linux/drivers/xen/swiotlb-xen.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright 2010
   4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
   5 *
   6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
   7 *
   8 * PV guests under Xen are running in an non-contiguous memory architecture.
   9 *
  10 * When PCI pass-through is utilized, this necessitates an IOMMU for
  11 * translating bus (DMA) to virtual and vice-versa and also providing a
  12 * mechanism to have contiguous pages for device drivers operations (say DMA
  13 * operations).
  14 *
  15 * Specifically, under Xen the Linux idea of pages is an illusion. It
  16 * assumes that pages start at zero and go up to the available memory. To
  17 * help with that, the Linux Xen MMU provides a lookup mechanism to
  18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  20 * memory is not contiguous. Xen hypervisor stitches memory for guests
  21 * from different pools, which means there is no guarantee that PFN==MFN
  22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  23 * allocated in descending order (high to low), meaning the guest might
  24 * never get any MFN's under the 4GB mark.
  25 */
  26
  27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
  28
  29#include <linux/memblock.h>
  30#include <linux/dma-direct.h>
  31#include <linux/dma-noncoherent.h>
  32#include <linux/export.h>
  33#include <xen/swiotlb-xen.h>
  34#include <xen/page.h>
  35#include <xen/xen-ops.h>
  36#include <xen/hvc-console.h>
  37
  38#include <asm/dma-mapping.h>
  39#include <asm/xen/page-coherent.h>
  40
  41#include <trace/events/swiotlb.h>
  42#define MAX_DMA_BITS 32
  43/*
  44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  46 * API.
  47 */
  48
  49static char *xen_io_tlb_start, *xen_io_tlb_end;
  50static unsigned long xen_io_tlb_nslabs;
  51/*
  52 * Quick lookup value of the bus address of the IOTLB.
  53 */
  54
  55static u64 start_dma_addr;
  56
  57/*
  58 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
  59 * can be 32bit when dma_addr_t is 64bit leading to a loss in
  60 * information if the shift is done before casting to 64bit.
  61 */
  62static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  63{
  64        unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
  65        dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
  66
  67        dma |= paddr & ~XEN_PAGE_MASK;
  68
  69        return dma;
  70}
  71
  72static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  73{
  74        unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
  75        dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
  76        phys_addr_t paddr = dma;
  77
  78        paddr |= baddr & ~XEN_PAGE_MASK;
  79
  80        return paddr;
  81}
  82
  83static inline dma_addr_t xen_virt_to_bus(void *address)
  84{
  85        return xen_phys_to_bus(virt_to_phys(address));
  86}
  87
  88static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
  89{
  90        unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
  91        unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
  92
  93        next_bfn = pfn_to_bfn(xen_pfn);
  94
  95        for (i = 1; i < nr_pages; i++)
  96                if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
  97                        return 1;
  98
  99        return 0;
 100}
 101
 102static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
 103{
 104        unsigned long bfn = XEN_PFN_DOWN(dma_addr);
 105        unsigned long xen_pfn = bfn_to_local_pfn(bfn);
 106        phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
 107
 108        /* If the address is outside our domain, it CAN
 109         * have the same virtual address as another address
 110         * in our domain. Therefore _only_ check address within our domain.
 111         */
 112        if (pfn_valid(PFN_DOWN(paddr))) {
 113                return paddr >= virt_to_phys(xen_io_tlb_start) &&
 114                       paddr < virt_to_phys(xen_io_tlb_end);
 115        }
 116        return 0;
 117}
 118
 119static int
 120xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
 121{
 122        int i, rc;
 123        int dma_bits;
 124        dma_addr_t dma_handle;
 125        phys_addr_t p = virt_to_phys(buf);
 126
 127        dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 128
 129        i = 0;
 130        do {
 131                int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
 132
 133                do {
 134                        rc = xen_create_contiguous_region(
 135                                p + (i << IO_TLB_SHIFT),
 136                                get_order(slabs << IO_TLB_SHIFT),
 137                                dma_bits, &dma_handle);
 138                } while (rc && dma_bits++ < MAX_DMA_BITS);
 139                if (rc)
 140                        return rc;
 141
 142                i += slabs;
 143        } while (i < nslabs);
 144        return 0;
 145}
 146static unsigned long xen_set_nslabs(unsigned long nr_tbl)
 147{
 148        if (!nr_tbl) {
 149                xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
 150                xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
 151        } else
 152                xen_io_tlb_nslabs = nr_tbl;
 153
 154        return xen_io_tlb_nslabs << IO_TLB_SHIFT;
 155}
 156
 157enum xen_swiotlb_err {
 158        XEN_SWIOTLB_UNKNOWN = 0,
 159        XEN_SWIOTLB_ENOMEM,
 160        XEN_SWIOTLB_EFIXUP
 161};
 162
 163static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
 164{
 165        switch (err) {
 166        case XEN_SWIOTLB_ENOMEM:
 167                return "Cannot allocate Xen-SWIOTLB buffer\n";
 168        case XEN_SWIOTLB_EFIXUP:
 169                return "Failed to get contiguous memory for DMA from Xen!\n"\
 170                    "You either: don't have the permissions, do not have"\
 171                    " enough free memory under 4GB, or the hypervisor memory"\
 172                    " is too fragmented!";
 173        default:
 174                break;
 175        }
 176        return "";
 177}
 178int __ref xen_swiotlb_init(int verbose, bool early)
 179{
 180        unsigned long bytes, order;
 181        int rc = -ENOMEM;
 182        enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
 183        unsigned int repeat = 3;
 184
 185        xen_io_tlb_nslabs = swiotlb_nr_tbl();
 186retry:
 187        bytes = xen_set_nslabs(xen_io_tlb_nslabs);
 188        order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
 189
 190        /*
 191         * IO TLB memory already allocated. Just use it.
 192         */
 193        if (io_tlb_start != 0) {
 194                xen_io_tlb_start = phys_to_virt(io_tlb_start);
 195                goto end;
 196        }
 197
 198        /*
 199         * Get IO TLB memory from any location.
 200         */
 201        if (early) {
 202                xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
 203                                                  PAGE_SIZE);
 204                if (!xen_io_tlb_start)
 205                        panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 206                              __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
 207        } else {
 208#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 209#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 210                while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 211                        xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
 212                        if (xen_io_tlb_start)
 213                                break;
 214                        order--;
 215                }
 216                if (order != get_order(bytes)) {
 217                        pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
 218                                (PAGE_SIZE << order) >> 20);
 219                        xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
 220                        bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 221                }
 222        }
 223        if (!xen_io_tlb_start) {
 224                m_ret = XEN_SWIOTLB_ENOMEM;
 225                goto error;
 226        }
 227        /*
 228         * And replace that memory with pages under 4GB.
 229         */
 230        rc = xen_swiotlb_fixup(xen_io_tlb_start,
 231                               bytes,
 232                               xen_io_tlb_nslabs);
 233        if (rc) {
 234                if (early)
 235                        memblock_free(__pa(xen_io_tlb_start),
 236                                      PAGE_ALIGN(bytes));
 237                else {
 238                        free_pages((unsigned long)xen_io_tlb_start, order);
 239                        xen_io_tlb_start = NULL;
 240                }
 241                m_ret = XEN_SWIOTLB_EFIXUP;
 242                goto error;
 243        }
 244        start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
 245        if (early) {
 246                if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
 247                         verbose))
 248                        panic("Cannot allocate SWIOTLB buffer");
 249                rc = 0;
 250        } else
 251                rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
 252
 253end:
 254        xen_io_tlb_end = xen_io_tlb_start + bytes;
 255        if (!rc)
 256                swiotlb_set_max_segment(PAGE_SIZE);
 257
 258        return rc;
 259error:
 260        if (repeat--) {
 261                xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
 262                                        (xen_io_tlb_nslabs >> 1));
 263                pr_info("Lowering to %luMB\n",
 264                        (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
 265                goto retry;
 266        }
 267        pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
 268        if (early)
 269                panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
 270        else
 271                free_pages((unsigned long)xen_io_tlb_start, order);
 272        return rc;
 273}
 274
 275static void *
 276xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 277                           dma_addr_t *dma_handle, gfp_t flags,
 278                           unsigned long attrs)
 279{
 280        void *ret;
 281        int order = get_order(size);
 282        u64 dma_mask = DMA_BIT_MASK(32);
 283        phys_addr_t phys;
 284        dma_addr_t dev_addr;
 285
 286        /*
 287        * Ignore region specifiers - the kernel's ideas of
 288        * pseudo-phys memory layout has nothing to do with the
 289        * machine physical layout.  We can't allocate highmem
 290        * because we can't return a pointer to it.
 291        */
 292        flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
 293
 294        /* Convert the size to actually allocated. */
 295        size = 1UL << (order + XEN_PAGE_SHIFT);
 296
 297        /* On ARM this function returns an ioremap'ped virtual address for
 298         * which virt_to_phys doesn't return the corresponding physical
 299         * address. In fact on ARM virt_to_phys only works for kernel direct
 300         * mapped RAM memory. Also see comment below.
 301         */
 302        ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
 303
 304        if (!ret)
 305                return ret;
 306
 307        if (hwdev && hwdev->coherent_dma_mask)
 308                dma_mask = hwdev->coherent_dma_mask;
 309
 310        /* At this point dma_handle is the physical address, next we are
 311         * going to set it to the machine address.
 312         * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
 313         * to *dma_handle. */
 314        phys = *dma_handle;
 315        dev_addr = xen_phys_to_bus(phys);
 316        if (((dev_addr + size - 1 <= dma_mask)) &&
 317            !range_straddles_page_boundary(phys, size))
 318                *dma_handle = dev_addr;
 319        else {
 320                if (xen_create_contiguous_region(phys, order,
 321                                                 fls64(dma_mask), dma_handle) != 0) {
 322                        xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
 323                        return NULL;
 324                }
 325                SetPageXenRemapped(virt_to_page(ret));
 326        }
 327        memset(ret, 0, size);
 328        return ret;
 329}
 330
 331static void
 332xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 333                          dma_addr_t dev_addr, unsigned long attrs)
 334{
 335        int order = get_order(size);
 336        phys_addr_t phys;
 337        u64 dma_mask = DMA_BIT_MASK(32);
 338
 339        if (hwdev && hwdev->coherent_dma_mask)
 340                dma_mask = hwdev->coherent_dma_mask;
 341
 342        /* do not use virt_to_phys because on ARM it doesn't return you the
 343         * physical address */
 344        phys = xen_bus_to_phys(dev_addr);
 345
 346        /* Convert the size to actually allocated. */
 347        size = 1UL << (order + XEN_PAGE_SHIFT);
 348
 349        if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
 350                     range_straddles_page_boundary(phys, size)) &&
 351            TestClearPageXenRemapped(virt_to_page(vaddr)))
 352                xen_destroy_contiguous_region(phys, order);
 353
 354        xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
 355}
 356
 357/*
 358 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 359 * physical address to use is returned.
 360 *
 361 * Once the device is given the dma address, the device owns this memory until
 362 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 363 */
 364static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
 365                                unsigned long offset, size_t size,
 366                                enum dma_data_direction dir,
 367                                unsigned long attrs)
 368{
 369        phys_addr_t map, phys = page_to_phys(page) + offset;
 370        dma_addr_t dev_addr = xen_phys_to_bus(phys);
 371
 372        BUG_ON(dir == DMA_NONE);
 373        /*
 374         * If the address happens to be in the device's DMA window,
 375         * we can safely return the device addr and not worry about bounce
 376         * buffering it.
 377         */
 378        if (dma_capable(dev, dev_addr, size, true) &&
 379            !range_straddles_page_boundary(phys, size) &&
 380                !xen_arch_need_swiotlb(dev, phys, dev_addr) &&
 381                swiotlb_force != SWIOTLB_FORCE)
 382                goto done;
 383
 384        /*
 385         * Oh well, have to allocate and map a bounce buffer.
 386         */
 387        trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 388
 389        map = swiotlb_tbl_map_single(dev, start_dma_addr, phys,
 390                                     size, size, dir, attrs);
 391        if (map == (phys_addr_t)DMA_MAPPING_ERROR)
 392                return DMA_MAPPING_ERROR;
 393
 394        phys = map;
 395        dev_addr = xen_phys_to_bus(map);
 396
 397        /*
 398         * Ensure that the address returned is DMA'ble
 399         */
 400        if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
 401                swiotlb_tbl_unmap_single(dev, map, size, size, dir,
 402                                attrs | DMA_ATTR_SKIP_CPU_SYNC);
 403                return DMA_MAPPING_ERROR;
 404        }
 405
 406done:
 407        if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 408                xen_dma_sync_for_device(dev_addr, phys, size, dir);
 409        return dev_addr;
 410}
 411
 412/*
 413 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 414 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 415 * other usages are undefined.
 416 *
 417 * After this call, reads by the cpu to the buffer are guaranteed to see
 418 * whatever the device wrote there.
 419 */
 420static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 421                size_t size, enum dma_data_direction dir, unsigned long attrs)
 422{
 423        phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 424
 425        BUG_ON(dir == DMA_NONE);
 426
 427        if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 428                xen_dma_sync_for_cpu(dev_addr, paddr, size, dir);
 429
 430        /* NOTE: We use dev_addr here, not paddr! */
 431        if (is_xen_swiotlb_buffer(dev_addr))
 432                swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
 433}
 434
 435static void
 436xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
 437                size_t size, enum dma_data_direction dir)
 438{
 439        phys_addr_t paddr = xen_bus_to_phys(dma_addr);
 440
 441        if (!dev_is_dma_coherent(dev))
 442                xen_dma_sync_for_cpu(dma_addr, paddr, size, dir);
 443
 444        if (is_xen_swiotlb_buffer(dma_addr))
 445                swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
 446}
 447
 448static void
 449xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
 450                size_t size, enum dma_data_direction dir)
 451{
 452        phys_addr_t paddr = xen_bus_to_phys(dma_addr);
 453
 454        if (is_xen_swiotlb_buffer(dma_addr))
 455                swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
 456
 457        if (!dev_is_dma_coherent(dev))
 458                xen_dma_sync_for_device(dma_addr, paddr, size, dir);
 459}
 460
 461/*
 462 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 463 * concerning calls here are the same as for swiotlb_unmap_page() above.
 464 */
 465static void
 466xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 467                enum dma_data_direction dir, unsigned long attrs)
 468{
 469        struct scatterlist *sg;
 470        int i;
 471
 472        BUG_ON(dir == DMA_NONE);
 473
 474        for_each_sg(sgl, sg, nelems, i)
 475                xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
 476                                dir, attrs);
 477
 478}
 479
 480static int
 481xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
 482                enum dma_data_direction dir, unsigned long attrs)
 483{
 484        struct scatterlist *sg;
 485        int i;
 486
 487        BUG_ON(dir == DMA_NONE);
 488
 489        for_each_sg(sgl, sg, nelems, i) {
 490                sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
 491                                sg->offset, sg->length, dir, attrs);
 492                if (sg->dma_address == DMA_MAPPING_ERROR)
 493                        goto out_unmap;
 494                sg_dma_len(sg) = sg->length;
 495        }
 496
 497        return nelems;
 498out_unmap:
 499        xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
 500        sg_dma_len(sgl) = 0;
 501        return 0;
 502}
 503
 504static void
 505xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
 506                            int nelems, enum dma_data_direction dir)
 507{
 508        struct scatterlist *sg;
 509        int i;
 510
 511        for_each_sg(sgl, sg, nelems, i) {
 512                xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
 513                                sg->length, dir);
 514        }
 515}
 516
 517static void
 518xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
 519                               int nelems, enum dma_data_direction dir)
 520{
 521        struct scatterlist *sg;
 522        int i;
 523
 524        for_each_sg(sgl, sg, nelems, i) {
 525                xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
 526                                sg->length, dir);
 527        }
 528}
 529
 530/*
 531 * Return whether the given device DMA address mask can be supported
 532 * properly.  For example, if your device can only drive the low 24-bits
 533 * during bus mastering, then you would pass 0x00ffffff as the mask to
 534 * this function.
 535 */
 536static int
 537xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
 538{
 539        return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
 540}
 541
 542const struct dma_map_ops xen_swiotlb_dma_ops = {
 543        .alloc = xen_swiotlb_alloc_coherent,
 544        .free = xen_swiotlb_free_coherent,
 545        .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
 546        .sync_single_for_device = xen_swiotlb_sync_single_for_device,
 547        .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
 548        .sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
 549        .map_sg = xen_swiotlb_map_sg,
 550        .unmap_sg = xen_swiotlb_unmap_sg,
 551        .map_page = xen_swiotlb_map_page,
 552        .unmap_page = xen_swiotlb_unmap_page,
 553        .dma_supported = xen_swiotlb_dma_supported,
 554        .mmap = dma_common_mmap,
 555        .get_sgtable = dma_common_get_sgtable,
 556};
 557