linux/drivers/net/wan/ixp4xx_hss.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
   4 *
   5 * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl>
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/module.h>
  11#include <linux/bitops.h>
  12#include <linux/cdev.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmapool.h>
  15#include <linux/fs.h>
  16#include <linux/hdlc.h>
  17#include <linux/io.h>
  18#include <linux/kernel.h>
  19#include <linux/platform_device.h>
  20#include <linux/platform_data/wan_ixp4xx_hss.h>
  21#include <linux/poll.h>
  22#include <linux/slab.h>
  23#include <linux/soc/ixp4xx/npe.h>
  24#include <linux/soc/ixp4xx/qmgr.h>
  25
  26#define DEBUG_DESC              0
  27#define DEBUG_RX                0
  28#define DEBUG_TX                0
  29#define DEBUG_PKT_BYTES         0
  30#define DEBUG_CLOSE             0
  31
  32#define DRV_NAME                "ixp4xx_hss"
  33
  34#define PKT_EXTRA_FLAGS         0 /* orig 1 */
  35#define PKT_NUM_PIPES           1 /* 1, 2 or 4 */
  36#define PKT_PIPE_FIFO_SIZEW     4 /* total 4 dwords per HSS */
  37
  38#define RX_DESCS                16 /* also length of all RX queues */
  39#define TX_DESCS                16 /* also length of all TX queues */
  40
  41#define POOL_ALLOC_SIZE         (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  42#define RX_SIZE                 (HDLC_MAX_MRU + 4) /* NPE needs more space */
  43#define MAX_CLOSE_WAIT          1000 /* microseconds */
  44#define HSS_COUNT               2
  45#define FRAME_SIZE              256 /* doesn't matter at this point */
  46#define FRAME_OFFSET            0
  47#define MAX_CHANNELS            (FRAME_SIZE / 8)
  48
  49#define NAPI_WEIGHT             16
  50
  51/* Queue IDs */
  52#define HSS0_CHL_RXTRIG_QUEUE   12      /* orig size = 32 dwords */
  53#define HSS0_PKT_RX_QUEUE       13      /* orig size = 32 dwords */
  54#define HSS0_PKT_TX0_QUEUE      14      /* orig size = 16 dwords */
  55#define HSS0_PKT_TX1_QUEUE      15
  56#define HSS0_PKT_TX2_QUEUE      16
  57#define HSS0_PKT_TX3_QUEUE      17
  58#define HSS0_PKT_RXFREE0_QUEUE  18      /* orig size = 16 dwords */
  59#define HSS0_PKT_RXFREE1_QUEUE  19
  60#define HSS0_PKT_RXFREE2_QUEUE  20
  61#define HSS0_PKT_RXFREE3_QUEUE  21
  62#define HSS0_PKT_TXDONE_QUEUE   22      /* orig size = 64 dwords */
  63
  64#define HSS1_CHL_RXTRIG_QUEUE   10
  65#define HSS1_PKT_RX_QUEUE       0
  66#define HSS1_PKT_TX0_QUEUE      5
  67#define HSS1_PKT_TX1_QUEUE      6
  68#define HSS1_PKT_TX2_QUEUE      7
  69#define HSS1_PKT_TX3_QUEUE      8
  70#define HSS1_PKT_RXFREE0_QUEUE  1
  71#define HSS1_PKT_RXFREE1_QUEUE  2
  72#define HSS1_PKT_RXFREE2_QUEUE  3
  73#define HSS1_PKT_RXFREE3_QUEUE  4
  74#define HSS1_PKT_TXDONE_QUEUE   9
  75
  76#define NPE_PKT_MODE_HDLC               0
  77#define NPE_PKT_MODE_RAW                1
  78#define NPE_PKT_MODE_56KMODE            2
  79#define NPE_PKT_MODE_56KENDIAN_MSB      4
  80
  81/* PKT_PIPE_HDLC_CFG_WRITE flags */
  82#define PKT_HDLC_IDLE_ONES              0x1 /* default = flags */
  83#define PKT_HDLC_CRC_32                 0x2 /* default = CRC-16 */
  84#define PKT_HDLC_MSB_ENDIAN             0x4 /* default = LE */
  85
  86
  87/* hss_config, PCRs */
  88/* Frame sync sampling, default = active low */
  89#define PCR_FRM_SYNC_ACTIVE_HIGH        0x40000000
  90#define PCR_FRM_SYNC_FALLINGEDGE        0x80000000
  91#define PCR_FRM_SYNC_RISINGEDGE         0xC0000000
  92
  93/* Frame sync pin: input (default) or output generated off a given clk edge */
  94#define PCR_FRM_SYNC_OUTPUT_FALLING     0x20000000
  95#define PCR_FRM_SYNC_OUTPUT_RISING      0x30000000
  96
  97/* Frame and data clock sampling on edge, default = falling */
  98#define PCR_FCLK_EDGE_RISING            0x08000000
  99#define PCR_DCLK_EDGE_RISING            0x04000000
 100
 101/* Clock direction, default = input */
 102#define PCR_SYNC_CLK_DIR_OUTPUT         0x02000000
 103
 104/* Generate/Receive frame pulses, default = enabled */
 105#define PCR_FRM_PULSE_DISABLED          0x01000000
 106
 107 /* Data rate is full (default) or half the configured clk speed */
 108#define PCR_HALF_CLK_RATE               0x00200000
 109
 110/* Invert data between NPE and HSS FIFOs? (default = no) */
 111#define PCR_DATA_POLARITY_INVERT        0x00100000
 112
 113/* TX/RX endianness, default = LSB */
 114#define PCR_MSB_ENDIAN                  0x00080000
 115
 116/* Normal (default) / open drain mode (TX only) */
 117#define PCR_TX_PINS_OPEN_DRAIN          0x00040000
 118
 119/* No framing bit transmitted and expected on RX? (default = framing bit) */
 120#define PCR_SOF_NO_FBIT                 0x00020000
 121
 122/* Drive data pins? */
 123#define PCR_TX_DATA_ENABLE              0x00010000
 124
 125/* Voice 56k type: drive the data pins low (default), high, high Z */
 126#define PCR_TX_V56K_HIGH                0x00002000
 127#define PCR_TX_V56K_HIGH_IMP            0x00004000
 128
 129/* Unassigned type: drive the data pins low (default), high, high Z */
 130#define PCR_TX_UNASS_HIGH               0x00000800
 131#define PCR_TX_UNASS_HIGH_IMP           0x00001000
 132
 133/* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
 134#define PCR_TX_FB_HIGH_IMP              0x00000400
 135
 136/* 56k data endiannes - which bit unused: high (default) or low */
 137#define PCR_TX_56KE_BIT_0_UNUSED        0x00000200
 138
 139/* 56k data transmission type: 32/8 bit data (default) or 56K data */
 140#define PCR_TX_56KS_56K_DATA            0x00000100
 141
 142/* hss_config, cCR */
 143/* Number of packetized clients, default = 1 */
 144#define CCR_NPE_HFIFO_2_HDLC            0x04000000
 145#define CCR_NPE_HFIFO_3_OR_4HDLC        0x08000000
 146
 147/* default = no loopback */
 148#define CCR_LOOPBACK                    0x02000000
 149
 150/* HSS number, default = 0 (first) */
 151#define CCR_SECOND_HSS                  0x01000000
 152
 153
 154/* hss_config, clkCR: main:10, num:10, denom:12 */
 155#define CLK42X_SPEED_EXP        ((0x3FF << 22) | (  2 << 12) |   15) /*65 KHz*/
 156
 157#define CLK42X_SPEED_512KHZ     ((  130 << 22) | (  2 << 12) |   15)
 158#define CLK42X_SPEED_1536KHZ    ((   43 << 22) | ( 18 << 12) |   47)
 159#define CLK42X_SPEED_1544KHZ    ((   43 << 22) | ( 33 << 12) |  192)
 160#define CLK42X_SPEED_2048KHZ    ((   32 << 22) | ( 34 << 12) |   63)
 161#define CLK42X_SPEED_4096KHZ    ((   16 << 22) | ( 34 << 12) |  127)
 162#define CLK42X_SPEED_8192KHZ    ((    8 << 22) | ( 34 << 12) |  255)
 163
 164#define CLK46X_SPEED_512KHZ     ((  130 << 22) | ( 24 << 12) |  127)
 165#define CLK46X_SPEED_1536KHZ    ((   43 << 22) | (152 << 12) |  383)
 166#define CLK46X_SPEED_1544KHZ    ((   43 << 22) | ( 66 << 12) |  385)
 167#define CLK46X_SPEED_2048KHZ    ((   32 << 22) | (280 << 12) |  511)
 168#define CLK46X_SPEED_4096KHZ    ((   16 << 22) | (280 << 12) | 1023)
 169#define CLK46X_SPEED_8192KHZ    ((    8 << 22) | (280 << 12) | 2047)
 170
 171/*
 172 * HSS_CONFIG_CLOCK_CR register consists of 3 parts:
 173 *     A (10 bits), B (10 bits) and C (12 bits).
 174 * IXP42x HSS clock generator operation (verified with an oscilloscope):
 175 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
 176 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
 177 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
 178 * (A + 1) bits wide.
 179 *
 180 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
 181 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
 182 * minimum freq = 66.666 MHz / (A + 1)
 183 * maximum freq = 66.666 MHz / A
 184 *
 185 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
 186 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
 187 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
 188 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
 189 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
 190 * The sequence consists of 4 complete clock periods, thus the average
 191 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
 192 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
 193 */
 194
 195/* hss_config, LUT entries */
 196#define TDMMAP_UNASSIGNED       0
 197#define TDMMAP_HDLC             1       /* HDLC - packetized */
 198#define TDMMAP_VOICE56K         2       /* Voice56K - 7-bit channelized */
 199#define TDMMAP_VOICE64K         3       /* Voice64K - 8-bit channelized */
 200
 201/* offsets into HSS config */
 202#define HSS_CONFIG_TX_PCR       0x00 /* port configuration registers */
 203#define HSS_CONFIG_RX_PCR       0x04
 204#define HSS_CONFIG_CORE_CR      0x08 /* loopback control, HSS# */
 205#define HSS_CONFIG_CLOCK_CR     0x0C /* clock generator control */
 206#define HSS_CONFIG_TX_FCR       0x10 /* frame configuration registers */
 207#define HSS_CONFIG_RX_FCR       0x14
 208#define HSS_CONFIG_TX_LUT       0x18 /* channel look-up tables */
 209#define HSS_CONFIG_RX_LUT       0x38
 210
 211
 212/* NPE command codes */
 213/* writes the ConfigWord value to the location specified by offset */
 214#define PORT_CONFIG_WRITE               0x40
 215
 216/* triggers the NPE to load the contents of the configuration table */
 217#define PORT_CONFIG_LOAD                0x41
 218
 219/* triggers the NPE to return an HssErrorReadResponse message */
 220#define PORT_ERROR_READ                 0x42
 221
 222/* triggers the NPE to reset internal status and enable the HssPacketized
 223   operation for the flow specified by pPipe */
 224#define PKT_PIPE_FLOW_ENABLE            0x50
 225#define PKT_PIPE_FLOW_DISABLE           0x51
 226#define PKT_NUM_PIPES_WRITE             0x52
 227#define PKT_PIPE_FIFO_SIZEW_WRITE       0x53
 228#define PKT_PIPE_HDLC_CFG_WRITE         0x54
 229#define PKT_PIPE_IDLE_PATTERN_WRITE     0x55
 230#define PKT_PIPE_RX_SIZE_WRITE          0x56
 231#define PKT_PIPE_MODE_WRITE             0x57
 232
 233/* HDLC packet status values - desc->status */
 234#define ERR_SHUTDOWN            1 /* stop or shutdown occurrence */
 235#define ERR_HDLC_ALIGN          2 /* HDLC alignment error */
 236#define ERR_HDLC_FCS            3 /* HDLC Frame Check Sum error */
 237#define ERR_RXFREE_Q_EMPTY      4 /* RX-free queue became empty while receiving
 238                                     this packet (if buf_len < pkt_len) */
 239#define ERR_HDLC_TOO_LONG       5 /* HDLC frame size too long */
 240#define ERR_HDLC_ABORT          6 /* abort sequence received */
 241#define ERR_DISCONNECTING       7 /* disconnect is in progress */
 242
 243
 244#ifdef __ARMEB__
 245typedef struct sk_buff buffer_t;
 246#define free_buffer dev_kfree_skb
 247#define free_buffer_irq dev_consume_skb_irq
 248#else
 249typedef void buffer_t;
 250#define free_buffer kfree
 251#define free_buffer_irq kfree
 252#endif
 253
 254struct port {
 255        struct device *dev;
 256        struct npe *npe;
 257        struct net_device *netdev;
 258        struct napi_struct napi;
 259        struct hss_plat_info *plat;
 260        buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
 261        struct desc *desc_tab;  /* coherent */
 262        dma_addr_t desc_tab_phys;
 263        unsigned int id;
 264        unsigned int clock_type, clock_rate, loopback;
 265        unsigned int initialized, carrier;
 266        u8 hdlc_cfg;
 267        u32 clock_reg;
 268};
 269
 270/* NPE message structure */
 271struct msg {
 272#ifdef __ARMEB__
 273        u8 cmd, unused, hss_port, index;
 274        union {
 275                struct { u8 data8a, data8b, data8c, data8d; };
 276                struct { u16 data16a, data16b; };
 277                struct { u32 data32; };
 278        };
 279#else
 280        u8 index, hss_port, unused, cmd;
 281        union {
 282                struct { u8 data8d, data8c, data8b, data8a; };
 283                struct { u16 data16b, data16a; };
 284                struct { u32 data32; };
 285        };
 286#endif
 287};
 288
 289/* HDLC packet descriptor */
 290struct desc {
 291        u32 next;               /* pointer to next buffer, unused */
 292
 293#ifdef __ARMEB__
 294        u16 buf_len;            /* buffer length */
 295        u16 pkt_len;            /* packet length */
 296        u32 data;               /* pointer to data buffer in RAM */
 297        u8 status;
 298        u8 error_count;
 299        u16 __reserved;
 300#else
 301        u16 pkt_len;            /* packet length */
 302        u16 buf_len;            /* buffer length */
 303        u32 data;               /* pointer to data buffer in RAM */
 304        u16 __reserved;
 305        u8 error_count;
 306        u8 status;
 307#endif
 308        u32 __reserved1[4];
 309};
 310
 311
 312#define rx_desc_phys(port, n)   ((port)->desc_tab_phys +                \
 313                                 (n) * sizeof(struct desc))
 314#define rx_desc_ptr(port, n)    (&(port)->desc_tab[n])
 315
 316#define tx_desc_phys(port, n)   ((port)->desc_tab_phys +                \
 317                                 ((n) + RX_DESCS) * sizeof(struct desc))
 318#define tx_desc_ptr(port, n)    (&(port)->desc_tab[(n) + RX_DESCS])
 319
 320/*****************************************************************************
 321 * global variables
 322 ****************************************************************************/
 323
 324static int ports_open;
 325static struct dma_pool *dma_pool;
 326static spinlock_t npe_lock;
 327
 328static const struct {
 329        int tx, txdone, rx, rxfree;
 330}queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
 331                  HSS0_PKT_RXFREE0_QUEUE},
 332                 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
 333                  HSS1_PKT_RXFREE0_QUEUE},
 334};
 335
 336/*****************************************************************************
 337 * utility functions
 338 ****************************************************************************/
 339
 340static inline struct port* dev_to_port(struct net_device *dev)
 341{
 342        return dev_to_hdlc(dev)->priv;
 343}
 344
 345#ifndef __ARMEB__
 346static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
 347{
 348        int i;
 349        for (i = 0; i < cnt; i++)
 350                dest[i] = swab32(src[i]);
 351}
 352#endif
 353
 354/*****************************************************************************
 355 * HSS access
 356 ****************************************************************************/
 357
 358static void hss_npe_send(struct port *port, struct msg *msg, const char* what)
 359{
 360        u32 *val = (u32*)msg;
 361        if (npe_send_message(port->npe, msg, what)) {
 362                pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
 363                        port->id, val[0], val[1], npe_name(port->npe));
 364                BUG();
 365        }
 366}
 367
 368static void hss_config_set_lut(struct port *port)
 369{
 370        struct msg msg;
 371        int ch;
 372
 373        memset(&msg, 0, sizeof(msg));
 374        msg.cmd = PORT_CONFIG_WRITE;
 375        msg.hss_port = port->id;
 376
 377        for (ch = 0; ch < MAX_CHANNELS; ch++) {
 378                msg.data32 >>= 2;
 379                msg.data32 |= TDMMAP_HDLC << 30;
 380
 381                if (ch % 16 == 15) {
 382                        msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
 383                        hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
 384
 385                        msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
 386                        hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
 387                }
 388        }
 389}
 390
 391static void hss_config(struct port *port)
 392{
 393        struct msg msg;
 394
 395        memset(&msg, 0, sizeof(msg));
 396        msg.cmd = PORT_CONFIG_WRITE;
 397        msg.hss_port = port->id;
 398        msg.index = HSS_CONFIG_TX_PCR;
 399        msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
 400                PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
 401        if (port->clock_type == CLOCK_INT)
 402                msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
 403        hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
 404
 405        msg.index = HSS_CONFIG_RX_PCR;
 406        msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
 407        hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
 408
 409        memset(&msg, 0, sizeof(msg));
 410        msg.cmd = PORT_CONFIG_WRITE;
 411        msg.hss_port = port->id;
 412        msg.index = HSS_CONFIG_CORE_CR;
 413        msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
 414                (port->id ? CCR_SECOND_HSS : 0);
 415        hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
 416
 417        memset(&msg, 0, sizeof(msg));
 418        msg.cmd = PORT_CONFIG_WRITE;
 419        msg.hss_port = port->id;
 420        msg.index = HSS_CONFIG_CLOCK_CR;
 421        msg.data32 = port->clock_reg;
 422        hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
 423
 424        memset(&msg, 0, sizeof(msg));
 425        msg.cmd = PORT_CONFIG_WRITE;
 426        msg.hss_port = port->id;
 427        msg.index = HSS_CONFIG_TX_FCR;
 428        msg.data16a = FRAME_OFFSET;
 429        msg.data16b = FRAME_SIZE - 1;
 430        hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
 431
 432        memset(&msg, 0, sizeof(msg));
 433        msg.cmd = PORT_CONFIG_WRITE;
 434        msg.hss_port = port->id;
 435        msg.index = HSS_CONFIG_RX_FCR;
 436        msg.data16a = FRAME_OFFSET;
 437        msg.data16b = FRAME_SIZE - 1;
 438        hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
 439
 440        hss_config_set_lut(port);
 441
 442        memset(&msg, 0, sizeof(msg));
 443        msg.cmd = PORT_CONFIG_LOAD;
 444        msg.hss_port = port->id;
 445        hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
 446
 447        if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
 448            /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
 449            msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
 450                pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
 451                BUG();
 452        }
 453
 454        /* HDLC may stop working without this - check FIXME */
 455        npe_recv_message(port->npe, &msg, "FLUSH_IT");
 456}
 457
 458static void hss_set_hdlc_cfg(struct port *port)
 459{
 460        struct msg msg;
 461
 462        memset(&msg, 0, sizeof(msg));
 463        msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
 464        msg.hss_port = port->id;
 465        msg.data8a = port->hdlc_cfg; /* rx_cfg */
 466        msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
 467        hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
 468}
 469
 470static u32 hss_get_status(struct port *port)
 471{
 472        struct msg msg;
 473
 474        memset(&msg, 0, sizeof(msg));
 475        msg.cmd = PORT_ERROR_READ;
 476        msg.hss_port = port->id;
 477        hss_npe_send(port, &msg, "PORT_ERROR_READ");
 478        if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
 479                pr_crit("HSS-%i: unable to read HSS status\n", port->id);
 480                BUG();
 481        }
 482
 483        return msg.data32;
 484}
 485
 486static void hss_start_hdlc(struct port *port)
 487{
 488        struct msg msg;
 489
 490        memset(&msg, 0, sizeof(msg));
 491        msg.cmd = PKT_PIPE_FLOW_ENABLE;
 492        msg.hss_port = port->id;
 493        msg.data32 = 0;
 494        hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
 495}
 496
 497static void hss_stop_hdlc(struct port *port)
 498{
 499        struct msg msg;
 500
 501        memset(&msg, 0, sizeof(msg));
 502        msg.cmd = PKT_PIPE_FLOW_DISABLE;
 503        msg.hss_port = port->id;
 504        hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
 505        hss_get_status(port); /* make sure it's halted */
 506}
 507
 508static int hss_load_firmware(struct port *port)
 509{
 510        struct msg msg;
 511        int err;
 512
 513        if (port->initialized)
 514                return 0;
 515
 516        if (!npe_running(port->npe) &&
 517            (err = npe_load_firmware(port->npe, npe_name(port->npe),
 518                                     port->dev)))
 519                return err;
 520
 521        /* HDLC mode configuration */
 522        memset(&msg, 0, sizeof(msg));
 523        msg.cmd = PKT_NUM_PIPES_WRITE;
 524        msg.hss_port = port->id;
 525        msg.data8a = PKT_NUM_PIPES;
 526        hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
 527
 528        msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
 529        msg.data8a = PKT_PIPE_FIFO_SIZEW;
 530        hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
 531
 532        msg.cmd = PKT_PIPE_MODE_WRITE;
 533        msg.data8a = NPE_PKT_MODE_HDLC;
 534        /* msg.data8b = inv_mask */
 535        /* msg.data8c = or_mask */
 536        hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
 537
 538        msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
 539        msg.data16a = HDLC_MAX_MRU; /* including CRC */
 540        hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
 541
 542        msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
 543        msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
 544        hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
 545
 546        port->initialized = 1;
 547        return 0;
 548}
 549
 550/*****************************************************************************
 551 * packetized (HDLC) operation
 552 ****************************************************************************/
 553
 554static inline void debug_pkt(struct net_device *dev, const char *func,
 555                             u8 *data, int len)
 556{
 557#if DEBUG_PKT_BYTES
 558        int i;
 559
 560        printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
 561        for (i = 0; i < len; i++) {
 562                if (i >= DEBUG_PKT_BYTES)
 563                        break;
 564                printk("%s%02X", !(i % 4) ? " " : "", data[i]);
 565        }
 566        printk("\n");
 567#endif
 568}
 569
 570
 571static inline void debug_desc(u32 phys, struct desc *desc)
 572{
 573#if DEBUG_DESC
 574        printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
 575               phys, desc->next, desc->buf_len, desc->pkt_len,
 576               desc->data, desc->status, desc->error_count);
 577#endif
 578}
 579
 580static inline int queue_get_desc(unsigned int queue, struct port *port,
 581                                 int is_tx)
 582{
 583        u32 phys, tab_phys, n_desc;
 584        struct desc *tab;
 585
 586        if (!(phys = qmgr_get_entry(queue)))
 587                return -1;
 588
 589        BUG_ON(phys & 0x1F);
 590        tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
 591        tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
 592        n_desc = (phys - tab_phys) / sizeof(struct desc);
 593        BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
 594        debug_desc(phys, &tab[n_desc]);
 595        BUG_ON(tab[n_desc].next);
 596        return n_desc;
 597}
 598
 599static inline void queue_put_desc(unsigned int queue, u32 phys,
 600                                  struct desc *desc)
 601{
 602        debug_desc(phys, desc);
 603        BUG_ON(phys & 0x1F);
 604        qmgr_put_entry(queue, phys);
 605        /* Don't check for queue overflow here, we've allocated sufficient
 606           length and queues >= 32 don't support this check anyway. */
 607}
 608
 609
 610static inline void dma_unmap_tx(struct port *port, struct desc *desc)
 611{
 612#ifdef __ARMEB__
 613        dma_unmap_single(&port->netdev->dev, desc->data,
 614                         desc->buf_len, DMA_TO_DEVICE);
 615#else
 616        dma_unmap_single(&port->netdev->dev, desc->data & ~3,
 617                         ALIGN((desc->data & 3) + desc->buf_len, 4),
 618                         DMA_TO_DEVICE);
 619#endif
 620}
 621
 622
 623static void hss_hdlc_set_carrier(void *pdev, int carrier)
 624{
 625        struct net_device *netdev = pdev;
 626        struct port *port = dev_to_port(netdev);
 627        unsigned long flags;
 628
 629        spin_lock_irqsave(&npe_lock, flags);
 630        port->carrier = carrier;
 631        if (!port->loopback) {
 632                if (carrier)
 633                        netif_carrier_on(netdev);
 634                else
 635                        netif_carrier_off(netdev);
 636        }
 637        spin_unlock_irqrestore(&npe_lock, flags);
 638}
 639
 640static void hss_hdlc_rx_irq(void *pdev)
 641{
 642        struct net_device *dev = pdev;
 643        struct port *port = dev_to_port(dev);
 644
 645#if DEBUG_RX
 646        printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
 647#endif
 648        qmgr_disable_irq(queue_ids[port->id].rx);
 649        napi_schedule(&port->napi);
 650}
 651
 652static int hss_hdlc_poll(struct napi_struct *napi, int budget)
 653{
 654        struct port *port = container_of(napi, struct port, napi);
 655        struct net_device *dev = port->netdev;
 656        unsigned int rxq = queue_ids[port->id].rx;
 657        unsigned int rxfreeq = queue_ids[port->id].rxfree;
 658        int received = 0;
 659
 660#if DEBUG_RX
 661        printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
 662#endif
 663
 664        while (received < budget) {
 665                struct sk_buff *skb;
 666                struct desc *desc;
 667                int n;
 668#ifdef __ARMEB__
 669                struct sk_buff *temp;
 670                u32 phys;
 671#endif
 672
 673                if ((n = queue_get_desc(rxq, port, 0)) < 0) {
 674#if DEBUG_RX
 675                        printk(KERN_DEBUG "%s: hss_hdlc_poll"
 676                               " napi_complete\n", dev->name);
 677#endif
 678                        napi_complete(napi);
 679                        qmgr_enable_irq(rxq);
 680                        if (!qmgr_stat_empty(rxq) &&
 681                            napi_reschedule(napi)) {
 682#if DEBUG_RX
 683                                printk(KERN_DEBUG "%s: hss_hdlc_poll"
 684                                       " napi_reschedule succeeded\n",
 685                                       dev->name);
 686#endif
 687                                qmgr_disable_irq(rxq);
 688                                continue;
 689                        }
 690#if DEBUG_RX
 691                        printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
 692                               dev->name);
 693#endif
 694                        return received; /* all work done */
 695                }
 696
 697                desc = rx_desc_ptr(port, n);
 698#if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
 699                if (desc->error_count)
 700                        printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
 701                               " errors %u\n", dev->name, desc->status,
 702                               desc->error_count);
 703#endif
 704                skb = NULL;
 705                switch (desc->status) {
 706                case 0:
 707#ifdef __ARMEB__
 708                        if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) {
 709                                phys = dma_map_single(&dev->dev, skb->data,
 710                                                      RX_SIZE,
 711                                                      DMA_FROM_DEVICE);
 712                                if (dma_mapping_error(&dev->dev, phys)) {
 713                                        dev_kfree_skb(skb);
 714                                        skb = NULL;
 715                                }
 716                        }
 717#else
 718                        skb = netdev_alloc_skb(dev, desc->pkt_len);
 719#endif
 720                        if (!skb)
 721                                dev->stats.rx_dropped++;
 722                        break;
 723                case ERR_HDLC_ALIGN:
 724                case ERR_HDLC_ABORT:
 725                        dev->stats.rx_frame_errors++;
 726                        dev->stats.rx_errors++;
 727                        break;
 728                case ERR_HDLC_FCS:
 729                        dev->stats.rx_crc_errors++;
 730                        dev->stats.rx_errors++;
 731                        break;
 732                case ERR_HDLC_TOO_LONG:
 733                        dev->stats.rx_length_errors++;
 734                        dev->stats.rx_errors++;
 735                        break;
 736                default:        /* FIXME - remove printk */
 737                        netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
 738                                   desc->status, desc->error_count);
 739                        dev->stats.rx_errors++;
 740                }
 741
 742                if (!skb) {
 743                        /* put the desc back on RX-ready queue */
 744                        desc->buf_len = RX_SIZE;
 745                        desc->pkt_len = desc->status = 0;
 746                        queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
 747                        continue;
 748                }
 749
 750                /* process received frame */
 751#ifdef __ARMEB__
 752                temp = skb;
 753                skb = port->rx_buff_tab[n];
 754                dma_unmap_single(&dev->dev, desc->data,
 755                                 RX_SIZE, DMA_FROM_DEVICE);
 756#else
 757                dma_sync_single_for_cpu(&dev->dev, desc->data,
 758                                        RX_SIZE, DMA_FROM_DEVICE);
 759                memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
 760                              ALIGN(desc->pkt_len, 4) / 4);
 761#endif
 762                skb_put(skb, desc->pkt_len);
 763
 764                debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
 765
 766                skb->protocol = hdlc_type_trans(skb, dev);
 767                dev->stats.rx_packets++;
 768                dev->stats.rx_bytes += skb->len;
 769                netif_receive_skb(skb);
 770
 771                /* put the new buffer on RX-free queue */
 772#ifdef __ARMEB__
 773                port->rx_buff_tab[n] = temp;
 774                desc->data = phys;
 775#endif
 776                desc->buf_len = RX_SIZE;
 777                desc->pkt_len = 0;
 778                queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
 779                received++;
 780        }
 781#if DEBUG_RX
 782        printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
 783#endif
 784        return received;        /* not all work done */
 785}
 786
 787
 788static void hss_hdlc_txdone_irq(void *pdev)
 789{
 790        struct net_device *dev = pdev;
 791        struct port *port = dev_to_port(dev);
 792        int n_desc;
 793
 794#if DEBUG_TX
 795        printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
 796#endif
 797        while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
 798                                        port, 1)) >= 0) {
 799                struct desc *desc;
 800                int start;
 801
 802                desc = tx_desc_ptr(port, n_desc);
 803
 804                dev->stats.tx_packets++;
 805                dev->stats.tx_bytes += desc->pkt_len;
 806
 807                dma_unmap_tx(port, desc);
 808#if DEBUG_TX
 809                printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
 810                       dev->name, port->tx_buff_tab[n_desc]);
 811#endif
 812                free_buffer_irq(port->tx_buff_tab[n_desc]);
 813                port->tx_buff_tab[n_desc] = NULL;
 814
 815                start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
 816                queue_put_desc(port->plat->txreadyq,
 817                               tx_desc_phys(port, n_desc), desc);
 818                if (start) { /* TX-ready queue was empty */
 819#if DEBUG_TX
 820                        printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
 821                               " ready\n", dev->name);
 822#endif
 823                        netif_wake_queue(dev);
 824                }
 825        }
 826}
 827
 828static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
 829{
 830        struct port *port = dev_to_port(dev);
 831        unsigned int txreadyq = port->plat->txreadyq;
 832        int len, offset, bytes, n;
 833        void *mem;
 834        u32 phys;
 835        struct desc *desc;
 836
 837#if DEBUG_TX
 838        printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
 839#endif
 840
 841        if (unlikely(skb->len > HDLC_MAX_MRU)) {
 842                dev_kfree_skb(skb);
 843                dev->stats.tx_errors++;
 844                return NETDEV_TX_OK;
 845        }
 846
 847        debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
 848
 849        len = skb->len;
 850#ifdef __ARMEB__
 851        offset = 0; /* no need to keep alignment */
 852        bytes = len;
 853        mem = skb->data;
 854#else
 855        offset = (int)skb->data & 3; /* keep 32-bit alignment */
 856        bytes = ALIGN(offset + len, 4);
 857        if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
 858                dev_kfree_skb(skb);
 859                dev->stats.tx_dropped++;
 860                return NETDEV_TX_OK;
 861        }
 862        memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
 863        dev_kfree_skb(skb);
 864#endif
 865
 866        phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
 867        if (dma_mapping_error(&dev->dev, phys)) {
 868#ifdef __ARMEB__
 869                dev_kfree_skb(skb);
 870#else
 871                kfree(mem);
 872#endif
 873                dev->stats.tx_dropped++;
 874                return NETDEV_TX_OK;
 875        }
 876
 877        n = queue_get_desc(txreadyq, port, 1);
 878        BUG_ON(n < 0);
 879        desc = tx_desc_ptr(port, n);
 880
 881#ifdef __ARMEB__
 882        port->tx_buff_tab[n] = skb;
 883#else
 884        port->tx_buff_tab[n] = mem;
 885#endif
 886        desc->data = phys + offset;
 887        desc->buf_len = desc->pkt_len = len;
 888
 889        wmb();
 890        queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
 891
 892        if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
 893#if DEBUG_TX
 894                printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
 895#endif
 896                netif_stop_queue(dev);
 897                /* we could miss TX ready interrupt */
 898                if (!qmgr_stat_below_low_watermark(txreadyq)) {
 899#if DEBUG_TX
 900                        printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
 901                               dev->name);
 902#endif
 903                        netif_wake_queue(dev);
 904                }
 905        }
 906
 907#if DEBUG_TX
 908        printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
 909#endif
 910        return NETDEV_TX_OK;
 911}
 912
 913
 914static int request_hdlc_queues(struct port *port)
 915{
 916        int err;
 917
 918        err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
 919                                 "%s:RX-free", port->netdev->name);
 920        if (err)
 921                return err;
 922
 923        err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
 924                                 "%s:RX", port->netdev->name);
 925        if (err)
 926                goto rel_rxfree;
 927
 928        err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
 929                                 "%s:TX", port->netdev->name);
 930        if (err)
 931                goto rel_rx;
 932
 933        err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
 934                                 "%s:TX-ready", port->netdev->name);
 935        if (err)
 936                goto rel_tx;
 937
 938        err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
 939                                 "%s:TX-done", port->netdev->name);
 940        if (err)
 941                goto rel_txready;
 942        return 0;
 943
 944rel_txready:
 945        qmgr_release_queue(port->plat->txreadyq);
 946rel_tx:
 947        qmgr_release_queue(queue_ids[port->id].tx);
 948rel_rx:
 949        qmgr_release_queue(queue_ids[port->id].rx);
 950rel_rxfree:
 951        qmgr_release_queue(queue_ids[port->id].rxfree);
 952        printk(KERN_DEBUG "%s: unable to request hardware queues\n",
 953               port->netdev->name);
 954        return err;
 955}
 956
 957static void release_hdlc_queues(struct port *port)
 958{
 959        qmgr_release_queue(queue_ids[port->id].rxfree);
 960        qmgr_release_queue(queue_ids[port->id].rx);
 961        qmgr_release_queue(queue_ids[port->id].txdone);
 962        qmgr_release_queue(queue_ids[port->id].tx);
 963        qmgr_release_queue(port->plat->txreadyq);
 964}
 965
 966static int init_hdlc_queues(struct port *port)
 967{
 968        int i;
 969
 970        if (!ports_open) {
 971                dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
 972                                           POOL_ALLOC_SIZE, 32, 0);
 973                if (!dma_pool)
 974                        return -ENOMEM;
 975        }
 976
 977        if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
 978                                              &port->desc_tab_phys)))
 979                return -ENOMEM;
 980        memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
 981        memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
 982        memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
 983
 984        /* Setup RX buffers */
 985        for (i = 0; i < RX_DESCS; i++) {
 986                struct desc *desc = rx_desc_ptr(port, i);
 987                buffer_t *buff;
 988                void *data;
 989#ifdef __ARMEB__
 990                if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE)))
 991                        return -ENOMEM;
 992                data = buff->data;
 993#else
 994                if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL)))
 995                        return -ENOMEM;
 996                data = buff;
 997#endif
 998                desc->buf_len = RX_SIZE;
 999                desc->data = dma_map_single(&port->netdev->dev, data,
1000                                            RX_SIZE, DMA_FROM_DEVICE);
1001                if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1002                        free_buffer(buff);
1003                        return -EIO;
1004                }
1005                port->rx_buff_tab[i] = buff;
1006        }
1007
1008        return 0;
1009}
1010
1011static void destroy_hdlc_queues(struct port *port)
1012{
1013        int i;
1014
1015        if (port->desc_tab) {
1016                for (i = 0; i < RX_DESCS; i++) {
1017                        struct desc *desc = rx_desc_ptr(port, i);
1018                        buffer_t *buff = port->rx_buff_tab[i];
1019                        if (buff) {
1020                                dma_unmap_single(&port->netdev->dev,
1021                                                 desc->data, RX_SIZE,
1022                                                 DMA_FROM_DEVICE);
1023                                free_buffer(buff);
1024                        }
1025                }
1026                for (i = 0; i < TX_DESCS; i++) {
1027                        struct desc *desc = tx_desc_ptr(port, i);
1028                        buffer_t *buff = port->tx_buff_tab[i];
1029                        if (buff) {
1030                                dma_unmap_tx(port, desc);
1031                                free_buffer(buff);
1032                        }
1033                }
1034                dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1035                port->desc_tab = NULL;
1036        }
1037
1038        if (!ports_open && dma_pool) {
1039                dma_pool_destroy(dma_pool);
1040                dma_pool = NULL;
1041        }
1042}
1043
1044static int hss_hdlc_open(struct net_device *dev)
1045{
1046        struct port *port = dev_to_port(dev);
1047        unsigned long flags;
1048        int i, err = 0;
1049
1050        if ((err = hdlc_open(dev)))
1051                return err;
1052
1053        if ((err = hss_load_firmware(port)))
1054                goto err_hdlc_close;
1055
1056        if ((err = request_hdlc_queues(port)))
1057                goto err_hdlc_close;
1058
1059        if ((err = init_hdlc_queues(port)))
1060                goto err_destroy_queues;
1061
1062        spin_lock_irqsave(&npe_lock, flags);
1063        if (port->plat->open)
1064                if ((err = port->plat->open(port->id, dev,
1065                                            hss_hdlc_set_carrier)))
1066                        goto err_unlock;
1067        spin_unlock_irqrestore(&npe_lock, flags);
1068
1069        /* Populate queues with buffers, no failure after this point */
1070        for (i = 0; i < TX_DESCS; i++)
1071                queue_put_desc(port->plat->txreadyq,
1072                               tx_desc_phys(port, i), tx_desc_ptr(port, i));
1073
1074        for (i = 0; i < RX_DESCS; i++)
1075                queue_put_desc(queue_ids[port->id].rxfree,
1076                               rx_desc_phys(port, i), rx_desc_ptr(port, i));
1077
1078        napi_enable(&port->napi);
1079        netif_start_queue(dev);
1080
1081        qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1082                     hss_hdlc_rx_irq, dev);
1083
1084        qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1085                     hss_hdlc_txdone_irq, dev);
1086        qmgr_enable_irq(queue_ids[port->id].txdone);
1087
1088        ports_open++;
1089
1090        hss_set_hdlc_cfg(port);
1091        hss_config(port);
1092
1093        hss_start_hdlc(port);
1094
1095        /* we may already have RX data, enables IRQ */
1096        napi_schedule(&port->napi);
1097        return 0;
1098
1099err_unlock:
1100        spin_unlock_irqrestore(&npe_lock, flags);
1101err_destroy_queues:
1102        destroy_hdlc_queues(port);
1103        release_hdlc_queues(port);
1104err_hdlc_close:
1105        hdlc_close(dev);
1106        return err;
1107}
1108
1109static int hss_hdlc_close(struct net_device *dev)
1110{
1111        struct port *port = dev_to_port(dev);
1112        unsigned long flags;
1113        int i, buffs = RX_DESCS; /* allocated RX buffers */
1114
1115        spin_lock_irqsave(&npe_lock, flags);
1116        ports_open--;
1117        qmgr_disable_irq(queue_ids[port->id].rx);
1118        netif_stop_queue(dev);
1119        napi_disable(&port->napi);
1120
1121        hss_stop_hdlc(port);
1122
1123        while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1124                buffs--;
1125        while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1126                buffs--;
1127
1128        if (buffs)
1129                netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1130                            buffs);
1131
1132        buffs = TX_DESCS;
1133        while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1134                buffs--; /* cancel TX */
1135
1136        i = 0;
1137        do {
1138                while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1139                        buffs--;
1140                if (!buffs)
1141                        break;
1142        } while (++i < MAX_CLOSE_WAIT);
1143
1144        if (buffs)
1145                netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1146                            buffs);
1147#if DEBUG_CLOSE
1148        if (!buffs)
1149                printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1150#endif
1151        qmgr_disable_irq(queue_ids[port->id].txdone);
1152
1153        if (port->plat->close)
1154                port->plat->close(port->id, dev);
1155        spin_unlock_irqrestore(&npe_lock, flags);
1156
1157        destroy_hdlc_queues(port);
1158        release_hdlc_queues(port);
1159        hdlc_close(dev);
1160        return 0;
1161}
1162
1163
1164static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1165                           unsigned short parity)
1166{
1167        struct port *port = dev_to_port(dev);
1168
1169        if (encoding != ENCODING_NRZ)
1170                return -EINVAL;
1171
1172        switch(parity) {
1173        case PARITY_CRC16_PR1_CCITT:
1174                port->hdlc_cfg = 0;
1175                return 0;
1176
1177        case PARITY_CRC32_PR1_CCITT:
1178                port->hdlc_cfg = PKT_HDLC_CRC_32;
1179                return 0;
1180
1181        default:
1182                return -EINVAL;
1183        }
1184}
1185
1186static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c,
1187                       u32 *best, u32 *best_diff, u32 *reg)
1188{
1189        /* a is 10-bit, b is 10-bit, c is 12-bit */
1190        u64 new_rate;
1191        u32 new_diff;
1192
1193        new_rate = timer_freq * (u64)(c + 1);
1194        do_div(new_rate, a * (c + 1) + b + 1);
1195        new_diff = abs((u32)new_rate - rate);
1196
1197        if (new_diff < *best_diff) {
1198                *best = new_rate;
1199                *best_diff = new_diff;
1200                *reg = (a << 22) | (b << 12) | c;
1201        }
1202        return new_diff;
1203}
1204
1205static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg)
1206{
1207        u32 a, b, diff = 0xFFFFFFFF;
1208
1209        a = timer_freq / rate;
1210
1211        if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1212                check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg);
1213                return;
1214        }
1215        if (a == 0) { /* > 66.666 MHz */
1216                a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1217                rate = timer_freq;
1218        }
1219
1220        if (rate * a == timer_freq) { /* don't divide by 0 later */
1221                check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg);
1222                return;
1223        }
1224
1225        for (b = 0; b < 0x400; b++) {
1226                u64 c = (b + 1) * (u64)rate;
1227                do_div(c, timer_freq - rate * a);
1228                c--;
1229                if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1230                        if (b == 0 && /* also try a bit higher rate */
1231                            !check_clock(timer_freq, rate, a - 1, 1, 1, best,
1232                                         &diff, reg))
1233                                return;
1234                        check_clock(timer_freq, rate, a, b, 0xFFF, best,
1235                                    &diff, reg);
1236                        return;
1237                }
1238                if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg))
1239                        return;
1240                if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff,
1241                                 reg))
1242                        return;
1243        }
1244}
1245
1246static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1247{
1248        const size_t size = sizeof(sync_serial_settings);
1249        sync_serial_settings new_line;
1250        sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1251        struct port *port = dev_to_port(dev);
1252        unsigned long flags;
1253        int clk;
1254
1255        if (cmd != SIOCWANDEV)
1256                return hdlc_ioctl(dev, ifr, cmd);
1257
1258        switch(ifr->ifr_settings.type) {
1259        case IF_GET_IFACE:
1260                ifr->ifr_settings.type = IF_IFACE_V35;
1261                if (ifr->ifr_settings.size < size) {
1262                        ifr->ifr_settings.size = size; /* data size wanted */
1263                        return -ENOBUFS;
1264                }
1265                memset(&new_line, 0, sizeof(new_line));
1266                new_line.clock_type = port->clock_type;
1267                new_line.clock_rate = port->clock_rate;
1268                new_line.loopback = port->loopback;
1269                if (copy_to_user(line, &new_line, size))
1270                        return -EFAULT;
1271                return 0;
1272
1273        case IF_IFACE_SYNC_SERIAL:
1274        case IF_IFACE_V35:
1275                if(!capable(CAP_NET_ADMIN))
1276                        return -EPERM;
1277                if (copy_from_user(&new_line, line, size))
1278                        return -EFAULT;
1279
1280                clk = new_line.clock_type;
1281                if (port->plat->set_clock)
1282                        clk = port->plat->set_clock(port->id, clk);
1283
1284                if (clk != CLOCK_EXT && clk != CLOCK_INT)
1285                        return -EINVAL; /* No such clock setting */
1286
1287                if (new_line.loopback != 0 && new_line.loopback != 1)
1288                        return -EINVAL;
1289
1290                port->clock_type = clk; /* Update settings */
1291                if (clk == CLOCK_INT)
1292                        find_best_clock(port->plat->timer_freq,
1293                                        new_line.clock_rate,
1294                                        &port->clock_rate, &port->clock_reg);
1295                else {
1296                        port->clock_rate = 0;
1297                        port->clock_reg = CLK42X_SPEED_2048KHZ;
1298                }
1299                port->loopback = new_line.loopback;
1300
1301                spin_lock_irqsave(&npe_lock, flags);
1302
1303                if (dev->flags & IFF_UP)
1304                        hss_config(port);
1305
1306                if (port->loopback || port->carrier)
1307                        netif_carrier_on(port->netdev);
1308                else
1309                        netif_carrier_off(port->netdev);
1310                spin_unlock_irqrestore(&npe_lock, flags);
1311
1312                return 0;
1313
1314        default:
1315                return hdlc_ioctl(dev, ifr, cmd);
1316        }
1317}
1318
1319/*****************************************************************************
1320 * initialization
1321 ****************************************************************************/
1322
1323static const struct net_device_ops hss_hdlc_ops = {
1324        .ndo_open       = hss_hdlc_open,
1325        .ndo_stop       = hss_hdlc_close,
1326        .ndo_start_xmit = hdlc_start_xmit,
1327        .ndo_do_ioctl   = hss_hdlc_ioctl,
1328};
1329
1330static int hss_init_one(struct platform_device *pdev)
1331{
1332        struct port *port;
1333        struct net_device *dev;
1334        hdlc_device *hdlc;
1335        int err;
1336
1337        if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL)
1338                return -ENOMEM;
1339
1340        if ((port->npe = npe_request(0)) == NULL) {
1341                err = -ENODEV;
1342                goto err_free;
1343        }
1344
1345        if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) {
1346                err = -ENOMEM;
1347                goto err_plat;
1348        }
1349
1350        SET_NETDEV_DEV(dev, &pdev->dev);
1351        hdlc = dev_to_hdlc(dev);
1352        hdlc->attach = hss_hdlc_attach;
1353        hdlc->xmit = hss_hdlc_xmit;
1354        dev->netdev_ops = &hss_hdlc_ops;
1355        dev->tx_queue_len = 100;
1356        port->clock_type = CLOCK_EXT;
1357        port->clock_rate = 0;
1358        port->clock_reg = CLK42X_SPEED_2048KHZ;
1359        port->id = pdev->id;
1360        port->dev = &pdev->dev;
1361        port->plat = pdev->dev.platform_data;
1362        netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1363
1364        if ((err = register_hdlc_device(dev)))
1365                goto err_free_netdev;
1366
1367        platform_set_drvdata(pdev, port);
1368
1369        netdev_info(dev, "initialized\n");
1370        return 0;
1371
1372err_free_netdev:
1373        free_netdev(dev);
1374err_plat:
1375        npe_release(port->npe);
1376err_free:
1377        kfree(port);
1378        return err;
1379}
1380
1381static int hss_remove_one(struct platform_device *pdev)
1382{
1383        struct port *port = platform_get_drvdata(pdev);
1384
1385        unregister_hdlc_device(port->netdev);
1386        free_netdev(port->netdev);
1387        npe_release(port->npe);
1388        kfree(port);
1389        return 0;
1390}
1391
1392static struct platform_driver ixp4xx_hss_driver = {
1393        .driver.name    = DRV_NAME,
1394        .probe          = hss_init_one,
1395        .remove         = hss_remove_one,
1396};
1397
1398static int __init hss_init_module(void)
1399{
1400        if ((ixp4xx_read_feature_bits() &
1401             (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1402            (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1403                return -ENODEV;
1404
1405        spin_lock_init(&npe_lock);
1406
1407        return platform_driver_register(&ixp4xx_hss_driver);
1408}
1409
1410static void __exit hss_cleanup_module(void)
1411{
1412        platform_driver_unregister(&ixp4xx_hss_driver);
1413}
1414
1415MODULE_AUTHOR("Krzysztof Halasa");
1416MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1417MODULE_LICENSE("GPL v2");
1418MODULE_ALIAS("platform:ixp4xx_hss");
1419module_init(hss_init_module);
1420module_exit(hss_cleanup_module);
1421