linux/drivers/thunderbolt/switch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - switch/port utility functions
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2018, Intel Corporation
   7 */
   8
   9#include <linux/delay.h>
  10#include <linux/idr.h>
  11#include <linux/nvmem-provider.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/sched/signal.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16#include <linux/vmalloc.h>
  17
  18#include "tb.h"
  19
  20/* Switch NVM support */
  21
  22#define NVM_DEVID               0x05
  23#define NVM_VERSION             0x08
  24#define NVM_CSS                 0x10
  25#define NVM_FLASH_SIZE          0x45
  26
  27#define NVM_MIN_SIZE            SZ_32K
  28#define NVM_MAX_SIZE            SZ_512K
  29
  30static DEFINE_IDA(nvm_ida);
  31
  32struct nvm_auth_status {
  33        struct list_head list;
  34        uuid_t uuid;
  35        u32 status;
  36};
  37
  38/*
  39 * Hold NVM authentication failure status per switch This information
  40 * needs to stay around even when the switch gets power cycled so we
  41 * keep it separately.
  42 */
  43static LIST_HEAD(nvm_auth_status_cache);
  44static DEFINE_MUTEX(nvm_auth_status_lock);
  45
  46static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
  47{
  48        struct nvm_auth_status *st;
  49
  50        list_for_each_entry(st, &nvm_auth_status_cache, list) {
  51                if (uuid_equal(&st->uuid, sw->uuid))
  52                        return st;
  53        }
  54
  55        return NULL;
  56}
  57
  58static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
  59{
  60        struct nvm_auth_status *st;
  61
  62        mutex_lock(&nvm_auth_status_lock);
  63        st = __nvm_get_auth_status(sw);
  64        mutex_unlock(&nvm_auth_status_lock);
  65
  66        *status = st ? st->status : 0;
  67}
  68
  69static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
  70{
  71        struct nvm_auth_status *st;
  72
  73        if (WARN_ON(!sw->uuid))
  74                return;
  75
  76        mutex_lock(&nvm_auth_status_lock);
  77        st = __nvm_get_auth_status(sw);
  78
  79        if (!st) {
  80                st = kzalloc(sizeof(*st), GFP_KERNEL);
  81                if (!st)
  82                        goto unlock;
  83
  84                memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
  85                INIT_LIST_HEAD(&st->list);
  86                list_add_tail(&st->list, &nvm_auth_status_cache);
  87        }
  88
  89        st->status = status;
  90unlock:
  91        mutex_unlock(&nvm_auth_status_lock);
  92}
  93
  94static void nvm_clear_auth_status(const struct tb_switch *sw)
  95{
  96        struct nvm_auth_status *st;
  97
  98        mutex_lock(&nvm_auth_status_lock);
  99        st = __nvm_get_auth_status(sw);
 100        if (st) {
 101                list_del(&st->list);
 102                kfree(st);
 103        }
 104        mutex_unlock(&nvm_auth_status_lock);
 105}
 106
 107static int nvm_validate_and_write(struct tb_switch *sw)
 108{
 109        unsigned int image_size, hdr_size;
 110        const u8 *buf = sw->nvm->buf;
 111        u16 ds_size;
 112        int ret;
 113
 114        if (!buf)
 115                return -EINVAL;
 116
 117        image_size = sw->nvm->buf_data_size;
 118        if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
 119                return -EINVAL;
 120
 121        /*
 122         * FARB pointer must point inside the image and must at least
 123         * contain parts of the digital section we will be reading here.
 124         */
 125        hdr_size = (*(u32 *)buf) & 0xffffff;
 126        if (hdr_size + NVM_DEVID + 2 >= image_size)
 127                return -EINVAL;
 128
 129        /* Digital section start should be aligned to 4k page */
 130        if (!IS_ALIGNED(hdr_size, SZ_4K))
 131                return -EINVAL;
 132
 133        /*
 134         * Read digital section size and check that it also fits inside
 135         * the image.
 136         */
 137        ds_size = *(u16 *)(buf + hdr_size);
 138        if (ds_size >= image_size)
 139                return -EINVAL;
 140
 141        if (!sw->safe_mode) {
 142                u16 device_id;
 143
 144                /*
 145                 * Make sure the device ID in the image matches the one
 146                 * we read from the switch config space.
 147                 */
 148                device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
 149                if (device_id != sw->config.device_id)
 150                        return -EINVAL;
 151
 152                if (sw->generation < 3) {
 153                        /* Write CSS headers first */
 154                        ret = dma_port_flash_write(sw->dma_port,
 155                                DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
 156                                DMA_PORT_CSS_MAX_SIZE);
 157                        if (ret)
 158                                return ret;
 159                }
 160
 161                /* Skip headers in the image */
 162                buf += hdr_size;
 163                image_size -= hdr_size;
 164        }
 165
 166        if (tb_switch_is_usb4(sw))
 167                return usb4_switch_nvm_write(sw, 0, buf, image_size);
 168        return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
 169}
 170
 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
 172{
 173        int ret = 0;
 174
 175        /*
 176         * Root switch NVM upgrade requires that we disconnect the
 177         * existing paths first (in case it is not in safe mode
 178         * already).
 179         */
 180        if (!sw->safe_mode) {
 181                u32 status;
 182
 183                ret = tb_domain_disconnect_all_paths(sw->tb);
 184                if (ret)
 185                        return ret;
 186                /*
 187                 * The host controller goes away pretty soon after this if
 188                 * everything goes well so getting timeout is expected.
 189                 */
 190                ret = dma_port_flash_update_auth(sw->dma_port);
 191                if (!ret || ret == -ETIMEDOUT)
 192                        return 0;
 193
 194                /*
 195                 * Any error from update auth operation requires power
 196                 * cycling of the host router.
 197                 */
 198                tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
 199                if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
 200                        nvm_set_auth_status(sw, status);
 201        }
 202
 203        /*
 204         * From safe mode we can get out by just power cycling the
 205         * switch.
 206         */
 207        dma_port_power_cycle(sw->dma_port);
 208        return ret;
 209}
 210
 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
 212{
 213        int ret, retries = 10;
 214
 215        ret = dma_port_flash_update_auth(sw->dma_port);
 216        switch (ret) {
 217        case 0:
 218        case -ETIMEDOUT:
 219        case -EACCES:
 220        case -EINVAL:
 221                /* Power cycle is required */
 222                break;
 223        default:
 224                return ret;
 225        }
 226
 227        /*
 228         * Poll here for the authentication status. It takes some time
 229         * for the device to respond (we get timeout for a while). Once
 230         * we get response the device needs to be power cycled in order
 231         * to the new NVM to be taken into use.
 232         */
 233        do {
 234                u32 status;
 235
 236                ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
 237                if (ret < 0 && ret != -ETIMEDOUT)
 238                        return ret;
 239                if (ret > 0) {
 240                        if (status) {
 241                                tb_sw_warn(sw, "failed to authenticate NVM\n");
 242                                nvm_set_auth_status(sw, status);
 243                        }
 244
 245                        tb_sw_info(sw, "power cycling the switch now\n");
 246                        dma_port_power_cycle(sw->dma_port);
 247                        return 0;
 248                }
 249
 250                msleep(500);
 251        } while (--retries);
 252
 253        return -ETIMEDOUT;
 254}
 255
 256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
 257{
 258        struct pci_dev *root_port;
 259
 260        /*
 261         * During host router NVM upgrade we should not allow root port to
 262         * go into D3cold because some root ports cannot trigger PME
 263         * itself. To be on the safe side keep the root port in D0 during
 264         * the whole upgrade process.
 265         */
 266        root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
 267        if (root_port)
 268                pm_runtime_get_noresume(&root_port->dev);
 269}
 270
 271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
 272{
 273        struct pci_dev *root_port;
 274
 275        root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
 276        if (root_port)
 277                pm_runtime_put(&root_port->dev);
 278}
 279
 280static inline bool nvm_readable(struct tb_switch *sw)
 281{
 282        if (tb_switch_is_usb4(sw)) {
 283                /*
 284                 * USB4 devices must support NVM operations but it is
 285                 * optional for hosts. Therefore we query the NVM sector
 286                 * size here and if it is supported assume NVM
 287                 * operations are implemented.
 288                 */
 289                return usb4_switch_nvm_sector_size(sw) > 0;
 290        }
 291
 292        /* Thunderbolt 2 and 3 devices support NVM through DMA port */
 293        return !!sw->dma_port;
 294}
 295
 296static inline bool nvm_upgradeable(struct tb_switch *sw)
 297{
 298        if (sw->no_nvm_upgrade)
 299                return false;
 300        return nvm_readable(sw);
 301}
 302
 303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
 304                           void *buf, size_t size)
 305{
 306        if (tb_switch_is_usb4(sw))
 307                return usb4_switch_nvm_read(sw, address, buf, size);
 308        return dma_port_flash_read(sw->dma_port, address, buf, size);
 309}
 310
 311static int nvm_authenticate(struct tb_switch *sw)
 312{
 313        int ret;
 314
 315        if (tb_switch_is_usb4(sw))
 316                return usb4_switch_nvm_authenticate(sw);
 317
 318        if (!tb_route(sw)) {
 319                nvm_authenticate_start_dma_port(sw);
 320                ret = nvm_authenticate_host_dma_port(sw);
 321        } else {
 322                ret = nvm_authenticate_device_dma_port(sw);
 323        }
 324
 325        return ret;
 326}
 327
 328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
 329                              size_t bytes)
 330{
 331        struct tb_switch *sw = priv;
 332        int ret;
 333
 334        pm_runtime_get_sync(&sw->dev);
 335
 336        if (!mutex_trylock(&sw->tb->lock)) {
 337                ret = restart_syscall();
 338                goto out;
 339        }
 340
 341        ret = nvm_read(sw, offset, val, bytes);
 342        mutex_unlock(&sw->tb->lock);
 343
 344out:
 345        pm_runtime_mark_last_busy(&sw->dev);
 346        pm_runtime_put_autosuspend(&sw->dev);
 347
 348        return ret;
 349}
 350
 351static int tb_switch_nvm_no_read(void *priv, unsigned int offset, void *val,
 352                                 size_t bytes)
 353{
 354        return -EPERM;
 355}
 356
 357static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
 358                               size_t bytes)
 359{
 360        struct tb_switch *sw = priv;
 361        int ret = 0;
 362
 363        if (!mutex_trylock(&sw->tb->lock))
 364                return restart_syscall();
 365
 366        /*
 367         * Since writing the NVM image might require some special steps,
 368         * for example when CSS headers are written, we cache the image
 369         * locally here and handle the special cases when the user asks
 370         * us to authenticate the image.
 371         */
 372        if (!sw->nvm->buf) {
 373                sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
 374                if (!sw->nvm->buf) {
 375                        ret = -ENOMEM;
 376                        goto unlock;
 377                }
 378        }
 379
 380        sw->nvm->buf_data_size = offset + bytes;
 381        memcpy(sw->nvm->buf + offset, val, bytes);
 382
 383unlock:
 384        mutex_unlock(&sw->tb->lock);
 385
 386        return ret;
 387}
 388
 389static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
 390                                           size_t size, bool active)
 391{
 392        struct nvmem_config config;
 393
 394        memset(&config, 0, sizeof(config));
 395
 396        if (active) {
 397                config.name = "nvm_active";
 398                config.reg_read = tb_switch_nvm_read;
 399                config.read_only = true;
 400        } else {
 401                config.name = "nvm_non_active";
 402                config.reg_read = tb_switch_nvm_no_read;
 403                config.reg_write = tb_switch_nvm_write;
 404                config.root_only = true;
 405        }
 406
 407        config.id = id;
 408        config.stride = 4;
 409        config.word_size = 4;
 410        config.size = size;
 411        config.dev = &sw->dev;
 412        config.owner = THIS_MODULE;
 413        config.priv = sw;
 414
 415        return nvmem_register(&config);
 416}
 417
 418static int tb_switch_nvm_add(struct tb_switch *sw)
 419{
 420        struct nvmem_device *nvm_dev;
 421        struct tb_switch_nvm *nvm;
 422        u32 val;
 423        int ret;
 424
 425        if (!nvm_readable(sw))
 426                return 0;
 427
 428        /*
 429         * The NVM format of non-Intel hardware is not known so
 430         * currently restrict NVM upgrade for Intel hardware. We may
 431         * relax this in the future when we learn other NVM formats.
 432         */
 433        if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) {
 434                dev_info(&sw->dev,
 435                         "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
 436                         sw->config.vendor_id);
 437                return 0;
 438        }
 439
 440        nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
 441        if (!nvm)
 442                return -ENOMEM;
 443
 444        nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
 445
 446        /*
 447         * If the switch is in safe-mode the only accessible portion of
 448         * the NVM is the non-active one where userspace is expected to
 449         * write new functional NVM.
 450         */
 451        if (!sw->safe_mode) {
 452                u32 nvm_size, hdr_size;
 453
 454                ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
 455                if (ret)
 456                        goto err_ida;
 457
 458                hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
 459                nvm_size = (SZ_1M << (val & 7)) / 8;
 460                nvm_size = (nvm_size - hdr_size) / 2;
 461
 462                ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
 463                if (ret)
 464                        goto err_ida;
 465
 466                nvm->major = val >> 16;
 467                nvm->minor = val >> 8;
 468
 469                nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
 470                if (IS_ERR(nvm_dev)) {
 471                        ret = PTR_ERR(nvm_dev);
 472                        goto err_ida;
 473                }
 474                nvm->active = nvm_dev;
 475        }
 476
 477        if (!sw->no_nvm_upgrade) {
 478                nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
 479                if (IS_ERR(nvm_dev)) {
 480                        ret = PTR_ERR(nvm_dev);
 481                        goto err_nvm_active;
 482                }
 483                nvm->non_active = nvm_dev;
 484        }
 485
 486        sw->nvm = nvm;
 487        return 0;
 488
 489err_nvm_active:
 490        if (nvm->active)
 491                nvmem_unregister(nvm->active);
 492err_ida:
 493        ida_simple_remove(&nvm_ida, nvm->id);
 494        kfree(nvm);
 495
 496        return ret;
 497}
 498
 499static void tb_switch_nvm_remove(struct tb_switch *sw)
 500{
 501        struct tb_switch_nvm *nvm;
 502
 503        nvm = sw->nvm;
 504        sw->nvm = NULL;
 505
 506        if (!nvm)
 507                return;
 508
 509        /* Remove authentication status in case the switch is unplugged */
 510        if (!nvm->authenticating)
 511                nvm_clear_auth_status(sw);
 512
 513        if (nvm->non_active)
 514                nvmem_unregister(nvm->non_active);
 515        if (nvm->active)
 516                nvmem_unregister(nvm->active);
 517        ida_simple_remove(&nvm_ida, nvm->id);
 518        vfree(nvm->buf);
 519        kfree(nvm);
 520}
 521
 522/* port utility functions */
 523
 524static const char *tb_port_type(struct tb_regs_port_header *port)
 525{
 526        switch (port->type >> 16) {
 527        case 0:
 528                switch ((u8) port->type) {
 529                case 0:
 530                        return "Inactive";
 531                case 1:
 532                        return "Port";
 533                case 2:
 534                        return "NHI";
 535                default:
 536                        return "unknown";
 537                }
 538        case 0x2:
 539                return "Ethernet";
 540        case 0x8:
 541                return "SATA";
 542        case 0xe:
 543                return "DP/HDMI";
 544        case 0x10:
 545                return "PCIe";
 546        case 0x20:
 547                return "USB";
 548        default:
 549                return "unknown";
 550        }
 551}
 552
 553static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
 554{
 555        tb_dbg(tb,
 556               " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
 557               port->port_number, port->vendor_id, port->device_id,
 558               port->revision, port->thunderbolt_version, tb_port_type(port),
 559               port->type);
 560        tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
 561               port->max_in_hop_id, port->max_out_hop_id);
 562        tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
 563        tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
 564}
 565
 566/**
 567 * tb_port_state() - get connectedness state of a port
 568 *
 569 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
 570 *
 571 * Return: Returns an enum tb_port_state on success or an error code on failure.
 572 */
 573static int tb_port_state(struct tb_port *port)
 574{
 575        struct tb_cap_phy phy;
 576        int res;
 577        if (port->cap_phy == 0) {
 578                tb_port_WARN(port, "does not have a PHY\n");
 579                return -EINVAL;
 580        }
 581        res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
 582        if (res)
 583                return res;
 584        return phy.state;
 585}
 586
 587/**
 588 * tb_wait_for_port() - wait for a port to become ready
 589 *
 590 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
 591 * wait_if_unplugged is set then we also wait if the port is in state
 592 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
 593 * switch resume). Otherwise we only wait if a device is registered but the link
 594 * has not yet been established.
 595 *
 596 * Return: Returns an error code on failure. Returns 0 if the port is not
 597 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
 598 * if the port is connected and in state TB_PORT_UP.
 599 */
 600int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
 601{
 602        int retries = 10;
 603        int state;
 604        if (!port->cap_phy) {
 605                tb_port_WARN(port, "does not have PHY\n");
 606                return -EINVAL;
 607        }
 608        if (tb_is_upstream_port(port)) {
 609                tb_port_WARN(port, "is the upstream port\n");
 610                return -EINVAL;
 611        }
 612
 613        while (retries--) {
 614                state = tb_port_state(port);
 615                if (state < 0)
 616                        return state;
 617                if (state == TB_PORT_DISABLED) {
 618                        tb_port_dbg(port, "is disabled (state: 0)\n");
 619                        return 0;
 620                }
 621                if (state == TB_PORT_UNPLUGGED) {
 622                        if (wait_if_unplugged) {
 623                                /* used during resume */
 624                                tb_port_dbg(port,
 625                                            "is unplugged (state: 7), retrying...\n");
 626                                msleep(100);
 627                                continue;
 628                        }
 629                        tb_port_dbg(port, "is unplugged (state: 7)\n");
 630                        return 0;
 631                }
 632                if (state == TB_PORT_UP) {
 633                        tb_port_dbg(port, "is connected, link is up (state: 2)\n");
 634                        return 1;
 635                }
 636
 637                /*
 638                 * After plug-in the state is TB_PORT_CONNECTING. Give it some
 639                 * time.
 640                 */
 641                tb_port_dbg(port,
 642                            "is connected, link is not up (state: %d), retrying...\n",
 643                            state);
 644                msleep(100);
 645        }
 646        tb_port_warn(port,
 647                     "failed to reach state TB_PORT_UP. Ignoring port...\n");
 648        return 0;
 649}
 650
 651/**
 652 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
 653 *
 654 * Change the number of NFC credits allocated to @port by @credits. To remove
 655 * NFC credits pass a negative amount of credits.
 656 *
 657 * Return: Returns 0 on success or an error code on failure.
 658 */
 659int tb_port_add_nfc_credits(struct tb_port *port, int credits)
 660{
 661        u32 nfc_credits;
 662
 663        if (credits == 0 || port->sw->is_unplugged)
 664                return 0;
 665
 666        nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
 667        nfc_credits += credits;
 668
 669        tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
 670                    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
 671
 672        port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
 673        port->config.nfc_credits |= nfc_credits;
 674
 675        return tb_port_write(port, &port->config.nfc_credits,
 676                             TB_CFG_PORT, ADP_CS_4, 1);
 677}
 678
 679/**
 680 * tb_port_set_initial_credits() - Set initial port link credits allocated
 681 * @port: Port to set the initial credits
 682 * @credits: Number of credits to to allocate
 683 *
 684 * Set initial credits value to be used for ingress shared buffering.
 685 */
 686int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
 687{
 688        u32 data;
 689        int ret;
 690
 691        ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 692        if (ret)
 693                return ret;
 694
 695        data &= ~ADP_CS_5_LCA_MASK;
 696        data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
 697
 698        return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 699}
 700
 701/**
 702 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
 703 *
 704 * Return: Returns 0 on success or an error code on failure.
 705 */
 706int tb_port_clear_counter(struct tb_port *port, int counter)
 707{
 708        u32 zero[3] = { 0, 0, 0 };
 709        tb_port_dbg(port, "clearing counter %d\n", counter);
 710        return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
 711}
 712
 713/**
 714 * tb_port_unlock() - Unlock downstream port
 715 * @port: Port to unlock
 716 *
 717 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
 718 * downstream router accessible for CM.
 719 */
 720int tb_port_unlock(struct tb_port *port)
 721{
 722        if (tb_switch_is_icm(port->sw))
 723                return 0;
 724        if (!tb_port_is_null(port))
 725                return -EINVAL;
 726        if (tb_switch_is_usb4(port->sw))
 727                return usb4_port_unlock(port);
 728        return 0;
 729}
 730
 731/**
 732 * tb_init_port() - initialize a port
 733 *
 734 * This is a helper method for tb_switch_alloc. Does not check or initialize
 735 * any downstream switches.
 736 *
 737 * Return: Returns 0 on success or an error code on failure.
 738 */
 739static int tb_init_port(struct tb_port *port)
 740{
 741        int res;
 742        int cap;
 743
 744        res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
 745        if (res) {
 746                if (res == -ENODEV) {
 747                        tb_dbg(port->sw->tb, " Port %d: not implemented\n",
 748                               port->port);
 749                        return 0;
 750                }
 751                return res;
 752        }
 753
 754        /* Port 0 is the switch itself and has no PHY. */
 755        if (port->config.type == TB_TYPE_PORT && port->port != 0) {
 756                cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
 757
 758                if (cap > 0)
 759                        port->cap_phy = cap;
 760                else
 761                        tb_port_WARN(port, "non switch port without a PHY\n");
 762
 763                cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
 764                if (cap > 0)
 765                        port->cap_usb4 = cap;
 766        } else if (port->port != 0) {
 767                cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
 768                if (cap > 0)
 769                        port->cap_adap = cap;
 770        }
 771
 772        tb_dump_port(port->sw->tb, &port->config);
 773
 774        /* Control port does not need HopID allocation */
 775        if (port->port) {
 776                ida_init(&port->in_hopids);
 777                ida_init(&port->out_hopids);
 778        }
 779
 780        INIT_LIST_HEAD(&port->list);
 781        return 0;
 782
 783}
 784
 785static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
 786                               int max_hopid)
 787{
 788        int port_max_hopid;
 789        struct ida *ida;
 790
 791        if (in) {
 792                port_max_hopid = port->config.max_in_hop_id;
 793                ida = &port->in_hopids;
 794        } else {
 795                port_max_hopid = port->config.max_out_hop_id;
 796                ida = &port->out_hopids;
 797        }
 798
 799        /* HopIDs 0-7 are reserved */
 800        if (min_hopid < TB_PATH_MIN_HOPID)
 801                min_hopid = TB_PATH_MIN_HOPID;
 802
 803        if (max_hopid < 0 || max_hopid > port_max_hopid)
 804                max_hopid = port_max_hopid;
 805
 806        return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
 807}
 808
 809/**
 810 * tb_port_alloc_in_hopid() - Allocate input HopID from port
 811 * @port: Port to allocate HopID for
 812 * @min_hopid: Minimum acceptable input HopID
 813 * @max_hopid: Maximum acceptable input HopID
 814 *
 815 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 816 * case of error.
 817 */
 818int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 819{
 820        return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
 821}
 822
 823/**
 824 * tb_port_alloc_out_hopid() - Allocate output HopID from port
 825 * @port: Port to allocate HopID for
 826 * @min_hopid: Minimum acceptable output HopID
 827 * @max_hopid: Maximum acceptable output HopID
 828 *
 829 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 830 * case of error.
 831 */
 832int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 833{
 834        return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
 835}
 836
 837/**
 838 * tb_port_release_in_hopid() - Release allocated input HopID from port
 839 * @port: Port whose HopID to release
 840 * @hopid: HopID to release
 841 */
 842void tb_port_release_in_hopid(struct tb_port *port, int hopid)
 843{
 844        ida_simple_remove(&port->in_hopids, hopid);
 845}
 846
 847/**
 848 * tb_port_release_out_hopid() - Release allocated output HopID from port
 849 * @port: Port whose HopID to release
 850 * @hopid: HopID to release
 851 */
 852void tb_port_release_out_hopid(struct tb_port *port, int hopid)
 853{
 854        ida_simple_remove(&port->out_hopids, hopid);
 855}
 856
 857/**
 858 * tb_next_port_on_path() - Return next port for given port on a path
 859 * @start: Start port of the walk
 860 * @end: End port of the walk
 861 * @prev: Previous port (%NULL if this is the first)
 862 *
 863 * This function can be used to walk from one port to another if they
 864 * are connected through zero or more switches. If the @prev is dual
 865 * link port, the function follows that link and returns another end on
 866 * that same link.
 867 *
 868 * If the @end port has been reached, return %NULL.
 869 *
 870 * Domain tb->lock must be held when this function is called.
 871 */
 872struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
 873                                     struct tb_port *prev)
 874{
 875        struct tb_port *next;
 876
 877        if (!prev)
 878                return start;
 879
 880        if (prev->sw == end->sw) {
 881                if (prev == end)
 882                        return NULL;
 883                return end;
 884        }
 885
 886        if (start->sw->config.depth < end->sw->config.depth) {
 887                if (prev->remote &&
 888                    prev->remote->sw->config.depth > prev->sw->config.depth)
 889                        next = prev->remote;
 890                else
 891                        next = tb_port_at(tb_route(end->sw), prev->sw);
 892        } else {
 893                if (tb_is_upstream_port(prev)) {
 894                        next = prev->remote;
 895                } else {
 896                        next = tb_upstream_port(prev->sw);
 897                        /*
 898                         * Keep the same link if prev and next are both
 899                         * dual link ports.
 900                         */
 901                        if (next->dual_link_port &&
 902                            next->link_nr != prev->link_nr) {
 903                                next = next->dual_link_port;
 904                        }
 905                }
 906        }
 907
 908        return next;
 909}
 910
 911static int tb_port_get_link_speed(struct tb_port *port)
 912{
 913        u32 val, speed;
 914        int ret;
 915
 916        if (!port->cap_phy)
 917                return -EINVAL;
 918
 919        ret = tb_port_read(port, &val, TB_CFG_PORT,
 920                           port->cap_phy + LANE_ADP_CS_1, 1);
 921        if (ret)
 922                return ret;
 923
 924        speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
 925                LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
 926        return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
 927}
 928
 929static int tb_port_get_link_width(struct tb_port *port)
 930{
 931        u32 val;
 932        int ret;
 933
 934        if (!port->cap_phy)
 935                return -EINVAL;
 936
 937        ret = tb_port_read(port, &val, TB_CFG_PORT,
 938                           port->cap_phy + LANE_ADP_CS_1, 1);
 939        if (ret)
 940                return ret;
 941
 942        return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
 943                LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
 944}
 945
 946static bool tb_port_is_width_supported(struct tb_port *port, int width)
 947{
 948        u32 phy, widths;
 949        int ret;
 950
 951        if (!port->cap_phy)
 952                return false;
 953
 954        ret = tb_port_read(port, &phy, TB_CFG_PORT,
 955                           port->cap_phy + LANE_ADP_CS_0, 1);
 956        if (ret)
 957                return false;
 958
 959        widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
 960                LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
 961
 962        return !!(widths & width);
 963}
 964
 965static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
 966{
 967        u32 val;
 968        int ret;
 969
 970        if (!port->cap_phy)
 971                return -EINVAL;
 972
 973        ret = tb_port_read(port, &val, TB_CFG_PORT,
 974                           port->cap_phy + LANE_ADP_CS_1, 1);
 975        if (ret)
 976                return ret;
 977
 978        val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
 979        switch (width) {
 980        case 1:
 981                val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
 982                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 983                break;
 984        case 2:
 985                val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
 986                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 987                break;
 988        default:
 989                return -EINVAL;
 990        }
 991
 992        val |= LANE_ADP_CS_1_LB;
 993
 994        return tb_port_write(port, &val, TB_CFG_PORT,
 995                             port->cap_phy + LANE_ADP_CS_1, 1);
 996}
 997
 998static int tb_port_lane_bonding_enable(struct tb_port *port)
 999{
1000        int ret;
1001
1002        /*
1003         * Enable lane bonding for both links if not already enabled by
1004         * for example the boot firmware.
1005         */
1006        ret = tb_port_get_link_width(port);
1007        if (ret == 1) {
1008                ret = tb_port_set_link_width(port, 2);
1009                if (ret)
1010                        return ret;
1011        }
1012
1013        ret = tb_port_get_link_width(port->dual_link_port);
1014        if (ret == 1) {
1015                ret = tb_port_set_link_width(port->dual_link_port, 2);
1016                if (ret) {
1017                        tb_port_set_link_width(port, 1);
1018                        return ret;
1019                }
1020        }
1021
1022        port->bonded = true;
1023        port->dual_link_port->bonded = true;
1024
1025        return 0;
1026}
1027
1028static void tb_port_lane_bonding_disable(struct tb_port *port)
1029{
1030        port->dual_link_port->bonded = false;
1031        port->bonded = false;
1032
1033        tb_port_set_link_width(port->dual_link_port, 1);
1034        tb_port_set_link_width(port, 1);
1035}
1036
1037/**
1038 * tb_port_is_enabled() - Is the adapter port enabled
1039 * @port: Port to check
1040 */
1041bool tb_port_is_enabled(struct tb_port *port)
1042{
1043        switch (port->config.type) {
1044        case TB_TYPE_PCIE_UP:
1045        case TB_TYPE_PCIE_DOWN:
1046                return tb_pci_port_is_enabled(port);
1047
1048        case TB_TYPE_DP_HDMI_IN:
1049        case TB_TYPE_DP_HDMI_OUT:
1050                return tb_dp_port_is_enabled(port);
1051
1052        case TB_TYPE_USB3_UP:
1053        case TB_TYPE_USB3_DOWN:
1054                return tb_usb3_port_is_enabled(port);
1055
1056        default:
1057                return false;
1058        }
1059}
1060
1061/**
1062 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1063 * @port: USB3 adapter port to check
1064 */
1065bool tb_usb3_port_is_enabled(struct tb_port *port)
1066{
1067        u32 data;
1068
1069        if (tb_port_read(port, &data, TB_CFG_PORT,
1070                         port->cap_adap + ADP_USB3_CS_0, 1))
1071                return false;
1072
1073        return !!(data & ADP_USB3_CS_0_PE);
1074}
1075
1076/**
1077 * tb_usb3_port_enable() - Enable USB3 adapter port
1078 * @port: USB3 adapter port to enable
1079 * @enable: Enable/disable the USB3 adapter
1080 */
1081int tb_usb3_port_enable(struct tb_port *port, bool enable)
1082{
1083        u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1084                          : ADP_USB3_CS_0_V;
1085
1086        if (!port->cap_adap)
1087                return -ENXIO;
1088        return tb_port_write(port, &word, TB_CFG_PORT,
1089                             port->cap_adap + ADP_USB3_CS_0, 1);
1090}
1091
1092/**
1093 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1094 * @port: PCIe port to check
1095 */
1096bool tb_pci_port_is_enabled(struct tb_port *port)
1097{
1098        u32 data;
1099
1100        if (tb_port_read(port, &data, TB_CFG_PORT,
1101                         port->cap_adap + ADP_PCIE_CS_0, 1))
1102                return false;
1103
1104        return !!(data & ADP_PCIE_CS_0_PE);
1105}
1106
1107/**
1108 * tb_pci_port_enable() - Enable PCIe adapter port
1109 * @port: PCIe port to enable
1110 * @enable: Enable/disable the PCIe adapter
1111 */
1112int tb_pci_port_enable(struct tb_port *port, bool enable)
1113{
1114        u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1115        if (!port->cap_adap)
1116                return -ENXIO;
1117        return tb_port_write(port, &word, TB_CFG_PORT,
1118                             port->cap_adap + ADP_PCIE_CS_0, 1);
1119}
1120
1121/**
1122 * tb_dp_port_hpd_is_active() - Is HPD already active
1123 * @port: DP out port to check
1124 *
1125 * Checks if the DP OUT adapter port has HDP bit already set.
1126 */
1127int tb_dp_port_hpd_is_active(struct tb_port *port)
1128{
1129        u32 data;
1130        int ret;
1131
1132        ret = tb_port_read(port, &data, TB_CFG_PORT,
1133                           port->cap_adap + ADP_DP_CS_2, 1);
1134        if (ret)
1135                return ret;
1136
1137        return !!(data & ADP_DP_CS_2_HDP);
1138}
1139
1140/**
1141 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1142 * @port: Port to clear HPD
1143 *
1144 * If the DP IN port has HDP set, this function can be used to clear it.
1145 */
1146int tb_dp_port_hpd_clear(struct tb_port *port)
1147{
1148        u32 data;
1149        int ret;
1150
1151        ret = tb_port_read(port, &data, TB_CFG_PORT,
1152                           port->cap_adap + ADP_DP_CS_3, 1);
1153        if (ret)
1154                return ret;
1155
1156        data |= ADP_DP_CS_3_HDPC;
1157        return tb_port_write(port, &data, TB_CFG_PORT,
1158                             port->cap_adap + ADP_DP_CS_3, 1);
1159}
1160
1161/**
1162 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1163 * @port: DP IN/OUT port to set hops
1164 * @video: Video Hop ID
1165 * @aux_tx: AUX TX Hop ID
1166 * @aux_rx: AUX RX Hop ID
1167 *
1168 * Programs specified Hop IDs for DP IN/OUT port.
1169 */
1170int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1171                        unsigned int aux_tx, unsigned int aux_rx)
1172{
1173        u32 data[2];
1174        int ret;
1175
1176        ret = tb_port_read(port, data, TB_CFG_PORT,
1177                           port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1178        if (ret)
1179                return ret;
1180
1181        data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1182        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1183        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1184
1185        data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1186                ADP_DP_CS_0_VIDEO_HOPID_MASK;
1187        data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1188        data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1189                ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1190
1191        return tb_port_write(port, data, TB_CFG_PORT,
1192                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1193}
1194
1195/**
1196 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1197 * @port: DP adapter port to check
1198 */
1199bool tb_dp_port_is_enabled(struct tb_port *port)
1200{
1201        u32 data[2];
1202
1203        if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1204                         ARRAY_SIZE(data)))
1205                return false;
1206
1207        return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1208}
1209
1210/**
1211 * tb_dp_port_enable() - Enables/disables DP paths of a port
1212 * @port: DP IN/OUT port
1213 * @enable: Enable/disable DP path
1214 *
1215 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1216 * calling this function.
1217 */
1218int tb_dp_port_enable(struct tb_port *port, bool enable)
1219{
1220        u32 data[2];
1221        int ret;
1222
1223        ret = tb_port_read(port, data, TB_CFG_PORT,
1224                          port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1225        if (ret)
1226                return ret;
1227
1228        if (enable)
1229                data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1230        else
1231                data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1232
1233        return tb_port_write(port, data, TB_CFG_PORT,
1234                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1235}
1236
1237/* switch utility functions */
1238
1239static const char *tb_switch_generation_name(const struct tb_switch *sw)
1240{
1241        switch (sw->generation) {
1242        case 1:
1243                return "Thunderbolt 1";
1244        case 2:
1245                return "Thunderbolt 2";
1246        case 3:
1247                return "Thunderbolt 3";
1248        case 4:
1249                return "USB4";
1250        default:
1251                return "Unknown";
1252        }
1253}
1254
1255static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1256{
1257        const struct tb_regs_switch_header *regs = &sw->config;
1258
1259        tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1260               tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1261               regs->revision, regs->thunderbolt_version);
1262        tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1263        tb_dbg(tb, "  Config:\n");
1264        tb_dbg(tb,
1265                "   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1266               regs->upstream_port_number, regs->depth,
1267               (((u64) regs->route_hi) << 32) | regs->route_lo,
1268               regs->enabled, regs->plug_events_delay);
1269        tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1270               regs->__unknown1, regs->__unknown4);
1271}
1272
1273/**
1274 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1275 *
1276 * Return: Returns 0 on success or an error code on failure.
1277 */
1278int tb_switch_reset(struct tb *tb, u64 route)
1279{
1280        struct tb_cfg_result res;
1281        struct tb_regs_switch_header header = {
1282                header.route_hi = route >> 32,
1283                header.route_lo = route,
1284                header.enabled = true,
1285        };
1286        tb_dbg(tb, "resetting switch at %llx\n", route);
1287        res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1288                        0, 2, 2, 2);
1289        if (res.err)
1290                return res.err;
1291        res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1292        if (res.err > 0)
1293                return -EIO;
1294        return res.err;
1295}
1296
1297/**
1298 * tb_plug_events_active() - enable/disable plug events on a switch
1299 *
1300 * Also configures a sane plug_events_delay of 255ms.
1301 *
1302 * Return: Returns 0 on success or an error code on failure.
1303 */
1304static int tb_plug_events_active(struct tb_switch *sw, bool active)
1305{
1306        u32 data;
1307        int res;
1308
1309        if (tb_switch_is_icm(sw))
1310                return 0;
1311
1312        sw->config.plug_events_delay = 0xff;
1313        res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1314        if (res)
1315                return res;
1316
1317        /* Plug events are always enabled in USB4 */
1318        if (tb_switch_is_usb4(sw))
1319                return 0;
1320
1321        res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1322        if (res)
1323                return res;
1324
1325        if (active) {
1326                data = data & 0xFFFFFF83;
1327                switch (sw->config.device_id) {
1328                case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1329                case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1330                case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1331                        break;
1332                default:
1333                        data |= 4;
1334                }
1335        } else {
1336                data = data | 0x7c;
1337        }
1338        return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1339                           sw->cap_plug_events + 1, 1);
1340}
1341
1342static ssize_t authorized_show(struct device *dev,
1343                               struct device_attribute *attr,
1344                               char *buf)
1345{
1346        struct tb_switch *sw = tb_to_switch(dev);
1347
1348        return sprintf(buf, "%u\n", sw->authorized);
1349}
1350
1351static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1352{
1353        int ret = -EINVAL;
1354
1355        if (!mutex_trylock(&sw->tb->lock))
1356                return restart_syscall();
1357
1358        if (sw->authorized)
1359                goto unlock;
1360
1361        switch (val) {
1362        /* Approve switch */
1363        case 1:
1364                if (sw->key)
1365                        ret = tb_domain_approve_switch_key(sw->tb, sw);
1366                else
1367                        ret = tb_domain_approve_switch(sw->tb, sw);
1368                break;
1369
1370        /* Challenge switch */
1371        case 2:
1372                if (sw->key)
1373                        ret = tb_domain_challenge_switch_key(sw->tb, sw);
1374                break;
1375
1376        default:
1377                break;
1378        }
1379
1380        if (!ret) {
1381                sw->authorized = val;
1382                /* Notify status change to the userspace */
1383                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1384        }
1385
1386unlock:
1387        mutex_unlock(&sw->tb->lock);
1388        return ret;
1389}
1390
1391static ssize_t authorized_store(struct device *dev,
1392                                struct device_attribute *attr,
1393                                const char *buf, size_t count)
1394{
1395        struct tb_switch *sw = tb_to_switch(dev);
1396        unsigned int val;
1397        ssize_t ret;
1398
1399        ret = kstrtouint(buf, 0, &val);
1400        if (ret)
1401                return ret;
1402        if (val > 2)
1403                return -EINVAL;
1404
1405        pm_runtime_get_sync(&sw->dev);
1406        ret = tb_switch_set_authorized(sw, val);
1407        pm_runtime_mark_last_busy(&sw->dev);
1408        pm_runtime_put_autosuspend(&sw->dev);
1409
1410        return ret ? ret : count;
1411}
1412static DEVICE_ATTR_RW(authorized);
1413
1414static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1415                         char *buf)
1416{
1417        struct tb_switch *sw = tb_to_switch(dev);
1418
1419        return sprintf(buf, "%u\n", sw->boot);
1420}
1421static DEVICE_ATTR_RO(boot);
1422
1423static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1424                           char *buf)
1425{
1426        struct tb_switch *sw = tb_to_switch(dev);
1427
1428        return sprintf(buf, "%#x\n", sw->device);
1429}
1430static DEVICE_ATTR_RO(device);
1431
1432static ssize_t
1433device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1434{
1435        struct tb_switch *sw = tb_to_switch(dev);
1436
1437        return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1438}
1439static DEVICE_ATTR_RO(device_name);
1440
1441static ssize_t
1442generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1443{
1444        struct tb_switch *sw = tb_to_switch(dev);
1445
1446        return sprintf(buf, "%u\n", sw->generation);
1447}
1448static DEVICE_ATTR_RO(generation);
1449
1450static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1451                        char *buf)
1452{
1453        struct tb_switch *sw = tb_to_switch(dev);
1454        ssize_t ret;
1455
1456        if (!mutex_trylock(&sw->tb->lock))
1457                return restart_syscall();
1458
1459        if (sw->key)
1460                ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1461        else
1462                ret = sprintf(buf, "\n");
1463
1464        mutex_unlock(&sw->tb->lock);
1465        return ret;
1466}
1467
1468static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1469                         const char *buf, size_t count)
1470{
1471        struct tb_switch *sw = tb_to_switch(dev);
1472        u8 key[TB_SWITCH_KEY_SIZE];
1473        ssize_t ret = count;
1474        bool clear = false;
1475
1476        if (!strcmp(buf, "\n"))
1477                clear = true;
1478        else if (hex2bin(key, buf, sizeof(key)))
1479                return -EINVAL;
1480
1481        if (!mutex_trylock(&sw->tb->lock))
1482                return restart_syscall();
1483
1484        if (sw->authorized) {
1485                ret = -EBUSY;
1486        } else {
1487                kfree(sw->key);
1488                if (clear) {
1489                        sw->key = NULL;
1490                } else {
1491                        sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1492                        if (!sw->key)
1493                                ret = -ENOMEM;
1494                }
1495        }
1496
1497        mutex_unlock(&sw->tb->lock);
1498        return ret;
1499}
1500static DEVICE_ATTR(key, 0600, key_show, key_store);
1501
1502static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1503                          char *buf)
1504{
1505        struct tb_switch *sw = tb_to_switch(dev);
1506
1507        return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1508}
1509
1510/*
1511 * Currently all lanes must run at the same speed but we expose here
1512 * both directions to allow possible asymmetric links in the future.
1513 */
1514static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1515static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1516
1517static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1518                          char *buf)
1519{
1520        struct tb_switch *sw = tb_to_switch(dev);
1521
1522        return sprintf(buf, "%u\n", sw->link_width);
1523}
1524
1525/*
1526 * Currently link has same amount of lanes both directions (1 or 2) but
1527 * expose them separately to allow possible asymmetric links in the future.
1528 */
1529static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1530static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1531
1532static ssize_t nvm_authenticate_show(struct device *dev,
1533        struct device_attribute *attr, char *buf)
1534{
1535        struct tb_switch *sw = tb_to_switch(dev);
1536        u32 status;
1537
1538        nvm_get_auth_status(sw, &status);
1539        return sprintf(buf, "%#x\n", status);
1540}
1541
1542static ssize_t nvm_authenticate_store(struct device *dev,
1543        struct device_attribute *attr, const char *buf, size_t count)
1544{
1545        struct tb_switch *sw = tb_to_switch(dev);
1546        bool val;
1547        int ret;
1548
1549        pm_runtime_get_sync(&sw->dev);
1550
1551        if (!mutex_trylock(&sw->tb->lock)) {
1552                ret = restart_syscall();
1553                goto exit_rpm;
1554        }
1555
1556        /* If NVMem devices are not yet added */
1557        if (!sw->nvm) {
1558                ret = -EAGAIN;
1559                goto exit_unlock;
1560        }
1561
1562        ret = kstrtobool(buf, &val);
1563        if (ret)
1564                goto exit_unlock;
1565
1566        /* Always clear the authentication status */
1567        nvm_clear_auth_status(sw);
1568
1569        if (val) {
1570                if (!sw->nvm->buf) {
1571                        ret = -EINVAL;
1572                        goto exit_unlock;
1573                }
1574
1575                ret = nvm_validate_and_write(sw);
1576                if (ret)
1577                        goto exit_unlock;
1578
1579                sw->nvm->authenticating = true;
1580                ret = nvm_authenticate(sw);
1581        }
1582
1583exit_unlock:
1584        mutex_unlock(&sw->tb->lock);
1585exit_rpm:
1586        pm_runtime_mark_last_busy(&sw->dev);
1587        pm_runtime_put_autosuspend(&sw->dev);
1588
1589        if (ret)
1590                return ret;
1591        return count;
1592}
1593static DEVICE_ATTR_RW(nvm_authenticate);
1594
1595static ssize_t nvm_version_show(struct device *dev,
1596                                struct device_attribute *attr, char *buf)
1597{
1598        struct tb_switch *sw = tb_to_switch(dev);
1599        int ret;
1600
1601        if (!mutex_trylock(&sw->tb->lock))
1602                return restart_syscall();
1603
1604        if (sw->safe_mode)
1605                ret = -ENODATA;
1606        else if (!sw->nvm)
1607                ret = -EAGAIN;
1608        else
1609                ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1610
1611        mutex_unlock(&sw->tb->lock);
1612
1613        return ret;
1614}
1615static DEVICE_ATTR_RO(nvm_version);
1616
1617static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1618                           char *buf)
1619{
1620        struct tb_switch *sw = tb_to_switch(dev);
1621
1622        return sprintf(buf, "%#x\n", sw->vendor);
1623}
1624static DEVICE_ATTR_RO(vendor);
1625
1626static ssize_t
1627vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1628{
1629        struct tb_switch *sw = tb_to_switch(dev);
1630
1631        return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1632}
1633static DEVICE_ATTR_RO(vendor_name);
1634
1635static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1636                              char *buf)
1637{
1638        struct tb_switch *sw = tb_to_switch(dev);
1639
1640        return sprintf(buf, "%pUb\n", sw->uuid);
1641}
1642static DEVICE_ATTR_RO(unique_id);
1643
1644static struct attribute *switch_attrs[] = {
1645        &dev_attr_authorized.attr,
1646        &dev_attr_boot.attr,
1647        &dev_attr_device.attr,
1648        &dev_attr_device_name.attr,
1649        &dev_attr_generation.attr,
1650        &dev_attr_key.attr,
1651        &dev_attr_nvm_authenticate.attr,
1652        &dev_attr_nvm_version.attr,
1653        &dev_attr_rx_speed.attr,
1654        &dev_attr_rx_lanes.attr,
1655        &dev_attr_tx_speed.attr,
1656        &dev_attr_tx_lanes.attr,
1657        &dev_attr_vendor.attr,
1658        &dev_attr_vendor_name.attr,
1659        &dev_attr_unique_id.attr,
1660        NULL,
1661};
1662
1663static umode_t switch_attr_is_visible(struct kobject *kobj,
1664                                      struct attribute *attr, int n)
1665{
1666        struct device *dev = container_of(kobj, struct device, kobj);
1667        struct tb_switch *sw = tb_to_switch(dev);
1668
1669        if (attr == &dev_attr_device.attr) {
1670                if (!sw->device)
1671                        return 0;
1672        } else if (attr == &dev_attr_device_name.attr) {
1673                if (!sw->device_name)
1674                        return 0;
1675        } else if (attr == &dev_attr_vendor.attr)  {
1676                if (!sw->vendor)
1677                        return 0;
1678        } else if (attr == &dev_attr_vendor_name.attr)  {
1679                if (!sw->vendor_name)
1680                        return 0;
1681        } else if (attr == &dev_attr_key.attr) {
1682                if (tb_route(sw) &&
1683                    sw->tb->security_level == TB_SECURITY_SECURE &&
1684                    sw->security_level == TB_SECURITY_SECURE)
1685                        return attr->mode;
1686                return 0;
1687        } else if (attr == &dev_attr_rx_speed.attr ||
1688                   attr == &dev_attr_rx_lanes.attr ||
1689                   attr == &dev_attr_tx_speed.attr ||
1690                   attr == &dev_attr_tx_lanes.attr) {
1691                if (tb_route(sw))
1692                        return attr->mode;
1693                return 0;
1694        } else if (attr == &dev_attr_nvm_authenticate.attr) {
1695                if (nvm_upgradeable(sw))
1696                        return attr->mode;
1697                return 0;
1698        } else if (attr == &dev_attr_nvm_version.attr) {
1699                if (nvm_readable(sw))
1700                        return attr->mode;
1701                return 0;
1702        } else if (attr == &dev_attr_boot.attr) {
1703                if (tb_route(sw))
1704                        return attr->mode;
1705                return 0;
1706        }
1707
1708        return sw->safe_mode ? 0 : attr->mode;
1709}
1710
1711static struct attribute_group switch_group = {
1712        .is_visible = switch_attr_is_visible,
1713        .attrs = switch_attrs,
1714};
1715
1716static const struct attribute_group *switch_groups[] = {
1717        &switch_group,
1718        NULL,
1719};
1720
1721static void tb_switch_release(struct device *dev)
1722{
1723        struct tb_switch *sw = tb_to_switch(dev);
1724        struct tb_port *port;
1725
1726        dma_port_free(sw->dma_port);
1727
1728        tb_switch_for_each_port(sw, port) {
1729                if (!port->disabled) {
1730                        ida_destroy(&port->in_hopids);
1731                        ida_destroy(&port->out_hopids);
1732                }
1733        }
1734
1735        kfree(sw->uuid);
1736        kfree(sw->device_name);
1737        kfree(sw->vendor_name);
1738        kfree(sw->ports);
1739        kfree(sw->drom);
1740        kfree(sw->key);
1741        kfree(sw);
1742}
1743
1744/*
1745 * Currently only need to provide the callbacks. Everything else is handled
1746 * in the connection manager.
1747 */
1748static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1749{
1750        struct tb_switch *sw = tb_to_switch(dev);
1751        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1752
1753        if (cm_ops->runtime_suspend_switch)
1754                return cm_ops->runtime_suspend_switch(sw);
1755
1756        return 0;
1757}
1758
1759static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1760{
1761        struct tb_switch *sw = tb_to_switch(dev);
1762        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1763
1764        if (cm_ops->runtime_resume_switch)
1765                return cm_ops->runtime_resume_switch(sw);
1766        return 0;
1767}
1768
1769static const struct dev_pm_ops tb_switch_pm_ops = {
1770        SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1771                           NULL)
1772};
1773
1774struct device_type tb_switch_type = {
1775        .name = "thunderbolt_device",
1776        .release = tb_switch_release,
1777        .pm = &tb_switch_pm_ops,
1778};
1779
1780static int tb_switch_get_generation(struct tb_switch *sw)
1781{
1782        switch (sw->config.device_id) {
1783        case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1784        case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1785        case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1786        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1787        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1788        case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1789        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1790        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1791                return 1;
1792
1793        case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1794        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1795        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1796                return 2;
1797
1798        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1799        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1800        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1801        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1802        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1803        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1804        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1805        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1806        case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1807        case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1808                return 3;
1809
1810        default:
1811                if (tb_switch_is_usb4(sw))
1812                        return 4;
1813
1814                /*
1815                 * For unknown switches assume generation to be 1 to be
1816                 * on the safe side.
1817                 */
1818                tb_sw_warn(sw, "unsupported switch device id %#x\n",
1819                           sw->config.device_id);
1820                return 1;
1821        }
1822}
1823
1824static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1825{
1826        int max_depth;
1827
1828        if (tb_switch_is_usb4(sw) ||
1829            (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1830                max_depth = USB4_SWITCH_MAX_DEPTH;
1831        else
1832                max_depth = TB_SWITCH_MAX_DEPTH;
1833
1834        return depth > max_depth;
1835}
1836
1837/**
1838 * tb_switch_alloc() - allocate a switch
1839 * @tb: Pointer to the owning domain
1840 * @parent: Parent device for this switch
1841 * @route: Route string for this switch
1842 *
1843 * Allocates and initializes a switch. Will not upload configuration to
1844 * the switch. For that you need to call tb_switch_configure()
1845 * separately. The returned switch should be released by calling
1846 * tb_switch_put().
1847 *
1848 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1849 * failure.
1850 */
1851struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1852                                  u64 route)
1853{
1854        struct tb_switch *sw;
1855        int upstream_port;
1856        int i, ret, depth;
1857
1858        /* Unlock the downstream port so we can access the switch below */
1859        if (route) {
1860                struct tb_switch *parent_sw = tb_to_switch(parent);
1861                struct tb_port *down;
1862
1863                down = tb_port_at(route, parent_sw);
1864                tb_port_unlock(down);
1865        }
1866
1867        depth = tb_route_length(route);
1868
1869        upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1870        if (upstream_port < 0)
1871                return ERR_PTR(upstream_port);
1872
1873        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1874        if (!sw)
1875                return ERR_PTR(-ENOMEM);
1876
1877        sw->tb = tb;
1878        ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1879        if (ret)
1880                goto err_free_sw_ports;
1881
1882        sw->generation = tb_switch_get_generation(sw);
1883
1884        tb_dbg(tb, "current switch config:\n");
1885        tb_dump_switch(tb, sw);
1886
1887        /* configure switch */
1888        sw->config.upstream_port_number = upstream_port;
1889        sw->config.depth = depth;
1890        sw->config.route_hi = upper_32_bits(route);
1891        sw->config.route_lo = lower_32_bits(route);
1892        sw->config.enabled = 0;
1893
1894        /* Make sure we do not exceed maximum topology limit */
1895        if (tb_switch_exceeds_max_depth(sw, depth)) {
1896                ret = -EADDRNOTAVAIL;
1897                goto err_free_sw_ports;
1898        }
1899
1900        /* initialize ports */
1901        sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1902                                GFP_KERNEL);
1903        if (!sw->ports) {
1904                ret = -ENOMEM;
1905                goto err_free_sw_ports;
1906        }
1907
1908        for (i = 0; i <= sw->config.max_port_number; i++) {
1909                /* minimum setup for tb_find_cap and tb_drom_read to work */
1910                sw->ports[i].sw = sw;
1911                sw->ports[i].port = i;
1912        }
1913
1914        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1915        if (ret > 0)
1916                sw->cap_plug_events = ret;
1917
1918        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1919        if (ret > 0)
1920                sw->cap_lc = ret;
1921
1922        /* Root switch is always authorized */
1923        if (!route)
1924                sw->authorized = true;
1925
1926        device_initialize(&sw->dev);
1927        sw->dev.parent = parent;
1928        sw->dev.bus = &tb_bus_type;
1929        sw->dev.type = &tb_switch_type;
1930        sw->dev.groups = switch_groups;
1931        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1932
1933        return sw;
1934
1935err_free_sw_ports:
1936        kfree(sw->ports);
1937        kfree(sw);
1938
1939        return ERR_PTR(ret);
1940}
1941
1942/**
1943 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1944 * @tb: Pointer to the owning domain
1945 * @parent: Parent device for this switch
1946 * @route: Route string for this switch
1947 *
1948 * This creates a switch in safe mode. This means the switch pretty much
1949 * lacks all capabilities except DMA configuration port before it is
1950 * flashed with a valid NVM firmware.
1951 *
1952 * The returned switch must be released by calling tb_switch_put().
1953 *
1954 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1955 */
1956struct tb_switch *
1957tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1958{
1959        struct tb_switch *sw;
1960
1961        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1962        if (!sw)
1963                return ERR_PTR(-ENOMEM);
1964
1965        sw->tb = tb;
1966        sw->config.depth = tb_route_length(route);
1967        sw->config.route_hi = upper_32_bits(route);
1968        sw->config.route_lo = lower_32_bits(route);
1969        sw->safe_mode = true;
1970
1971        device_initialize(&sw->dev);
1972        sw->dev.parent = parent;
1973        sw->dev.bus = &tb_bus_type;
1974        sw->dev.type = &tb_switch_type;
1975        sw->dev.groups = switch_groups;
1976        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1977
1978        return sw;
1979}
1980
1981/**
1982 * tb_switch_configure() - Uploads configuration to the switch
1983 * @sw: Switch to configure
1984 *
1985 * Call this function before the switch is added to the system. It will
1986 * upload configuration to the switch and makes it available for the
1987 * connection manager to use. Can be called to the switch again after
1988 * resume from low power states to re-initialize it.
1989 *
1990 * Return: %0 in case of success and negative errno in case of failure
1991 */
1992int tb_switch_configure(struct tb_switch *sw)
1993{
1994        struct tb *tb = sw->tb;
1995        u64 route;
1996        int ret;
1997
1998        route = tb_route(sw);
1999
2000        tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2001               sw->config.enabled ? "restoring " : "initializing", route,
2002               tb_route_length(route), sw->config.upstream_port_number);
2003
2004        sw->config.enabled = 1;
2005
2006        if (tb_switch_is_usb4(sw)) {
2007                /*
2008                 * For USB4 devices, we need to program the CM version
2009                 * accordingly so that it knows to expose all the
2010                 * additional capabilities.
2011                 */
2012                sw->config.cmuv = USB4_VERSION_1_0;
2013
2014                /* Enumerate the switch */
2015                ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2016                                  ROUTER_CS_1, 4);
2017                if (ret)
2018                        return ret;
2019
2020                ret = usb4_switch_setup(sw);
2021                if (ret)
2022                        return ret;
2023
2024                ret = usb4_switch_configure_link(sw);
2025        } else {
2026                if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2027                        tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2028                                   sw->config.vendor_id);
2029
2030                if (!sw->cap_plug_events) {
2031                        tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2032                        return -ENODEV;
2033                }
2034
2035                /* Enumerate the switch */
2036                ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2037                                  ROUTER_CS_1, 3);
2038                if (ret)
2039                        return ret;
2040
2041                ret = tb_lc_configure_link(sw);
2042        }
2043        if (ret)
2044                return ret;
2045
2046        return tb_plug_events_active(sw, true);
2047}
2048
2049static int tb_switch_set_uuid(struct tb_switch *sw)
2050{
2051        bool uid = false;
2052        u32 uuid[4];
2053        int ret;
2054
2055        if (sw->uuid)
2056                return 0;
2057
2058        if (tb_switch_is_usb4(sw)) {
2059                ret = usb4_switch_read_uid(sw, &sw->uid);
2060                if (ret)
2061                        return ret;
2062                uid = true;
2063        } else {
2064                /*
2065                 * The newer controllers include fused UUID as part of
2066                 * link controller specific registers
2067                 */
2068                ret = tb_lc_read_uuid(sw, uuid);
2069                if (ret) {
2070                        if (ret != -EINVAL)
2071                                return ret;
2072                        uid = true;
2073                }
2074        }
2075
2076        if (uid) {
2077                /*
2078                 * ICM generates UUID based on UID and fills the upper
2079                 * two words with ones. This is not strictly following
2080                 * UUID format but we want to be compatible with it so
2081                 * we do the same here.
2082                 */
2083                uuid[0] = sw->uid & 0xffffffff;
2084                uuid[1] = (sw->uid >> 32) & 0xffffffff;
2085                uuid[2] = 0xffffffff;
2086                uuid[3] = 0xffffffff;
2087        }
2088
2089        sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2090        if (!sw->uuid)
2091                return -ENOMEM;
2092        return 0;
2093}
2094
2095static int tb_switch_add_dma_port(struct tb_switch *sw)
2096{
2097        u32 status;
2098        int ret;
2099
2100        switch (sw->generation) {
2101        case 2:
2102                /* Only root switch can be upgraded */
2103                if (tb_route(sw))
2104                        return 0;
2105
2106                /* fallthrough */
2107        case 3:
2108                ret = tb_switch_set_uuid(sw);
2109                if (ret)
2110                        return ret;
2111                break;
2112
2113        default:
2114                /*
2115                 * DMA port is the only thing available when the switch
2116                 * is in safe mode.
2117                 */
2118                if (!sw->safe_mode)
2119                        return 0;
2120                break;
2121        }
2122
2123        /* Root switch DMA port requires running firmware */
2124        if (!tb_route(sw) && !tb_switch_is_icm(sw))
2125                return 0;
2126
2127        sw->dma_port = dma_port_alloc(sw);
2128        if (!sw->dma_port)
2129                return 0;
2130
2131        if (sw->no_nvm_upgrade)
2132                return 0;
2133
2134        /*
2135         * If there is status already set then authentication failed
2136         * when the dma_port_flash_update_auth() returned. Power cycling
2137         * is not needed (it was done already) so only thing we do here
2138         * is to unblock runtime PM of the root port.
2139         */
2140        nvm_get_auth_status(sw, &status);
2141        if (status) {
2142                if (!tb_route(sw))
2143                        nvm_authenticate_complete_dma_port(sw);
2144                return 0;
2145        }
2146
2147        /*
2148         * Check status of the previous flash authentication. If there
2149         * is one we need to power cycle the switch in any case to make
2150         * it functional again.
2151         */
2152        ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2153        if (ret <= 0)
2154                return ret;
2155
2156        /* Now we can allow root port to suspend again */
2157        if (!tb_route(sw))
2158                nvm_authenticate_complete_dma_port(sw);
2159
2160        if (status) {
2161                tb_sw_info(sw, "switch flash authentication failed\n");
2162                nvm_set_auth_status(sw, status);
2163        }
2164
2165        tb_sw_info(sw, "power cycling the switch now\n");
2166        dma_port_power_cycle(sw->dma_port);
2167
2168        /*
2169         * We return error here which causes the switch adding failure.
2170         * It should appear back after power cycle is complete.
2171         */
2172        return -ESHUTDOWN;
2173}
2174
2175static void tb_switch_default_link_ports(struct tb_switch *sw)
2176{
2177        int i;
2178
2179        for (i = 1; i <= sw->config.max_port_number; i += 2) {
2180                struct tb_port *port = &sw->ports[i];
2181                struct tb_port *subordinate;
2182
2183                if (!tb_port_is_null(port))
2184                        continue;
2185
2186                /* Check for the subordinate port */
2187                if (i == sw->config.max_port_number ||
2188                    !tb_port_is_null(&sw->ports[i + 1]))
2189                        continue;
2190
2191                /* Link them if not already done so (by DROM) */
2192                subordinate = &sw->ports[i + 1];
2193                if (!port->dual_link_port && !subordinate->dual_link_port) {
2194                        port->link_nr = 0;
2195                        port->dual_link_port = subordinate;
2196                        subordinate->link_nr = 1;
2197                        subordinate->dual_link_port = port;
2198
2199                        tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2200                                  port->port, subordinate->port);
2201                }
2202        }
2203}
2204
2205static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2206{
2207        const struct tb_port *up = tb_upstream_port(sw);
2208
2209        if (!up->dual_link_port || !up->dual_link_port->remote)
2210                return false;
2211
2212        if (tb_switch_is_usb4(sw))
2213                return usb4_switch_lane_bonding_possible(sw);
2214        return tb_lc_lane_bonding_possible(sw);
2215}
2216
2217static int tb_switch_update_link_attributes(struct tb_switch *sw)
2218{
2219        struct tb_port *up;
2220        bool change = false;
2221        int ret;
2222
2223        if (!tb_route(sw) || tb_switch_is_icm(sw))
2224                return 0;
2225
2226        up = tb_upstream_port(sw);
2227
2228        ret = tb_port_get_link_speed(up);
2229        if (ret < 0)
2230                return ret;
2231        if (sw->link_speed != ret)
2232                change = true;
2233        sw->link_speed = ret;
2234
2235        ret = tb_port_get_link_width(up);
2236        if (ret < 0)
2237                return ret;
2238        if (sw->link_width != ret)
2239                change = true;
2240        sw->link_width = ret;
2241
2242        /* Notify userspace that there is possible link attribute change */
2243        if (device_is_registered(&sw->dev) && change)
2244                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2245
2246        return 0;
2247}
2248
2249/**
2250 * tb_switch_lane_bonding_enable() - Enable lane bonding
2251 * @sw: Switch to enable lane bonding
2252 *
2253 * Connection manager can call this function to enable lane bonding of a
2254 * switch. If conditions are correct and both switches support the feature,
2255 * lanes are bonded. It is safe to call this to any switch.
2256 */
2257int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2258{
2259        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2260        struct tb_port *up, *down;
2261        u64 route = tb_route(sw);
2262        int ret;
2263
2264        if (!route)
2265                return 0;
2266
2267        if (!tb_switch_lane_bonding_possible(sw))
2268                return 0;
2269
2270        up = tb_upstream_port(sw);
2271        down = tb_port_at(route, parent);
2272
2273        if (!tb_port_is_width_supported(up, 2) ||
2274            !tb_port_is_width_supported(down, 2))
2275                return 0;
2276
2277        ret = tb_port_lane_bonding_enable(up);
2278        if (ret) {
2279                tb_port_warn(up, "failed to enable lane bonding\n");
2280                return ret;
2281        }
2282
2283        ret = tb_port_lane_bonding_enable(down);
2284        if (ret) {
2285                tb_port_warn(down, "failed to enable lane bonding\n");
2286                tb_port_lane_bonding_disable(up);
2287                return ret;
2288        }
2289
2290        tb_switch_update_link_attributes(sw);
2291
2292        tb_sw_dbg(sw, "lane bonding enabled\n");
2293        return ret;
2294}
2295
2296/**
2297 * tb_switch_lane_bonding_disable() - Disable lane bonding
2298 * @sw: Switch whose lane bonding to disable
2299 *
2300 * Disables lane bonding between @sw and parent. This can be called even
2301 * if lanes were not bonded originally.
2302 */
2303void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2304{
2305        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2306        struct tb_port *up, *down;
2307
2308        if (!tb_route(sw))
2309                return;
2310
2311        up = tb_upstream_port(sw);
2312        if (!up->bonded)
2313                return;
2314
2315        down = tb_port_at(tb_route(sw), parent);
2316
2317        tb_port_lane_bonding_disable(up);
2318        tb_port_lane_bonding_disable(down);
2319
2320        tb_switch_update_link_attributes(sw);
2321        tb_sw_dbg(sw, "lane bonding disabled\n");
2322}
2323
2324/**
2325 * tb_switch_add() - Add a switch to the domain
2326 * @sw: Switch to add
2327 *
2328 * This is the last step in adding switch to the domain. It will read
2329 * identification information from DROM and initializes ports so that
2330 * they can be used to connect other switches. The switch will be
2331 * exposed to the userspace when this function successfully returns. To
2332 * remove and release the switch, call tb_switch_remove().
2333 *
2334 * Return: %0 in case of success and negative errno in case of failure
2335 */
2336int tb_switch_add(struct tb_switch *sw)
2337{
2338        int i, ret;
2339
2340        /*
2341         * Initialize DMA control port now before we read DROM. Recent
2342         * host controllers have more complete DROM on NVM that includes
2343         * vendor and model identification strings which we then expose
2344         * to the userspace. NVM can be accessed through DMA
2345         * configuration based mailbox.
2346         */
2347        ret = tb_switch_add_dma_port(sw);
2348        if (ret) {
2349                dev_err(&sw->dev, "failed to add DMA port\n");
2350                return ret;
2351        }
2352
2353        if (!sw->safe_mode) {
2354                /* read drom */
2355                ret = tb_drom_read(sw);
2356                if (ret) {
2357                        dev_err(&sw->dev, "reading DROM failed\n");
2358                        return ret;
2359                }
2360                tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2361
2362                ret = tb_switch_set_uuid(sw);
2363                if (ret) {
2364                        dev_err(&sw->dev, "failed to set UUID\n");
2365                        return ret;
2366                }
2367
2368                for (i = 0; i <= sw->config.max_port_number; i++) {
2369                        if (sw->ports[i].disabled) {
2370                                tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2371                                continue;
2372                        }
2373                        ret = tb_init_port(&sw->ports[i]);
2374                        if (ret) {
2375                                dev_err(&sw->dev, "failed to initialize port %d\n", i);
2376                                return ret;
2377                        }
2378                }
2379
2380                tb_switch_default_link_ports(sw);
2381
2382                ret = tb_switch_update_link_attributes(sw);
2383                if (ret)
2384                        return ret;
2385
2386                ret = tb_switch_tmu_init(sw);
2387                if (ret)
2388                        return ret;
2389        }
2390
2391        ret = device_add(&sw->dev);
2392        if (ret) {
2393                dev_err(&sw->dev, "failed to add device: %d\n", ret);
2394                return ret;
2395        }
2396
2397        if (tb_route(sw)) {
2398                dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2399                         sw->vendor, sw->device);
2400                if (sw->vendor_name && sw->device_name)
2401                        dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2402                                 sw->device_name);
2403        }
2404
2405        ret = tb_switch_nvm_add(sw);
2406        if (ret) {
2407                dev_err(&sw->dev, "failed to add NVM devices\n");
2408                device_del(&sw->dev);
2409                return ret;
2410        }
2411
2412        pm_runtime_set_active(&sw->dev);
2413        if (sw->rpm) {
2414                pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2415                pm_runtime_use_autosuspend(&sw->dev);
2416                pm_runtime_mark_last_busy(&sw->dev);
2417                pm_runtime_enable(&sw->dev);
2418                pm_request_autosuspend(&sw->dev);
2419        }
2420
2421        return 0;
2422}
2423
2424/**
2425 * tb_switch_remove() - Remove and release a switch
2426 * @sw: Switch to remove
2427 *
2428 * This will remove the switch from the domain and release it after last
2429 * reference count drops to zero. If there are switches connected below
2430 * this switch, they will be removed as well.
2431 */
2432void tb_switch_remove(struct tb_switch *sw)
2433{
2434        struct tb_port *port;
2435
2436        if (sw->rpm) {
2437                pm_runtime_get_sync(&sw->dev);
2438                pm_runtime_disable(&sw->dev);
2439        }
2440
2441        /* port 0 is the switch itself and never has a remote */
2442        tb_switch_for_each_port(sw, port) {
2443                if (tb_port_has_remote(port)) {
2444                        tb_switch_remove(port->remote->sw);
2445                        port->remote = NULL;
2446                } else if (port->xdomain) {
2447                        tb_xdomain_remove(port->xdomain);
2448                        port->xdomain = NULL;
2449                }
2450        }
2451
2452        if (!sw->is_unplugged)
2453                tb_plug_events_active(sw, false);
2454
2455        if (tb_switch_is_usb4(sw))
2456                usb4_switch_unconfigure_link(sw);
2457        else
2458                tb_lc_unconfigure_link(sw);
2459
2460        tb_switch_nvm_remove(sw);
2461
2462        if (tb_route(sw))
2463                dev_info(&sw->dev, "device disconnected\n");
2464        device_unregister(&sw->dev);
2465}
2466
2467/**
2468 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2469 */
2470void tb_sw_set_unplugged(struct tb_switch *sw)
2471{
2472        struct tb_port *port;
2473
2474        if (sw == sw->tb->root_switch) {
2475                tb_sw_WARN(sw, "cannot unplug root switch\n");
2476                return;
2477        }
2478        if (sw->is_unplugged) {
2479                tb_sw_WARN(sw, "is_unplugged already set\n");
2480                return;
2481        }
2482        sw->is_unplugged = true;
2483        tb_switch_for_each_port(sw, port) {
2484                if (tb_port_has_remote(port))
2485                        tb_sw_set_unplugged(port->remote->sw);
2486                else if (port->xdomain)
2487                        port->xdomain->is_unplugged = true;
2488        }
2489}
2490
2491int tb_switch_resume(struct tb_switch *sw)
2492{
2493        struct tb_port *port;
2494        int err;
2495
2496        tb_sw_dbg(sw, "resuming switch\n");
2497
2498        /*
2499         * Check for UID of the connected switches except for root
2500         * switch which we assume cannot be removed.
2501         */
2502        if (tb_route(sw)) {
2503                u64 uid;
2504
2505                /*
2506                 * Check first that we can still read the switch config
2507                 * space. It may be that there is now another domain
2508                 * connected.
2509                 */
2510                err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2511                if (err < 0) {
2512                        tb_sw_info(sw, "switch not present anymore\n");
2513                        return err;
2514                }
2515
2516                if (tb_switch_is_usb4(sw))
2517                        err = usb4_switch_read_uid(sw, &uid);
2518                else
2519                        err = tb_drom_read_uid_only(sw, &uid);
2520                if (err) {
2521                        tb_sw_warn(sw, "uid read failed\n");
2522                        return err;
2523                }
2524                if (sw->uid != uid) {
2525                        tb_sw_info(sw,
2526                                "changed while suspended (uid %#llx -> %#llx)\n",
2527                                sw->uid, uid);
2528                        return -ENODEV;
2529                }
2530        }
2531
2532        err = tb_switch_configure(sw);
2533        if (err)
2534                return err;
2535
2536        /* check for surviving downstream switches */
2537        tb_switch_for_each_port(sw, port) {
2538                if (!tb_port_has_remote(port) && !port->xdomain)
2539                        continue;
2540
2541                if (tb_wait_for_port(port, true) <= 0) {
2542                        tb_port_warn(port,
2543                                     "lost during suspend, disconnecting\n");
2544                        if (tb_port_has_remote(port))
2545                                tb_sw_set_unplugged(port->remote->sw);
2546                        else if (port->xdomain)
2547                                port->xdomain->is_unplugged = true;
2548                } else if (tb_port_has_remote(port) || port->xdomain) {
2549                        /*
2550                         * Always unlock the port so the downstream
2551                         * switch/domain is accessible.
2552                         */
2553                        if (tb_port_unlock(port))
2554                                tb_port_warn(port, "failed to unlock port\n");
2555                        if (port->remote && tb_switch_resume(port->remote->sw)) {
2556                                tb_port_warn(port,
2557                                             "lost during suspend, disconnecting\n");
2558                                tb_sw_set_unplugged(port->remote->sw);
2559                        }
2560                }
2561        }
2562        return 0;
2563}
2564
2565void tb_switch_suspend(struct tb_switch *sw)
2566{
2567        struct tb_port *port;
2568        int err;
2569
2570        err = tb_plug_events_active(sw, false);
2571        if (err)
2572                return;
2573
2574        tb_switch_for_each_port(sw, port) {
2575                if (tb_port_has_remote(port))
2576                        tb_switch_suspend(port->remote->sw);
2577        }
2578
2579        if (tb_switch_is_usb4(sw))
2580                usb4_switch_set_sleep(sw);
2581        else
2582                tb_lc_set_sleep(sw);
2583}
2584
2585/**
2586 * tb_switch_query_dp_resource() - Query availability of DP resource
2587 * @sw: Switch whose DP resource is queried
2588 * @in: DP IN port
2589 *
2590 * Queries availability of DP resource for DP tunneling using switch
2591 * specific means. Returns %true if resource is available.
2592 */
2593bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2594{
2595        if (tb_switch_is_usb4(sw))
2596                return usb4_switch_query_dp_resource(sw, in);
2597        return tb_lc_dp_sink_query(sw, in);
2598}
2599
2600/**
2601 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2602 * @sw: Switch whose DP resource is allocated
2603 * @in: DP IN port
2604 *
2605 * Allocates DP resource for DP tunneling. The resource must be
2606 * available for this to succeed (see tb_switch_query_dp_resource()).
2607 * Returns %0 in success and negative errno otherwise.
2608 */
2609int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2610{
2611        if (tb_switch_is_usb4(sw))
2612                return usb4_switch_alloc_dp_resource(sw, in);
2613        return tb_lc_dp_sink_alloc(sw, in);
2614}
2615
2616/**
2617 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2618 * @sw: Switch whose DP resource is de-allocated
2619 * @in: DP IN port
2620 *
2621 * De-allocates DP resource that was previously allocated for DP
2622 * tunneling.
2623 */
2624void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2625{
2626        int ret;
2627
2628        if (tb_switch_is_usb4(sw))
2629                ret = usb4_switch_dealloc_dp_resource(sw, in);
2630        else
2631                ret = tb_lc_dp_sink_dealloc(sw, in);
2632
2633        if (ret)
2634                tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2635                           in->port);
2636}
2637
2638struct tb_sw_lookup {
2639        struct tb *tb;
2640        u8 link;
2641        u8 depth;
2642        const uuid_t *uuid;
2643        u64 route;
2644};
2645
2646static int tb_switch_match(struct device *dev, const void *data)
2647{
2648        struct tb_switch *sw = tb_to_switch(dev);
2649        const struct tb_sw_lookup *lookup = data;
2650
2651        if (!sw)
2652                return 0;
2653        if (sw->tb != lookup->tb)
2654                return 0;
2655
2656        if (lookup->uuid)
2657                return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2658
2659        if (lookup->route) {
2660                return sw->config.route_lo == lower_32_bits(lookup->route) &&
2661                       sw->config.route_hi == upper_32_bits(lookup->route);
2662        }
2663
2664        /* Root switch is matched only by depth */
2665        if (!lookup->depth)
2666                return !sw->depth;
2667
2668        return sw->link == lookup->link && sw->depth == lookup->depth;
2669}
2670
2671/**
2672 * tb_switch_find_by_link_depth() - Find switch by link and depth
2673 * @tb: Domain the switch belongs
2674 * @link: Link number the switch is connected
2675 * @depth: Depth of the switch in link
2676 *
2677 * Returned switch has reference count increased so the caller needs to
2678 * call tb_switch_put() when done with the switch.
2679 */
2680struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2681{
2682        struct tb_sw_lookup lookup;
2683        struct device *dev;
2684
2685        memset(&lookup, 0, sizeof(lookup));
2686        lookup.tb = tb;
2687        lookup.link = link;
2688        lookup.depth = depth;
2689
2690        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2691        if (dev)
2692                return tb_to_switch(dev);
2693
2694        return NULL;
2695}
2696
2697/**
2698 * tb_switch_find_by_uuid() - Find switch by UUID
2699 * @tb: Domain the switch belongs
2700 * @uuid: UUID to look for
2701 *
2702 * Returned switch has reference count increased so the caller needs to
2703 * call tb_switch_put() when done with the switch.
2704 */
2705struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2706{
2707        struct tb_sw_lookup lookup;
2708        struct device *dev;
2709
2710        memset(&lookup, 0, sizeof(lookup));
2711        lookup.tb = tb;
2712        lookup.uuid = uuid;
2713
2714        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2715        if (dev)
2716                return tb_to_switch(dev);
2717
2718        return NULL;
2719}
2720
2721/**
2722 * tb_switch_find_by_route() - Find switch by route string
2723 * @tb: Domain the switch belongs
2724 * @route: Route string to look for
2725 *
2726 * Returned switch has reference count increased so the caller needs to
2727 * call tb_switch_put() when done with the switch.
2728 */
2729struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2730{
2731        struct tb_sw_lookup lookup;
2732        struct device *dev;
2733
2734        if (!route)
2735                return tb_switch_get(tb->root_switch);
2736
2737        memset(&lookup, 0, sizeof(lookup));
2738        lookup.tb = tb;
2739        lookup.route = route;
2740
2741        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2742        if (dev)
2743                return tb_to_switch(dev);
2744
2745        return NULL;
2746}
2747
2748/**
2749 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2750 * @sw: Switch to find the port from
2751 * @type: Port type to look for
2752 */
2753struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2754                                    enum tb_port_type type)
2755{
2756        struct tb_port *port;
2757
2758        tb_switch_for_each_port(sw, port) {
2759                if (port->config.type == type)
2760                        return port;
2761        }
2762
2763        return NULL;
2764}
2765
2766void tb_switch_exit(void)
2767{
2768        ida_destroy(&nvm_ida);
2769}
2770