linux/drivers/net/phy/sfp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/acpi.h>
   3#include <linux/ctype.h>
   4#include <linux/delay.h>
   5#include <linux/gpio/consumer.h>
   6#include <linux/hwmon.h>
   7#include <linux/i2c.h>
   8#include <linux/interrupt.h>
   9#include <linux/jiffies.h>
  10#include <linux/module.h>
  11#include <linux/mutex.h>
  12#include <linux/of.h>
  13#include <linux/phy.h>
  14#include <linux/platform_device.h>
  15#include <linux/rtnetlink.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18
  19#include "mdio-i2c.h"
  20#include "sfp.h"
  21#include "swphy.h"
  22
  23enum {
  24        GPIO_MODDEF0,
  25        GPIO_LOS,
  26        GPIO_TX_FAULT,
  27        GPIO_TX_DISABLE,
  28        GPIO_RATE_SELECT,
  29        GPIO_MAX,
  30
  31        SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  32        SFP_F_LOS = BIT(GPIO_LOS),
  33        SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  34        SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  35        SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  36
  37        SFP_E_INSERT = 0,
  38        SFP_E_REMOVE,
  39        SFP_E_DEV_ATTACH,
  40        SFP_E_DEV_DETACH,
  41        SFP_E_DEV_DOWN,
  42        SFP_E_DEV_UP,
  43        SFP_E_TX_FAULT,
  44        SFP_E_TX_CLEAR,
  45        SFP_E_LOS_HIGH,
  46        SFP_E_LOS_LOW,
  47        SFP_E_TIMEOUT,
  48
  49        SFP_MOD_EMPTY = 0,
  50        SFP_MOD_ERROR,
  51        SFP_MOD_PROBE,
  52        SFP_MOD_WAITDEV,
  53        SFP_MOD_HPOWER,
  54        SFP_MOD_WAITPWR,
  55        SFP_MOD_PRESENT,
  56
  57        SFP_DEV_DETACHED = 0,
  58        SFP_DEV_DOWN,
  59        SFP_DEV_UP,
  60
  61        SFP_S_DOWN = 0,
  62        SFP_S_FAIL,
  63        SFP_S_WAIT,
  64        SFP_S_INIT,
  65        SFP_S_INIT_PHY,
  66        SFP_S_INIT_TX_FAULT,
  67        SFP_S_WAIT_LOS,
  68        SFP_S_LINK_UP,
  69        SFP_S_TX_FAULT,
  70        SFP_S_REINIT,
  71        SFP_S_TX_DISABLE,
  72};
  73
  74static const char  * const mod_state_strings[] = {
  75        [SFP_MOD_EMPTY] = "empty",
  76        [SFP_MOD_ERROR] = "error",
  77        [SFP_MOD_PROBE] = "probe",
  78        [SFP_MOD_WAITDEV] = "waitdev",
  79        [SFP_MOD_HPOWER] = "hpower",
  80        [SFP_MOD_WAITPWR] = "waitpwr",
  81        [SFP_MOD_PRESENT] = "present",
  82};
  83
  84static const char *mod_state_to_str(unsigned short mod_state)
  85{
  86        if (mod_state >= ARRAY_SIZE(mod_state_strings))
  87                return "Unknown module state";
  88        return mod_state_strings[mod_state];
  89}
  90
  91static const char * const dev_state_strings[] = {
  92        [SFP_DEV_DETACHED] = "detached",
  93        [SFP_DEV_DOWN] = "down",
  94        [SFP_DEV_UP] = "up",
  95};
  96
  97static const char *dev_state_to_str(unsigned short dev_state)
  98{
  99        if (dev_state >= ARRAY_SIZE(dev_state_strings))
 100                return "Unknown device state";
 101        return dev_state_strings[dev_state];
 102}
 103
 104static const char * const event_strings[] = {
 105        [SFP_E_INSERT] = "insert",
 106        [SFP_E_REMOVE] = "remove",
 107        [SFP_E_DEV_ATTACH] = "dev_attach",
 108        [SFP_E_DEV_DETACH] = "dev_detach",
 109        [SFP_E_DEV_DOWN] = "dev_down",
 110        [SFP_E_DEV_UP] = "dev_up",
 111        [SFP_E_TX_FAULT] = "tx_fault",
 112        [SFP_E_TX_CLEAR] = "tx_clear",
 113        [SFP_E_LOS_HIGH] = "los_high",
 114        [SFP_E_LOS_LOW] = "los_low",
 115        [SFP_E_TIMEOUT] = "timeout",
 116};
 117
 118static const char *event_to_str(unsigned short event)
 119{
 120        if (event >= ARRAY_SIZE(event_strings))
 121                return "Unknown event";
 122        return event_strings[event];
 123}
 124
 125static const char * const sm_state_strings[] = {
 126        [SFP_S_DOWN] = "down",
 127        [SFP_S_FAIL] = "fail",
 128        [SFP_S_WAIT] = "wait",
 129        [SFP_S_INIT] = "init",
 130        [SFP_S_INIT_PHY] = "init_phy",
 131        [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 132        [SFP_S_WAIT_LOS] = "wait_los",
 133        [SFP_S_LINK_UP] = "link_up",
 134        [SFP_S_TX_FAULT] = "tx_fault",
 135        [SFP_S_REINIT] = "reinit",
 136        [SFP_S_TX_DISABLE] = "rx_disable",
 137};
 138
 139static const char *sm_state_to_str(unsigned short sm_state)
 140{
 141        if (sm_state >= ARRAY_SIZE(sm_state_strings))
 142                return "Unknown state";
 143        return sm_state_strings[sm_state];
 144}
 145
 146static const char *gpio_of_names[] = {
 147        "mod-def0",
 148        "los",
 149        "tx-fault",
 150        "tx-disable",
 151        "rate-select0",
 152};
 153
 154static const enum gpiod_flags gpio_flags[] = {
 155        GPIOD_IN,
 156        GPIOD_IN,
 157        GPIOD_IN,
 158        GPIOD_ASIS,
 159        GPIOD_ASIS,
 160};
 161
 162/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 163 * non-cooled module to initialise its laser safety circuitry. We wait
 164 * an initial T_WAIT period before we check the tx fault to give any PHY
 165 * on board (for a copper SFP) time to initialise.
 166 */
 167#define T_WAIT                  msecs_to_jiffies(50)
 168#define T_START_UP              msecs_to_jiffies(300)
 169#define T_START_UP_BAD_GPON     msecs_to_jiffies(60000)
 170
 171/* t_reset is the time required to assert the TX_DISABLE signal to reset
 172 * an indicated TX_FAULT.
 173 */
 174#define T_RESET_US              10
 175#define T_FAULT_RECOVER         msecs_to_jiffies(1000)
 176
 177/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 178 * time. If the TX_FAULT signal is not deasserted after this number of
 179 * attempts at clearing it, we decide that the module is faulty.
 180 * N_FAULT is the same but after the module has initialised.
 181 */
 182#define N_FAULT_INIT            5
 183#define N_FAULT                 5
 184
 185/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 186 * R_PHY_RETRY is the number of attempts.
 187 */
 188#define T_PHY_RETRY             msecs_to_jiffies(50)
 189#define R_PHY_RETRY             12
 190
 191/* SFP module presence detection is poor: the three MOD DEF signals are
 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 193 * connect before the I2C bus on MOD DEF 1/2.
 194 *
 195 * The SFF-8472 specifies t_serial ("Time from power on until module is
 196 * ready for data transmission over the two wire serial bus.") as 300ms.
 197 */
 198#define T_SERIAL                msecs_to_jiffies(300)
 199#define T_HPOWER_LEVEL          msecs_to_jiffies(300)
 200#define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
 201#define R_PROBE_RETRY_INIT      10
 202#define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
 203#define R_PROBE_RETRY_SLOW      12
 204
 205/* SFP modules appear to always have their PHY configured for bus address
 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 207 */
 208#define SFP_PHY_ADDR    22
 209
 210struct sff_data {
 211        unsigned int gpios;
 212        bool (*module_supported)(const struct sfp_eeprom_id *id);
 213};
 214
 215struct sfp {
 216        struct device *dev;
 217        struct i2c_adapter *i2c;
 218        struct mii_bus *i2c_mii;
 219        struct sfp_bus *sfp_bus;
 220        struct phy_device *mod_phy;
 221        const struct sff_data *type;
 222        u32 max_power_mW;
 223
 224        unsigned int (*get_state)(struct sfp *);
 225        void (*set_state)(struct sfp *, unsigned int);
 226        int (*read)(struct sfp *, bool, u8, void *, size_t);
 227        int (*write)(struct sfp *, bool, u8, void *, size_t);
 228
 229        struct gpio_desc *gpio[GPIO_MAX];
 230        int gpio_irq[GPIO_MAX];
 231
 232        bool need_poll;
 233
 234        struct mutex st_mutex;                  /* Protects state */
 235        unsigned int state_soft_mask;
 236        unsigned int state;
 237        struct delayed_work poll;
 238        struct delayed_work timeout;
 239        struct mutex sm_mutex;                  /* Protects state machine */
 240        unsigned char sm_mod_state;
 241        unsigned char sm_mod_tries_init;
 242        unsigned char sm_mod_tries;
 243        unsigned char sm_dev_state;
 244        unsigned short sm_state;
 245        unsigned char sm_fault_retries;
 246        unsigned char sm_phy_retries;
 247
 248        struct sfp_eeprom_id id;
 249        unsigned int module_power_mW;
 250        unsigned int module_t_start_up;
 251
 252#if IS_ENABLED(CONFIG_HWMON)
 253        struct sfp_diag diag;
 254        struct delayed_work hwmon_probe;
 255        unsigned int hwmon_tries;
 256        struct device *hwmon_dev;
 257        char *hwmon_name;
 258#endif
 259
 260};
 261
 262static bool sff_module_supported(const struct sfp_eeprom_id *id)
 263{
 264        return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 265               id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 266}
 267
 268static const struct sff_data sff_data = {
 269        .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 270        .module_supported = sff_module_supported,
 271};
 272
 273static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 274{
 275        return id->base.phys_id == SFF8024_ID_SFP &&
 276               id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 277}
 278
 279static const struct sff_data sfp_data = {
 280        .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 281                 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 282        .module_supported = sfp_module_supported,
 283};
 284
 285static const struct of_device_id sfp_of_match[] = {
 286        { .compatible = "sff,sff", .data = &sff_data, },
 287        { .compatible = "sff,sfp", .data = &sfp_data, },
 288        { },
 289};
 290MODULE_DEVICE_TABLE(of, sfp_of_match);
 291
 292static unsigned long poll_jiffies;
 293
 294static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 295{
 296        unsigned int i, state, v;
 297
 298        for (i = state = 0; i < GPIO_MAX; i++) {
 299                if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 300                        continue;
 301
 302                v = gpiod_get_value_cansleep(sfp->gpio[i]);
 303                if (v)
 304                        state |= BIT(i);
 305        }
 306
 307        return state;
 308}
 309
 310static unsigned int sff_gpio_get_state(struct sfp *sfp)
 311{
 312        return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 313}
 314
 315static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 316{
 317        if (state & SFP_F_PRESENT) {
 318                /* If the module is present, drive the signals */
 319                if (sfp->gpio[GPIO_TX_DISABLE])
 320                        gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 321                                               state & SFP_F_TX_DISABLE);
 322                if (state & SFP_F_RATE_SELECT)
 323                        gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 324                                               state & SFP_F_RATE_SELECT);
 325        } else {
 326                /* Otherwise, let them float to the pull-ups */
 327                if (sfp->gpio[GPIO_TX_DISABLE])
 328                        gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 329                if (state & SFP_F_RATE_SELECT)
 330                        gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 331        }
 332}
 333
 334static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 335                        size_t len)
 336{
 337        struct i2c_msg msgs[2];
 338        u8 bus_addr = a2 ? 0x51 : 0x50;
 339        size_t this_len;
 340        int ret;
 341
 342        msgs[0].addr = bus_addr;
 343        msgs[0].flags = 0;
 344        msgs[0].len = 1;
 345        msgs[0].buf = &dev_addr;
 346        msgs[1].addr = bus_addr;
 347        msgs[1].flags = I2C_M_RD;
 348        msgs[1].len = len;
 349        msgs[1].buf = buf;
 350
 351        while (len) {
 352                this_len = len;
 353                if (this_len > 16)
 354                        this_len = 16;
 355
 356                msgs[1].len = this_len;
 357
 358                ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 359                if (ret < 0)
 360                        return ret;
 361
 362                if (ret != ARRAY_SIZE(msgs))
 363                        break;
 364
 365                msgs[1].buf += this_len;
 366                dev_addr += this_len;
 367                len -= this_len;
 368        }
 369
 370        return msgs[1].buf - (u8 *)buf;
 371}
 372
 373static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 374        size_t len)
 375{
 376        struct i2c_msg msgs[1];
 377        u8 bus_addr = a2 ? 0x51 : 0x50;
 378        int ret;
 379
 380        msgs[0].addr = bus_addr;
 381        msgs[0].flags = 0;
 382        msgs[0].len = 1 + len;
 383        msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 384        if (!msgs[0].buf)
 385                return -ENOMEM;
 386
 387        msgs[0].buf[0] = dev_addr;
 388        memcpy(&msgs[0].buf[1], buf, len);
 389
 390        ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 391
 392        kfree(msgs[0].buf);
 393
 394        if (ret < 0)
 395                return ret;
 396
 397        return ret == ARRAY_SIZE(msgs) ? len : 0;
 398}
 399
 400static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 401{
 402        struct mii_bus *i2c_mii;
 403        int ret;
 404
 405        if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 406                return -EINVAL;
 407
 408        sfp->i2c = i2c;
 409        sfp->read = sfp_i2c_read;
 410        sfp->write = sfp_i2c_write;
 411
 412        i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
 413        if (IS_ERR(i2c_mii))
 414                return PTR_ERR(i2c_mii);
 415
 416        i2c_mii->name = "SFP I2C Bus";
 417        i2c_mii->phy_mask = ~0;
 418
 419        ret = mdiobus_register(i2c_mii);
 420        if (ret < 0) {
 421                mdiobus_free(i2c_mii);
 422                return ret;
 423        }
 424
 425        sfp->i2c_mii = i2c_mii;
 426
 427        return 0;
 428}
 429
 430/* Interface */
 431static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 432{
 433        return sfp->read(sfp, a2, addr, buf, len);
 434}
 435
 436static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 437{
 438        return sfp->write(sfp, a2, addr, buf, len);
 439}
 440
 441static unsigned int sfp_soft_get_state(struct sfp *sfp)
 442{
 443        unsigned int state = 0;
 444        u8 status;
 445        int ret;
 446
 447        ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 448        if (ret == sizeof(status)) {
 449                if (status & SFP_STATUS_RX_LOS)
 450                        state |= SFP_F_LOS;
 451                if (status & SFP_STATUS_TX_FAULT)
 452                        state |= SFP_F_TX_FAULT;
 453        } else {
 454                dev_err_ratelimited(sfp->dev,
 455                                    "failed to read SFP soft status: %d\n",
 456                                    ret);
 457                /* Preserve the current state */
 458                state = sfp->state;
 459        }
 460
 461        return state & sfp->state_soft_mask;
 462}
 463
 464static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
 465{
 466        u8 status;
 467
 468        if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
 469                     sizeof(status)) {
 470                if (state & SFP_F_TX_DISABLE)
 471                        status |= SFP_STATUS_TX_DISABLE_FORCE;
 472                else
 473                        status &= ~SFP_STATUS_TX_DISABLE_FORCE;
 474
 475                sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
 476        }
 477}
 478
 479static void sfp_soft_start_poll(struct sfp *sfp)
 480{
 481        const struct sfp_eeprom_id *id = &sfp->id;
 482
 483        sfp->state_soft_mask = 0;
 484        if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
 485            !sfp->gpio[GPIO_TX_DISABLE])
 486                sfp->state_soft_mask |= SFP_F_TX_DISABLE;
 487        if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
 488            !sfp->gpio[GPIO_TX_FAULT])
 489                sfp->state_soft_mask |= SFP_F_TX_FAULT;
 490        if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
 491            !sfp->gpio[GPIO_LOS])
 492                sfp->state_soft_mask |= SFP_F_LOS;
 493
 494        if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 495            !sfp->need_poll)
 496                mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 497}
 498
 499static void sfp_soft_stop_poll(struct sfp *sfp)
 500{
 501        sfp->state_soft_mask = 0;
 502}
 503
 504static unsigned int sfp_get_state(struct sfp *sfp)
 505{
 506        unsigned int state = sfp->get_state(sfp);
 507
 508        if (state & SFP_F_PRESENT &&
 509            sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
 510                state |= sfp_soft_get_state(sfp);
 511
 512        return state;
 513}
 514
 515static void sfp_set_state(struct sfp *sfp, unsigned int state)
 516{
 517        sfp->set_state(sfp, state);
 518
 519        if (state & SFP_F_PRESENT &&
 520            sfp->state_soft_mask & SFP_F_TX_DISABLE)
 521                sfp_soft_set_state(sfp, state);
 522}
 523
 524static unsigned int sfp_check(void *buf, size_t len)
 525{
 526        u8 *p, check;
 527
 528        for (p = buf, check = 0; len; p++, len--)
 529                check += *p;
 530
 531        return check;
 532}
 533
 534/* hwmon */
 535#if IS_ENABLED(CONFIG_HWMON)
 536static umode_t sfp_hwmon_is_visible(const void *data,
 537                                    enum hwmon_sensor_types type,
 538                                    u32 attr, int channel)
 539{
 540        const struct sfp *sfp = data;
 541
 542        switch (type) {
 543        case hwmon_temp:
 544                switch (attr) {
 545                case hwmon_temp_min_alarm:
 546                case hwmon_temp_max_alarm:
 547                case hwmon_temp_lcrit_alarm:
 548                case hwmon_temp_crit_alarm:
 549                case hwmon_temp_min:
 550                case hwmon_temp_max:
 551                case hwmon_temp_lcrit:
 552                case hwmon_temp_crit:
 553                        if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 554                                return 0;
 555                        /* fall through */
 556                case hwmon_temp_input:
 557                case hwmon_temp_label:
 558                        return 0444;
 559                default:
 560                        return 0;
 561                }
 562        case hwmon_in:
 563                switch (attr) {
 564                case hwmon_in_min_alarm:
 565                case hwmon_in_max_alarm:
 566                case hwmon_in_lcrit_alarm:
 567                case hwmon_in_crit_alarm:
 568                case hwmon_in_min:
 569                case hwmon_in_max:
 570                case hwmon_in_lcrit:
 571                case hwmon_in_crit:
 572                        if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 573                                return 0;
 574                        /* fall through */
 575                case hwmon_in_input:
 576                case hwmon_in_label:
 577                        return 0444;
 578                default:
 579                        return 0;
 580                }
 581        case hwmon_curr:
 582                switch (attr) {
 583                case hwmon_curr_min_alarm:
 584                case hwmon_curr_max_alarm:
 585                case hwmon_curr_lcrit_alarm:
 586                case hwmon_curr_crit_alarm:
 587                case hwmon_curr_min:
 588                case hwmon_curr_max:
 589                case hwmon_curr_lcrit:
 590                case hwmon_curr_crit:
 591                        if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 592                                return 0;
 593                        /* fall through */
 594                case hwmon_curr_input:
 595                case hwmon_curr_label:
 596                        return 0444;
 597                default:
 598                        return 0;
 599                }
 600        case hwmon_power:
 601                /* External calibration of receive power requires
 602                 * floating point arithmetic. Doing that in the kernel
 603                 * is not easy, so just skip it. If the module does
 604                 * not require external calibration, we can however
 605                 * show receiver power, since FP is then not needed.
 606                 */
 607                if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 608                    channel == 1)
 609                        return 0;
 610                switch (attr) {
 611                case hwmon_power_min_alarm:
 612                case hwmon_power_max_alarm:
 613                case hwmon_power_lcrit_alarm:
 614                case hwmon_power_crit_alarm:
 615                case hwmon_power_min:
 616                case hwmon_power_max:
 617                case hwmon_power_lcrit:
 618                case hwmon_power_crit:
 619                        if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 620                                return 0;
 621                        /* fall through */
 622                case hwmon_power_input:
 623                case hwmon_power_label:
 624                        return 0444;
 625                default:
 626                        return 0;
 627                }
 628        default:
 629                return 0;
 630        }
 631}
 632
 633static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 634{
 635        __be16 val;
 636        int err;
 637
 638        err = sfp_read(sfp, true, reg, &val, sizeof(val));
 639        if (err < 0)
 640                return err;
 641
 642        *value = be16_to_cpu(val);
 643
 644        return 0;
 645}
 646
 647static void sfp_hwmon_to_rx_power(long *value)
 648{
 649        *value = DIV_ROUND_CLOSEST(*value, 10);
 650}
 651
 652static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 653                                long *value)
 654{
 655        if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 656                *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 657}
 658
 659static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 660{
 661        sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 662                            be16_to_cpu(sfp->diag.cal_t_offset), value);
 663
 664        if (*value >= 0x8000)
 665                *value -= 0x10000;
 666
 667        *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 668}
 669
 670static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 671{
 672        sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 673                            be16_to_cpu(sfp->diag.cal_v_offset), value);
 674
 675        *value = DIV_ROUND_CLOSEST(*value, 10);
 676}
 677
 678static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 679{
 680        sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 681                            be16_to_cpu(sfp->diag.cal_txi_offset), value);
 682
 683        *value = DIV_ROUND_CLOSEST(*value, 500);
 684}
 685
 686static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 687{
 688        sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 689                            be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 690
 691        *value = DIV_ROUND_CLOSEST(*value, 10);
 692}
 693
 694static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 695{
 696        int err;
 697
 698        err = sfp_hwmon_read_sensor(sfp, reg, value);
 699        if (err < 0)
 700                return err;
 701
 702        sfp_hwmon_calibrate_temp(sfp, value);
 703
 704        return 0;
 705}
 706
 707static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 708{
 709        int err;
 710
 711        err = sfp_hwmon_read_sensor(sfp, reg, value);
 712        if (err < 0)
 713                return err;
 714
 715        sfp_hwmon_calibrate_vcc(sfp, value);
 716
 717        return 0;
 718}
 719
 720static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 721{
 722        int err;
 723
 724        err = sfp_hwmon_read_sensor(sfp, reg, value);
 725        if (err < 0)
 726                return err;
 727
 728        sfp_hwmon_calibrate_bias(sfp, value);
 729
 730        return 0;
 731}
 732
 733static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 734{
 735        int err;
 736
 737        err = sfp_hwmon_read_sensor(sfp, reg, value);
 738        if (err < 0)
 739                return err;
 740
 741        sfp_hwmon_calibrate_tx_power(sfp, value);
 742
 743        return 0;
 744}
 745
 746static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 747{
 748        int err;
 749
 750        err = sfp_hwmon_read_sensor(sfp, reg, value);
 751        if (err < 0)
 752                return err;
 753
 754        sfp_hwmon_to_rx_power(value);
 755
 756        return 0;
 757}
 758
 759static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 760{
 761        u8 status;
 762        int err;
 763
 764        switch (attr) {
 765        case hwmon_temp_input:
 766                return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 767
 768        case hwmon_temp_lcrit:
 769                *value = be16_to_cpu(sfp->diag.temp_low_alarm);
 770                sfp_hwmon_calibrate_temp(sfp, value);
 771                return 0;
 772
 773        case hwmon_temp_min:
 774                *value = be16_to_cpu(sfp->diag.temp_low_warn);
 775                sfp_hwmon_calibrate_temp(sfp, value);
 776                return 0;
 777        case hwmon_temp_max:
 778                *value = be16_to_cpu(sfp->diag.temp_high_warn);
 779                sfp_hwmon_calibrate_temp(sfp, value);
 780                return 0;
 781
 782        case hwmon_temp_crit:
 783                *value = be16_to_cpu(sfp->diag.temp_high_alarm);
 784                sfp_hwmon_calibrate_temp(sfp, value);
 785                return 0;
 786
 787        case hwmon_temp_lcrit_alarm:
 788                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 789                if (err < 0)
 790                        return err;
 791
 792                *value = !!(status & SFP_ALARM0_TEMP_LOW);
 793                return 0;
 794
 795        case hwmon_temp_min_alarm:
 796                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 797                if (err < 0)
 798                        return err;
 799
 800                *value = !!(status & SFP_WARN0_TEMP_LOW);
 801                return 0;
 802
 803        case hwmon_temp_max_alarm:
 804                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 805                if (err < 0)
 806                        return err;
 807
 808                *value = !!(status & SFP_WARN0_TEMP_HIGH);
 809                return 0;
 810
 811        case hwmon_temp_crit_alarm:
 812                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 813                if (err < 0)
 814                        return err;
 815
 816                *value = !!(status & SFP_ALARM0_TEMP_HIGH);
 817                return 0;
 818        default:
 819                return -EOPNOTSUPP;
 820        }
 821
 822        return -EOPNOTSUPP;
 823}
 824
 825static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
 826{
 827        u8 status;
 828        int err;
 829
 830        switch (attr) {
 831        case hwmon_in_input:
 832                return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
 833
 834        case hwmon_in_lcrit:
 835                *value = be16_to_cpu(sfp->diag.volt_low_alarm);
 836                sfp_hwmon_calibrate_vcc(sfp, value);
 837                return 0;
 838
 839        case hwmon_in_min:
 840                *value = be16_to_cpu(sfp->diag.volt_low_warn);
 841                sfp_hwmon_calibrate_vcc(sfp, value);
 842                return 0;
 843
 844        case hwmon_in_max:
 845                *value = be16_to_cpu(sfp->diag.volt_high_warn);
 846                sfp_hwmon_calibrate_vcc(sfp, value);
 847                return 0;
 848
 849        case hwmon_in_crit:
 850                *value = be16_to_cpu(sfp->diag.volt_high_alarm);
 851                sfp_hwmon_calibrate_vcc(sfp, value);
 852                return 0;
 853
 854        case hwmon_in_lcrit_alarm:
 855                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 856                if (err < 0)
 857                        return err;
 858
 859                *value = !!(status & SFP_ALARM0_VCC_LOW);
 860                return 0;
 861
 862        case hwmon_in_min_alarm:
 863                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 864                if (err < 0)
 865                        return err;
 866
 867                *value = !!(status & SFP_WARN0_VCC_LOW);
 868                return 0;
 869
 870        case hwmon_in_max_alarm:
 871                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 872                if (err < 0)
 873                        return err;
 874
 875                *value = !!(status & SFP_WARN0_VCC_HIGH);
 876                return 0;
 877
 878        case hwmon_in_crit_alarm:
 879                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 880                if (err < 0)
 881                        return err;
 882
 883                *value = !!(status & SFP_ALARM0_VCC_HIGH);
 884                return 0;
 885        default:
 886                return -EOPNOTSUPP;
 887        }
 888
 889        return -EOPNOTSUPP;
 890}
 891
 892static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
 893{
 894        u8 status;
 895        int err;
 896
 897        switch (attr) {
 898        case hwmon_curr_input:
 899                return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
 900
 901        case hwmon_curr_lcrit:
 902                *value = be16_to_cpu(sfp->diag.bias_low_alarm);
 903                sfp_hwmon_calibrate_bias(sfp, value);
 904                return 0;
 905
 906        case hwmon_curr_min:
 907                *value = be16_to_cpu(sfp->diag.bias_low_warn);
 908                sfp_hwmon_calibrate_bias(sfp, value);
 909                return 0;
 910
 911        case hwmon_curr_max:
 912                *value = be16_to_cpu(sfp->diag.bias_high_warn);
 913                sfp_hwmon_calibrate_bias(sfp, value);
 914                return 0;
 915
 916        case hwmon_curr_crit:
 917                *value = be16_to_cpu(sfp->diag.bias_high_alarm);
 918                sfp_hwmon_calibrate_bias(sfp, value);
 919                return 0;
 920
 921        case hwmon_curr_lcrit_alarm:
 922                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 923                if (err < 0)
 924                        return err;
 925
 926                *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
 927                return 0;
 928
 929        case hwmon_curr_min_alarm:
 930                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 931                if (err < 0)
 932                        return err;
 933
 934                *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
 935                return 0;
 936
 937        case hwmon_curr_max_alarm:
 938                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 939                if (err < 0)
 940                        return err;
 941
 942                *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
 943                return 0;
 944
 945        case hwmon_curr_crit_alarm:
 946                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 947                if (err < 0)
 948                        return err;
 949
 950                *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
 951                return 0;
 952        default:
 953                return -EOPNOTSUPP;
 954        }
 955
 956        return -EOPNOTSUPP;
 957}
 958
 959static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
 960{
 961        u8 status;
 962        int err;
 963
 964        switch (attr) {
 965        case hwmon_power_input:
 966                return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
 967
 968        case hwmon_power_lcrit:
 969                *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
 970                sfp_hwmon_calibrate_tx_power(sfp, value);
 971                return 0;
 972
 973        case hwmon_power_min:
 974                *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
 975                sfp_hwmon_calibrate_tx_power(sfp, value);
 976                return 0;
 977
 978        case hwmon_power_max:
 979                *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
 980                sfp_hwmon_calibrate_tx_power(sfp, value);
 981                return 0;
 982
 983        case hwmon_power_crit:
 984                *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
 985                sfp_hwmon_calibrate_tx_power(sfp, value);
 986                return 0;
 987
 988        case hwmon_power_lcrit_alarm:
 989                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 990                if (err < 0)
 991                        return err;
 992
 993                *value = !!(status & SFP_ALARM0_TXPWR_LOW);
 994                return 0;
 995
 996        case hwmon_power_min_alarm:
 997                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 998                if (err < 0)
 999                        return err;
1000
1001                *value = !!(status & SFP_WARN0_TXPWR_LOW);
1002                return 0;
1003
1004        case hwmon_power_max_alarm:
1005                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1006                if (err < 0)
1007                        return err;
1008
1009                *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1010                return 0;
1011
1012        case hwmon_power_crit_alarm:
1013                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1014                if (err < 0)
1015                        return err;
1016
1017                *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1018                return 0;
1019        default:
1020                return -EOPNOTSUPP;
1021        }
1022
1023        return -EOPNOTSUPP;
1024}
1025
1026static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1027{
1028        u8 status;
1029        int err;
1030
1031        switch (attr) {
1032        case hwmon_power_input:
1033                return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1034
1035        case hwmon_power_lcrit:
1036                *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1037                sfp_hwmon_to_rx_power(value);
1038                return 0;
1039
1040        case hwmon_power_min:
1041                *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1042                sfp_hwmon_to_rx_power(value);
1043                return 0;
1044
1045        case hwmon_power_max:
1046                *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1047                sfp_hwmon_to_rx_power(value);
1048                return 0;
1049
1050        case hwmon_power_crit:
1051                *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1052                sfp_hwmon_to_rx_power(value);
1053                return 0;
1054
1055        case hwmon_power_lcrit_alarm:
1056                err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1057                if (err < 0)
1058                        return err;
1059
1060                *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1061                return 0;
1062
1063        case hwmon_power_min_alarm:
1064                err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1065                if (err < 0)
1066                        return err;
1067
1068                *value = !!(status & SFP_WARN1_RXPWR_LOW);
1069                return 0;
1070
1071        case hwmon_power_max_alarm:
1072                err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1073                if (err < 0)
1074                        return err;
1075
1076                *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1077                return 0;
1078
1079        case hwmon_power_crit_alarm:
1080                err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1081                if (err < 0)
1082                        return err;
1083
1084                *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1085                return 0;
1086        default:
1087                return -EOPNOTSUPP;
1088        }
1089
1090        return -EOPNOTSUPP;
1091}
1092
1093static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1094                          u32 attr, int channel, long *value)
1095{
1096        struct sfp *sfp = dev_get_drvdata(dev);
1097
1098        switch (type) {
1099        case hwmon_temp:
1100                return sfp_hwmon_temp(sfp, attr, value);
1101        case hwmon_in:
1102                return sfp_hwmon_vcc(sfp, attr, value);
1103        case hwmon_curr:
1104                return sfp_hwmon_bias(sfp, attr, value);
1105        case hwmon_power:
1106                switch (channel) {
1107                case 0:
1108                        return sfp_hwmon_tx_power(sfp, attr, value);
1109                case 1:
1110                        return sfp_hwmon_rx_power(sfp, attr, value);
1111                default:
1112                        return -EOPNOTSUPP;
1113                }
1114        default:
1115                return -EOPNOTSUPP;
1116        }
1117}
1118
1119static const char *const sfp_hwmon_power_labels[] = {
1120        "TX_power",
1121        "RX_power",
1122};
1123
1124static int sfp_hwmon_read_string(struct device *dev,
1125                                 enum hwmon_sensor_types type,
1126                                 u32 attr, int channel, const char **str)
1127{
1128        switch (type) {
1129        case hwmon_curr:
1130                switch (attr) {
1131                case hwmon_curr_label:
1132                        *str = "bias";
1133                        return 0;
1134                default:
1135                        return -EOPNOTSUPP;
1136                }
1137                break;
1138        case hwmon_temp:
1139                switch (attr) {
1140                case hwmon_temp_label:
1141                        *str = "temperature";
1142                        return 0;
1143                default:
1144                        return -EOPNOTSUPP;
1145                }
1146                break;
1147        case hwmon_in:
1148                switch (attr) {
1149                case hwmon_in_label:
1150                        *str = "VCC";
1151                        return 0;
1152                default:
1153                        return -EOPNOTSUPP;
1154                }
1155                break;
1156        case hwmon_power:
1157                switch (attr) {
1158                case hwmon_power_label:
1159                        *str = sfp_hwmon_power_labels[channel];
1160                        return 0;
1161                default:
1162                        return -EOPNOTSUPP;
1163                }
1164                break;
1165        default:
1166                return -EOPNOTSUPP;
1167        }
1168
1169        return -EOPNOTSUPP;
1170}
1171
1172static const struct hwmon_ops sfp_hwmon_ops = {
1173        .is_visible = sfp_hwmon_is_visible,
1174        .read = sfp_hwmon_read,
1175        .read_string = sfp_hwmon_read_string,
1176};
1177
1178static u32 sfp_hwmon_chip_config[] = {
1179        HWMON_C_REGISTER_TZ,
1180        0,
1181};
1182
1183static const struct hwmon_channel_info sfp_hwmon_chip = {
1184        .type = hwmon_chip,
1185        .config = sfp_hwmon_chip_config,
1186};
1187
1188static u32 sfp_hwmon_temp_config[] = {
1189        HWMON_T_INPUT |
1190        HWMON_T_MAX | HWMON_T_MIN |
1191        HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1192        HWMON_T_CRIT | HWMON_T_LCRIT |
1193        HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1194        HWMON_T_LABEL,
1195        0,
1196};
1197
1198static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1199        .type = hwmon_temp,
1200        .config = sfp_hwmon_temp_config,
1201};
1202
1203static u32 sfp_hwmon_vcc_config[] = {
1204        HWMON_I_INPUT |
1205        HWMON_I_MAX | HWMON_I_MIN |
1206        HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1207        HWMON_I_CRIT | HWMON_I_LCRIT |
1208        HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1209        HWMON_I_LABEL,
1210        0,
1211};
1212
1213static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1214        .type = hwmon_in,
1215        .config = sfp_hwmon_vcc_config,
1216};
1217
1218static u32 sfp_hwmon_bias_config[] = {
1219        HWMON_C_INPUT |
1220        HWMON_C_MAX | HWMON_C_MIN |
1221        HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1222        HWMON_C_CRIT | HWMON_C_LCRIT |
1223        HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1224        HWMON_C_LABEL,
1225        0,
1226};
1227
1228static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1229        .type = hwmon_curr,
1230        .config = sfp_hwmon_bias_config,
1231};
1232
1233static u32 sfp_hwmon_power_config[] = {
1234        /* Transmit power */
1235        HWMON_P_INPUT |
1236        HWMON_P_MAX | HWMON_P_MIN |
1237        HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1238        HWMON_P_CRIT | HWMON_P_LCRIT |
1239        HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1240        HWMON_P_LABEL,
1241        /* Receive power */
1242        HWMON_P_INPUT |
1243        HWMON_P_MAX | HWMON_P_MIN |
1244        HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1245        HWMON_P_CRIT | HWMON_P_LCRIT |
1246        HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1247        HWMON_P_LABEL,
1248        0,
1249};
1250
1251static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1252        .type = hwmon_power,
1253        .config = sfp_hwmon_power_config,
1254};
1255
1256static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1257        &sfp_hwmon_chip,
1258        &sfp_hwmon_vcc_channel_info,
1259        &sfp_hwmon_temp_channel_info,
1260        &sfp_hwmon_bias_channel_info,
1261        &sfp_hwmon_power_channel_info,
1262        NULL,
1263};
1264
1265static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1266        .ops = &sfp_hwmon_ops,
1267        .info = sfp_hwmon_info,
1268};
1269
1270static void sfp_hwmon_probe(struct work_struct *work)
1271{
1272        struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1273        int err, i;
1274
1275        err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1276        if (err < 0) {
1277                if (sfp->hwmon_tries--) {
1278                        mod_delayed_work(system_wq, &sfp->hwmon_probe,
1279                                         T_PROBE_RETRY_SLOW);
1280                } else {
1281                        dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1282                }
1283                return;
1284        }
1285
1286        sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1287        if (!sfp->hwmon_name) {
1288                dev_err(sfp->dev, "out of memory for hwmon name\n");
1289                return;
1290        }
1291
1292        for (i = 0; sfp->hwmon_name[i]; i++)
1293                if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1294                        sfp->hwmon_name[i] = '_';
1295
1296        sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1297                                                         sfp->hwmon_name, sfp,
1298                                                         &sfp_hwmon_chip_info,
1299                                                         NULL);
1300        if (IS_ERR(sfp->hwmon_dev))
1301                dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1302                        PTR_ERR(sfp->hwmon_dev));
1303}
1304
1305static int sfp_hwmon_insert(struct sfp *sfp)
1306{
1307        if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1308                return 0;
1309
1310        if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1311                return 0;
1312
1313        if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1314                /* This driver in general does not support address
1315                 * change.
1316                 */
1317                return 0;
1318
1319        mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1320        sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1321
1322        return 0;
1323}
1324
1325static void sfp_hwmon_remove(struct sfp *sfp)
1326{
1327        cancel_delayed_work_sync(&sfp->hwmon_probe);
1328        if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1329                hwmon_device_unregister(sfp->hwmon_dev);
1330                sfp->hwmon_dev = NULL;
1331                kfree(sfp->hwmon_name);
1332        }
1333}
1334
1335static int sfp_hwmon_init(struct sfp *sfp)
1336{
1337        INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1338
1339        return 0;
1340}
1341
1342static void sfp_hwmon_exit(struct sfp *sfp)
1343{
1344        cancel_delayed_work_sync(&sfp->hwmon_probe);
1345}
1346#else
1347static int sfp_hwmon_insert(struct sfp *sfp)
1348{
1349        return 0;
1350}
1351
1352static void sfp_hwmon_remove(struct sfp *sfp)
1353{
1354}
1355
1356static int sfp_hwmon_init(struct sfp *sfp)
1357{
1358        return 0;
1359}
1360
1361static void sfp_hwmon_exit(struct sfp *sfp)
1362{
1363}
1364#endif
1365
1366/* Helpers */
1367static void sfp_module_tx_disable(struct sfp *sfp)
1368{
1369        dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1370                sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1371        sfp->state |= SFP_F_TX_DISABLE;
1372        sfp_set_state(sfp, sfp->state);
1373}
1374
1375static void sfp_module_tx_enable(struct sfp *sfp)
1376{
1377        dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1378                sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1379        sfp->state &= ~SFP_F_TX_DISABLE;
1380        sfp_set_state(sfp, sfp->state);
1381}
1382
1383static void sfp_module_tx_fault_reset(struct sfp *sfp)
1384{
1385        unsigned int state = sfp->state;
1386
1387        if (state & SFP_F_TX_DISABLE)
1388                return;
1389
1390        sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1391
1392        udelay(T_RESET_US);
1393
1394        sfp_set_state(sfp, state);
1395}
1396
1397/* SFP state machine */
1398static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1399{
1400        if (timeout)
1401                mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1402                                 timeout);
1403        else
1404                cancel_delayed_work(&sfp->timeout);
1405}
1406
1407static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1408                        unsigned int timeout)
1409{
1410        sfp->sm_state = state;
1411        sfp_sm_set_timer(sfp, timeout);
1412}
1413
1414static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1415                            unsigned int timeout)
1416{
1417        sfp->sm_mod_state = state;
1418        sfp_sm_set_timer(sfp, timeout);
1419}
1420
1421static void sfp_sm_phy_detach(struct sfp *sfp)
1422{
1423        sfp_remove_phy(sfp->sfp_bus);
1424        phy_device_remove(sfp->mod_phy);
1425        phy_device_free(sfp->mod_phy);
1426        sfp->mod_phy = NULL;
1427}
1428
1429static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1430{
1431        struct phy_device *phy;
1432        int err;
1433
1434        phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1435        if (phy == ERR_PTR(-ENODEV))
1436                return PTR_ERR(phy);
1437        if (IS_ERR(phy)) {
1438                dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1439                return PTR_ERR(phy);
1440        }
1441
1442        err = phy_device_register(phy);
1443        if (err) {
1444                phy_device_free(phy);
1445                dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1446                return err;
1447        }
1448
1449        err = sfp_add_phy(sfp->sfp_bus, phy);
1450        if (err) {
1451                phy_device_remove(phy);
1452                phy_device_free(phy);
1453                dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1454                return err;
1455        }
1456
1457        sfp->mod_phy = phy;
1458
1459        return 0;
1460}
1461
1462static void sfp_sm_link_up(struct sfp *sfp)
1463{
1464        sfp_link_up(sfp->sfp_bus);
1465        sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1466}
1467
1468static void sfp_sm_link_down(struct sfp *sfp)
1469{
1470        sfp_link_down(sfp->sfp_bus);
1471}
1472
1473static void sfp_sm_link_check_los(struct sfp *sfp)
1474{
1475        unsigned int los = sfp->state & SFP_F_LOS;
1476
1477        /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1478         * are set, we assume that no LOS signal is available.
1479         */
1480        if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1481                los ^= SFP_F_LOS;
1482        else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1483                los = 0;
1484
1485        if (los)
1486                sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1487        else
1488                sfp_sm_link_up(sfp);
1489}
1490
1491static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1492{
1493        return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1494                event == SFP_E_LOS_LOW) ||
1495               (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1496                event == SFP_E_LOS_HIGH);
1497}
1498
1499static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1500{
1501        return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1502                event == SFP_E_LOS_HIGH) ||
1503               (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1504                event == SFP_E_LOS_LOW);
1505}
1506
1507static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1508{
1509        if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1510                dev_err(sfp->dev,
1511                        "module persistently indicates fault, disabling\n");
1512                sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1513        } else {
1514                if (warn)
1515                        dev_err(sfp->dev, "module transmit fault indicated\n");
1516
1517                sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1518        }
1519}
1520
1521/* Probe a SFP for a PHY device if the module supports copper - the PHY
1522 * normally sits at I2C bus address 0x56, and may either be a clause 22
1523 * or clause 45 PHY.
1524 *
1525 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1526 * negotiation enabled, but some may be in 1000base-X - which is for the
1527 * PHY driver to determine.
1528 *
1529 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1530 * mode according to the negotiated line speed.
1531 */
1532static int sfp_sm_probe_for_phy(struct sfp *sfp)
1533{
1534        int err = 0;
1535
1536        switch (sfp->id.base.extended_cc) {
1537        case SFF8024_ECC_10GBASE_T_SFI:
1538        case SFF8024_ECC_10GBASE_T_SR:
1539        case SFF8024_ECC_5GBASE_T:
1540        case SFF8024_ECC_2_5GBASE_T:
1541                err = sfp_sm_probe_phy(sfp, true);
1542                break;
1543
1544        default:
1545                if (sfp->id.base.e1000_base_t)
1546                        err = sfp_sm_probe_phy(sfp, false);
1547                break;
1548        }
1549        return err;
1550}
1551
1552static int sfp_module_parse_power(struct sfp *sfp)
1553{
1554        u32 power_mW = 1000;
1555
1556        if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1557                power_mW = 1500;
1558        if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1559                power_mW = 2000;
1560
1561        if (power_mW > sfp->max_power_mW) {
1562                /* Module power specification exceeds the allowed maximum. */
1563                if (sfp->id.ext.sff8472_compliance ==
1564                        SFP_SFF8472_COMPLIANCE_NONE &&
1565                    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1566                        /* The module appears not to implement bus address
1567                         * 0xa2, so assume that the module powers up in the
1568                         * indicated mode.
1569                         */
1570                        dev_err(sfp->dev,
1571                                "Host does not support %u.%uW modules\n",
1572                                power_mW / 1000, (power_mW / 100) % 10);
1573                        return -EINVAL;
1574                } else {
1575                        dev_warn(sfp->dev,
1576                                 "Host does not support %u.%uW modules, module left in power mode 1\n",
1577                                 power_mW / 1000, (power_mW / 100) % 10);
1578                        return 0;
1579                }
1580        }
1581
1582        /* If the module requires a higher power mode, but also requires
1583         * an address change sequence, warn the user that the module may
1584         * not be functional.
1585         */
1586        if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1587                dev_warn(sfp->dev,
1588                         "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1589                         power_mW / 1000, (power_mW / 100) % 10);
1590                return 0;
1591        }
1592
1593        sfp->module_power_mW = power_mW;
1594
1595        return 0;
1596}
1597
1598static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1599{
1600        u8 val;
1601        int err;
1602
1603        err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1604        if (err != sizeof(val)) {
1605                dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1606                return -EAGAIN;
1607        }
1608
1609        /* DM7052 reports as a high power module, responds to reads (with
1610         * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1611         * if the bit is already set, we're already in high power mode.
1612         */
1613        if (!!(val & BIT(0)) == enable)
1614                return 0;
1615
1616        if (enable)
1617                val |= BIT(0);
1618        else
1619                val &= ~BIT(0);
1620
1621        err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1622        if (err != sizeof(val)) {
1623                dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1624                return -EAGAIN;
1625        }
1626
1627        if (enable)
1628                dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1629                         sfp->module_power_mW / 1000,
1630                         (sfp->module_power_mW / 100) % 10);
1631
1632        return 0;
1633}
1634
1635static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1636{
1637        /* SFP module inserted - read I2C data */
1638        struct sfp_eeprom_id id;
1639        bool cotsworks;
1640        u8 check;
1641        int ret;
1642
1643        ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1644        if (ret < 0) {
1645                if (report)
1646                        dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1647                return -EAGAIN;
1648        }
1649
1650        if (ret != sizeof(id)) {
1651                dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1652                return -EAGAIN;
1653        }
1654
1655        /* Cotsworks do not seem to update the checksums when they
1656         * do the final programming with the final module part number,
1657         * serial number and date code.
1658         */
1659        cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1660
1661        /* Validate the checksum over the base structure */
1662        check = sfp_check(&id.base, sizeof(id.base) - 1);
1663        if (check != id.base.cc_base) {
1664                if (cotsworks) {
1665                        dev_warn(sfp->dev,
1666                                 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1667                                 check, id.base.cc_base);
1668                } else {
1669                        dev_err(sfp->dev,
1670                                "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1671                                check, id.base.cc_base);
1672                        print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1673                                       16, 1, &id, sizeof(id), true);
1674                        return -EINVAL;
1675                }
1676        }
1677
1678        check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1679        if (check != id.ext.cc_ext) {
1680                if (cotsworks) {
1681                        dev_warn(sfp->dev,
1682                                 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1683                                 check, id.ext.cc_ext);
1684                } else {
1685                        dev_err(sfp->dev,
1686                                "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1687                                check, id.ext.cc_ext);
1688                        print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1689                                       16, 1, &id, sizeof(id), true);
1690                        memset(&id.ext, 0, sizeof(id.ext));
1691                }
1692        }
1693
1694        sfp->id = id;
1695
1696        dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1697                 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1698                 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1699                 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1700                 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1701                 (int)sizeof(id.ext.datecode), id.ext.datecode);
1702
1703        /* Check whether we support this module */
1704        if (!sfp->type->module_supported(&id)) {
1705                dev_err(sfp->dev,
1706                        "module is not supported - phys id 0x%02x 0x%02x\n",
1707                        sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1708                return -EINVAL;
1709        }
1710
1711        /* If the module requires address swap mode, warn about it */
1712        if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1713                dev_warn(sfp->dev,
1714                         "module address swap to access page 0xA2 is not supported.\n");
1715
1716        /* Parse the module power requirement */
1717        ret = sfp_module_parse_power(sfp);
1718        if (ret < 0)
1719                return ret;
1720
1721        if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1722            !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1723                sfp->module_t_start_up = T_START_UP_BAD_GPON;
1724        else
1725                sfp->module_t_start_up = T_START_UP;
1726
1727        return 0;
1728}
1729
1730static void sfp_sm_mod_remove(struct sfp *sfp)
1731{
1732        if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1733                sfp_module_remove(sfp->sfp_bus);
1734
1735        sfp_hwmon_remove(sfp);
1736
1737        memset(&sfp->id, 0, sizeof(sfp->id));
1738        sfp->module_power_mW = 0;
1739
1740        dev_info(sfp->dev, "module removed\n");
1741}
1742
1743/* This state machine tracks the upstream's state */
1744static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1745{
1746        switch (sfp->sm_dev_state) {
1747        default:
1748                if (event == SFP_E_DEV_ATTACH)
1749                        sfp->sm_dev_state = SFP_DEV_DOWN;
1750                break;
1751
1752        case SFP_DEV_DOWN:
1753                if (event == SFP_E_DEV_DETACH)
1754                        sfp->sm_dev_state = SFP_DEV_DETACHED;
1755                else if (event == SFP_E_DEV_UP)
1756                        sfp->sm_dev_state = SFP_DEV_UP;
1757                break;
1758
1759        case SFP_DEV_UP:
1760                if (event == SFP_E_DEV_DETACH)
1761                        sfp->sm_dev_state = SFP_DEV_DETACHED;
1762                else if (event == SFP_E_DEV_DOWN)
1763                        sfp->sm_dev_state = SFP_DEV_DOWN;
1764                break;
1765        }
1766}
1767
1768/* This state machine tracks the insert/remove state of the module, probes
1769 * the on-board EEPROM, and sets up the power level.
1770 */
1771static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1772{
1773        int err;
1774
1775        /* Handle remove event globally, it resets this state machine */
1776        if (event == SFP_E_REMOVE) {
1777                if (sfp->sm_mod_state > SFP_MOD_PROBE)
1778                        sfp_sm_mod_remove(sfp);
1779                sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1780                return;
1781        }
1782
1783        /* Handle device detach globally */
1784        if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1785            sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1786                if (sfp->module_power_mW > 1000 &&
1787                    sfp->sm_mod_state > SFP_MOD_HPOWER)
1788                        sfp_sm_mod_hpower(sfp, false);
1789                sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1790                return;
1791        }
1792
1793        switch (sfp->sm_mod_state) {
1794        default:
1795                if (event == SFP_E_INSERT) {
1796                        sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1797                        sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1798                        sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1799                }
1800                break;
1801
1802        case SFP_MOD_PROBE:
1803                /* Wait for T_PROBE_INIT to time out */
1804                if (event != SFP_E_TIMEOUT)
1805                        break;
1806
1807                err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1808                if (err == -EAGAIN) {
1809                        if (sfp->sm_mod_tries_init &&
1810                           --sfp->sm_mod_tries_init) {
1811                                sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1812                                break;
1813                        } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1814                                if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1815                                        dev_warn(sfp->dev,
1816                                                 "please wait, module slow to respond\n");
1817                                sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1818                                break;
1819                        }
1820                }
1821                if (err < 0) {
1822                        sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1823                        break;
1824                }
1825
1826                err = sfp_hwmon_insert(sfp);
1827                if (err)
1828                        dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1829
1830                sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1831                /* fall through */
1832        case SFP_MOD_WAITDEV:
1833                /* Ensure that the device is attached before proceeding */
1834                if (sfp->sm_dev_state < SFP_DEV_DOWN)
1835                        break;
1836
1837                /* Report the module insertion to the upstream device */
1838                err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1839                if (err < 0) {
1840                        sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1841                        break;
1842                }
1843
1844                /* If this is a power level 1 module, we are done */
1845                if (sfp->module_power_mW <= 1000)
1846                        goto insert;
1847
1848                sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1849                /* fall through */
1850        case SFP_MOD_HPOWER:
1851                /* Enable high power mode */
1852                err = sfp_sm_mod_hpower(sfp, true);
1853                if (err < 0) {
1854                        if (err != -EAGAIN) {
1855                                sfp_module_remove(sfp->sfp_bus);
1856                                sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1857                        } else {
1858                                sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1859                        }
1860                        break;
1861                }
1862
1863                sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1864                break;
1865
1866        case SFP_MOD_WAITPWR:
1867                /* Wait for T_HPOWER_LEVEL to time out */
1868                if (event != SFP_E_TIMEOUT)
1869                        break;
1870
1871        insert:
1872                sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1873                break;
1874
1875        case SFP_MOD_PRESENT:
1876        case SFP_MOD_ERROR:
1877                break;
1878        }
1879}
1880
1881static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1882{
1883        unsigned long timeout;
1884        int ret;
1885
1886        /* Some events are global */
1887        if (sfp->sm_state != SFP_S_DOWN &&
1888            (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1889             sfp->sm_dev_state != SFP_DEV_UP)) {
1890                if (sfp->sm_state == SFP_S_LINK_UP &&
1891                    sfp->sm_dev_state == SFP_DEV_UP)
1892                        sfp_sm_link_down(sfp);
1893                if (sfp->sm_state > SFP_S_INIT)
1894                        sfp_module_stop(sfp->sfp_bus);
1895                if (sfp->mod_phy)
1896                        sfp_sm_phy_detach(sfp);
1897                sfp_module_tx_disable(sfp);
1898                sfp_soft_stop_poll(sfp);
1899                sfp_sm_next(sfp, SFP_S_DOWN, 0);
1900                return;
1901        }
1902
1903        /* The main state machine */
1904        switch (sfp->sm_state) {
1905        case SFP_S_DOWN:
1906                if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1907                    sfp->sm_dev_state != SFP_DEV_UP)
1908                        break;
1909
1910                if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
1911                        sfp_soft_start_poll(sfp);
1912
1913                sfp_module_tx_enable(sfp);
1914
1915                /* Initialise the fault clearance retries */
1916                sfp->sm_fault_retries = N_FAULT_INIT;
1917
1918                /* We need to check the TX_FAULT state, which is not defined
1919                 * while TX_DISABLE is asserted. The earliest we want to do
1920                 * anything (such as probe for a PHY) is 50ms.
1921                 */
1922                sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
1923                break;
1924
1925        case SFP_S_WAIT:
1926                if (event != SFP_E_TIMEOUT)
1927                        break;
1928
1929                if (sfp->state & SFP_F_TX_FAULT) {
1930                        /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
1931                         * from the TX_DISABLE deassertion for the module to
1932                         * initialise, which is indicated by TX_FAULT
1933                         * deasserting.
1934                         */
1935                        timeout = sfp->module_t_start_up;
1936                        if (timeout > T_WAIT)
1937                                timeout -= T_WAIT;
1938                        else
1939                                timeout = 1;
1940
1941                        sfp_sm_next(sfp, SFP_S_INIT, timeout);
1942                } else {
1943                        /* TX_FAULT is not asserted, assume the module has
1944                         * finished initialising.
1945                         */
1946                        goto init_done;
1947                }
1948                break;
1949
1950        case SFP_S_INIT:
1951                if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1952                        /* TX_FAULT is still asserted after t_init or
1953                         * or t_start_up, so assume there is a fault.
1954                         */
1955                        sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
1956                                     sfp->sm_fault_retries == N_FAULT_INIT);
1957                } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1958        init_done:
1959                        sfp->sm_phy_retries = R_PHY_RETRY;
1960                        goto phy_probe;
1961                }
1962                break;
1963
1964        case SFP_S_INIT_PHY:
1965                if (event != SFP_E_TIMEOUT)
1966                        break;
1967        phy_probe:
1968                /* TX_FAULT deasserted or we timed out with TX_FAULT
1969                 * clear.  Probe for the PHY and check the LOS state.
1970                 */
1971                ret = sfp_sm_probe_for_phy(sfp);
1972                if (ret == -ENODEV) {
1973                        if (--sfp->sm_phy_retries) {
1974                                sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
1975                                break;
1976                        } else {
1977                                dev_info(sfp->dev, "no PHY detected\n");
1978                        }
1979                } else if (ret) {
1980                        sfp_sm_next(sfp, SFP_S_FAIL, 0);
1981                        break;
1982                }
1983                if (sfp_module_start(sfp->sfp_bus)) {
1984                        sfp_sm_next(sfp, SFP_S_FAIL, 0);
1985                        break;
1986                }
1987                sfp_sm_link_check_los(sfp);
1988
1989                /* Reset the fault retry count */
1990                sfp->sm_fault_retries = N_FAULT;
1991                break;
1992
1993        case SFP_S_INIT_TX_FAULT:
1994                if (event == SFP_E_TIMEOUT) {
1995                        sfp_module_tx_fault_reset(sfp);
1996                        sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
1997                }
1998                break;
1999
2000        case SFP_S_WAIT_LOS:
2001                if (event == SFP_E_TX_FAULT)
2002                        sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2003                else if (sfp_los_event_inactive(sfp, event))
2004                        sfp_sm_link_up(sfp);
2005                break;
2006
2007        case SFP_S_LINK_UP:
2008                if (event == SFP_E_TX_FAULT) {
2009                        sfp_sm_link_down(sfp);
2010                        sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2011                } else if (sfp_los_event_active(sfp, event)) {
2012                        sfp_sm_link_down(sfp);
2013                        sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2014                }
2015                break;
2016
2017        case SFP_S_TX_FAULT:
2018                if (event == SFP_E_TIMEOUT) {
2019                        sfp_module_tx_fault_reset(sfp);
2020                        sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2021                }
2022                break;
2023
2024        case SFP_S_REINIT:
2025                if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2026                        sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2027                } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2028                        dev_info(sfp->dev, "module transmit fault recovered\n");
2029                        sfp_sm_link_check_los(sfp);
2030                }
2031                break;
2032
2033        case SFP_S_TX_DISABLE:
2034                break;
2035        }
2036}
2037
2038static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2039{
2040        mutex_lock(&sfp->sm_mutex);
2041
2042        dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2043                mod_state_to_str(sfp->sm_mod_state),
2044                dev_state_to_str(sfp->sm_dev_state),
2045                sm_state_to_str(sfp->sm_state),
2046                event_to_str(event));
2047
2048        sfp_sm_device(sfp, event);
2049        sfp_sm_module(sfp, event);
2050        sfp_sm_main(sfp, event);
2051
2052        dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2053                mod_state_to_str(sfp->sm_mod_state),
2054                dev_state_to_str(sfp->sm_dev_state),
2055                sm_state_to_str(sfp->sm_state));
2056
2057        mutex_unlock(&sfp->sm_mutex);
2058}
2059
2060static void sfp_attach(struct sfp *sfp)
2061{
2062        sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2063}
2064
2065static void sfp_detach(struct sfp *sfp)
2066{
2067        sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2068}
2069
2070static void sfp_start(struct sfp *sfp)
2071{
2072        sfp_sm_event(sfp, SFP_E_DEV_UP);
2073}
2074
2075static void sfp_stop(struct sfp *sfp)
2076{
2077        sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2078}
2079
2080static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2081{
2082        /* locking... and check module is present */
2083
2084        if (sfp->id.ext.sff8472_compliance &&
2085            !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2086                modinfo->type = ETH_MODULE_SFF_8472;
2087                modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2088        } else {
2089                modinfo->type = ETH_MODULE_SFF_8079;
2090                modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2091        }
2092        return 0;
2093}
2094
2095static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2096                             u8 *data)
2097{
2098        unsigned int first, last, len;
2099        int ret;
2100
2101        if (ee->len == 0)
2102                return -EINVAL;
2103
2104        first = ee->offset;
2105        last = ee->offset + ee->len;
2106        if (first < ETH_MODULE_SFF_8079_LEN) {
2107                len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2108                len -= first;
2109
2110                ret = sfp_read(sfp, false, first, data, len);
2111                if (ret < 0)
2112                        return ret;
2113
2114                first += len;
2115                data += len;
2116        }
2117        if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2118                len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2119                len -= first;
2120                first -= ETH_MODULE_SFF_8079_LEN;
2121
2122                ret = sfp_read(sfp, true, first, data, len);
2123                if (ret < 0)
2124                        return ret;
2125        }
2126        return 0;
2127}
2128
2129static const struct sfp_socket_ops sfp_module_ops = {
2130        .attach = sfp_attach,
2131        .detach = sfp_detach,
2132        .start = sfp_start,
2133        .stop = sfp_stop,
2134        .module_info = sfp_module_info,
2135        .module_eeprom = sfp_module_eeprom,
2136};
2137
2138static void sfp_timeout(struct work_struct *work)
2139{
2140        struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2141
2142        rtnl_lock();
2143        sfp_sm_event(sfp, SFP_E_TIMEOUT);
2144        rtnl_unlock();
2145}
2146
2147static void sfp_check_state(struct sfp *sfp)
2148{
2149        unsigned int state, i, changed;
2150
2151        mutex_lock(&sfp->st_mutex);
2152        state = sfp_get_state(sfp);
2153        changed = state ^ sfp->state;
2154        changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2155
2156        for (i = 0; i < GPIO_MAX; i++)
2157                if (changed & BIT(i))
2158                        dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2159                                !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2160
2161        state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2162        sfp->state = state;
2163
2164        rtnl_lock();
2165        if (changed & SFP_F_PRESENT)
2166                sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2167                                SFP_E_INSERT : SFP_E_REMOVE);
2168
2169        if (changed & SFP_F_TX_FAULT)
2170                sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2171                                SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2172
2173        if (changed & SFP_F_LOS)
2174                sfp_sm_event(sfp, state & SFP_F_LOS ?
2175                                SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2176        rtnl_unlock();
2177        mutex_unlock(&sfp->st_mutex);
2178}
2179
2180static irqreturn_t sfp_irq(int irq, void *data)
2181{
2182        struct sfp *sfp = data;
2183
2184        sfp_check_state(sfp);
2185
2186        return IRQ_HANDLED;
2187}
2188
2189static void sfp_poll(struct work_struct *work)
2190{
2191        struct sfp *sfp = container_of(work, struct sfp, poll.work);
2192
2193        sfp_check_state(sfp);
2194
2195        if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2196            sfp->need_poll)
2197                mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2198}
2199
2200static struct sfp *sfp_alloc(struct device *dev)
2201{
2202        struct sfp *sfp;
2203
2204        sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2205        if (!sfp)
2206                return ERR_PTR(-ENOMEM);
2207
2208        sfp->dev = dev;
2209
2210        mutex_init(&sfp->sm_mutex);
2211        mutex_init(&sfp->st_mutex);
2212        INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2213        INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2214
2215        sfp_hwmon_init(sfp);
2216
2217        return sfp;
2218}
2219
2220static void sfp_cleanup(void *data)
2221{
2222        struct sfp *sfp = data;
2223
2224        sfp_hwmon_exit(sfp);
2225
2226        cancel_delayed_work_sync(&sfp->poll);
2227        cancel_delayed_work_sync(&sfp->timeout);
2228        if (sfp->i2c_mii) {
2229                mdiobus_unregister(sfp->i2c_mii);
2230                mdiobus_free(sfp->i2c_mii);
2231        }
2232        if (sfp->i2c)
2233                i2c_put_adapter(sfp->i2c);
2234        kfree(sfp);
2235}
2236
2237static int sfp_probe(struct platform_device *pdev)
2238{
2239        const struct sff_data *sff;
2240        struct i2c_adapter *i2c;
2241        struct sfp *sfp;
2242        int err, i;
2243
2244        sfp = sfp_alloc(&pdev->dev);
2245        if (IS_ERR(sfp))
2246                return PTR_ERR(sfp);
2247
2248        platform_set_drvdata(pdev, sfp);
2249
2250        err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2251        if (err < 0)
2252                return err;
2253
2254        sff = sfp->type = &sfp_data;
2255
2256        if (pdev->dev.of_node) {
2257                struct device_node *node = pdev->dev.of_node;
2258                const struct of_device_id *id;
2259                struct device_node *np;
2260
2261                id = of_match_node(sfp_of_match, node);
2262                if (WARN_ON(!id))
2263                        return -EINVAL;
2264
2265                sff = sfp->type = id->data;
2266
2267                np = of_parse_phandle(node, "i2c-bus", 0);
2268                if (!np) {
2269                        dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2270                        return -ENODEV;
2271                }
2272
2273                i2c = of_find_i2c_adapter_by_node(np);
2274                of_node_put(np);
2275        } else if (has_acpi_companion(&pdev->dev)) {
2276                struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2277                struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2278                struct fwnode_reference_args args;
2279                struct acpi_handle *acpi_handle;
2280                int ret;
2281
2282                ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2283                if (ret || !is_acpi_device_node(args.fwnode)) {
2284                        dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2285                        return -ENODEV;
2286                }
2287
2288                acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2289                i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2290        } else {
2291                return -EINVAL;
2292        }
2293
2294        if (!i2c)
2295                return -EPROBE_DEFER;
2296
2297        err = sfp_i2c_configure(sfp, i2c);
2298        if (err < 0) {
2299                i2c_put_adapter(i2c);
2300                return err;
2301        }
2302
2303        for (i = 0; i < GPIO_MAX; i++)
2304                if (sff->gpios & BIT(i)) {
2305                        sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2306                                           gpio_of_names[i], gpio_flags[i]);
2307                        if (IS_ERR(sfp->gpio[i]))
2308                                return PTR_ERR(sfp->gpio[i]);
2309                }
2310
2311        sfp->get_state = sfp_gpio_get_state;
2312        sfp->set_state = sfp_gpio_set_state;
2313
2314        /* Modules that have no detect signal are always present */
2315        if (!(sfp->gpio[GPIO_MODDEF0]))
2316                sfp->get_state = sff_gpio_get_state;
2317
2318        device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2319                                 &sfp->max_power_mW);
2320        if (!sfp->max_power_mW)
2321                sfp->max_power_mW = 1000;
2322
2323        dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2324                 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2325
2326        /* Get the initial state, and always signal TX disable,
2327         * since the network interface will not be up.
2328         */
2329        sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2330
2331        if (sfp->gpio[GPIO_RATE_SELECT] &&
2332            gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2333                sfp->state |= SFP_F_RATE_SELECT;
2334        sfp_set_state(sfp, sfp->state);
2335        sfp_module_tx_disable(sfp);
2336        if (sfp->state & SFP_F_PRESENT) {
2337                rtnl_lock();
2338                sfp_sm_event(sfp, SFP_E_INSERT);
2339                rtnl_unlock();
2340        }
2341
2342        for (i = 0; i < GPIO_MAX; i++) {
2343                if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2344                        continue;
2345
2346                sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2347                if (!sfp->gpio_irq[i]) {
2348                        sfp->need_poll = true;
2349                        continue;
2350                }
2351
2352                err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2353                                                NULL, sfp_irq,
2354                                                IRQF_ONESHOT |
2355                                                IRQF_TRIGGER_RISING |
2356                                                IRQF_TRIGGER_FALLING,
2357                                                dev_name(sfp->dev), sfp);
2358                if (err) {
2359                        sfp->gpio_irq[i] = 0;
2360                        sfp->need_poll = true;
2361                }
2362        }
2363
2364        if (sfp->need_poll)
2365                mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2366
2367        /* We could have an issue in cases no Tx disable pin is available or
2368         * wired as modules using a laser as their light source will continue to
2369         * be active when the fiber is removed. This could be a safety issue and
2370         * we should at least warn the user about that.
2371         */
2372        if (!sfp->gpio[GPIO_TX_DISABLE])
2373                dev_warn(sfp->dev,
2374                         "No tx_disable pin: SFP modules will always be emitting.\n");
2375
2376        sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2377        if (!sfp->sfp_bus)
2378                return -ENOMEM;
2379
2380        return 0;
2381}
2382
2383static int sfp_remove(struct platform_device *pdev)
2384{
2385        struct sfp *sfp = platform_get_drvdata(pdev);
2386
2387        sfp_unregister_socket(sfp->sfp_bus);
2388
2389        rtnl_lock();
2390        sfp_sm_event(sfp, SFP_E_REMOVE);
2391        rtnl_unlock();
2392
2393        return 0;
2394}
2395
2396static void sfp_shutdown(struct platform_device *pdev)
2397{
2398        struct sfp *sfp = platform_get_drvdata(pdev);
2399        int i;
2400
2401        for (i = 0; i < GPIO_MAX; i++) {
2402                if (!sfp->gpio_irq[i])
2403                        continue;
2404
2405                devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2406        }
2407
2408        cancel_delayed_work_sync(&sfp->poll);
2409        cancel_delayed_work_sync(&sfp->timeout);
2410}
2411
2412static struct platform_driver sfp_driver = {
2413        .probe = sfp_probe,
2414        .remove = sfp_remove,
2415        .shutdown = sfp_shutdown,
2416        .driver = {
2417                .name = "sfp",
2418                .of_match_table = sfp_of_match,
2419        },
2420};
2421
2422static int sfp_init(void)
2423{
2424        poll_jiffies = msecs_to_jiffies(100);
2425
2426        return platform_driver_register(&sfp_driver);
2427}
2428module_init(sfp_init);
2429
2430static void sfp_exit(void)
2431{
2432        platform_driver_unregister(&sfp_driver);
2433}
2434module_exit(sfp_exit);
2435
2436MODULE_ALIAS("platform:sfp");
2437MODULE_AUTHOR("Russell King");
2438MODULE_LICENSE("GPL v2");
2439