITR based on amount.
1424         */
1425        if (rx->target_itr < rx->current_itr) {
1426                /* Rx ITR needs to be reduced, this is highest priority */
1427                itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1428                rx->current_itr = rx->target_itr;
1429                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1430        } else if ((tx->target_itr < tx->current_itr) ||
1431                   ((rx->target_itr - rx->current_itr) <
1432                    (tx->target_itr - tx->current_itr))) {
1433                /* Tx ITR needs to be reduced, this is second priority
1434                 * Tx ITR needs to be increased more than Rx, fourth priority
1435                 */
1436                itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1437                tx->current_itr = tx->target_itr;
1438                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1439        } else if (rx->current_itr != rx->target_itr) {
1440                /* Rx ITR needs to be increased, third priority */
1441                itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1442                rx->current_itr = rx->target_itr;
1443                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1444        } else {
1445                /* Still have to re-enable the interrupts */
1446                itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1447                if (q_vector->itr_countdown)
1448                        q_vector->itr_countdown--;
1449        }
1450
1451        if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1452                wr32(&q_vector->vsi->back->hw,
1453                     GLINT_DYN_CTL(q_vector->reg_idx),
1454                     itr_val);
1455}
1456
1457/**
1458 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1459 * @q_vector: q_vector to set WB_ON_ITR on
1460 *
1461 * We need to tell hardware to write-back completed descriptors even when
1462 * interrupts are disabled. Descriptors will be written back on cache line
1463 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1464 * descriptors may not be written back if they don't fill a cache line until the
1465 * next interrupt.
1466 *
1467 * This sets the write-back frequency to 2 microseconds as that is the minimum
1468 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1469 * make sure hardware knows we aren't meddling with the INTENA_M bit.
1470 */
1471static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1472{
1473        struct ice_vsi *vsi = q_vector->vsi;
1474
1475        /* already in WB_ON_ITR mode no need to change it */
1476        if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1477                return;
1478
1479        if (q_vector->num_ring_rx)
1480                wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1481                     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1482                                                 ICE_RX_ITR));
1483
1484        if (q_vector->num_ring_tx)
1485                wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1486                     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1487                                                 ICE_TX_ITR));
1488
1489        q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1490}
1491
1492/**
1493 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1494 * @napi: napi struct with our devices info in it
1495 * @budget: amount of work driver is allowed to do this pass, in packets
1496 *
1497 * This function will clean all queues associated with a q_vector.
1498 *
1499 * Returns the amount of work done
1500 */
1501int ice_napi_poll(struct napi_struct *napi, int budget)
1502{
1503        struct ice_q_vector *q_vector =
1504                                container_of(napi, struct ice_q_vector, napi);
1505        bool clean_complete = true;
1506        struct ice_ring *ring;
1507        int budget_per_ring;
1508        int work_done = 0;
1509
1510        /* Since the actual Tx work is minimal, we can give the Tx a larger
1511         * budget and be more aggressive about cleaning up the Tx descriptors.
1512         */
1513        ice_for_each_ring(ring, q_vector->tx) {
1514                bool wd = ring->xsk_umem ?
1515                          ice_clean_tx_irq_zc(ring, budget) :
1516                          ice_clean_tx_irq(ring, budget);
1517
1518                if (!wd)
1519                        clean_complete = false;
1520        }
1521
1522        /* Handle case where we are called by netpoll with a budget of 0 */
1523        if (unlikely(budget <= 0))
1524                return budget;
1525
1526        /* normally we have 1 Rx ring per q_vector */
1527        if (unlikely(q_vector->num_ring_rx > 1))
1528                /* We attempt to distribute budget to each Rx queue fairly, but
1529                 * don't allow the budget to go below 1 because that would exit
1530                 * polling early.
1531                 */
1532                budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1533        else
1534                /* Max of 1 Rx ring in this q_vector so give it the budget */
1535                budget_per_ring = budget;
1536
1537        ice_for_each_ring(ring, q_vector->rx) {
1538                int cleaned;
1539
1540                /* A dedicated path for zero-copy allows making a single
1541                 * comparison in the irq context instead of many inside the
1542                 * ice_clean_rx_irq function and makes the codebase cleaner.
1543                 */
1544                cleaned = ring->xsk_umem ?
1545                          ice_clean_rx_irq_zc(ring, budget_per_ring) :
1546                          ice_clean_rx_irq(ring, budget_per_ring);
1547                work_done += cleaned;
1548                /* if we clean as many as budgeted, we must not be done */
1549                if (cleaned >= budget_per_ring)
1550                        clean_complete = false;
1551        }
1552
1553        /* If work not completed, return budget and polling will return */
1554        if (!clean_complete)
1555                return budget;
1556
1557        /* Exit the polling mode, but don't re-enable interrupts if stack might
1558         * poll us due to busy-polling
1559         */
1560        if (likely(napi_complete_done(napi, work_done)))
1561                ice_update_ena_itr(q_vector);
1562        else
1563                ice_set_wb_on_itr(q_vector);
1564
1565        return min_t(int, work_done, budget - 1);
1566}
1567
1568/**
1569 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1570 * @tx_ring: the ring to be checked
1571 * @size: the size buffer we want to assure is available
1572 *
1573 * Returns -EBUSY if a stop is needed, else 0
1574 */
1575static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1576{
1577        netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1578        /* Memory barrier before checking head and tail */
1579        smp_mb();
1580
1581        /* Check again in a case another CPU has just made room available. */
1582        if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1583                return -EBUSY;
1584
1585        /* A reprieve! - use start_subqueue because it doesn't call schedule */
1586        netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1587        ++tx_ring->tx_stats.restart_q;
1588        return 0;
1589}
1590
1591/**
1592 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1593 * @tx_ring: the ring to be checked
1594 * @size:    the size buffer we want to assure is available
1595 *
1596 * Returns 0 if stop is not needed
1597 */
1598static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1599{
1600        if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1601                return 0;
1602
1603        return __ice_maybe_stop_tx(tx_ring, size);
1604}
1605
1606/**
1607 * ice_tx_map - Build the Tx descriptor
1608 * @tx_ring: ring to send buffer on
1609 * @first: first buffer info buffer to use
1610 * @off: pointer to struct that holds offload parameters
1611 *
1612 * This function loops over the skb data pointed to by *first
1613 * and gets a physical address for each memory location and programs
1614 * it and the length into the transmit descriptor.
1615 */
1616static void
1617ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1618           struct ice_tx_offload_params *off)
1619{
1620        u64 td_offset, td_tag, td_cmd;
1621        u16 i = tx_ring->next_to_use;
1622        unsigned int data_len, size;
1623        struct ice_tx_desc *tx_desc;
1624        struct ice_tx_buf *tx_buf;
1625        struct sk_buff *skb;
1626        skb_frag_t *frag;
1627        dma_addr_t dma;
1628
1629        td_tag = off->td_l2tag1;
1630        td_cmd = off->td_cmd;
1631        td_offset = off->td_offset;
1632        skb = first->skb;
1633
1634        data_len = skb->data_len;
1635        size = skb_headlen(skb);
1636
1637        tx_desc = ICE_TX_DESC(tx_ring, i);
1638
1639        if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1640                td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1641                td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1642                          ICE_TX_FLAGS_VLAN_S;
1643        }
1644
1645        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1646
1647        tx_buf = first;
1648
1649        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1650                unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1651
1652                if (dma_mapping_error(tx_ring->dev, dma))
1653                        goto dma_error;
1654
1655                /* record length, and DMA address */
1656                dma_unmap_len_set(tx_buf, len, size);
1657                dma_unmap_addr_set(tx_buf, dma, dma);
1658
1659                /* align size to end of page */
1660                max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1661                tx_desc->buf_addr = cpu_to_le64(dma);
1662
1663                /* account for data chunks larger than the hardware
1664                 * can handle
1665                 */
1666                while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1667                        tx_desc->cmd_type_offset_bsz =
1668                                build_ctob(td_cmd, td_offset, max_data, td_tag);
1669
1670                        tx_desc++;
1671                        i++;
1672
1673                        if (i == tx_ring->count) {
1674                                tx_desc = ICE_TX_DESC(tx_ring, 0);
1675                                i = 0;
1676                        }
1677
1678                        dma += max_data;
1679                        size -= max_data;
1680
1681                        max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1682                        tx_desc->buf_addr = cpu_to_le64(dma);
1683                }
1684
1685                if (likely(!data_len))
1686                        break;
1687
1688                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1689                                                          size, td_tag);
1690
1691                tx_desc++;
1692                i++;
1693
1694                if (i == tx_ring->count) {
1695                        tx_desc = ICE_TX_DESC(tx_ring, 0);
1696                        i = 0;
1697                }
1698
1699                size = skb_frag_size(frag);
1700                data_len -= size;
1701
1702                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1703                                       DMA_TO_DEVICE);
1704
1705                tx_buf = &tx_ring->tx_buf[i];
1706        }
1707
1708        /* record bytecount for BQL */
1709        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1710
1711        /* record SW timestamp if HW timestamp is not available */
1712        skb_tx_timestamp(first->skb);
1713
1714        i++;
1715        if (i == tx_ring->count)
1716                i = 0;
1717
1718        /* write last descriptor with RS and EOP bits */
1719        td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1720        tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size,
1721                                                  td_tag);
1722
1723        /* Force memory writes to complete before letting h/w know there
1724         * are new descriptors to fetch.
1725         *
1726         * We also use this memory barrier to make certain all of the
1727         * status bits have been updated before next_to_watch is written.
1728         */
1729        wmb();
1730
1731        /* set next_to_watch value indicating a packet is present */
1732        first->next_to_watch = tx_desc;
1733
1734        tx_ring->next_to_use = i;
1735
1736        ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1737
1738        /* notify HW of packet */
1739        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1740                writel(i, tx_ring->tail);
1741
1742        return;
1743
1744dma_error:
1745        /* clear DMA mappings for failed tx_buf map */
1746        for (;;) {
1747                tx_buf = &tx_ring->tx_buf[i];
1748                ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1749                if (tx_buf == first)
1750                        break;
1751                if (i == 0)
1752                        i = tx_ring->count;
1753                i--;
1754        }
1755
1756        tx_ring->next_to_use = i;
1757}
1758
1759/**
1760 * ice_tx_csum - Enable Tx checksum offloads
1761 * @first: pointer to the first descriptor
1762 * @off: pointer to struct that holds offload parameters
1763 *
1764 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1765 */
1766static
1767int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1768{
1769        u32 l4_len = 0, l3_len = 0, l2_len = 0;
1770        struct sk_buff *skb = first->skb;
1771        union {
1772                struct iphdr *v4;
1773                struct ipv6hdr *v6;
1774                unsigned char *hdr;
1775        } ip;
1776        union {
1777                struct tcphdr *tcp;
1778                unsigned char *hdr;
1779        } l4;
1780        __be16 frag_off, protocol;
1781        unsigned char *exthdr;
1782        u32 offset, cmd = 0;
1783        u8 l4_proto = 0;
1784
1785        if (skb->ip_summed != CHECKSUM_PARTIAL)
1786                return 0;
1787
1788        ip.hdr = skb_network_header(skb);
1789        l4.hdr = skb_transport_header(skb);
1790
1791        /* compute outer L2 header size */
1792        l2_len = ip.hdr - skb->data;
1793        offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1794
1795        if (skb->encapsulation)
1796                return -1;
1797
1798        /* Enable IP checksum offloads */
1799        protocol = vlan_get_protocol(skb);
1800        if (protocol == htons(ETH_P_IP)) {
1801                l4_proto = ip.v4->protocol;
1802                /* the stack computes the IP header already, the only time we
1803                 * need the hardware to recompute it is in the case of TSO.
1804                 */
1805                if (first->tx_flags & ICE_TX_FLAGS_TSO)
1806                        cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1807                else
1808                        cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1809
1810        } else if (protocol == htons(ETH_P_IPV6)) {
1811                cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1812                exthdr = ip.hdr + sizeof(*ip.v6);
1813                l4_proto = ip.v6->nexthdr;
1814                if (l4.hdr != exthdr)
1815                        ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1816                                         &frag_off);
1817        } else {
1818                return -1;
1819        }
1820
1821        /* compute inner L3 header size */
1822        l3_len = l4.hdr - ip.hdr;
1823        offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1824
1825        /* Enable L4 checksum offloads */
1826        switch (l4_proto) {
1827        case IPPROTO_TCP:
1828                /* enable checksum offloads */
1829                cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1830                l4_len = l4.tcp->doff;
1831                offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1832                break;
1833        case IPPROTO_UDP:
1834                /* enable UDP checksum offload */
1835                cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1836                l4_len = (sizeof(struct udphdr) >> 2);
1837                offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1838                break;
1839        case IPPROTO_SCTP:
1840                /* enable SCTP checksum offload */
1841                cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1842                l4_len = sizeof(struct sctphdr) >> 2;
1843                offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1844                break;
1845
1846        default:
1847                if (first->tx_flags & ICE_TX_FLAGS_TSO)
1848                        return -1;
1849                skb_checksum_help(skb);
1850                return 0;
1851        }
1852
1853        off->td_cmd |= cmd;
1854        off->td_offset |= offset;
1855        return 1;
1856}
1857
1858/**
1859 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1860 * @tx_ring: ring to send buffer on
1861 * @first: pointer to struct ice_tx_buf
1862 *
1863 * Checks the skb and set up correspondingly several generic transmit flags
1864 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1865 *
1866 * Returns error code indicate the frame should be dropped upon error and the
1867 * otherwise returns 0 to indicate the flags has been set properly.
1868 */
1869static int
1870ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1871{
1872        struct sk_buff *skb = first->skb;
1873        __be16 protocol = skb->protocol;
1874
1875        if (protocol == htons(ETH_P_8021Q) &&
1876            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1877                /* when HW VLAN acceleration is turned off by the user the
1878                 * stack sets the protocol to 8021q so that the driver
1879                 * can take any steps required to support the SW only
1880                 * VLAN handling. In our case the driver doesn't need
1881                 * to take any further steps so just set the protocol
1882                 * to the encapsulated ethertype.
1883                 */
1884                skb->protocol = vlan_get_protocol(skb);
1885                return 0;
1886        }
1887
1888        /* if we have a HW VLAN tag being added, default to the HW one */
1889        if (skb_vlan_tag_present(skb)) {
1890                first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1891                first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1892        } else if (protocol == htons(ETH_P_8021Q)) {
1893                struct vlan_hdr *vhdr, _vhdr;
1894
1895                /* for SW VLAN, check the next protocol and store the tag */
1896                vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1897                                                             sizeof(_vhdr),
1898                                                             &_vhdr);
1899                if (!vhdr)
1900                        return -EINVAL;
1901
1902                first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1903                                   ICE_TX_FLAGS_VLAN_S;
1904                first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1905        }
1906
1907        return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1908}
1909
1910/**
1911 * ice_tso - computes mss and TSO length to prepare for TSO
1912 * @first: pointer to struct ice_tx_buf
1913 * @off: pointer to struct that holds offload parameters
1914 *
1915 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1916 */
1917static
1918int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1919{
1920        struct sk_buff *skb = first->skb;
1921        union {
1922                struct iphdr *v4;
1923                struct ipv6hdr *v6;
1924                unsigned char *hdr;
1925        } ip;
1926        union {
1927                struct tcphdr *tcp;
1928                struct udphdr *udp;
1929                unsigned char *hdr;
1930        } l4;
1931        u64 cd_mss, cd_tso_len;
1932        u32 paylen, l4_start;
1933        int err;
1934
1935        if (skb->ip_summed != CHECKSUM_PARTIAL)
1936                return 0;
1937
1938        if (!skb_is_gso(skb))
1939                return 0;
1940
1941        err = skb_cow_head(skb, 0);
1942        if (err < 0)
1943                return err;
1944
1945        /* cppcheck-suppress unreadVariable */
1946        ip.hdr = skb_network_header(skb);
1947        l4.hdr = skb_transport_header(skb);
1948
1949        /* initialize outer IP header fields */
1950        if (ip.v4->version == 4) {
1951                ip.v4->tot_len = 0;
1952                ip.v4->check = 0;
1953        } else {
1954                ip.v6->payload_len = 0;
1955        }
1956
1957        /* determine offset of transport header */
1958        l4_start = l4.hdr - skb->data;
1959
1960        /* remove payload length from checksum */
1961        paylen = skb->len - l4_start;
1962
1963        if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1964                csum_replace_by_diff(&l4.udp->check,
1965                                     (__force __wsum)htonl(paylen));
1966                /* compute length of UDP segmentation header */
1967                off->header_len = sizeof(l4.udp) + l4_start;
1968        } else {
1969                csum_replace_by_diff(&l4.tcp->check,
1970                                     (__force __wsum)htonl(paylen));
1971                /* compute length of TCP segmentation header */
1972                off->header_len = (l4.tcp->doff * 4) + l4_start;
1973        }
1974
1975        /* update gso_segs and bytecount */
1976        first->gso_segs = skb_shinfo(skb)->gso_segs;
1977        first->bytecount += (first->gso_segs - 1) * off->header_len;
1978
1979        cd_tso_len = skb->len - off->header_len;
1980        cd_mss = skb_shinfo(skb)->gso_size;
1981
1982        /* record cdesc_qw1 with TSO parameters */
1983        off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1984                             (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1985                             (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1986                             (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1987        first->tx_flags |= ICE_TX_FLAGS_TSO;
1988        return 1;
1989}
1990
1991/**
1992 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1993 * @size: transmit request size in bytes
1994 *
1995 * Due to hardware alignment restrictions (4K alignment), we need to
1996 * assume that we can have no more than 12K of data per descriptor, even
1997 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1998 * Thus, we need to divide by 12K. But division is slow! Instead,
1999 * we decompose the operation into shifts and one relatively cheap
2000 * multiply operation.
2001 *
2002 * To divide by 12K, we first divide by 4K, then divide by 3:
2003 *     To divide by 4K, shift right by 12 bits
2004 *     To divide by 3, multiply by 85, then divide by 256
2005 *     (Divide by 256 is done by shifting right by 8 bits)
2006 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2007 * 3, we'll underestimate near each multiple of 12K. This is actually more
2008 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2009 * segment. For our purposes this is accurate out to 1M which is orders of
2010 * magnitude greater than our largest possible GSO size.
2011 *
2012 * This would then be implemented as:
2013 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2014 *
2015 * Since multiplication and division are commutative, we can reorder
2016 * operations into:
2017 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2018 */
2019static unsigned int ice_txd_use_count(unsigned int size)
2020{
2021        return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2022}
2023
2024/**
2025 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2026 * @skb: send buffer
2027 *
2028 * Returns number of data descriptors needed for this skb.
2029 */
2030static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2031{
2032        const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2033        unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2034        unsigned int count = 0, size = skb_headlen(skb);
2035
2036        for (;;) {
2037                count += ice_txd_use_count(size);
2038
2039                if (!nr_frags--)
2040                        break;
2041
2042                size = skb_frag_size(frag++);
2043        }
2044
2045        return count;
2046}
2047
2048/**
2049 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2050 * @skb: send buffer
2051 *
2052 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2053 * and so we need to figure out the cases where we need to linearize the skb.
2054 *
2055 * For TSO we need to count the TSO header and segment payload separately.
2056 * As such we need to check cases where we have 7 fragments or more as we
2057 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2058 * the segment payload in the first descriptor, and another 7 for the
2059 * fragments.
2060 */
2061static bool __ice_chk_linearize(struct sk_buff *skb)
2062{
2063        const skb_frag_t *frag, *stale;
2064        int nr_frags, sum;
2065
2066        /* no need to check if number of frags is less than 7 */
2067        nr_frags = skb_shinfo(skb)->nr_frags;
2068        if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2069                return false;
2070
2071        /* We need to walk through the list and validate that each group
2072         * of 6 fragments totals at least gso_size.
2073         */
2074        nr_frags -= ICE_MAX_BUF_TXD - 2;
2075        frag = &skb_shinfo(skb)->frags[0];
2076
2077        /* Initialize size to the negative value of gso_size minus 1. We
2078         * use this as the worst case scenario in which the frag ahead
2079         * of us only provides one byte which is why we are limited to 6
2080         * descriptors for a single transmit as the header and previous
2081         * fragment are already consuming 2 descriptors.
2082         */
2083        sum = 1 - skb_shinfo(skb)->gso_size;
2084
2085        /* Add size of frags 0 through 4 to create our initial sum */
2086        sum += skb_frag_size(frag++);
2087        sum += skb_frag_size(frag++);
2088        sum += skb_frag_size(frag++);
2089        sum += skb_frag_size(frag++);
2090        sum += skb_frag_size(frag++);
2091
2092        /* Walk through fragments adding latest fragment, testing it, and
2093         * then removing stale fragments from the sum.
2094         */
2095        stale = &skb_shinfo(skb)->frags[0];
2096        for (;;) {
2097                sum += skb_frag_size(frag++);
2098
2099                /* if sum is negative we failed to make sufficient progress */
2100                if (sum < 0)
2101                        return true;
2102
2103                if (!nr_frags--)
2104                        break;
2105
2106                sum -= skb_frag_size(stale++);
2107        }
2108
2109        return false;
2110}
2111
2112/**
2113 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2114 * @skb:      send buffer
2115 * @count:    number of buffers used
2116 *
2117 * Note: Our HW can't scatter-gather more than 8 fragments to build
2118 * a packet on the wire and so we need to figure out the cases where we
2119 * need to linearize the skb.
2120 */
2121static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2122{
2123        /* Both TSO and single send will work if count is less than 8 */
2124        if (likely(count < ICE_MAX_BUF_TXD))
2125                return false;
2126
2127        if (skb_is_gso(skb))
2128                return __ice_chk_linearize(skb);
2129
2130        /* we can support up to 8 data buffers for a single send */
2131        return count != ICE_MAX_BUF_TXD;
2132}
2133
2134/**
2135 * ice_xmit_frame_ring - Sends buffer on Tx ring
2136 * @skb: send buffer
2137 * @tx_ring: ring to send buffer on
2138 *
2139 * Returns NETDEV_TX_OK if sent, else an error code
2140 */
2141static netdev_tx_t
2142ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2143{
2144        struct ice_tx_offload_params offload = { 0 };
2145        struct ice_vsi *vsi = tx_ring->vsi;
2146        struct ice_tx_buf *first;
2147        unsigned int count;
2148        int tso, csum;
2149
2150        count = ice_xmit_desc_count(skb);
2151        if (ice_chk_linearize(skb, count)) {
2152                if (__skb_linearize(skb))
2153                        goto out_drop;
2154                count = ice_txd_use_count(skb->len);
2155                tx_ring->tx_stats.tx_linearize++;
2156        }
2157
2158        /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2159         *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2160         *       + 4 desc gap to avoid the cache line where head is,
2161         *       + 1 desc for context descriptor,
2162         * otherwise try next time
2163         */
2164        if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2165                              ICE_DESCS_FOR_CTX_DESC)) {
2166                tx_ring->tx_stats.tx_busy++;
2167                return NETDEV_TX_BUSY;
2168        }
2169
2170        offload.tx_ring = tx_ring;
2171
2172        /* record the location of the first descriptor for this packet */
2173        first = &tx_ring->tx_buf[tx_ring->next_to_use];
2174        first->skb = skb;
2175        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2176        first->gso_segs = 1;
2177        first->tx_flags = 0;
2178
2179        /* prepare the VLAN tagging flags for Tx */
2180        if (ice_tx_prepare_vlan_flags(tx_ring, first))
2181                goto out_drop;
2182
2183        /* set up TSO offload */
2184        tso = ice_tso(first, &offload);
2185        if (tso < 0)
2186                goto out_drop;
2187
2188        /* always set up Tx checksum offload */
2189        csum = ice_tx_csum(first, &offload);
2190        if (csum < 0)
2191                goto out_drop;
2192
2193        /* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2194        if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2195                     vsi->type == ICE_VSI_PF &&
2196                     vsi->port_info->is_sw_lldp))
2197                offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2198                                        ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2199                                        ICE_TXD_CTX_QW1_CMD_S);
2200
2201        if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2202                struct ice_tx_ctx_desc *cdesc;
2203                int i = tx_ring->next_to_use;
2204
2205                /* grab the next descriptor */
2206                cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2207                i++;
2208                tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2209
2210                /* setup context descriptor */
2211                cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2212                cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2213                cdesc->rsvd = cpu_to_le16(0);
2214                cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2215        }
2216
2217        ice_tx_map(tx_ring, first, &offload);
2218        return NETDEV_TX_OK;
2219
2220out_drop:
2221        dev_kfree_skb_any(skb);
2222        return NETDEV_TX_OK;
2223}
2224
2225/**
2226 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2227 * @skb: send buffer
2228 * @netdev: network interface device structure
2229 *
2230 * Returns NETDEV_TX_OK if sent, else an error code
2231 */
2232netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2233{
2234        struct ice_netdev_priv *np = netdev_priv(netdev);
2235        struct ice_vsi *vsi = np->vsi;
2236        struct ice_ring *tx_ring;
2237
2238        tx_ring = vsi->tx_rings[skb->queue_mapping];
2239
2240        /* hardware can't handle really short frames, hardware padding works
2241         * beyond this point
2242         */
2243        if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2244                return NETDEV_TX_OK;
2245
2246        return ice_xmit_frame_ring(skb, tx_ring);
2247}
2248