linux/drivers/spi/spi-sun4i.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2012 - 2014 Allwinner Tech
   4 * Pan Nan <pannan@allwinnertech.com>
   5 *
   6 * Copyright (C) 2014 Maxime Ripard
   7 * Maxime Ripard <maxime.ripard@free-electrons.com>
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/interrupt.h>
  14#include <linux/io.h>
  15#include <linux/module.h>
  16#include <linux/platform_device.h>
  17#include <linux/pm_runtime.h>
  18
  19#include <linux/spi/spi.h>
  20
  21#define SUN4I_FIFO_DEPTH                64
  22
  23#define SUN4I_RXDATA_REG                0x00
  24
  25#define SUN4I_TXDATA_REG                0x04
  26
  27#define SUN4I_CTL_REG                   0x08
  28#define SUN4I_CTL_ENABLE                        BIT(0)
  29#define SUN4I_CTL_MASTER                        BIT(1)
  30#define SUN4I_CTL_CPHA                          BIT(2)
  31#define SUN4I_CTL_CPOL                          BIT(3)
  32#define SUN4I_CTL_CS_ACTIVE_LOW                 BIT(4)
  33#define SUN4I_CTL_LMTF                          BIT(6)
  34#define SUN4I_CTL_TF_RST                        BIT(8)
  35#define SUN4I_CTL_RF_RST                        BIT(9)
  36#define SUN4I_CTL_XCH                           BIT(10)
  37#define SUN4I_CTL_CS_MASK                       0x3000
  38#define SUN4I_CTL_CS(cs)                        (((cs) << 12) & SUN4I_CTL_CS_MASK)
  39#define SUN4I_CTL_DHB                           BIT(15)
  40#define SUN4I_CTL_CS_MANUAL                     BIT(16)
  41#define SUN4I_CTL_CS_LEVEL                      BIT(17)
  42#define SUN4I_CTL_TP                            BIT(18)
  43
  44#define SUN4I_INT_CTL_REG               0x0c
  45#define SUN4I_INT_CTL_RF_F34                    BIT(4)
  46#define SUN4I_INT_CTL_TF_E34                    BIT(12)
  47#define SUN4I_INT_CTL_TC                        BIT(16)
  48
  49#define SUN4I_INT_STA_REG               0x10
  50
  51#define SUN4I_DMA_CTL_REG               0x14
  52
  53#define SUN4I_WAIT_REG                  0x18
  54
  55#define SUN4I_CLK_CTL_REG               0x1c
  56#define SUN4I_CLK_CTL_CDR2_MASK                 0xff
  57#define SUN4I_CLK_CTL_CDR2(div)                 ((div) & SUN4I_CLK_CTL_CDR2_MASK)
  58#define SUN4I_CLK_CTL_CDR1_MASK                 0xf
  59#define SUN4I_CLK_CTL_CDR1(div)                 (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
  60#define SUN4I_CLK_CTL_DRS                       BIT(12)
  61
  62#define SUN4I_MAX_XFER_SIZE                     0xffffff
  63
  64#define SUN4I_BURST_CNT_REG             0x20
  65#define SUN4I_BURST_CNT(cnt)                    ((cnt) & SUN4I_MAX_XFER_SIZE)
  66
  67#define SUN4I_XMIT_CNT_REG              0x24
  68#define SUN4I_XMIT_CNT(cnt)                     ((cnt) & SUN4I_MAX_XFER_SIZE)
  69
  70
  71#define SUN4I_FIFO_STA_REG              0x28
  72#define SUN4I_FIFO_STA_RF_CNT_MASK              0x7f
  73#define SUN4I_FIFO_STA_RF_CNT_BITS              0
  74#define SUN4I_FIFO_STA_TF_CNT_MASK              0x7f
  75#define SUN4I_FIFO_STA_TF_CNT_BITS              16
  76
  77struct sun4i_spi {
  78        struct spi_master       *master;
  79        void __iomem            *base_addr;
  80        struct clk              *hclk;
  81        struct clk              *mclk;
  82
  83        struct completion       done;
  84
  85        const u8                *tx_buf;
  86        u8                      *rx_buf;
  87        int                     len;
  88};
  89
  90static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
  91{
  92        return readl(sspi->base_addr + reg);
  93}
  94
  95static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
  96{
  97        writel(value, sspi->base_addr + reg);
  98}
  99
 100static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
 101{
 102        u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
 103
 104        reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
 105
 106        return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
 107}
 108
 109static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
 110{
 111        u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
 112
 113        reg |= mask;
 114        sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
 115}
 116
 117static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
 118{
 119        u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
 120
 121        reg &= ~mask;
 122        sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
 123}
 124
 125static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
 126{
 127        u32 reg, cnt;
 128        u8 byte;
 129
 130        /* See how much data is available */
 131        reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
 132        reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
 133        cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
 134
 135        if (len > cnt)
 136                len = cnt;
 137
 138        while (len--) {
 139                byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
 140                if (sspi->rx_buf)
 141                        *sspi->rx_buf++ = byte;
 142        }
 143}
 144
 145static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
 146{
 147        u32 cnt;
 148        u8 byte;
 149
 150        /* See how much data we can fit */
 151        cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
 152
 153        len = min3(len, (int)cnt, sspi->len);
 154
 155        while (len--) {
 156                byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
 157                writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
 158                sspi->len--;
 159        }
 160}
 161
 162static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
 163{
 164        struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
 165        u32 reg;
 166
 167        reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
 168
 169        reg &= ~SUN4I_CTL_CS_MASK;
 170        reg |= SUN4I_CTL_CS(spi->chip_select);
 171
 172        /* We want to control the chip select manually */
 173        reg |= SUN4I_CTL_CS_MANUAL;
 174
 175        if (enable)
 176                reg |= SUN4I_CTL_CS_LEVEL;
 177        else
 178                reg &= ~SUN4I_CTL_CS_LEVEL;
 179
 180        /*
 181         * Even though this looks irrelevant since we are supposed to
 182         * be controlling the chip select manually, this bit also
 183         * controls the levels of the chip select for inactive
 184         * devices.
 185         *
 186         * If we don't set it, the chip select level will go low by
 187         * default when the device is idle, which is not really
 188         * expected in the common case where the chip select is active
 189         * low.
 190         */
 191        if (spi->mode & SPI_CS_HIGH)
 192                reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
 193        else
 194                reg |= SUN4I_CTL_CS_ACTIVE_LOW;
 195
 196        sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
 197}
 198
 199static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
 200{
 201        return SUN4I_FIFO_DEPTH - 1;
 202}
 203
 204static int sun4i_spi_transfer_one(struct spi_master *master,
 205                                  struct spi_device *spi,
 206                                  struct spi_transfer *tfr)
 207{
 208        struct sun4i_spi *sspi = spi_master_get_devdata(master);
 209        unsigned int mclk_rate, div, timeout;
 210        unsigned int start, end, tx_time;
 211        unsigned int tx_len = 0;
 212        int ret = 0;
 213        u32 reg;
 214
 215        /* We don't support transfer larger than the FIFO */
 216        if (tfr->len > SUN4I_MAX_XFER_SIZE)
 217                return -EMSGSIZE;
 218
 219        if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
 220                return -EMSGSIZE;
 221
 222        reinit_completion(&sspi->done);
 223        sspi->tx_buf = tfr->tx_buf;
 224        sspi->rx_buf = tfr->rx_buf;
 225        sspi->len = tfr->len;
 226
 227        /* Clear pending interrupts */
 228        sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
 229
 230
 231        reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
 232
 233        /* Reset FIFOs */
 234        sun4i_spi_write(sspi, SUN4I_CTL_REG,
 235                        reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
 236
 237        /*
 238         * Setup the transfer control register: Chip Select,
 239         * polarities, etc.
 240         */
 241        if (spi->mode & SPI_CPOL)
 242                reg |= SUN4I_CTL_CPOL;
 243        else
 244                reg &= ~SUN4I_CTL_CPOL;
 245
 246        if (spi->mode & SPI_CPHA)
 247                reg |= SUN4I_CTL_CPHA;
 248        else
 249                reg &= ~SUN4I_CTL_CPHA;
 250
 251        if (spi->mode & SPI_LSB_FIRST)
 252                reg |= SUN4I_CTL_LMTF;
 253        else
 254                reg &= ~SUN4I_CTL_LMTF;
 255
 256
 257        /*
 258         * If it's a TX only transfer, we don't want to fill the RX
 259         * FIFO with bogus data
 260         */
 261        if (sspi->rx_buf)
 262                reg &= ~SUN4I_CTL_DHB;
 263        else
 264                reg |= SUN4I_CTL_DHB;
 265
 266        sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
 267
 268        /* Ensure that we have a parent clock fast enough */
 269        mclk_rate = clk_get_rate(sspi->mclk);
 270        if (mclk_rate < (2 * tfr->speed_hz)) {
 271                clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
 272                mclk_rate = clk_get_rate(sspi->mclk);
 273        }
 274
 275        /*
 276         * Setup clock divider.
 277         *
 278         * We have two choices there. Either we can use the clock
 279         * divide rate 1, which is calculated thanks to this formula:
 280         * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
 281         * Or we can use CDR2, which is calculated with the formula:
 282         * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
 283         * Wether we use the former or the latter is set through the
 284         * DRS bit.
 285         *
 286         * First try CDR2, and if we can't reach the expected
 287         * frequency, fall back to CDR1.
 288         */
 289        div = mclk_rate / (2 * tfr->speed_hz);
 290        if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
 291                if (div > 0)
 292                        div--;
 293
 294                reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
 295        } else {
 296                div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
 297                reg = SUN4I_CLK_CTL_CDR1(div);
 298        }
 299
 300        sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
 301
 302        /* Setup the transfer now... */
 303        if (sspi->tx_buf)
 304                tx_len = tfr->len;
 305
 306        /* Setup the counters */
 307        sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
 308        sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
 309
 310        /*
 311         * Fill the TX FIFO
 312         * Filling the FIFO fully causes timeout for some reason
 313         * at least on spi2 on A10s
 314         */
 315        sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
 316
 317        /* Enable the interrupts */
 318        sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
 319                                         SUN4I_INT_CTL_RF_F34);
 320        /* Only enable Tx FIFO interrupt if we really need it */
 321        if (tx_len > SUN4I_FIFO_DEPTH)
 322                sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
 323
 324        /* Start the transfer */
 325        reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
 326        sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
 327
 328        tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
 329        start = jiffies;
 330        timeout = wait_for_completion_timeout(&sspi->done,
 331                                              msecs_to_jiffies(tx_time));
 332        end = jiffies;
 333        if (!timeout) {
 334                dev_warn(&master->dev,
 335                         "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
 336                         dev_name(&spi->dev), tfr->len, tfr->speed_hz,
 337                         jiffies_to_msecs(end - start), tx_time);
 338                ret = -ETIMEDOUT;
 339                goto out;
 340        }
 341
 342
 343out:
 344        sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
 345
 346        return ret;
 347}
 348
 349static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
 350{
 351        struct sun4i_spi *sspi = dev_id;
 352        u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
 353
 354        /* Transfer complete */
 355        if (status & SUN4I_INT_CTL_TC) {
 356                sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
 357                sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
 358                complete(&sspi->done);
 359                return IRQ_HANDLED;
 360        }
 361
 362        /* Receive FIFO 3/4 full */
 363        if (status & SUN4I_INT_CTL_RF_F34) {
 364                sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
 365                /* Only clear the interrupt _after_ draining the FIFO */
 366                sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
 367                return IRQ_HANDLED;
 368        }
 369
 370        /* Transmit FIFO 3/4 empty */
 371        if (status & SUN4I_INT_CTL_TF_E34) {
 372                sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
 373
 374                if (!sspi->len)
 375                        /* nothing left to transmit */
 376                        sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
 377
 378                /* Only clear the interrupt _after_ re-seeding the FIFO */
 379                sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
 380
 381                return IRQ_HANDLED;
 382        }
 383
 384        return IRQ_NONE;
 385}
 386
 387static int sun4i_spi_runtime_resume(struct device *dev)
 388{
 389        struct spi_master *master = dev_get_drvdata(dev);
 390        struct sun4i_spi *sspi = spi_master_get_devdata(master);
 391        int ret;
 392
 393        ret = clk_prepare_enable(sspi->hclk);
 394        if (ret) {
 395                dev_err(dev, "Couldn't enable AHB clock\n");
 396                goto out;
 397        }
 398
 399        ret = clk_prepare_enable(sspi->mclk);
 400        if (ret) {
 401                dev_err(dev, "Couldn't enable module clock\n");
 402                goto err;
 403        }
 404
 405        sun4i_spi_write(sspi, SUN4I_CTL_REG,
 406                        SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
 407
 408        return 0;
 409
 410err:
 411        clk_disable_unprepare(sspi->hclk);
 412out:
 413        return ret;
 414}
 415
 416static int sun4i_spi_runtime_suspend(struct device *dev)
 417{
 418        struct spi_master *master = dev_get_drvdata(dev);
 419        struct sun4i_spi *sspi = spi_master_get_devdata(master);
 420
 421        clk_disable_unprepare(sspi->mclk);
 422        clk_disable_unprepare(sspi->hclk);
 423
 424        return 0;
 425}
 426
 427static int sun4i_spi_probe(struct platform_device *pdev)
 428{
 429        struct spi_master *master;
 430        struct sun4i_spi *sspi;
 431        int ret = 0, irq;
 432
 433        master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
 434        if (!master) {
 435                dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
 436                return -ENOMEM;
 437        }
 438
 439        platform_set_drvdata(pdev, master);
 440        sspi = spi_master_get_devdata(master);
 441
 442        sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
 443        if (IS_ERR(sspi->base_addr)) {
 444                ret = PTR_ERR(sspi->base_addr);
 445                goto err_free_master;
 446        }
 447
 448        irq = platform_get_irq(pdev, 0);
 449        if (irq < 0) {
 450                ret = -ENXIO;
 451                goto err_free_master;
 452        }
 453
 454        ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
 455                               0, "sun4i-spi", sspi);
 456        if (ret) {
 457                dev_err(&pdev->dev, "Cannot request IRQ\n");
 458                goto err_free_master;
 459        }
 460
 461        sspi->master = master;
 462        master->max_speed_hz = 100 * 1000 * 1000;
 463        master->min_speed_hz = 3 * 1000;
 464        master->set_cs = sun4i_spi_set_cs;
 465        master->transfer_one = sun4i_spi_transfer_one;
 466        master->num_chipselect = 4;
 467        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
 468        master->bits_per_word_mask = SPI_BPW_MASK(8);
 469        master->dev.of_node = pdev->dev.of_node;
 470        master->auto_runtime_pm = true;
 471        master->max_transfer_size = sun4i_spi_max_transfer_size;
 472
 473        sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
 474        if (IS_ERR(sspi->hclk)) {
 475                dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
 476                ret = PTR_ERR(sspi->hclk);
 477                goto err_free_master;
 478        }
 479
 480        sspi->mclk = devm_clk_get(&pdev->dev, "mod");
 481        if (IS_ERR(sspi->mclk)) {
 482                dev_err(&pdev->dev, "Unable to acquire module clock\n");
 483                ret = PTR_ERR(sspi->mclk);
 484                goto err_free_master;
 485        }
 486
 487        init_completion(&sspi->done);
 488
 489        /*
 490         * This wake-up/shutdown pattern is to be able to have the
 491         * device woken up, even if runtime_pm is disabled
 492         */
 493        ret = sun4i_spi_runtime_resume(&pdev->dev);
 494        if (ret) {
 495                dev_err(&pdev->dev, "Couldn't resume the device\n");
 496                goto err_free_master;
 497        }
 498
 499        pm_runtime_set_active(&pdev->dev);
 500        pm_runtime_enable(&pdev->dev);
 501        pm_runtime_idle(&pdev->dev);
 502
 503        ret = devm_spi_register_master(&pdev->dev, master);
 504        if (ret) {
 505                dev_err(&pdev->dev, "cannot register SPI master\n");
 506                goto err_pm_disable;
 507        }
 508
 509        return 0;
 510
 511err_pm_disable:
 512        pm_runtime_disable(&pdev->dev);
 513        sun4i_spi_runtime_suspend(&pdev->dev);
 514err_free_master:
 515        spi_master_put(master);
 516        return ret;
 517}
 518
 519static int sun4i_spi_remove(struct platform_device *pdev)
 520{
 521        pm_runtime_force_suspend(&pdev->dev);
 522
 523        return 0;
 524}
 525
 526static const struct of_device_id sun4i_spi_match[] = {
 527        { .compatible = "allwinner,sun4i-a10-spi", },
 528        {}
 529};
 530MODULE_DEVICE_TABLE(of, sun4i_spi_match);
 531
 532static const struct dev_pm_ops sun4i_spi_pm_ops = {
 533        .runtime_resume         = sun4i_spi_runtime_resume,
 534        .runtime_suspend        = sun4i_spi_runtime_suspend,
 535};
 536
 537static struct platform_driver sun4i_spi_driver = {
 538        .probe  = sun4i_spi_probe,
 539        .remove = sun4i_spi_remove,
 540        .driver = {
 541                .name           = "sun4i-spi",
 542                .of_match_table = sun4i_spi_match,
 543                .pm             = &sun4i_spi_pm_ops,
 544        },
 545};
 546module_platform_driver(sun4i_spi_driver);
 547
 548MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
 549MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
 550MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
 551MODULE_LICENSE("GPL");
 552