linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
  19#include "check-integrity.h"
  20#include "rcu-string.h"
  21#include "raid56.h"
  22#include "block-group.h"
  23
  24/*
  25 * This is only the first step towards a full-features scrub. It reads all
  26 * extent and super block and verifies the checksums. In case a bad checksum
  27 * is found or the extent cannot be read, good data will be written back if
  28 * any can be found.
  29 *
  30 * Future enhancements:
  31 *  - In case an unrepairable extent is encountered, track which files are
  32 *    affected and report them
  33 *  - track and record media errors, throw out bad devices
  34 *  - add a mode to also read unallocated space
  35 */
  36
  37struct scrub_block;
  38struct scrub_ctx;
  39
  40/*
  41 * the following three values only influence the performance.
  42 * The last one configures the number of parallel and outstanding I/O
  43 * operations. The first two values configure an upper limit for the number
  44 * of (dynamically allocated) pages that are added to a bio.
  45 */
  46#define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
  47#define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
  48#define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
  49
  50/*
  51 * the following value times PAGE_SIZE needs to be large enough to match the
  52 * largest node/leaf/sector size that shall be supported.
  53 * Values larger than BTRFS_STRIPE_LEN are not supported.
  54 */
  55#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  56
  57struct scrub_recover {
  58        refcount_t              refs;
  59        struct btrfs_bio        *bbio;
  60        u64                     map_length;
  61};
  62
  63struct scrub_page {
  64        struct scrub_block      *sblock;
  65        struct page             *page;
  66        struct btrfs_device     *dev;
  67        struct list_head        list;
  68        u64                     flags;  /* extent flags */
  69        u64                     generation;
  70        u64                     logical;
  71        u64                     physical;
  72        u64                     physical_for_dev_replace;
  73        atomic_t                refs;
  74        struct {
  75                unsigned int    mirror_num:8;
  76                unsigned int    have_csum:1;
  77                unsigned int    io_error:1;
  78        };
  79        u8                      csum[BTRFS_CSUM_SIZE];
  80
  81        struct scrub_recover    *recover;
  82};
  83
  84struct scrub_bio {
  85        int                     index;
  86        struct scrub_ctx        *sctx;
  87        struct btrfs_device     *dev;
  88        struct bio              *bio;
  89        blk_status_t            status;
  90        u64                     logical;
  91        u64                     physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93        struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95        struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97        int                     page_count;
  98        int                     next_free;
  99        struct btrfs_work       work;
 100};
 101
 102struct scrub_block {
 103        struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104        int                     page_count;
 105        atomic_t                outstanding_pages;
 106        refcount_t              refs; /* free mem on transition to zero */
 107        struct scrub_ctx        *sctx;
 108        struct scrub_parity     *sparity;
 109        struct {
 110                unsigned int    header_error:1;
 111                unsigned int    checksum_error:1;
 112                unsigned int    no_io_error_seen:1;
 113                unsigned int    generation_error:1; /* also sets header_error */
 114
 115                /* The following is for the data used to check parity */
 116                /* It is for the data with checksum */
 117                unsigned int    data_corrected:1;
 118        };
 119        struct btrfs_work       work;
 120};
 121
 122/* Used for the chunks with parity stripe such RAID5/6 */
 123struct scrub_parity {
 124        struct scrub_ctx        *sctx;
 125
 126        struct btrfs_device     *scrub_dev;
 127
 128        u64                     logic_start;
 129
 130        u64                     logic_end;
 131
 132        int                     nsectors;
 133
 134        u64                     stripe_len;
 135
 136        refcount_t              refs;
 137
 138        struct list_head        spages;
 139
 140        /* Work of parity check and repair */
 141        struct btrfs_work       work;
 142
 143        /* Mark the parity blocks which have data */
 144        unsigned long           *dbitmap;
 145
 146        /*
 147         * Mark the parity blocks which have data, but errors happen when
 148         * read data or check data
 149         */
 150        unsigned long           *ebitmap;
 151
 152        unsigned long           bitmap[0];
 153};
 154
 155struct scrub_ctx {
 156        struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
 157        struct btrfs_fs_info    *fs_info;
 158        int                     first_free;
 159        int                     curr;
 160        atomic_t                bios_in_flight;
 161        atomic_t                workers_pending;
 162        spinlock_t              list_lock;
 163        wait_queue_head_t       list_wait;
 164        u16                     csum_size;
 165        struct list_head        csum_list;
 166        atomic_t                cancel_req;
 167        int                     readonly;
 168        int                     pages_per_rd_bio;
 169
 170        int                     is_dev_replace;
 171
 172        struct scrub_bio        *wr_curr_bio;
 173        struct mutex            wr_lock;
 174        int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 175        struct btrfs_device     *wr_tgtdev;
 176        bool                    flush_all_writes;
 177
 178        /*
 179         * statistics
 180         */
 181        struct btrfs_scrub_progress stat;
 182        spinlock_t              stat_lock;
 183
 184        /*
 185         * Use a ref counter to avoid use-after-free issues. Scrub workers
 186         * decrement bios_in_flight and workers_pending and then do a wakeup
 187         * on the list_wait wait queue. We must ensure the main scrub task
 188         * doesn't free the scrub context before or while the workers are
 189         * doing the wakeup() call.
 190         */
 191        refcount_t              refs;
 192};
 193
 194struct scrub_warning {
 195        struct btrfs_path       *path;
 196        u64                     extent_item_size;
 197        const char              *errstr;
 198        u64                     physical;
 199        u64                     logical;
 200        struct btrfs_device     *dev;
 201};
 202
 203struct full_stripe_lock {
 204        struct rb_node node;
 205        u64 logical;
 206        u64 refs;
 207        struct mutex mutex;
 208};
 209
 210static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 211static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 212static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 213static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 214                                     struct scrub_block *sblocks_for_recheck);
 215static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 216                                struct scrub_block *sblock,
 217                                int retry_failed_mirror);
 218static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 219static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 220                                             struct scrub_block *sblock_good);
 221static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 222                                            struct scrub_block *sblock_good,
 223                                            int page_num, int force_write);
 224static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 225static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 226                                           int page_num);
 227static int scrub_checksum_data(struct scrub_block *sblock);
 228static int scrub_checksum_tree_block(struct scrub_block *sblock);
 229static int scrub_checksum_super(struct scrub_block *sblock);
 230static void scrub_block_get(struct scrub_block *sblock);
 231static void scrub_block_put(struct scrub_block *sblock);
 232static void scrub_page_get(struct scrub_page *spage);
 233static void scrub_page_put(struct scrub_page *spage);
 234static void scrub_parity_get(struct scrub_parity *sparity);
 235static void scrub_parity_put(struct scrub_parity *sparity);
 236static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 237                                    struct scrub_page *spage);
 238static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 239                       u64 physical, struct btrfs_device *dev, u64 flags,
 240                       u64 gen, int mirror_num, u8 *csum, int force,
 241                       u64 physical_for_dev_replace);
 242static void scrub_bio_end_io(struct bio *bio);
 243static void scrub_bio_end_io_worker(struct btrfs_work *work);
 244static void scrub_block_complete(struct scrub_block *sblock);
 245static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 246                               u64 extent_logical, u64 extent_len,
 247                               u64 *extent_physical,
 248                               struct btrfs_device **extent_dev,
 249                               int *extent_mirror_num);
 250static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 251                                    struct scrub_page *spage);
 252static void scrub_wr_submit(struct scrub_ctx *sctx);
 253static void scrub_wr_bio_end_io(struct bio *bio);
 254static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 255static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 256static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 257static void scrub_put_ctx(struct scrub_ctx *sctx);
 258
 259static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 260{
 261        return page->recover &&
 262               (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 263}
 264
 265static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 266{
 267        refcount_inc(&sctx->refs);
 268        atomic_inc(&sctx->bios_in_flight);
 269}
 270
 271static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 272{
 273        atomic_dec(&sctx->bios_in_flight);
 274        wake_up(&sctx->list_wait);
 275        scrub_put_ctx(sctx);
 276}
 277
 278static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 279{
 280        while (atomic_read(&fs_info->scrub_pause_req)) {
 281                mutex_unlock(&fs_info->scrub_lock);
 282                wait_event(fs_info->scrub_pause_wait,
 283                   atomic_read(&fs_info->scrub_pause_req) == 0);
 284                mutex_lock(&fs_info->scrub_lock);
 285        }
 286}
 287
 288static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 289{
 290        atomic_inc(&fs_info->scrubs_paused);
 291        wake_up(&fs_info->scrub_pause_wait);
 292}
 293
 294static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 295{
 296        mutex_lock(&fs_info->scrub_lock);
 297        __scrub_blocked_if_needed(fs_info);
 298        atomic_dec(&fs_info->scrubs_paused);
 299        mutex_unlock(&fs_info->scrub_lock);
 300
 301        wake_up(&fs_info->scrub_pause_wait);
 302}
 303
 304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 305{
 306        scrub_pause_on(fs_info);
 307        scrub_pause_off(fs_info);
 308}
 309
 310/*
 311 * Insert new full stripe lock into full stripe locks tree
 312 *
 313 * Return pointer to existing or newly inserted full_stripe_lock structure if
 314 * everything works well.
 315 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 316 *
 317 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 318 * function
 319 */
 320static struct full_stripe_lock *insert_full_stripe_lock(
 321                struct btrfs_full_stripe_locks_tree *locks_root,
 322                u64 fstripe_logical)
 323{
 324        struct rb_node **p;
 325        struct rb_node *parent = NULL;
 326        struct full_stripe_lock *entry;
 327        struct full_stripe_lock *ret;
 328
 329        lockdep_assert_held(&locks_root->lock);
 330
 331        p = &locks_root->root.rb_node;
 332        while (*p) {
 333                parent = *p;
 334                entry = rb_entry(parent, struct full_stripe_lock, node);
 335                if (fstripe_logical < entry->logical) {
 336                        p = &(*p)->rb_left;
 337                } else if (fstripe_logical > entry->logical) {
 338                        p = &(*p)->rb_right;
 339                } else {
 340                        entry->refs++;
 341                        return entry;
 342                }
 343        }
 344
 345        /*
 346         * Insert new lock.
 347         */
 348        ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 349        if (!ret)
 350                return ERR_PTR(-ENOMEM);
 351        ret->logical = fstripe_logical;
 352        ret->refs = 1;
 353        mutex_init(&ret->mutex);
 354
 355        rb_link_node(&ret->node, parent, p);
 356        rb_insert_color(&ret->node, &locks_root->root);
 357        return ret;
 358}
 359
 360/*
 361 * Search for a full stripe lock of a block group
 362 *
 363 * Return pointer to existing full stripe lock if found
 364 * Return NULL if not found
 365 */
 366static struct full_stripe_lock *search_full_stripe_lock(
 367                struct btrfs_full_stripe_locks_tree *locks_root,
 368                u64 fstripe_logical)
 369{
 370        struct rb_node *node;
 371        struct full_stripe_lock *entry;
 372
 373        lockdep_assert_held(&locks_root->lock);
 374
 375        node = locks_root->root.rb_node;
 376        while (node) {
 377                entry = rb_entry(node, struct full_stripe_lock, node);
 378                if (fstripe_logical < entry->logical)
 379                        node = node->rb_left;
 380                else if (fstripe_logical > entry->logical)
 381                        node = node->rb_right;
 382                else
 383                        return entry;
 384        }
 385        return NULL;
 386}
 387
 388/*
 389 * Helper to get full stripe logical from a normal bytenr.
 390 *
 391 * Caller must ensure @cache is a RAID56 block group.
 392 */
 393static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 394{
 395        u64 ret;
 396
 397        /*
 398         * Due to chunk item size limit, full stripe length should not be
 399         * larger than U32_MAX. Just a sanity check here.
 400         */
 401        WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 402
 403        /*
 404         * round_down() can only handle power of 2, while RAID56 full
 405         * stripe length can be 64KiB * n, so we need to manually round down.
 406         */
 407        ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 408                        cache->full_stripe_len + cache->start;
 409        return ret;
 410}
 411
 412/*
 413 * Lock a full stripe to avoid concurrency of recovery and read
 414 *
 415 * It's only used for profiles with parities (RAID5/6), for other profiles it
 416 * does nothing.
 417 *
 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 419 * So caller must call unlock_full_stripe() at the same context.
 420 *
 421 * Return <0 if encounters error.
 422 */
 423static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 424                            bool *locked_ret)
 425{
 426        struct btrfs_block_group *bg_cache;
 427        struct btrfs_full_stripe_locks_tree *locks_root;
 428        struct full_stripe_lock *existing;
 429        u64 fstripe_start;
 430        int ret = 0;
 431
 432        *locked_ret = false;
 433        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 434        if (!bg_cache) {
 435                ASSERT(0);
 436                return -ENOENT;
 437        }
 438
 439        /* Profiles not based on parity don't need full stripe lock */
 440        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 441                goto out;
 442        locks_root = &bg_cache->full_stripe_locks_root;
 443
 444        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 445
 446        /* Now insert the full stripe lock */
 447        mutex_lock(&locks_root->lock);
 448        existing = insert_full_stripe_lock(locks_root, fstripe_start);
 449        mutex_unlock(&locks_root->lock);
 450        if (IS_ERR(existing)) {
 451                ret = PTR_ERR(existing);
 452                goto out;
 453        }
 454        mutex_lock(&existing->mutex);
 455        *locked_ret = true;
 456out:
 457        btrfs_put_block_group(bg_cache);
 458        return ret;
 459}
 460
 461/*
 462 * Unlock a full stripe.
 463 *
 464 * NOTE: Caller must ensure it's the same context calling corresponding
 465 * lock_full_stripe().
 466 *
 467 * Return 0 if we unlock full stripe without problem.
 468 * Return <0 for error
 469 */
 470static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 471                              bool locked)
 472{
 473        struct btrfs_block_group *bg_cache;
 474        struct btrfs_full_stripe_locks_tree *locks_root;
 475        struct full_stripe_lock *fstripe_lock;
 476        u64 fstripe_start;
 477        bool freeit = false;
 478        int ret = 0;
 479
 480        /* If we didn't acquire full stripe lock, no need to continue */
 481        if (!locked)
 482                return 0;
 483
 484        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 485        if (!bg_cache) {
 486                ASSERT(0);
 487                return -ENOENT;
 488        }
 489        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 490                goto out;
 491
 492        locks_root = &bg_cache->full_stripe_locks_root;
 493        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 494
 495        mutex_lock(&locks_root->lock);
 496        fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 497        /* Unpaired unlock_full_stripe() detected */
 498        if (!fstripe_lock) {
 499                WARN_ON(1);
 500                ret = -ENOENT;
 501                mutex_unlock(&locks_root->lock);
 502                goto out;
 503        }
 504
 505        if (fstripe_lock->refs == 0) {
 506                WARN_ON(1);
 507                btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 508                        fstripe_lock->logical);
 509        } else {
 510                fstripe_lock->refs--;
 511        }
 512
 513        if (fstripe_lock->refs == 0) {
 514                rb_erase(&fstripe_lock->node, &locks_root->root);
 515                freeit = true;
 516        }
 517        mutex_unlock(&locks_root->lock);
 518
 519        mutex_unlock(&fstripe_lock->mutex);
 520        if (freeit)
 521                kfree(fstripe_lock);
 522out:
 523        btrfs_put_block_group(bg_cache);
 524        return ret;
 525}
 526
 527static void scrub_free_csums(struct scrub_ctx *sctx)
 528{
 529        while (!list_empty(&sctx->csum_list)) {
 530                struct btrfs_ordered_sum *sum;
 531                sum = list_first_entry(&sctx->csum_list,
 532                                       struct btrfs_ordered_sum, list);
 533                list_del(&sum->list);
 534                kfree(sum);
 535        }
 536}
 537
 538static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 539{
 540        int i;
 541
 542        if (!sctx)
 543                return;
 544
 545        /* this can happen when scrub is cancelled */
 546        if (sctx->curr != -1) {
 547                struct scrub_bio *sbio = sctx->bios[sctx->curr];
 548
 549                for (i = 0; i < sbio->page_count; i++) {
 550                        WARN_ON(!sbio->pagev[i]->page);
 551                        scrub_block_put(sbio->pagev[i]->sblock);
 552                }
 553                bio_put(sbio->bio);
 554        }
 555
 556        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 557                struct scrub_bio *sbio = sctx->bios[i];
 558
 559                if (!sbio)
 560                        break;
 561                kfree(sbio);
 562        }
 563
 564        kfree(sctx->wr_curr_bio);
 565        scrub_free_csums(sctx);
 566        kfree(sctx);
 567}
 568
 569static void scrub_put_ctx(struct scrub_ctx *sctx)
 570{
 571        if (refcount_dec_and_test(&sctx->refs))
 572                scrub_free_ctx(sctx);
 573}
 574
 575static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 576                struct btrfs_fs_info *fs_info, int is_dev_replace)
 577{
 578        struct scrub_ctx *sctx;
 579        int             i;
 580
 581        sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 582        if (!sctx)
 583                goto nomem;
 584        refcount_set(&sctx->refs, 1);
 585        sctx->is_dev_replace = is_dev_replace;
 586        sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 587        sctx->curr = -1;
 588        sctx->fs_info = fs_info;
 589        INIT_LIST_HEAD(&sctx->csum_list);
 590        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 591                struct scrub_bio *sbio;
 592
 593                sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 594                if (!sbio)
 595                        goto nomem;
 596                sctx->bios[i] = sbio;
 597
 598                sbio->index = i;
 599                sbio->sctx = sctx;
 600                sbio->page_count = 0;
 601                btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
 602                                NULL);
 603
 604                if (i != SCRUB_BIOS_PER_SCTX - 1)
 605                        sctx->bios[i]->next_free = i + 1;
 606                else
 607                        sctx->bios[i]->next_free = -1;
 608        }
 609        sctx->first_free = 0;
 610        atomic_set(&sctx->bios_in_flight, 0);
 611        atomic_set(&sctx->workers_pending, 0);
 612        atomic_set(&sctx->cancel_req, 0);
 613        sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 614
 615        spin_lock_init(&sctx->list_lock);
 616        spin_lock_init(&sctx->stat_lock);
 617        init_waitqueue_head(&sctx->list_wait);
 618
 619        WARN_ON(sctx->wr_curr_bio != NULL);
 620        mutex_init(&sctx->wr_lock);
 621        sctx->wr_curr_bio = NULL;
 622        if (is_dev_replace) {
 623                WARN_ON(!fs_info->dev_replace.tgtdev);
 624                sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 625                sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 626                sctx->flush_all_writes = false;
 627        }
 628
 629        return sctx;
 630
 631nomem:
 632        scrub_free_ctx(sctx);
 633        return ERR_PTR(-ENOMEM);
 634}
 635
 636static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 637                                     void *warn_ctx)
 638{
 639        u64 isize;
 640        u32 nlink;
 641        int ret;
 642        int i;
 643        unsigned nofs_flag;
 644        struct extent_buffer *eb;
 645        struct btrfs_inode_item *inode_item;
 646        struct scrub_warning *swarn = warn_ctx;
 647        struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 648        struct inode_fs_paths *ipath = NULL;
 649        struct btrfs_root *local_root;
 650        struct btrfs_key root_key;
 651        struct btrfs_key key;
 652
 653        root_key.objectid = root;
 654        root_key.type = BTRFS_ROOT_ITEM_KEY;
 655        root_key.offset = (u64)-1;
 656        local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 657        if (IS_ERR(local_root)) {
 658                ret = PTR_ERR(local_root);
 659                goto err;
 660        }
 661
 662        /*
 663         * this makes the path point to (inum INODE_ITEM ioff)
 664         */
 665        key.objectid = inum;
 666        key.type = BTRFS_INODE_ITEM_KEY;
 667        key.offset = 0;
 668
 669        ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 670        if (ret) {
 671                btrfs_release_path(swarn->path);
 672                goto err;
 673        }
 674
 675        eb = swarn->path->nodes[0];
 676        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 677                                        struct btrfs_inode_item);
 678        isize = btrfs_inode_size(eb, inode_item);
 679        nlink = btrfs_inode_nlink(eb, inode_item);
 680        btrfs_release_path(swarn->path);
 681
 682        /*
 683         * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 684         * uses GFP_NOFS in this context, so we keep it consistent but it does
 685         * not seem to be strictly necessary.
 686         */
 687        nofs_flag = memalloc_nofs_save();
 688        ipath = init_ipath(4096, local_root, swarn->path);
 689        memalloc_nofs_restore(nofs_flag);
 690        if (IS_ERR(ipath)) {
 691                ret = PTR_ERR(ipath);
 692                ipath = NULL;
 693                goto err;
 694        }
 695        ret = paths_from_inode(inum, ipath);
 696
 697        if (ret < 0)
 698                goto err;
 699
 700        /*
 701         * we deliberately ignore the bit ipath might have been too small to
 702         * hold all of the paths here
 703         */
 704        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 705                btrfs_warn_in_rcu(fs_info,
 706"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 707                                  swarn->errstr, swarn->logical,
 708                                  rcu_str_deref(swarn->dev->name),
 709                                  swarn->physical,
 710                                  root, inum, offset,
 711                                  min(isize - offset, (u64)PAGE_SIZE), nlink,
 712                                  (char *)(unsigned long)ipath->fspath->val[i]);
 713
 714        free_ipath(ipath);
 715        return 0;
 716
 717err:
 718        btrfs_warn_in_rcu(fs_info,
 719                          "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 720                          swarn->errstr, swarn->logical,
 721                          rcu_str_deref(swarn->dev->name),
 722                          swarn->physical,
 723                          root, inum, offset, ret);
 724
 725        free_ipath(ipath);
 726        return 0;
 727}
 728
 729static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 730{
 731        struct btrfs_device *dev;
 732        struct btrfs_fs_info *fs_info;
 733        struct btrfs_path *path;
 734        struct btrfs_key found_key;
 735        struct extent_buffer *eb;
 736        struct btrfs_extent_item *ei;
 737        struct scrub_warning swarn;
 738        unsigned long ptr = 0;
 739        u64 extent_item_pos;
 740        u64 flags = 0;
 741        u64 ref_root;
 742        u32 item_size;
 743        u8 ref_level = 0;
 744        int ret;
 745
 746        WARN_ON(sblock->page_count < 1);
 747        dev = sblock->pagev[0]->dev;
 748        fs_info = sblock->sctx->fs_info;
 749
 750        path = btrfs_alloc_path();
 751        if (!path)
 752                return;
 753
 754        swarn.physical = sblock->pagev[0]->physical;
 755        swarn.logical = sblock->pagev[0]->logical;
 756        swarn.errstr = errstr;
 757        swarn.dev = NULL;
 758
 759        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 760                                  &flags);
 761        if (ret < 0)
 762                goto out;
 763
 764        extent_item_pos = swarn.logical - found_key.objectid;
 765        swarn.extent_item_size = found_key.offset;
 766
 767        eb = path->nodes[0];
 768        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 769        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 770
 771        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 772                do {
 773                        ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 774                                                      item_size, &ref_root,
 775                                                      &ref_level);
 776                        btrfs_warn_in_rcu(fs_info,
 777"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 778                                errstr, swarn.logical,
 779                                rcu_str_deref(dev->name),
 780                                swarn.physical,
 781                                ref_level ? "node" : "leaf",
 782                                ret < 0 ? -1 : ref_level,
 783                                ret < 0 ? -1 : ref_root);
 784                } while (ret != 1);
 785                btrfs_release_path(path);
 786        } else {
 787                btrfs_release_path(path);
 788                swarn.path = path;
 789                swarn.dev = dev;
 790                iterate_extent_inodes(fs_info, found_key.objectid,
 791                                        extent_item_pos, 1,
 792                                        scrub_print_warning_inode, &swarn, false);
 793        }
 794
 795out:
 796        btrfs_free_path(path);
 797}
 798
 799static inline void scrub_get_recover(struct scrub_recover *recover)
 800{
 801        refcount_inc(&recover->refs);
 802}
 803
 804static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 805                                     struct scrub_recover *recover)
 806{
 807        if (refcount_dec_and_test(&recover->refs)) {
 808                btrfs_bio_counter_dec(fs_info);
 809                btrfs_put_bbio(recover->bbio);
 810                kfree(recover);
 811        }
 812}
 813
 814/*
 815 * scrub_handle_errored_block gets called when either verification of the
 816 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 817 * case, this function handles all pages in the bio, even though only one
 818 * may be bad.
 819 * The goal of this function is to repair the errored block by using the
 820 * contents of one of the mirrors.
 821 */
 822static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 823{
 824        struct scrub_ctx *sctx = sblock_to_check->sctx;
 825        struct btrfs_device *dev;
 826        struct btrfs_fs_info *fs_info;
 827        u64 logical;
 828        unsigned int failed_mirror_index;
 829        unsigned int is_metadata;
 830        unsigned int have_csum;
 831        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 832        struct scrub_block *sblock_bad;
 833        int ret;
 834        int mirror_index;
 835        int page_num;
 836        int success;
 837        bool full_stripe_locked;
 838        unsigned int nofs_flag;
 839        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 840                                      DEFAULT_RATELIMIT_BURST);
 841
 842        BUG_ON(sblock_to_check->page_count < 1);
 843        fs_info = sctx->fs_info;
 844        if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 845                /*
 846                 * if we find an error in a super block, we just report it.
 847                 * They will get written with the next transaction commit
 848                 * anyway
 849                 */
 850                spin_lock(&sctx->stat_lock);
 851                ++sctx->stat.super_errors;
 852                spin_unlock(&sctx->stat_lock);
 853                return 0;
 854        }
 855        logical = sblock_to_check->pagev[0]->logical;
 856        BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 857        failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 858        is_metadata = !(sblock_to_check->pagev[0]->flags &
 859                        BTRFS_EXTENT_FLAG_DATA);
 860        have_csum = sblock_to_check->pagev[0]->have_csum;
 861        dev = sblock_to_check->pagev[0]->dev;
 862
 863        /*
 864         * We must use GFP_NOFS because the scrub task might be waiting for a
 865         * worker task executing this function and in turn a transaction commit
 866         * might be waiting the scrub task to pause (which needs to wait for all
 867         * the worker tasks to complete before pausing).
 868         * We do allocations in the workers through insert_full_stripe_lock()
 869         * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 870         * this function.
 871         */
 872        nofs_flag = memalloc_nofs_save();
 873        /*
 874         * For RAID5/6, race can happen for a different device scrub thread.
 875         * For data corruption, Parity and Data threads will both try
 876         * to recovery the data.
 877         * Race can lead to doubly added csum error, or even unrecoverable
 878         * error.
 879         */
 880        ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 881        if (ret < 0) {
 882                memalloc_nofs_restore(nofs_flag);
 883                spin_lock(&sctx->stat_lock);
 884                if (ret == -ENOMEM)
 885                        sctx->stat.malloc_errors++;
 886                sctx->stat.read_errors++;
 887                sctx->stat.uncorrectable_errors++;
 888                spin_unlock(&sctx->stat_lock);
 889                return ret;
 890        }
 891
 892        /*
 893         * read all mirrors one after the other. This includes to
 894         * re-read the extent or metadata block that failed (that was
 895         * the cause that this fixup code is called) another time,
 896         * page by page this time in order to know which pages
 897         * caused I/O errors and which ones are good (for all mirrors).
 898         * It is the goal to handle the situation when more than one
 899         * mirror contains I/O errors, but the errors do not
 900         * overlap, i.e. the data can be repaired by selecting the
 901         * pages from those mirrors without I/O error on the
 902         * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 903         * would be that mirror #1 has an I/O error on the first page,
 904         * the second page is good, and mirror #2 has an I/O error on
 905         * the second page, but the first page is good.
 906         * Then the first page of the first mirror can be repaired by
 907         * taking the first page of the second mirror, and the
 908         * second page of the second mirror can be repaired by
 909         * copying the contents of the 2nd page of the 1st mirror.
 910         * One more note: if the pages of one mirror contain I/O
 911         * errors, the checksum cannot be verified. In order to get
 912         * the best data for repairing, the first attempt is to find
 913         * a mirror without I/O errors and with a validated checksum.
 914         * Only if this is not possible, the pages are picked from
 915         * mirrors with I/O errors without considering the checksum.
 916         * If the latter is the case, at the end, the checksum of the
 917         * repaired area is verified in order to correctly maintain
 918         * the statistics.
 919         */
 920
 921        sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 922                                      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 923        if (!sblocks_for_recheck) {
 924                spin_lock(&sctx->stat_lock);
 925                sctx->stat.malloc_errors++;
 926                sctx->stat.read_errors++;
 927                sctx->stat.uncorrectable_errors++;
 928                spin_unlock(&sctx->stat_lock);
 929                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 930                goto out;
 931        }
 932
 933        /* setup the context, map the logical blocks and alloc the pages */
 934        ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 935        if (ret) {
 936                spin_lock(&sctx->stat_lock);
 937                sctx->stat.read_errors++;
 938                sctx->stat.uncorrectable_errors++;
 939                spin_unlock(&sctx->stat_lock);
 940                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 941                goto out;
 942        }
 943        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 944        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 945
 946        /* build and submit the bios for the failed mirror, check checksums */
 947        scrub_recheck_block(fs_info, sblock_bad, 1);
 948
 949        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 950            sblock_bad->no_io_error_seen) {
 951                /*
 952                 * the error disappeared after reading page by page, or
 953                 * the area was part of a huge bio and other parts of the
 954                 * bio caused I/O errors, or the block layer merged several
 955                 * read requests into one and the error is caused by a
 956                 * different bio (usually one of the two latter cases is
 957                 * the cause)
 958                 */
 959                spin_lock(&sctx->stat_lock);
 960                sctx->stat.unverified_errors++;
 961                sblock_to_check->data_corrected = 1;
 962                spin_unlock(&sctx->stat_lock);
 963
 964                if (sctx->is_dev_replace)
 965                        scrub_write_block_to_dev_replace(sblock_bad);
 966                goto out;
 967        }
 968
 969        if (!sblock_bad->no_io_error_seen) {
 970                spin_lock(&sctx->stat_lock);
 971                sctx->stat.read_errors++;
 972                spin_unlock(&sctx->stat_lock);
 973                if (__ratelimit(&_rs))
 974                        scrub_print_warning("i/o error", sblock_to_check);
 975                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 976        } else if (sblock_bad->checksum_error) {
 977                spin_lock(&sctx->stat_lock);
 978                sctx->stat.csum_errors++;
 979                spin_unlock(&sctx->stat_lock);
 980                if (__ratelimit(&_rs))
 981                        scrub_print_warning("checksum error", sblock_to_check);
 982                btrfs_dev_stat_inc_and_print(dev,
 983                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 984        } else if (sblock_bad->header_error) {
 985                spin_lock(&sctx->stat_lock);
 986                sctx->stat.verify_errors++;
 987                spin_unlock(&sctx->stat_lock);
 988                if (__ratelimit(&_rs))
 989                        scrub_print_warning("checksum/header error",
 990                                            sblock_to_check);
 991                if (sblock_bad->generation_error)
 992                        btrfs_dev_stat_inc_and_print(dev,
 993                                BTRFS_DEV_STAT_GENERATION_ERRS);
 994                else
 995                        btrfs_dev_stat_inc_and_print(dev,
 996                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 997        }
 998
 999        if (sctx->readonly) {
1000                ASSERT(!sctx->is_dev_replace);
1001                goto out;
1002        }
1003
1004        /*
1005         * now build and submit the bios for the other mirrors, check
1006         * checksums.
1007         * First try to pick the mirror which is completely without I/O
1008         * errors and also does not have a checksum error.
1009         * If one is found, and if a checksum is present, the full block
1010         * that is known to contain an error is rewritten. Afterwards
1011         * the block is known to be corrected.
1012         * If a mirror is found which is completely correct, and no
1013         * checksum is present, only those pages are rewritten that had
1014         * an I/O error in the block to be repaired, since it cannot be
1015         * determined, which copy of the other pages is better (and it
1016         * could happen otherwise that a correct page would be
1017         * overwritten by a bad one).
1018         */
1019        for (mirror_index = 0; ;mirror_index++) {
1020                struct scrub_block *sblock_other;
1021
1022                if (mirror_index == failed_mirror_index)
1023                        continue;
1024
1025                /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026                if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1028                                break;
1029                        if (!sblocks_for_recheck[mirror_index].page_count)
1030                                break;
1031
1032                        sblock_other = sblocks_for_recheck + mirror_index;
1033                } else {
1034                        struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035                        int max_allowed = r->bbio->num_stripes -
1036                                                r->bbio->num_tgtdevs;
1037
1038                        if (mirror_index >= max_allowed)
1039                                break;
1040                        if (!sblocks_for_recheck[1].page_count)
1041                                break;
1042
1043                        ASSERT(failed_mirror_index == 0);
1044                        sblock_other = sblocks_for_recheck + 1;
1045                        sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046                }
1047
1048                /* build and submit the bios, check checksums */
1049                scrub_recheck_block(fs_info, sblock_other, 0);
1050
1051                if (!sblock_other->header_error &&
1052                    !sblock_other->checksum_error &&
1053                    sblock_other->no_io_error_seen) {
1054                        if (sctx->is_dev_replace) {
1055                                scrub_write_block_to_dev_replace(sblock_other);
1056                                goto corrected_error;
1057                        } else {
1058                                ret = scrub_repair_block_from_good_copy(
1059                                                sblock_bad, sblock_other);
1060                                if (!ret)
1061                                        goto corrected_error;
1062                        }
1063                }
1064        }
1065
1066        if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067                goto did_not_correct_error;
1068
1069        /*
1070         * In case of I/O errors in the area that is supposed to be
1071         * repaired, continue by picking good copies of those pages.
1072         * Select the good pages from mirrors to rewrite bad pages from
1073         * the area to fix. Afterwards verify the checksum of the block
1074         * that is supposed to be repaired. This verification step is
1075         * only done for the purpose of statistic counting and for the
1076         * final scrub report, whether errors remain.
1077         * A perfect algorithm could make use of the checksum and try
1078         * all possible combinations of pages from the different mirrors
1079         * until the checksum verification succeeds. For example, when
1080         * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081         * of mirror #2 is readable but the final checksum test fails,
1082         * then the 2nd page of mirror #3 could be tried, whether now
1083         * the final checksum succeeds. But this would be a rare
1084         * exception and is therefore not implemented. At least it is
1085         * avoided that the good copy is overwritten.
1086         * A more useful improvement would be to pick the sectors
1087         * without I/O error based on sector sizes (512 bytes on legacy
1088         * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089         * mirror could be repaired by taking 512 byte of a different
1090         * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091         * area are unreadable.
1092         */
1093        success = 1;
1094        for (page_num = 0; page_num < sblock_bad->page_count;
1095             page_num++) {
1096                struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1097                struct scrub_block *sblock_other = NULL;
1098
1099                /* skip no-io-error page in scrub */
1100                if (!page_bad->io_error && !sctx->is_dev_replace)
1101                        continue;
1102
1103                if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104                        /*
1105                         * In case of dev replace, if raid56 rebuild process
1106                         * didn't work out correct data, then copy the content
1107                         * in sblock_bad to make sure target device is identical
1108                         * to source device, instead of writing garbage data in
1109                         * sblock_for_recheck array to target device.
1110                         */
1111                        sblock_other = NULL;
1112                } else if (page_bad->io_error) {
1113                        /* try to find no-io-error page in mirrors */
1114                        for (mirror_index = 0;
1115                             mirror_index < BTRFS_MAX_MIRRORS &&
1116                             sblocks_for_recheck[mirror_index].page_count > 0;
1117                             mirror_index++) {
1118                                if (!sblocks_for_recheck[mirror_index].
1119                                    pagev[page_num]->io_error) {
1120                                        sblock_other = sblocks_for_recheck +
1121                                                       mirror_index;
1122                                        break;
1123                                }
1124                        }
1125                        if (!sblock_other)
1126                                success = 0;
1127                }
1128
1129                if (sctx->is_dev_replace) {
1130                        /*
1131                         * did not find a mirror to fetch the page
1132                         * from. scrub_write_page_to_dev_replace()
1133                         * handles this case (page->io_error), by
1134                         * filling the block with zeros before
1135                         * submitting the write request
1136                         */
1137                        if (!sblock_other)
1138                                sblock_other = sblock_bad;
1139
1140                        if (scrub_write_page_to_dev_replace(sblock_other,
1141                                                            page_num) != 0) {
1142                                atomic64_inc(
1143                                        &fs_info->dev_replace.num_write_errors);
1144                                success = 0;
1145                        }
1146                } else if (sblock_other) {
1147                        ret = scrub_repair_page_from_good_copy(sblock_bad,
1148                                                               sblock_other,
1149                                                               page_num, 0);
1150                        if (0 == ret)
1151                                page_bad->io_error = 0;
1152                        else
1153                                success = 0;
1154                }
1155        }
1156
1157        if (success && !sctx->is_dev_replace) {
1158                if (is_metadata || have_csum) {
1159                        /*
1160                         * need to verify the checksum now that all
1161                         * sectors on disk are repaired (the write
1162                         * request for data to be repaired is on its way).
1163                         * Just be lazy and use scrub_recheck_block()
1164                         * which re-reads the data before the checksum
1165                         * is verified, but most likely the data comes out
1166                         * of the page cache.
1167                         */
1168                        scrub_recheck_block(fs_info, sblock_bad, 1);
1169                        if (!sblock_bad->header_error &&
1170                            !sblock_bad->checksum_error &&
1171                            sblock_bad->no_io_error_seen)
1172                                goto corrected_error;
1173                        else
1174                                goto did_not_correct_error;
1175                } else {
1176corrected_error:
1177                        spin_lock(&sctx->stat_lock);
1178                        sctx->stat.corrected_errors++;
1179                        sblock_to_check->data_corrected = 1;
1180                        spin_unlock(&sctx->stat_lock);
1181                        btrfs_err_rl_in_rcu(fs_info,
1182                                "fixed up error at logical %llu on dev %s",
1183                                logical, rcu_str_deref(dev->name));
1184                }
1185        } else {
1186did_not_correct_error:
1187                spin_lock(&sctx->stat_lock);
1188                sctx->stat.uncorrectable_errors++;
1189                spin_unlock(&sctx->stat_lock);
1190                btrfs_err_rl_in_rcu(fs_info,
1191                        "unable to fixup (regular) error at logical %llu on dev %s",
1192                        logical, rcu_str_deref(dev->name));
1193        }
1194
1195out:
1196        if (sblocks_for_recheck) {
1197                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198                     mirror_index++) {
1199                        struct scrub_block *sblock = sblocks_for_recheck +
1200                                                     mirror_index;
1201                        struct scrub_recover *recover;
1202                        int page_index;
1203
1204                        for (page_index = 0; page_index < sblock->page_count;
1205                             page_index++) {
1206                                sblock->pagev[page_index]->sblock = NULL;
1207                                recover = sblock->pagev[page_index]->recover;
1208                                if (recover) {
1209                                        scrub_put_recover(fs_info, recover);
1210                                        sblock->pagev[page_index]->recover =
1211                                                                        NULL;
1212                                }
1213                                scrub_page_put(sblock->pagev[page_index]);
1214                        }
1215                }
1216                kfree(sblocks_for_recheck);
1217        }
1218
1219        ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220        memalloc_nofs_restore(nofs_flag);
1221        if (ret < 0)
1222                return ret;
1223        return 0;
1224}
1225
1226static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227{
1228        if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229                return 2;
1230        else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231                return 3;
1232        else
1233                return (int)bbio->num_stripes;
1234}
1235
1236static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237                                                 u64 *raid_map,
1238                                                 u64 mapped_length,
1239                                                 int nstripes, int mirror,
1240                                                 int *stripe_index,
1241                                                 u64 *stripe_offset)
1242{
1243        int i;
1244
1245        if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246                /* RAID5/6 */
1247                for (i = 0; i < nstripes; i++) {
1248                        if (raid_map[i] == RAID6_Q_STRIPE ||
1249                            raid_map[i] == RAID5_P_STRIPE)
1250                                continue;
1251
1252                        if (logical >= raid_map[i] &&
1253                            logical < raid_map[i] + mapped_length)
1254                                break;
1255                }
1256
1257                *stripe_index = i;
1258                *stripe_offset = logical - raid_map[i];
1259        } else {
1260                /* The other RAID type */
1261                *stripe_index = mirror;
1262                *stripe_offset = 0;
1263        }
1264}
1265
1266static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267                                     struct scrub_block *sblocks_for_recheck)
1268{
1269        struct scrub_ctx *sctx = original_sblock->sctx;
1270        struct btrfs_fs_info *fs_info = sctx->fs_info;
1271        u64 length = original_sblock->page_count * PAGE_SIZE;
1272        u64 logical = original_sblock->pagev[0]->logical;
1273        u64 generation = original_sblock->pagev[0]->generation;
1274        u64 flags = original_sblock->pagev[0]->flags;
1275        u64 have_csum = original_sblock->pagev[0]->have_csum;
1276        struct scrub_recover *recover;
1277        struct btrfs_bio *bbio;
1278        u64 sublen;
1279        u64 mapped_length;
1280        u64 stripe_offset;
1281        int stripe_index;
1282        int page_index = 0;
1283        int mirror_index;
1284        int nmirrors;
1285        int ret;
1286
1287        /*
1288         * note: the two members refs and outstanding_pages
1289         * are not used (and not set) in the blocks that are used for
1290         * the recheck procedure
1291         */
1292
1293        while (length > 0) {
1294                sublen = min_t(u64, length, PAGE_SIZE);
1295                mapped_length = sublen;
1296                bbio = NULL;
1297
1298                /*
1299                 * with a length of PAGE_SIZE, each returned stripe
1300                 * represents one mirror
1301                 */
1302                btrfs_bio_counter_inc_blocked(fs_info);
1303                ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304                                logical, &mapped_length, &bbio);
1305                if (ret || !bbio || mapped_length < sublen) {
1306                        btrfs_put_bbio(bbio);
1307                        btrfs_bio_counter_dec(fs_info);
1308                        return -EIO;
1309                }
1310
1311                recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312                if (!recover) {
1313                        btrfs_put_bbio(bbio);
1314                        btrfs_bio_counter_dec(fs_info);
1315                        return -ENOMEM;
1316                }
1317
1318                refcount_set(&recover->refs, 1);
1319                recover->bbio = bbio;
1320                recover->map_length = mapped_length;
1321
1322                BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323
1324                nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1325
1326                for (mirror_index = 0; mirror_index < nmirrors;
1327                     mirror_index++) {
1328                        struct scrub_block *sblock;
1329                        struct scrub_page *page;
1330
1331                        sblock = sblocks_for_recheck + mirror_index;
1332                        sblock->sctx = sctx;
1333
1334                        page = kzalloc(sizeof(*page), GFP_NOFS);
1335                        if (!page) {
1336leave_nomem:
1337                                spin_lock(&sctx->stat_lock);
1338                                sctx->stat.malloc_errors++;
1339                                spin_unlock(&sctx->stat_lock);
1340                                scrub_put_recover(fs_info, recover);
1341                                return -ENOMEM;
1342                        }
1343                        scrub_page_get(page);
1344                        sblock->pagev[page_index] = page;
1345                        page->sblock = sblock;
1346                        page->flags = flags;
1347                        page->generation = generation;
1348                        page->logical = logical;
1349                        page->have_csum = have_csum;
1350                        if (have_csum)
1351                                memcpy(page->csum,
1352                                       original_sblock->pagev[0]->csum,
1353                                       sctx->csum_size);
1354
1355                        scrub_stripe_index_and_offset(logical,
1356                                                      bbio->map_type,
1357                                                      bbio->raid_map,
1358                                                      mapped_length,
1359                                                      bbio->num_stripes -
1360                                                      bbio->num_tgtdevs,
1361                                                      mirror_index,
1362                                                      &stripe_index,
1363                                                      &stripe_offset);
1364                        page->physical = bbio->stripes[stripe_index].physical +
1365                                         stripe_offset;
1366                        page->dev = bbio->stripes[stripe_index].dev;
1367
1368                        BUG_ON(page_index >= original_sblock->page_count);
1369                        page->physical_for_dev_replace =
1370                                original_sblock->pagev[page_index]->
1371                                physical_for_dev_replace;
1372                        /* for missing devices, dev->bdev is NULL */
1373                        page->mirror_num = mirror_index + 1;
1374                        sblock->page_count++;
1375                        page->page = alloc_page(GFP_NOFS);
1376                        if (!page->page)
1377                                goto leave_nomem;
1378
1379                        scrub_get_recover(recover);
1380                        page->recover = recover;
1381                }
1382                scrub_put_recover(fs_info, recover);
1383                length -= sublen;
1384                logical += sublen;
1385                page_index++;
1386        }
1387
1388        return 0;
1389}
1390
1391static void scrub_bio_wait_endio(struct bio *bio)
1392{
1393        complete(bio->bi_private);
1394}
1395
1396static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397                                        struct bio *bio,
1398                                        struct scrub_page *page)
1399{
1400        DECLARE_COMPLETION_ONSTACK(done);
1401        int ret;
1402        int mirror_num;
1403
1404        bio->bi_iter.bi_sector = page->logical >> 9;
1405        bio->bi_private = &done;
1406        bio->bi_end_io = scrub_bio_wait_endio;
1407
1408        mirror_num = page->sblock->pagev[0]->mirror_num;
1409        ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1410                                    page->recover->map_length,
1411                                    mirror_num, 0);
1412        if (ret)
1413                return ret;
1414
1415        wait_for_completion_io(&done);
1416        return blk_status_to_errno(bio->bi_status);
1417}
1418
1419static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420                                          struct scrub_block *sblock)
1421{
1422        struct scrub_page *first_page = sblock->pagev[0];
1423        struct bio *bio;
1424        int page_num;
1425
1426        /* All pages in sblock belong to the same stripe on the same device. */
1427        ASSERT(first_page->dev);
1428        if (!first_page->dev->bdev)
1429                goto out;
1430
1431        bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432        bio_set_dev(bio, first_page->dev->bdev);
1433
1434        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435                struct scrub_page *page = sblock->pagev[page_num];
1436
1437                WARN_ON(!page->page);
1438                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439        }
1440
1441        if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442                bio_put(bio);
1443                goto out;
1444        }
1445
1446        bio_put(bio);
1447
1448        scrub_recheck_block_checksum(sblock);
1449
1450        return;
1451out:
1452        for (page_num = 0; page_num < sblock->page_count; page_num++)
1453                sblock->pagev[page_num]->io_error = 1;
1454
1455        sblock->no_io_error_seen = 0;
1456}
1457
1458/*
1459 * this function will check the on disk data for checksum errors, header
1460 * errors and read I/O errors. If any I/O errors happen, the exact pages
1461 * which are errored are marked as being bad. The goal is to enable scrub
1462 * to take those pages that are not errored from all the mirrors so that
1463 * the pages that are errored in the just handled mirror can be repaired.
1464 */
1465static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466                                struct scrub_block *sblock,
1467                                int retry_failed_mirror)
1468{
1469        int page_num;
1470
1471        sblock->no_io_error_seen = 1;
1472
1473        /* short cut for raid56 */
1474        if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475                return scrub_recheck_block_on_raid56(fs_info, sblock);
1476
1477        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478                struct bio *bio;
1479                struct scrub_page *page = sblock->pagev[page_num];
1480
1481                if (page->dev->bdev == NULL) {
1482                        page->io_error = 1;
1483                        sblock->no_io_error_seen = 0;
1484                        continue;
1485                }
1486
1487                WARN_ON(!page->page);
1488                bio = btrfs_io_bio_alloc(1);
1489                bio_set_dev(bio, page->dev->bdev);
1490
1491                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1492                bio->bi_iter.bi_sector = page->physical >> 9;
1493                bio->bi_opf = REQ_OP_READ;
1494
1495                if (btrfsic_submit_bio_wait(bio)) {
1496                        page->io_error = 1;
1497                        sblock->no_io_error_seen = 0;
1498                }
1499
1500                bio_put(bio);
1501        }
1502
1503        if (sblock->no_io_error_seen)
1504                scrub_recheck_block_checksum(sblock);
1505}
1506
1507static inline int scrub_check_fsid(u8 fsid[],
1508                                   struct scrub_page *spage)
1509{
1510        struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511        int ret;
1512
1513        ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1514        return !ret;
1515}
1516
1517static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1518{
1519        sblock->header_error = 0;
1520        sblock->checksum_error = 0;
1521        sblock->generation_error = 0;
1522
1523        if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524                scrub_checksum_data(sblock);
1525        else
1526                scrub_checksum_tree_block(sblock);
1527}
1528
1529static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530                                             struct scrub_block *sblock_good)
1531{
1532        int page_num;
1533        int ret = 0;
1534
1535        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536                int ret_sub;
1537
1538                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539                                                           sblock_good,
1540                                                           page_num, 1);
1541                if (ret_sub)
1542                        ret = ret_sub;
1543        }
1544
1545        return ret;
1546}
1547
1548static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549                                            struct scrub_block *sblock_good,
1550                                            int page_num, int force_write)
1551{
1552        struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1553        struct scrub_page *page_good = sblock_good->pagev[page_num];
1554        struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555
1556        BUG_ON(page_bad->page == NULL);
1557        BUG_ON(page_good->page == NULL);
1558        if (force_write || sblock_bad->header_error ||
1559            sblock_bad->checksum_error || page_bad->io_error) {
1560                struct bio *bio;
1561                int ret;
1562
1563                if (!page_bad->dev->bdev) {
1564                        btrfs_warn_rl(fs_info,
1565                                "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566                        return -EIO;
1567                }
1568
1569                bio = btrfs_io_bio_alloc(1);
1570                bio_set_dev(bio, page_bad->dev->bdev);
1571                bio->bi_iter.bi_sector = page_bad->physical >> 9;
1572                bio->bi_opf = REQ_OP_WRITE;
1573
1574                ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1575                if (PAGE_SIZE != ret) {
1576                        bio_put(bio);
1577                        return -EIO;
1578                }
1579
1580                if (btrfsic_submit_bio_wait(bio)) {
1581                        btrfs_dev_stat_inc_and_print(page_bad->dev,
1582                                BTRFS_DEV_STAT_WRITE_ERRS);
1583                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584                        bio_put(bio);
1585                        return -EIO;
1586                }
1587                bio_put(bio);
1588        }
1589
1590        return 0;
1591}
1592
1593static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594{
1595        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596        int page_num;
1597
1598        /*
1599         * This block is used for the check of the parity on the source device,
1600         * so the data needn't be written into the destination device.
1601         */
1602        if (sblock->sparity)
1603                return;
1604
1605        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606                int ret;
1607
1608                ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609                if (ret)
1610                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611        }
1612}
1613
1614static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615                                           int page_num)
1616{
1617        struct scrub_page *spage = sblock->pagev[page_num];
1618
1619        BUG_ON(spage->page == NULL);
1620        if (spage->io_error) {
1621                void *mapped_buffer = kmap_atomic(spage->page);
1622
1623                clear_page(mapped_buffer);
1624                flush_dcache_page(spage->page);
1625                kunmap_atomic(mapped_buffer);
1626        }
1627        return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1628}
1629
1630static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1631                                    struct scrub_page *spage)
1632{
1633        struct scrub_bio *sbio;
1634        int ret;
1635
1636        mutex_lock(&sctx->wr_lock);
1637again:
1638        if (!sctx->wr_curr_bio) {
1639                sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1640                                              GFP_KERNEL);
1641                if (!sctx->wr_curr_bio) {
1642                        mutex_unlock(&sctx->wr_lock);
1643                        return -ENOMEM;
1644                }
1645                sctx->wr_curr_bio->sctx = sctx;
1646                sctx->wr_curr_bio->page_count = 0;
1647        }
1648        sbio = sctx->wr_curr_bio;
1649        if (sbio->page_count == 0) {
1650                struct bio *bio;
1651
1652                sbio->physical = spage->physical_for_dev_replace;
1653                sbio->logical = spage->logical;
1654                sbio->dev = sctx->wr_tgtdev;
1655                bio = sbio->bio;
1656                if (!bio) {
1657                        bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1658                        sbio->bio = bio;
1659                }
1660
1661                bio->bi_private = sbio;
1662                bio->bi_end_io = scrub_wr_bio_end_io;
1663                bio_set_dev(bio, sbio->dev->bdev);
1664                bio->bi_iter.bi_sector = sbio->physical >> 9;
1665                bio->bi_opf = REQ_OP_WRITE;
1666                sbio->status = 0;
1667        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1668                   spage->physical_for_dev_replace ||
1669                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1670                   spage->logical) {
1671                scrub_wr_submit(sctx);
1672                goto again;
1673        }
1674
1675        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1676        if (ret != PAGE_SIZE) {
1677                if (sbio->page_count < 1) {
1678                        bio_put(sbio->bio);
1679                        sbio->bio = NULL;
1680                        mutex_unlock(&sctx->wr_lock);
1681                        return -EIO;
1682                }
1683                scrub_wr_submit(sctx);
1684                goto again;
1685        }
1686
1687        sbio->pagev[sbio->page_count] = spage;
1688        scrub_page_get(spage);
1689        sbio->page_count++;
1690        if (sbio->page_count == sctx->pages_per_wr_bio)
1691                scrub_wr_submit(sctx);
1692        mutex_unlock(&sctx->wr_lock);
1693
1694        return 0;
1695}
1696
1697static void scrub_wr_submit(struct scrub_ctx *sctx)
1698{
1699        struct scrub_bio *sbio;
1700
1701        if (!sctx->wr_curr_bio)
1702                return;
1703
1704        sbio = sctx->wr_curr_bio;
1705        sctx->wr_curr_bio = NULL;
1706        WARN_ON(!sbio->bio->bi_disk);
1707        scrub_pending_bio_inc(sctx);
1708        /* process all writes in a single worker thread. Then the block layer
1709         * orders the requests before sending them to the driver which
1710         * doubled the write performance on spinning disks when measured
1711         * with Linux 3.5 */
1712        btrfsic_submit_bio(sbio->bio);
1713}
1714
1715static void scrub_wr_bio_end_io(struct bio *bio)
1716{
1717        struct scrub_bio *sbio = bio->bi_private;
1718        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1719
1720        sbio->status = bio->bi_status;
1721        sbio->bio = bio;
1722
1723        btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1724        btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1725}
1726
1727static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1728{
1729        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1730        struct scrub_ctx *sctx = sbio->sctx;
1731        int i;
1732
1733        WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1734        if (sbio->status) {
1735                struct btrfs_dev_replace *dev_replace =
1736                        &sbio->sctx->fs_info->dev_replace;
1737
1738                for (i = 0; i < sbio->page_count; i++) {
1739                        struct scrub_page *spage = sbio->pagev[i];
1740
1741                        spage->io_error = 1;
1742                        atomic64_inc(&dev_replace->num_write_errors);
1743                }
1744        }
1745
1746        for (i = 0; i < sbio->page_count; i++)
1747                scrub_page_put(sbio->pagev[i]);
1748
1749        bio_put(sbio->bio);
1750        kfree(sbio);
1751        scrub_pending_bio_dec(sctx);
1752}
1753
1754static int scrub_checksum(struct scrub_block *sblock)
1755{
1756        u64 flags;
1757        int ret;
1758
1759        /*
1760         * No need to initialize these stats currently,
1761         * because this function only use return value
1762         * instead of these stats value.
1763         *
1764         * Todo:
1765         * always use stats
1766         */
1767        sblock->header_error = 0;
1768        sblock->generation_error = 0;
1769        sblock->checksum_error = 0;
1770
1771        WARN_ON(sblock->page_count < 1);
1772        flags = sblock->pagev[0]->flags;
1773        ret = 0;
1774        if (flags & BTRFS_EXTENT_FLAG_DATA)
1775                ret = scrub_checksum_data(sblock);
1776        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1777                ret = scrub_checksum_tree_block(sblock);
1778        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1779                (void)scrub_checksum_super(sblock);
1780        else
1781                WARN_ON(1);
1782        if (ret)
1783                scrub_handle_errored_block(sblock);
1784
1785        return ret;
1786}
1787
1788static int scrub_checksum_data(struct scrub_block *sblock)
1789{
1790        struct scrub_ctx *sctx = sblock->sctx;
1791        struct btrfs_fs_info *fs_info = sctx->fs_info;
1792        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1793        u8 csum[BTRFS_CSUM_SIZE];
1794        u8 *on_disk_csum;
1795        struct page *page;
1796        void *buffer;
1797        u64 len;
1798        int index;
1799
1800        BUG_ON(sblock->page_count < 1);
1801        if (!sblock->pagev[0]->have_csum)
1802                return 0;
1803
1804        shash->tfm = fs_info->csum_shash;
1805        crypto_shash_init(shash);
1806
1807        on_disk_csum = sblock->pagev[0]->csum;
1808        page = sblock->pagev[0]->page;
1809        buffer = kmap_atomic(page);
1810
1811        len = sctx->fs_info->sectorsize;
1812        index = 0;
1813        for (;;) {
1814                u64 l = min_t(u64, len, PAGE_SIZE);
1815
1816                crypto_shash_update(shash, buffer, l);
1817                kunmap_atomic(buffer);
1818                len -= l;
1819                if (len == 0)
1820                        break;
1821                index++;
1822                BUG_ON(index >= sblock->page_count);
1823                BUG_ON(!sblock->pagev[index]->page);
1824                page = sblock->pagev[index]->page;
1825                buffer = kmap_atomic(page);
1826        }
1827
1828        crypto_shash_final(shash, csum);
1829        if (memcmp(csum, on_disk_csum, sctx->csum_size))
1830                sblock->checksum_error = 1;
1831
1832        return sblock->checksum_error;
1833}
1834
1835static int scrub_checksum_tree_block(struct scrub_block *sblock)
1836{
1837        struct scrub_ctx *sctx = sblock->sctx;
1838        struct btrfs_header *h;
1839        struct btrfs_fs_info *fs_info = sctx->fs_info;
1840        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1841        u8 calculated_csum[BTRFS_CSUM_SIZE];
1842        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1843        struct page *page;
1844        void *mapped_buffer;
1845        u64 mapped_size;
1846        void *p;
1847        u64 len;
1848        int index;
1849
1850        shash->tfm = fs_info->csum_shash;
1851        crypto_shash_init(shash);
1852
1853        BUG_ON(sblock->page_count < 1);
1854        page = sblock->pagev[0]->page;
1855        mapped_buffer = kmap_atomic(page);
1856        h = (struct btrfs_header *)mapped_buffer;
1857        memcpy(on_disk_csum, h->csum, sctx->csum_size);
1858
1859        /*
1860         * we don't use the getter functions here, as we
1861         * a) don't have an extent buffer and
1862         * b) the page is already kmapped
1863         */
1864        if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1865                sblock->header_error = 1;
1866
1867        if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1868                sblock->header_error = 1;
1869                sblock->generation_error = 1;
1870        }
1871
1872        if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1873                sblock->header_error = 1;
1874
1875        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1876                   BTRFS_UUID_SIZE))
1877                sblock->header_error = 1;
1878
1879        len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1880        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1881        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1882        index = 0;
1883        for (;;) {
1884                u64 l = min_t(u64, len, mapped_size);
1885
1886                crypto_shash_update(shash, p, l);
1887                kunmap_atomic(mapped_buffer);
1888                len -= l;
1889                if (len == 0)
1890                        break;
1891                index++;
1892                BUG_ON(index >= sblock->page_count);
1893                BUG_ON(!sblock->pagev[index]->page);
1894                page = sblock->pagev[index]->page;
1895                mapped_buffer = kmap_atomic(page);
1896                mapped_size = PAGE_SIZE;
1897                p = mapped_buffer;
1898        }
1899
1900        crypto_shash_final(shash, calculated_csum);
1901        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1902                sblock->checksum_error = 1;
1903
1904        return sblock->header_error || sblock->checksum_error;
1905}
1906
1907static int scrub_checksum_super(struct scrub_block *sblock)
1908{
1909        struct btrfs_super_block *s;
1910        struct scrub_ctx *sctx = sblock->sctx;
1911        struct btrfs_fs_info *fs_info = sctx->fs_info;
1912        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1913        u8 calculated_csum[BTRFS_CSUM_SIZE];
1914        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1915        struct page *page;
1916        void *mapped_buffer;
1917        u64 mapped_size;
1918        void *p;
1919        int fail_gen = 0;
1920        int fail_cor = 0;
1921        u64 len;
1922        int index;
1923
1924        shash->tfm = fs_info->csum_shash;
1925        crypto_shash_init(shash);
1926
1927        BUG_ON(sblock->page_count < 1);
1928        page = sblock->pagev[0]->page;
1929        mapped_buffer = kmap_atomic(page);
1930        s = (struct btrfs_super_block *)mapped_buffer;
1931        memcpy(on_disk_csum, s->csum, sctx->csum_size);
1932
1933        if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1934                ++fail_cor;
1935
1936        if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1937                ++fail_gen;
1938
1939        if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1940                ++fail_cor;
1941
1942        len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1943        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1944        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1945        index = 0;
1946        for (;;) {
1947                u64 l = min_t(u64, len, mapped_size);
1948
1949                crypto_shash_update(shash, p, l);
1950                kunmap_atomic(mapped_buffer);
1951                len -= l;
1952                if (len == 0)
1953                        break;
1954                index++;
1955                BUG_ON(index >= sblock->page_count);
1956                BUG_ON(!sblock->pagev[index]->page);
1957                page = sblock->pagev[index]->page;
1958                mapped_buffer = kmap_atomic(page);
1959                mapped_size = PAGE_SIZE;
1960                p = mapped_buffer;
1961        }
1962
1963        crypto_shash_final(shash, calculated_csum);
1964        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1965                ++fail_cor;
1966
1967        if (fail_cor + fail_gen) {
1968                /*
1969                 * if we find an error in a super block, we just report it.
1970                 * They will get written with the next transaction commit
1971                 * anyway
1972                 */
1973                spin_lock(&sctx->stat_lock);
1974                ++sctx->stat.super_errors;
1975                spin_unlock(&sctx->stat_lock);
1976                if (fail_cor)
1977                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1978                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1979                else
1980                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1981                                BTRFS_DEV_STAT_GENERATION_ERRS);
1982        }
1983
1984        return fail_cor + fail_gen;
1985}
1986
1987static void scrub_block_get(struct scrub_block *sblock)
1988{
1989        refcount_inc(&sblock->refs);
1990}
1991
1992static void scrub_block_put(struct scrub_block *sblock)
1993{
1994        if (refcount_dec_and_test(&sblock->refs)) {
1995                int i;
1996
1997                if (sblock->sparity)
1998                        scrub_parity_put(sblock->sparity);
1999
2000                for (i = 0; i < sblock->page_count; i++)
2001                        scrub_page_put(sblock->pagev[i]);
2002                kfree(sblock);
2003        }
2004}
2005
2006static void scrub_page_get(struct scrub_page *spage)
2007{
2008        atomic_inc(&spage->refs);
2009}
2010
2011static void scrub_page_put(struct scrub_page *spage)
2012{
2013        if (atomic_dec_and_test(&spage->refs)) {
2014                if (spage->page)
2015                        __free_page(spage->page);
2016                kfree(spage);
2017        }
2018}
2019
2020static void scrub_submit(struct scrub_ctx *sctx)
2021{
2022        struct scrub_bio *sbio;
2023
2024        if (sctx->curr == -1)
2025                return;
2026
2027        sbio = sctx->bios[sctx->curr];
2028        sctx->curr = -1;
2029        scrub_pending_bio_inc(sctx);
2030        btrfsic_submit_bio(sbio->bio);
2031}
2032
2033static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2034                                    struct scrub_page *spage)
2035{
2036        struct scrub_block *sblock = spage->sblock;
2037        struct scrub_bio *sbio;
2038        int ret;
2039
2040again:
2041        /*
2042         * grab a fresh bio or wait for one to become available
2043         */
2044        while (sctx->curr == -1) {
2045                spin_lock(&sctx->list_lock);
2046                sctx->curr = sctx->first_free;
2047                if (sctx->curr != -1) {
2048                        sctx->first_free = sctx->bios[sctx->curr]->next_free;
2049                        sctx->bios[sctx->curr]->next_free = -1;
2050                        sctx->bios[sctx->curr]->page_count = 0;
2051                        spin_unlock(&sctx->list_lock);
2052                } else {
2053                        spin_unlock(&sctx->list_lock);
2054                        wait_event(sctx->list_wait, sctx->first_free != -1);
2055                }
2056        }
2057        sbio = sctx->bios[sctx->curr];
2058        if (sbio->page_count == 0) {
2059                struct bio *bio;
2060
2061                sbio->physical = spage->physical;
2062                sbio->logical = spage->logical;
2063                sbio->dev = spage->dev;
2064                bio = sbio->bio;
2065                if (!bio) {
2066                        bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2067                        sbio->bio = bio;
2068                }
2069
2070                bio->bi_private = sbio;
2071                bio->bi_end_io = scrub_bio_end_io;
2072                bio_set_dev(bio, sbio->dev->bdev);
2073                bio->bi_iter.bi_sector = sbio->physical >> 9;
2074                bio->bi_opf = REQ_OP_READ;
2075                sbio->status = 0;
2076        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2077                   spage->physical ||
2078                   sbio->logical + sbio->page_count * PAGE_SIZE !=
2079                   spage->logical ||
2080                   sbio->dev != spage->dev) {
2081                scrub_submit(sctx);
2082                goto again;
2083        }
2084
2085        sbio->pagev[sbio->page_count] = spage;
2086        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2087        if (ret != PAGE_SIZE) {
2088                if (sbio->page_count < 1) {
2089                        bio_put(sbio->bio);
2090                        sbio->bio = NULL;
2091                        return -EIO;
2092                }
2093                scrub_submit(sctx);
2094                goto again;
2095        }
2096
2097        scrub_block_get(sblock); /* one for the page added to the bio */
2098        atomic_inc(&sblock->outstanding_pages);
2099        sbio->page_count++;
2100        if (sbio->page_count == sctx->pages_per_rd_bio)
2101                scrub_submit(sctx);
2102
2103        return 0;
2104}
2105
2106static void scrub_missing_raid56_end_io(struct bio *bio)
2107{
2108        struct scrub_block *sblock = bio->bi_private;
2109        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2110
2111        if (bio->bi_status)
2112                sblock->no_io_error_seen = 0;
2113
2114        bio_put(bio);
2115
2116        btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2117}
2118
2119static void scrub_missing_raid56_worker(struct btrfs_work *work)
2120{
2121        struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2122        struct scrub_ctx *sctx = sblock->sctx;
2123        struct btrfs_fs_info *fs_info = sctx->fs_info;
2124        u64 logical;
2125        struct btrfs_device *dev;
2126
2127        logical = sblock->pagev[0]->logical;
2128        dev = sblock->pagev[0]->dev;
2129
2130        if (sblock->no_io_error_seen)
2131                scrub_recheck_block_checksum(sblock);
2132
2133        if (!sblock->no_io_error_seen) {
2134                spin_lock(&sctx->stat_lock);
2135                sctx->stat.read_errors++;
2136                spin_unlock(&sctx->stat_lock);
2137                btrfs_err_rl_in_rcu(fs_info,
2138                        "IO error rebuilding logical %llu for dev %s",
2139                        logical, rcu_str_deref(dev->name));
2140        } else if (sblock->header_error || sblock->checksum_error) {
2141                spin_lock(&sctx->stat_lock);
2142                sctx->stat.uncorrectable_errors++;
2143                spin_unlock(&sctx->stat_lock);
2144                btrfs_err_rl_in_rcu(fs_info,
2145                        "failed to rebuild valid logical %llu for dev %s",
2146                        logical, rcu_str_deref(dev->name));
2147        } else {
2148                scrub_write_block_to_dev_replace(sblock);
2149        }
2150
2151        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2152                mutex_lock(&sctx->wr_lock);
2153                scrub_wr_submit(sctx);
2154                mutex_unlock(&sctx->wr_lock);
2155        }
2156
2157        scrub_block_put(sblock);
2158        scrub_pending_bio_dec(sctx);
2159}
2160
2161static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2162{
2163        struct scrub_ctx *sctx = sblock->sctx;
2164        struct btrfs_fs_info *fs_info = sctx->fs_info;
2165        u64 length = sblock->page_count * PAGE_SIZE;
2166        u64 logical = sblock->pagev[0]->logical;
2167        struct btrfs_bio *bbio = NULL;
2168        struct bio *bio;
2169        struct btrfs_raid_bio *rbio;
2170        int ret;
2171        int i;
2172
2173        btrfs_bio_counter_inc_blocked(fs_info);
2174        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2175                        &length, &bbio);
2176        if (ret || !bbio || !bbio->raid_map)
2177                goto bbio_out;
2178
2179        if (WARN_ON(!sctx->is_dev_replace ||
2180                    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2181                /*
2182                 * We shouldn't be scrubbing a missing device. Even for dev
2183                 * replace, we should only get here for RAID 5/6. We either
2184                 * managed to mount something with no mirrors remaining or
2185                 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2186                 */
2187                goto bbio_out;
2188        }
2189
2190        bio = btrfs_io_bio_alloc(0);
2191        bio->bi_iter.bi_sector = logical >> 9;
2192        bio->bi_private = sblock;
2193        bio->bi_end_io = scrub_missing_raid56_end_io;
2194
2195        rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2196        if (!rbio)
2197                goto rbio_out;
2198
2199        for (i = 0; i < sblock->page_count; i++) {
2200                struct scrub_page *spage = sblock->pagev[i];
2201
2202                raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2203        }
2204
2205        btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2206        scrub_block_get(sblock);
2207        scrub_pending_bio_inc(sctx);
2208        raid56_submit_missing_rbio(rbio);
2209        return;
2210
2211rbio_out:
2212        bio_put(bio);
2213bbio_out:
2214        btrfs_bio_counter_dec(fs_info);
2215        btrfs_put_bbio(bbio);
2216        spin_lock(&sctx->stat_lock);
2217        sctx->stat.malloc_errors++;
2218        spin_unlock(&sctx->stat_lock);
2219}
2220
2221static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2222                       u64 physical, struct btrfs_device *dev, u64 flags,
2223                       u64 gen, int mirror_num, u8 *csum, int force,
2224                       u64 physical_for_dev_replace)
2225{
2226        struct scrub_block *sblock;
2227        int index;
2228
2229        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2230        if (!sblock) {
2231                spin_lock(&sctx->stat_lock);
2232                sctx->stat.malloc_errors++;
2233                spin_unlock(&sctx->stat_lock);
2234                return -ENOMEM;
2235        }
2236
2237        /* one ref inside this function, plus one for each page added to
2238         * a bio later on */
2239        refcount_set(&sblock->refs, 1);
2240        sblock->sctx = sctx;
2241        sblock->no_io_error_seen = 1;
2242
2243        for (index = 0; len > 0; index++) {
2244                struct scrub_page *spage;
2245                u64 l = min_t(u64, len, PAGE_SIZE);
2246
2247                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2248                if (!spage) {
2249leave_nomem:
2250                        spin_lock(&sctx->stat_lock);
2251                        sctx->stat.malloc_errors++;
2252                        spin_unlock(&sctx->stat_lock);
2253                        scrub_block_put(sblock);
2254                        return -ENOMEM;
2255                }
2256                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2257                scrub_page_get(spage);
2258                sblock->pagev[index] = spage;
2259                spage->sblock = sblock;
2260                spage->dev = dev;
2261                spage->flags = flags;
2262                spage->generation = gen;
2263                spage->logical = logical;
2264                spage->physical = physical;
2265                spage->physical_for_dev_replace = physical_for_dev_replace;
2266                spage->mirror_num = mirror_num;
2267                if (csum) {
2268                        spage->have_csum = 1;
2269                        memcpy(spage->csum, csum, sctx->csum_size);
2270                } else {
2271                        spage->have_csum = 0;
2272                }
2273                sblock->page_count++;
2274                spage->page = alloc_page(GFP_KERNEL);
2275                if (!spage->page)
2276                        goto leave_nomem;
2277                len -= l;
2278                logical += l;
2279                physical += l;
2280                physical_for_dev_replace += l;
2281        }
2282
2283        WARN_ON(sblock->page_count == 0);
2284        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2285                /*
2286                 * This case should only be hit for RAID 5/6 device replace. See
2287                 * the comment in scrub_missing_raid56_pages() for details.
2288                 */
2289                scrub_missing_raid56_pages(sblock);
2290        } else {
2291                for (index = 0; index < sblock->page_count; index++) {
2292                        struct scrub_page *spage = sblock->pagev[index];
2293                        int ret;
2294
2295                        ret = scrub_add_page_to_rd_bio(sctx, spage);
2296                        if (ret) {
2297                                scrub_block_put(sblock);
2298                                return ret;
2299                        }
2300                }
2301
2302                if (force)
2303                        scrub_submit(sctx);
2304        }
2305
2306        /* last one frees, either here or in bio completion for last page */
2307        scrub_block_put(sblock);
2308        return 0;
2309}
2310
2311static void scrub_bio_end_io(struct bio *bio)
2312{
2313        struct scrub_bio *sbio = bio->bi_private;
2314        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2315
2316        sbio->status = bio->bi_status;
2317        sbio->bio = bio;
2318
2319        btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2320}
2321
2322static void scrub_bio_end_io_worker(struct btrfs_work *work)
2323{
2324        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2325        struct scrub_ctx *sctx = sbio->sctx;
2326        int i;
2327
2328        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2329        if (sbio->status) {
2330                for (i = 0; i < sbio->page_count; i++) {
2331                        struct scrub_page *spage = sbio->pagev[i];
2332
2333                        spage->io_error = 1;
2334                        spage->sblock->no_io_error_seen = 0;
2335                }
2336        }
2337
2338        /* now complete the scrub_block items that have all pages completed */
2339        for (i = 0; i < sbio->page_count; i++) {
2340                struct scrub_page *spage = sbio->pagev[i];
2341                struct scrub_block *sblock = spage->sblock;
2342
2343                if (atomic_dec_and_test(&sblock->outstanding_pages))
2344                        scrub_block_complete(sblock);
2345                scrub_block_put(sblock);
2346        }
2347
2348        bio_put(sbio->bio);
2349        sbio->bio = NULL;
2350        spin_lock(&sctx->list_lock);
2351        sbio->next_free = sctx->first_free;
2352        sctx->first_free = sbio->index;
2353        spin_unlock(&sctx->list_lock);
2354
2355        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2356                mutex_lock(&sctx->wr_lock);
2357                scrub_wr_submit(sctx);
2358                mutex_unlock(&sctx->wr_lock);
2359        }
2360
2361        scrub_pending_bio_dec(sctx);
2362}
2363
2364static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2365                                       unsigned long *bitmap,
2366                                       u64 start, u64 len)
2367{
2368        u64 offset;
2369        u64 nsectors64;
2370        u32 nsectors;
2371        int sectorsize = sparity->sctx->fs_info->sectorsize;
2372
2373        if (len >= sparity->stripe_len) {
2374                bitmap_set(bitmap, 0, sparity->nsectors);
2375                return;
2376        }
2377
2378        start -= sparity->logic_start;
2379        start = div64_u64_rem(start, sparity->stripe_len, &offset);
2380        offset = div_u64(offset, sectorsize);
2381        nsectors64 = div_u64(len, sectorsize);
2382
2383        ASSERT(nsectors64 < UINT_MAX);
2384        nsectors = (u32)nsectors64;
2385
2386        if (offset + nsectors <= sparity->nsectors) {
2387                bitmap_set(bitmap, offset, nsectors);
2388                return;
2389        }
2390
2391        bitmap_set(bitmap, offset, sparity->nsectors - offset);
2392        bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2393}
2394
2395static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2396                                                   u64 start, u64 len)
2397{
2398        __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2399}
2400
2401static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2402                                                  u64 start, u64 len)
2403{
2404        __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2405}
2406
2407static void scrub_block_complete(struct scrub_block *sblock)
2408{
2409        int corrupted = 0;
2410
2411        if (!sblock->no_io_error_seen) {
2412                corrupted = 1;
2413                scrub_handle_errored_block(sblock);
2414        } else {
2415                /*
2416                 * if has checksum error, write via repair mechanism in
2417                 * dev replace case, otherwise write here in dev replace
2418                 * case.
2419                 */
2420                corrupted = scrub_checksum(sblock);
2421                if (!corrupted && sblock->sctx->is_dev_replace)
2422                        scrub_write_block_to_dev_replace(sblock);
2423        }
2424
2425        if (sblock->sparity && corrupted && !sblock->data_corrected) {
2426                u64 start = sblock->pagev[0]->logical;
2427                u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2428                          PAGE_SIZE;
2429
2430                scrub_parity_mark_sectors_error(sblock->sparity,
2431                                                start, end - start);
2432        }
2433}
2434
2435static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2436{
2437        struct btrfs_ordered_sum *sum = NULL;
2438        unsigned long index;
2439        unsigned long num_sectors;
2440
2441        while (!list_empty(&sctx->csum_list)) {
2442                sum = list_first_entry(&sctx->csum_list,
2443                                       struct btrfs_ordered_sum, list);
2444                if (sum->bytenr > logical)
2445                        return 0;
2446                if (sum->bytenr + sum->len > logical)
2447                        break;
2448
2449                ++sctx->stat.csum_discards;
2450                list_del(&sum->list);
2451                kfree(sum);
2452                sum = NULL;
2453        }
2454        if (!sum)
2455                return 0;
2456
2457        index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2458        ASSERT(index < UINT_MAX);
2459
2460        num_sectors = sum->len / sctx->fs_info->sectorsize;
2461        memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2462        if (index == num_sectors - 1) {
2463                list_del(&sum->list);
2464                kfree(sum);
2465        }
2466        return 1;
2467}
2468
2469/* scrub extent tries to collect up to 64 kB for each bio */
2470static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2471                        u64 logical, u64 len,
2472                        u64 physical, struct btrfs_device *dev, u64 flags,
2473                        u64 gen, int mirror_num, u64 physical_for_dev_replace)
2474{
2475        int ret;
2476        u8 csum[BTRFS_CSUM_SIZE];
2477        u32 blocksize;
2478
2479        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2480                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2481                        blocksize = map->stripe_len;
2482                else
2483                        blocksize = sctx->fs_info->sectorsize;
2484                spin_lock(&sctx->stat_lock);
2485                sctx->stat.data_extents_scrubbed++;
2486                sctx->stat.data_bytes_scrubbed += len;
2487                spin_unlock(&sctx->stat_lock);
2488        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2489                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2490                        blocksize = map->stripe_len;
2491                else
2492                        blocksize = sctx->fs_info->nodesize;
2493                spin_lock(&sctx->stat_lock);
2494                sctx->stat.tree_extents_scrubbed++;
2495                sctx->stat.tree_bytes_scrubbed += len;
2496                spin_unlock(&sctx->stat_lock);
2497        } else {
2498                blocksize = sctx->fs_info->sectorsize;
2499                WARN_ON(1);
2500        }
2501
2502        while (len) {
2503                u64 l = min_t(u64, len, blocksize);
2504                int have_csum = 0;
2505
2506                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2507                        /* push csums to sbio */
2508                        have_csum = scrub_find_csum(sctx, logical, csum);
2509                        if (have_csum == 0)
2510                                ++sctx->stat.no_csum;
2511                }
2512                ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2513                                  mirror_num, have_csum ? csum : NULL, 0,
2514                                  physical_for_dev_replace);
2515                if (ret)
2516                        return ret;
2517                len -= l;
2518                logical += l;
2519                physical += l;
2520                physical_for_dev_replace += l;
2521        }
2522        return 0;
2523}
2524
2525static int scrub_pages_for_parity(struct scrub_parity *sparity,
2526                                  u64 logical, u64 len,
2527                                  u64 physical, struct btrfs_device *dev,
2528                                  u64 flags, u64 gen, int mirror_num, u8 *csum)
2529{
2530        struct scrub_ctx *sctx = sparity->sctx;
2531        struct scrub_block *sblock;
2532        int index;
2533
2534        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2535        if (!sblock) {
2536                spin_lock(&sctx->stat_lock);
2537                sctx->stat.malloc_errors++;
2538                spin_unlock(&sctx->stat_lock);
2539                return -ENOMEM;
2540        }
2541
2542        /* one ref inside this function, plus one for each page added to
2543         * a bio later on */
2544        refcount_set(&sblock->refs, 1);
2545        sblock->sctx = sctx;
2546        sblock->no_io_error_seen = 1;
2547        sblock->sparity = sparity;
2548        scrub_parity_get(sparity);
2549
2550        for (index = 0; len > 0; index++) {
2551                struct scrub_page *spage;
2552                u64 l = min_t(u64, len, PAGE_SIZE);
2553
2554                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2555                if (!spage) {
2556leave_nomem:
2557                        spin_lock(&sctx->stat_lock);
2558                        sctx->stat.malloc_errors++;
2559                        spin_unlock(&sctx->stat_lock);
2560                        scrub_block_put(sblock);
2561                        return -ENOMEM;
2562                }
2563                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2564                /* For scrub block */
2565                scrub_page_get(spage);
2566                sblock->pagev[index] = spage;
2567                /* For scrub parity */
2568                scrub_page_get(spage);
2569                list_add_tail(&spage->list, &sparity->spages);
2570                spage->sblock = sblock;
2571                spage->dev = dev;
2572                spage->flags = flags;
2573                spage->generation = gen;
2574                spage->logical = logical;
2575                spage->physical = physical;
2576                spage->mirror_num = mirror_num;
2577                if (csum) {
2578                        spage->have_csum = 1;
2579                        memcpy(spage->csum, csum, sctx->csum_size);
2580                } else {
2581                        spage->have_csum = 0;
2582                }
2583                sblock->page_count++;
2584                spage->page = alloc_page(GFP_KERNEL);
2585                if (!spage->page)
2586                        goto leave_nomem;
2587                len -= l;
2588                logical += l;
2589                physical += l;
2590        }
2591
2592        WARN_ON(sblock->page_count == 0);
2593        for (index = 0; index < sblock->page_count; index++) {
2594                struct scrub_page *spage = sblock->pagev[index];
2595                int ret;
2596
2597                ret = scrub_add_page_to_rd_bio(sctx, spage);
2598                if (ret) {
2599                        scrub_block_put(sblock);
2600                        return ret;
2601                }
2602        }
2603
2604        /* last one frees, either here or in bio completion for last page */
2605        scrub_block_put(sblock);
2606        return 0;
2607}
2608
2609static int scrub_extent_for_parity(struct scrub_parity *sparity,
2610                                   u64 logical, u64 len,
2611                                   u64 physical, struct btrfs_device *dev,
2612                                   u64 flags, u64 gen, int mirror_num)
2613{
2614        struct scrub_ctx *sctx = sparity->sctx;
2615        int ret;
2616        u8 csum[BTRFS_CSUM_SIZE];
2617        u32 blocksize;
2618
2619        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2620                scrub_parity_mark_sectors_error(sparity, logical, len);
2621                return 0;
2622        }
2623
2624        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2625                blocksize = sparity->stripe_len;
2626        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2627                blocksize = sparity->stripe_len;
2628        } else {
2629                blocksize = sctx->fs_info->sectorsize;
2630                WARN_ON(1);
2631        }
2632
2633        while (len) {
2634                u64 l = min_t(u64, len, blocksize);
2635                int have_csum = 0;
2636
2637                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2638                        /* push csums to sbio */
2639                        have_csum = scrub_find_csum(sctx, logical, csum);
2640                        if (have_csum == 0)
2641                                goto skip;
2642                }
2643                ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2644                                             flags, gen, mirror_num,
2645                                             have_csum ? csum : NULL);
2646                if (ret)
2647                        return ret;
2648skip:
2649                len -= l;
2650                logical += l;
2651                physical += l;
2652        }
2653        return 0;
2654}
2655
2656/*
2657 * Given a physical address, this will calculate it's
2658 * logical offset. if this is a parity stripe, it will return
2659 * the most left data stripe's logical offset.
2660 *
2661 * return 0 if it is a data stripe, 1 means parity stripe.
2662 */
2663static int get_raid56_logic_offset(u64 physical, int num,
2664                                   struct map_lookup *map, u64 *offset,
2665                                   u64 *stripe_start)
2666{
2667        int i;
2668        int j = 0;
2669        u64 stripe_nr;
2670        u64 last_offset;
2671        u32 stripe_index;
2672        u32 rot;
2673        const int data_stripes = nr_data_stripes(map);
2674
2675        last_offset = (physical - map->stripes[num].physical) * data_stripes;
2676        if (stripe_start)
2677                *stripe_start = last_offset;
2678
2679        *offset = last_offset;
2680        for (i = 0; i < data_stripes; i++) {
2681                *offset = last_offset + i * map->stripe_len;
2682
2683                stripe_nr = div64_u64(*offset, map->stripe_len);
2684                stripe_nr = div_u64(stripe_nr, data_stripes);
2685
2686                /* Work out the disk rotation on this stripe-set */
2687                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2688                /* calculate which stripe this data locates */
2689                rot += i;
2690                stripe_index = rot % map->num_stripes;
2691                if (stripe_index == num)
2692                        return 0;
2693                if (stripe_index < num)
2694                        j++;
2695        }
2696        *offset = last_offset + j * map->stripe_len;
2697        return 1;
2698}
2699
2700static void scrub_free_parity(struct scrub_parity *sparity)
2701{
2702        struct scrub_ctx *sctx = sparity->sctx;
2703        struct scrub_page *curr, *next;
2704        int nbits;
2705
2706        nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2707        if (nbits) {
2708                spin_lock(&sctx->stat_lock);
2709                sctx->stat.read_errors += nbits;
2710                sctx->stat.uncorrectable_errors += nbits;
2711                spin_unlock(&sctx->stat_lock);
2712        }
2713
2714        list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2715                list_del_init(&curr->list);
2716                scrub_page_put(curr);
2717        }
2718
2719        kfree(sparity);
2720}
2721
2722static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2723{
2724        struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2725                                                    work);
2726        struct scrub_ctx *sctx = sparity->sctx;
2727
2728        scrub_free_parity(sparity);
2729        scrub_pending_bio_dec(sctx);
2730}
2731
2732static void scrub_parity_bio_endio(struct bio *bio)
2733{
2734        struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2735        struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2736
2737        if (bio->bi_status)
2738                bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2739                          sparity->nsectors);
2740
2741        bio_put(bio);
2742
2743        btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2744                        NULL);
2745        btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2746}
2747
2748static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2749{
2750        struct scrub_ctx *sctx = sparity->sctx;
2751        struct btrfs_fs_info *fs_info = sctx->fs_info;
2752        struct bio *bio;
2753        struct btrfs_raid_bio *rbio;
2754        struct btrfs_bio *bbio = NULL;
2755        u64 length;
2756        int ret;
2757
2758        if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2759                           sparity->nsectors))
2760                goto out;
2761
2762        length = sparity->logic_end - sparity->logic_start;
2763
2764        btrfs_bio_counter_inc_blocked(fs_info);
2765        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2766                               &length, &bbio);
2767        if (ret || !bbio || !bbio->raid_map)
2768                goto bbio_out;
2769
2770        bio = btrfs_io_bio_alloc(0);
2771        bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2772        bio->bi_private = sparity;
2773        bio->bi_end_io = scrub_parity_bio_endio;
2774
2775        rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2776                                              length, sparity->scrub_dev,
2777                                              sparity->dbitmap,
2778                                              sparity->nsectors);
2779        if (!rbio)
2780                goto rbio_out;
2781
2782        scrub_pending_bio_inc(sctx);
2783        raid56_parity_submit_scrub_rbio(rbio);
2784        return;
2785
2786rbio_out:
2787        bio_put(bio);
2788bbio_out:
2789        btrfs_bio_counter_dec(fs_info);
2790        btrfs_put_bbio(bbio);
2791        bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2792                  sparity->nsectors);
2793        spin_lock(&sctx->stat_lock);
2794        sctx->stat.malloc_errors++;
2795        spin_unlock(&sctx->stat_lock);
2796out:
2797        scrub_free_parity(sparity);
2798}
2799
2800static inline int scrub_calc_parity_bitmap_len(int nsectors)
2801{
2802        return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2803}
2804
2805static void scrub_parity_get(struct scrub_parity *sparity)
2806{
2807        refcount_inc(&sparity->refs);
2808}
2809
2810static void scrub_parity_put(struct scrub_parity *sparity)
2811{
2812        if (!refcount_dec_and_test(&sparity->refs))
2813                return;
2814
2815        scrub_parity_check_and_repair(sparity);
2816}
2817
2818static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2819                                                  struct map_lookup *map,
2820                                                  struct btrfs_device *sdev,
2821                                                  struct btrfs_path *path,
2822                                                  u64 logic_start,
2823                                                  u64 logic_end)
2824{
2825        struct btrfs_fs_info *fs_info = sctx->fs_info;
2826        struct btrfs_root *root = fs_info->extent_root;
2827        struct btrfs_root *csum_root = fs_info->csum_root;
2828        struct btrfs_extent_item *extent;
2829        struct btrfs_bio *bbio = NULL;
2830        u64 flags;
2831        int ret;
2832        int slot;
2833        struct extent_buffer *l;
2834        struct btrfs_key key;
2835        u64 generation;
2836        u64 extent_logical;
2837        u64 extent_physical;
2838        u64 extent_len;
2839        u64 mapped_length;
2840        struct btrfs_device *extent_dev;
2841        struct scrub_parity *sparity;
2842        int nsectors;
2843        int bitmap_len;
2844        int extent_mirror_num;
2845        int stop_loop = 0;
2846
2847        nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2848        bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2849        sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2850                          GFP_NOFS);
2851        if (!sparity) {
2852                spin_lock(&sctx->stat_lock);
2853                sctx->stat.malloc_errors++;
2854                spin_unlock(&sctx->stat_lock);
2855                return -ENOMEM;
2856        }
2857
2858        sparity->stripe_len = map->stripe_len;
2859        sparity->nsectors = nsectors;
2860        sparity->sctx = sctx;
2861        sparity->scrub_dev = sdev;
2862        sparity->logic_start = logic_start;
2863        sparity->logic_end = logic_end;
2864        refcount_set(&sparity->refs, 1);
2865        INIT_LIST_HEAD(&sparity->spages);
2866        sparity->dbitmap = sparity->bitmap;
2867        sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2868
2869        ret = 0;
2870        while (logic_start < logic_end) {
2871                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2872                        key.type = BTRFS_METADATA_ITEM_KEY;
2873                else
2874                        key.type = BTRFS_EXTENT_ITEM_KEY;
2875                key.objectid = logic_start;
2876                key.offset = (u64)-1;
2877
2878                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2879                if (ret < 0)
2880                        goto out;
2881
2882                if (ret > 0) {
2883                        ret = btrfs_previous_extent_item(root, path, 0);
2884                        if (ret < 0)
2885                                goto out;
2886                        if (ret > 0) {
2887                                btrfs_release_path(path);
2888                                ret = btrfs_search_slot(NULL, root, &key,
2889                                                        path, 0, 0);
2890                                if (ret < 0)
2891                                        goto out;
2892                        }
2893                }
2894
2895                stop_loop = 0;
2896                while (1) {
2897                        u64 bytes;
2898
2899                        l = path->nodes[0];
2900                        slot = path->slots[0];
2901                        if (slot >= btrfs_header_nritems(l)) {
2902                                ret = btrfs_next_leaf(root, path);
2903                                if (ret == 0)
2904                                        continue;
2905                                if (ret < 0)
2906                                        goto out;
2907
2908                                stop_loop = 1;
2909                                break;
2910                        }
2911                        btrfs_item_key_to_cpu(l, &key, slot);
2912
2913                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2914                            key.type != BTRFS_METADATA_ITEM_KEY)
2915                                goto next;
2916
2917                        if (key.type == BTRFS_METADATA_ITEM_KEY)
2918                                bytes = fs_info->nodesize;
2919                        else
2920                                bytes = key.offset;
2921
2922                        if (key.objectid + bytes <= logic_start)
2923                                goto next;
2924
2925                        if (key.objectid >= logic_end) {
2926                                stop_loop = 1;
2927                                break;
2928                        }
2929
2930                        while (key.objectid >= logic_start + map->stripe_len)
2931                                logic_start += map->stripe_len;
2932
2933                        extent = btrfs_item_ptr(l, slot,
2934                                                struct btrfs_extent_item);
2935                        flags = btrfs_extent_flags(l, extent);
2936                        generation = btrfs_extent_generation(l, extent);
2937
2938                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2939                            (key.objectid < logic_start ||
2940                             key.objectid + bytes >
2941                             logic_start + map->stripe_len)) {
2942                                btrfs_err(fs_info,
2943                                          "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2944                                          key.objectid, logic_start);
2945                                spin_lock(&sctx->stat_lock);
2946                                sctx->stat.uncorrectable_errors++;
2947                                spin_unlock(&sctx->stat_lock);
2948                                goto next;
2949                        }
2950again:
2951                        extent_logical = key.objectid;
2952                        extent_len = bytes;
2953
2954                        if (extent_logical < logic_start) {
2955                                extent_len -= logic_start - extent_logical;
2956                                extent_logical = logic_start;
2957                        }
2958
2959                        if (extent_logical + extent_len >
2960                            logic_start + map->stripe_len)
2961                                extent_len = logic_start + map->stripe_len -
2962                                             extent_logical;
2963
2964                        scrub_parity_mark_sectors_data(sparity, extent_logical,
2965                                                       extent_len);
2966
2967                        mapped_length = extent_len;
2968                        bbio = NULL;
2969                        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2970                                        extent_logical, &mapped_length, &bbio,
2971                                        0);
2972                        if (!ret) {
2973                                if (!bbio || mapped_length < extent_len)
2974                                        ret = -EIO;
2975                        }
2976                        if (ret) {
2977                                btrfs_put_bbio(bbio);
2978                                goto out;
2979                        }
2980                        extent_physical = bbio->stripes[0].physical;
2981                        extent_mirror_num = bbio->mirror_num;
2982                        extent_dev = bbio->stripes[0].dev;
2983                        btrfs_put_bbio(bbio);
2984
2985                        ret = btrfs_lookup_csums_range(csum_root,
2986                                                extent_logical,
2987                                                extent_logical + extent_len - 1,
2988                                                &sctx->csum_list, 1);
2989                        if (ret)
2990                                goto out;
2991
2992                        ret = scrub_extent_for_parity(sparity, extent_logical,
2993                                                      extent_len,
2994                                                      extent_physical,
2995                                                      extent_dev, flags,
2996                                                      generation,
2997                                                      extent_mirror_num);
2998
2999                        scrub_free_csums(sctx);
3000
3001                        if (ret)
3002                                goto out;
3003
3004                        if (extent_logical + extent_len <
3005                            key.objectid + bytes) {
3006                                logic_start += map->stripe_len;
3007
3008                                if (logic_start >= logic_end) {
3009                                        stop_loop = 1;
3010                                        break;
3011                                }
3012
3013                                if (logic_start < key.objectid + bytes) {
3014                                        cond_resched();
3015                                        goto again;
3016                                }
3017                        }
3018next:
3019                        path->slots[0]++;
3020                }
3021
3022                btrfs_release_path(path);
3023
3024                if (stop_loop)
3025                        break;
3026
3027                logic_start += map->stripe_len;
3028        }
3029out:
3030        if (ret < 0)
3031                scrub_parity_mark_sectors_error(sparity, logic_start,
3032                                                logic_end - logic_start);
3033        scrub_parity_put(sparity);
3034        scrub_submit(sctx);
3035        mutex_lock(&sctx->wr_lock);
3036        scrub_wr_submit(sctx);
3037        mutex_unlock(&sctx->wr_lock);
3038
3039        btrfs_release_path(path);
3040        return ret < 0 ? ret : 0;
3041}
3042
3043static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3044                                           struct map_lookup *map,
3045                                           struct btrfs_device *scrub_dev,
3046                                           int num, u64 base, u64 length)
3047{
3048        struct btrfs_path *path, *ppath;
3049        struct btrfs_fs_info *fs_info = sctx->fs_info;
3050        struct btrfs_root *root = fs_info->extent_root;
3051        struct btrfs_root *csum_root = fs_info->csum_root;
3052        struct btrfs_extent_item *extent;
3053        struct blk_plug plug;
3054        u64 flags;
3055        int ret;
3056        int slot;
3057        u64 nstripes;
3058        struct extent_buffer *l;
3059        u64 physical;
3060        u64 logical;
3061        u64 logic_end;
3062        u64 physical_end;
3063        u64 generation;
3064        int mirror_num;
3065        struct reada_control *reada1;
3066        struct reada_control *reada2;
3067        struct btrfs_key key;
3068        struct btrfs_key key_end;
3069        u64 increment = map->stripe_len;
3070        u64 offset;
3071        u64 extent_logical;
3072        u64 extent_physical;
3073        u64 extent_len;
3074        u64 stripe_logical;
3075        u64 stripe_end;
3076        struct btrfs_device *extent_dev;
3077        int extent_mirror_num;
3078        int stop_loop = 0;
3079
3080        physical = map->stripes[num].physical;
3081        offset = 0;
3082        nstripes = div64_u64(length, map->stripe_len);
3083        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3084                offset = map->stripe_len * num;
3085                increment = map->stripe_len * map->num_stripes;
3086                mirror_num = 1;
3087        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3088                int factor = map->num_stripes / map->sub_stripes;
3089                offset = map->stripe_len * (num / map->sub_stripes);
3090                increment = map->stripe_len * factor;
3091                mirror_num = num % map->sub_stripes + 1;
3092        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3093                increment = map->stripe_len;
3094                mirror_num = num % map->num_stripes + 1;
3095        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3096                increment = map->stripe_len;
3097                mirror_num = num % map->num_stripes + 1;
3098        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3099                get_raid56_logic_offset(physical, num, map, &offset, NULL);
3100                increment = map->stripe_len * nr_data_stripes(map);
3101                mirror_num = 1;
3102        } else {
3103                increment = map->stripe_len;
3104                mirror_num = 1;
3105        }
3106
3107        path = btrfs_alloc_path();
3108        if (!path)
3109                return -ENOMEM;
3110
3111        ppath = btrfs_alloc_path();
3112        if (!ppath) {
3113                btrfs_free_path(path);
3114                return -ENOMEM;
3115        }
3116
3117        /*
3118         * work on commit root. The related disk blocks are static as
3119         * long as COW is applied. This means, it is save to rewrite
3120         * them to repair disk errors without any race conditions
3121         */
3122        path->search_commit_root = 1;
3123        path->skip_locking = 1;
3124
3125        ppath->search_commit_root = 1;
3126        ppath->skip_locking = 1;
3127        /*
3128         * trigger the readahead for extent tree csum tree and wait for
3129         * completion. During readahead, the scrub is officially paused
3130         * to not hold off transaction commits
3131         */
3132        logical = base + offset;
3133        physical_end = physical + nstripes * map->stripe_len;
3134        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3135                get_raid56_logic_offset(physical_end, num,
3136                                        map, &logic_end, NULL);
3137                logic_end += base;
3138        } else {
3139                logic_end = logical + increment * nstripes;
3140        }
3141        wait_event(sctx->list_wait,
3142                   atomic_read(&sctx->bios_in_flight) == 0);
3143        scrub_blocked_if_needed(fs_info);
3144
3145        /* FIXME it might be better to start readahead at commit root */
3146        key.objectid = logical;
3147        key.type = BTRFS_EXTENT_ITEM_KEY;
3148        key.offset = (u64)0;
3149        key_end.objectid = logic_end;
3150        key_end.type = BTRFS_METADATA_ITEM_KEY;
3151        key_end.offset = (u64)-1;
3152        reada1 = btrfs_reada_add(root, &key, &key_end);
3153
3154        key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3155        key.type = BTRFS_EXTENT_CSUM_KEY;
3156        key.offset = logical;
3157        key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158        key_end.type = BTRFS_EXTENT_CSUM_KEY;
3159        key_end.offset = logic_end;
3160        reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3161
3162        if (!IS_ERR(reada1))
3163                btrfs_reada_wait(reada1);
3164        if (!IS_ERR(reada2))
3165                btrfs_reada_wait(reada2);
3166
3167
3168        /*
3169         * collect all data csums for the stripe to avoid seeking during
3170         * the scrub. This might currently (crc32) end up to be about 1MB
3171         */
3172        blk_start_plug(&plug);
3173
3174        /*
3175         * now find all extents for each stripe and scrub them
3176         */
3177        ret = 0;
3178        while (physical < physical_end) {
3179                /*
3180                 * canceled?
3181                 */
3182                if (atomic_read(&fs_info->scrub_cancel_req) ||
3183                    atomic_read(&sctx->cancel_req)) {
3184                        ret = -ECANCELED;
3185                        goto out;
3186                }
3187                /*
3188                 * check to see if we have to pause
3189                 */
3190                if (atomic_read(&fs_info->scrub_pause_req)) {
3191                        /* push queued extents */
3192                        sctx->flush_all_writes = true;
3193                        scrub_submit(sctx);
3194                        mutex_lock(&sctx->wr_lock);
3195                        scrub_wr_submit(sctx);
3196                        mutex_unlock(&sctx->wr_lock);
3197                        wait_event(sctx->list_wait,
3198                                   atomic_read(&sctx->bios_in_flight) == 0);
3199                        sctx->flush_all_writes = false;
3200                        scrub_blocked_if_needed(fs_info);
3201                }
3202
3203                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3204                        ret = get_raid56_logic_offset(physical, num, map,
3205                                                      &logical,
3206                                                      &stripe_logical);
3207                        logical += base;
3208                        if (ret) {
3209                                /* it is parity strip */
3210                                stripe_logical += base;
3211                                stripe_end = stripe_logical + increment;
3212                                ret = scrub_raid56_parity(sctx, map, scrub_dev,
3213                                                          ppath, stripe_logical,
3214                                                          stripe_end);
3215                                if (ret)
3216                                        goto out;
3217                                goto skip;
3218                        }
3219                }
3220
3221                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3222                        key.type = BTRFS_METADATA_ITEM_KEY;
3223                else
3224                        key.type = BTRFS_EXTENT_ITEM_KEY;
3225                key.objectid = logical;
3226                key.offset = (u64)-1;
3227
3228                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3229                if (ret < 0)
3230                        goto out;
3231
3232                if (ret > 0) {
3233                        ret = btrfs_previous_extent_item(root, path, 0);
3234                        if (ret < 0)
3235                                goto out;
3236                        if (ret > 0) {
3237                                /* there's no smaller item, so stick with the
3238                                 * larger one */
3239                                btrfs_release_path(path);
3240                                ret = btrfs_search_slot(NULL, root, &key,
3241                                                        path, 0, 0);
3242                                if (ret < 0)
3243                                        goto out;
3244                        }
3245                }
3246
3247                stop_loop = 0;
3248                while (1) {
3249                        u64 bytes;
3250
3251                        l = path->nodes[0];
3252                        slot = path->slots[0];
3253                        if (slot >= btrfs_header_nritems(l)) {
3254                                ret = btrfs_next_leaf(root, path);
3255                                if (ret == 0)
3256                                        continue;
3257                                if (ret < 0)
3258                                        goto out;
3259
3260                                stop_loop = 1;
3261                                break;
3262                        }
3263                        btrfs_item_key_to_cpu(l, &key, slot);
3264
3265                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3266                            key.type != BTRFS_METADATA_ITEM_KEY)
3267                                goto next;
3268
3269                        if (key.type == BTRFS_METADATA_ITEM_KEY)
3270                                bytes = fs_info->nodesize;
3271                        else
3272                                bytes = key.offset;
3273
3274                        if (key.objectid + bytes <= logical)
3275                                goto next;
3276
3277                        if (key.objectid >= logical + map->stripe_len) {
3278                                /* out of this device extent */
3279                                if (key.objectid >= logic_end)
3280                                        stop_loop = 1;
3281                                break;
3282                        }
3283
3284                        extent = btrfs_item_ptr(l, slot,
3285                                                struct btrfs_extent_item);
3286                        flags = btrfs_extent_flags(l, extent);
3287                        generation = btrfs_extent_generation(l, extent);
3288
3289                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3290                            (key.objectid < logical ||
3291                             key.objectid + bytes >
3292                             logical + map->stripe_len)) {
3293                                btrfs_err(fs_info,
3294                                           "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3295                                       key.objectid, logical);
3296                                spin_lock(&sctx->stat_lock);
3297                                sctx->stat.uncorrectable_errors++;
3298                                spin_unlock(&sctx->stat_lock);
3299                                goto next;
3300                        }
3301
3302again:
3303                        extent_logical = key.objectid;
3304                        extent_len = bytes;
3305
3306                        /*
3307                         * trim extent to this stripe
3308                         */
3309                        if (extent_logical < logical) {
3310                                extent_len -= logical - extent_logical;
3311                                extent_logical = logical;
3312                        }
3313                        if (extent_logical + extent_len >
3314                            logical + map->stripe_len) {
3315                                extent_len = logical + map->stripe_len -
3316                                             extent_logical;
3317                        }
3318
3319                        extent_physical = extent_logical - logical + physical;
3320                        extent_dev = scrub_dev;
3321                        extent_mirror_num = mirror_num;
3322                        if (sctx->is_dev_replace)
3323                                scrub_remap_extent(fs_info, extent_logical,
3324                                                   extent_len, &extent_physical,
3325                                                   &extent_dev,
3326                                                   &extent_mirror_num);
3327
3328                        ret = btrfs_lookup_csums_range(csum_root,
3329                                                       extent_logical,
3330                                                       extent_logical +
3331                                                       extent_len - 1,
3332                                                       &sctx->csum_list, 1);
3333                        if (ret)
3334                                goto out;
3335
3336                        ret = scrub_extent(sctx, map, extent_logical, extent_len,
3337                                           extent_physical, extent_dev, flags,
3338                                           generation, extent_mirror_num,
3339                                           extent_logical - logical + physical);
3340
3341                        scrub_free_csums(sctx);
3342
3343                        if (ret)
3344                                goto out;
3345
3346                        if (extent_logical + extent_len <
3347                            key.objectid + bytes) {
3348                                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3349                                        /*
3350                                         * loop until we find next data stripe
3351                                         * or we have finished all stripes.
3352                                         */
3353loop:
3354                                        physical += map->stripe_len;
3355                                        ret = get_raid56_logic_offset(physical,
3356                                                        num, map, &logical,
3357                                                        &stripe_logical);
3358                                        logical += base;
3359
3360                                        if (ret && physical < physical_end) {
3361                                                stripe_logical += base;
3362                                                stripe_end = stripe_logical +
3363                                                                increment;
3364                                                ret = scrub_raid56_parity(sctx,
3365                                                        map, scrub_dev, ppath,
3366                                                        stripe_logical,
3367                                                        stripe_end);
3368                                                if (ret)
3369                                                        goto out;
3370                                                goto loop;
3371                                        }
3372                                } else {
3373                                        physical += map->stripe_len;
3374                                        logical += increment;
3375                                }
3376                                if (logical < key.objectid + bytes) {
3377                                        cond_resched();
3378                                        goto again;
3379                                }
3380
3381                                if (physical >= physical_end) {
3382                                        stop_loop = 1;
3383                                        break;
3384                                }
3385                        }
3386next:
3387                        path->slots[0]++;
3388                }
3389                btrfs_release_path(path);
3390skip:
3391                logical += increment;
3392                physical += map->stripe_len;
3393                spin_lock(&sctx->stat_lock);
3394                if (stop_loop)
3395                        sctx->stat.last_physical = map->stripes[num].physical +
3396                                                   length;
3397                else
3398                        sctx->stat.last_physical = physical;
3399                spin_unlock(&sctx->stat_lock);
3400                if (stop_loop)
3401                        break;
3402        }
3403out:
3404        /* push queued extents */
3405        scrub_submit(sctx);
3406        mutex_lock(&sctx->wr_lock);
3407        scrub_wr_submit(sctx);
3408        mutex_unlock(&sctx->wr_lock);
3409
3410        blk_finish_plug(&plug);
3411        btrfs_free_path(path);
3412        btrfs_free_path(ppath);
3413        return ret < 0 ? ret : 0;
3414}
3415
3416static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3417                                          struct btrfs_device *scrub_dev,
3418                                          u64 chunk_offset, u64 length,
3419                                          u64 dev_offset,
3420                                          struct btrfs_block_group *cache)
3421{
3422        struct btrfs_fs_info *fs_info = sctx->fs_info;
3423        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3424        struct map_lookup *map;
3425        struct extent_map *em;
3426        int i;
3427        int ret = 0;
3428
3429        read_lock(&map_tree->lock);
3430        em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3431        read_unlock(&map_tree->lock);
3432
3433        if (!em) {
3434                /*
3435                 * Might have been an unused block group deleted by the cleaner
3436                 * kthread or relocation.
3437                 */
3438                spin_lock(&cache->lock);
3439                if (!cache->removed)
3440                        ret = -EINVAL;
3441                spin_unlock(&cache->lock);
3442
3443                return ret;
3444        }
3445
3446        map = em->map_lookup;
3447        if (em->start != chunk_offset)
3448                goto out;
3449
3450        if (em->len < length)
3451                goto out;
3452
3453        for (i = 0; i < map->num_stripes; ++i) {
3454                if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3455                    map->stripes[i].physical == dev_offset) {
3456                        ret = scrub_stripe(sctx, map, scrub_dev, i,
3457                                           chunk_offset, length);
3458                        if (ret)
3459                                goto out;
3460                }
3461        }
3462out:
3463        free_extent_map(em);
3464
3465        return ret;
3466}
3467
3468static noinline_for_stack
3469int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3470                           struct btrfs_device *scrub_dev, u64 start, u64 end)
3471{
3472        struct btrfs_dev_extent *dev_extent = NULL;
3473        struct btrfs_path *path;
3474        struct btrfs_fs_info *fs_info = sctx->fs_info;
3475        struct btrfs_root *root = fs_info->dev_root;
3476        u64 length;
3477        u64 chunk_offset;
3478        int ret = 0;
3479        int ro_set;
3480        int slot;
3481        struct extent_buffer *l;
3482        struct btrfs_key key;
3483        struct btrfs_key found_key;
3484        struct btrfs_block_group *cache;
3485        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3486
3487        path = btrfs_alloc_path();
3488        if (!path)
3489                return -ENOMEM;
3490
3491        path->reada = READA_FORWARD;
3492        path->search_commit_root = 1;
3493        path->skip_locking = 1;
3494
3495        key.objectid = scrub_dev->devid;
3496        key.offset = 0ull;
3497        key.type = BTRFS_DEV_EXTENT_KEY;
3498
3499        while (1) {
3500                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3501                if (ret < 0)
3502                        break;
3503                if (ret > 0) {
3504                        if (path->slots[0] >=
3505                            btrfs_header_nritems(path->nodes[0])) {
3506                                ret = btrfs_next_leaf(root, path);
3507                                if (ret < 0)
3508                                        break;
3509                                if (ret > 0) {
3510                                        ret = 0;
3511                                        break;
3512                                }
3513                        } else {
3514                                ret = 0;
3515                        }
3516                }
3517
3518                l = path->nodes[0];
3519                slot = path->slots[0];
3520
3521                btrfs_item_key_to_cpu(l, &found_key, slot);
3522
3523                if (found_key.objectid != scrub_dev->devid)
3524                        break;
3525
3526                if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3527                        break;
3528
3529                if (found_key.offset >= end)
3530                        break;
3531
3532                if (found_key.offset < key.offset)
3533                        break;
3534
3535                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3536                length = btrfs_dev_extent_length(l, dev_extent);
3537
3538                if (found_key.offset + length <= start)
3539                        goto skip;
3540
3541                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3542
3543                /*
3544                 * get a reference on the corresponding block group to prevent
3545                 * the chunk from going away while we scrub it
3546                 */
3547                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3548
3549                /* some chunks are removed but not committed to disk yet,
3550                 * continue scrubbing */
3551                if (!cache)
3552                        goto skip;
3553
3554                /*
3555                 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3556                 * to avoid deadlock caused by:
3557                 * btrfs_inc_block_group_ro()
3558                 * -> btrfs_wait_for_commit()
3559                 * -> btrfs_commit_transaction()
3560                 * -> btrfs_scrub_pause()
3561                 */
3562                scrub_pause_on(fs_info);
3563
3564                /*
3565                 * Don't do chunk preallocation for scrub.
3566                 *
3567                 * This is especially important for SYSTEM bgs, or we can hit
3568                 * -EFBIG from btrfs_finish_chunk_alloc() like:
3569                 * 1. The only SYSTEM bg is marked RO.
3570                 *    Since SYSTEM bg is small, that's pretty common.
3571                 * 2. New SYSTEM bg will be allocated
3572                 *    Due to regular version will allocate new chunk.
3573                 * 3. New SYSTEM bg is empty and will get cleaned up
3574                 *    Before cleanup really happens, it's marked RO again.
3575                 * 4. Empty SYSTEM bg get scrubbed
3576                 *    We go back to 2.
3577                 *
3578                 * This can easily boost the amount of SYSTEM chunks if cleaner
3579                 * thread can't be triggered fast enough, and use up all space
3580                 * of btrfs_super_block::sys_chunk_array
3581                 *
3582                 * While for dev replace, we need to try our best to mark block
3583                 * group RO, to prevent race between:
3584                 * - Write duplication
3585                 *   Contains latest data
3586                 * - Scrub copy
3587                 *   Contains data from commit tree
3588                 *
3589                 * If target block group is not marked RO, nocow writes can
3590                 * be overwritten by scrub copy, causing data corruption.
3591                 * So for dev-replace, it's not allowed to continue if a block
3592                 * group is not RO.
3593                 */
3594                ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3595                if (ret == 0) {
3596                        ro_set = 1;
3597                } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3598                        /*
3599                         * btrfs_inc_block_group_ro return -ENOSPC when it
3600                         * failed in creating new chunk for metadata.
3601                         * It is not a problem for scrub, because
3602                         * metadata are always cowed, and our scrub paused
3603                         * commit_transactions.
3604                         */
3605                        ro_set = 0;
3606                } else {
3607                        btrfs_warn(fs_info,
3608                                   "failed setting block group ro: %d", ret);
3609                        btrfs_put_block_group(cache);
3610                        scrub_pause_off(fs_info);
3611                        break;
3612                }
3613
3614                /*
3615                 * Now the target block is marked RO, wait for nocow writes to
3616                 * finish before dev-replace.
3617                 * COW is fine, as COW never overwrites extents in commit tree.
3618                 */
3619                if (sctx->is_dev_replace) {
3620                        btrfs_wait_nocow_writers(cache);
3621                        btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3622                                        cache->length);
3623                }
3624
3625                scrub_pause_off(fs_info);
3626                down_write(&dev_replace->rwsem);
3627                dev_replace->cursor_right = found_key.offset + length;
3628                dev_replace->cursor_left = found_key.offset;
3629                dev_replace->item_needs_writeback = 1;
3630                up_write(&dev_replace->rwsem);
3631
3632                ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3633                                  found_key.offset, cache);
3634
3635                /*
3636                 * flush, submit all pending read and write bios, afterwards
3637                 * wait for them.
3638                 * Note that in the dev replace case, a read request causes
3639                 * write requests that are submitted in the read completion
3640                 * worker. Therefore in the current situation, it is required
3641                 * that all write requests are flushed, so that all read and
3642                 * write requests are really completed when bios_in_flight
3643                 * changes to 0.
3644                 */
3645                sctx->flush_all_writes = true;
3646                scrub_submit(sctx);
3647                mutex_lock(&sctx->wr_lock);
3648                scrub_wr_submit(sctx);
3649                mutex_unlock(&sctx->wr_lock);
3650
3651                wait_event(sctx->list_wait,
3652                           atomic_read(&sctx->bios_in_flight) == 0);
3653
3654                scrub_pause_on(fs_info);
3655
3656                /*
3657                 * must be called before we decrease @scrub_paused.
3658                 * make sure we don't block transaction commit while
3659                 * we are waiting pending workers finished.
3660                 */
3661                wait_event(sctx->list_wait,
3662                           atomic_read(&sctx->workers_pending) == 0);
3663                sctx->flush_all_writes = false;
3664
3665                scrub_pause_off(fs_info);
3666
3667                down_write(&dev_replace->rwsem);
3668                dev_replace->cursor_left = dev_replace->cursor_right;
3669                dev_replace->item_needs_writeback = 1;
3670                up_write(&dev_replace->rwsem);
3671
3672                if (ro_set)
3673                        btrfs_dec_block_group_ro(cache);
3674
3675                /*
3676                 * We might have prevented the cleaner kthread from deleting
3677                 * this block group if it was already unused because we raced
3678                 * and set it to RO mode first. So add it back to the unused
3679                 * list, otherwise it might not ever be deleted unless a manual
3680                 * balance is triggered or it becomes used and unused again.
3681                 */
3682                spin_lock(&cache->lock);
3683                if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3684                    cache->used == 0) {
3685                        spin_unlock(&cache->lock);
3686                        if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3687                                btrfs_discard_queue_work(&fs_info->discard_ctl,
3688                                                         cache);
3689                        else
3690                                btrfs_mark_bg_unused(cache);
3691                } else {
3692                        spin_unlock(&cache->lock);
3693                }
3694
3695                btrfs_put_block_group(cache);
3696                if (ret)
3697                        break;
3698                if (sctx->is_dev_replace &&
3699                    atomic64_read(&dev_replace->num_write_errors) > 0) {
3700                        ret = -EIO;
3701                        break;
3702                }
3703                if (sctx->stat.malloc_errors > 0) {
3704                        ret = -ENOMEM;
3705                        break;
3706                }
3707skip:
3708                key.offset = found_key.offset + length;
3709                btrfs_release_path(path);
3710        }
3711
3712        btrfs_free_path(path);
3713
3714        return ret;
3715}
3716
3717static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3718                                           struct btrfs_device *scrub_dev)
3719{
3720        int     i;
3721        u64     bytenr;
3722        u64     gen;
3723        int     ret;
3724        struct btrfs_fs_info *fs_info = sctx->fs_info;
3725
3726        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3727                return -EIO;
3728
3729        /* Seed devices of a new filesystem has their own generation. */
3730        if (scrub_dev->fs_devices != fs_info->fs_devices)
3731                gen = scrub_dev->generation;
3732        else
3733                gen = fs_info->last_trans_committed;
3734
3735        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3736                bytenr = btrfs_sb_offset(i);
3737                if (bytenr + BTRFS_SUPER_INFO_SIZE >
3738                    scrub_dev->commit_total_bytes)
3739                        break;
3740
3741                ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3742                                  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3743                                  NULL, 1, bytenr);
3744                if (ret)
3745                        return ret;
3746        }
3747        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3748
3749        return 0;
3750}
3751
3752/*
3753 * get a reference count on fs_info->scrub_workers. start worker if necessary
3754 */
3755static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3756                                                int is_dev_replace)
3757{
3758        unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3759        int max_active = fs_info->thread_pool_size;
3760
3761        lockdep_assert_held(&fs_info->scrub_lock);
3762
3763        if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3764                ASSERT(fs_info->scrub_workers == NULL);
3765                fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3766                                flags, is_dev_replace ? 1 : max_active, 4);
3767                if (!fs_info->scrub_workers)
3768                        goto fail_scrub_workers;
3769
3770                ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3771                fs_info->scrub_wr_completion_workers =
3772                        btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3773                                              max_active, 2);
3774                if (!fs_info->scrub_wr_completion_workers)
3775                        goto fail_scrub_wr_completion_workers;
3776
3777                ASSERT(fs_info->scrub_parity_workers == NULL);
3778                fs_info->scrub_parity_workers =
3779                        btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3780                                              max_active, 2);
3781                if (!fs_info->scrub_parity_workers)
3782                        goto fail_scrub_parity_workers;
3783
3784                refcount_set(&fs_info->scrub_workers_refcnt, 1);
3785        } else {
3786                refcount_inc(&fs_info->scrub_workers_refcnt);
3787        }
3788        return 0;
3789
3790fail_scrub_parity_workers:
3791        btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3792fail_scrub_wr_completion_workers:
3793        btrfs_destroy_workqueue(fs_info->scrub_workers);
3794fail_scrub_workers:
3795        return -ENOMEM;
3796}
3797
3798int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3799                    u64 end, struct btrfs_scrub_progress *progress,
3800                    int readonly, int is_dev_replace)
3801{
3802        struct scrub_ctx *sctx;
3803        int ret;
3804        struct btrfs_device *dev;
3805        unsigned int nofs_flag;
3806        struct btrfs_workqueue *scrub_workers = NULL;
3807        struct btrfs_workqueue *scrub_wr_comp = NULL;
3808        struct btrfs_workqueue *scrub_parity = NULL;
3809
3810        if (btrfs_fs_closing(fs_info))
3811                return -EAGAIN;
3812
3813        if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3814                /*
3815                 * in this case scrub is unable to calculate the checksum
3816                 * the way scrub is implemented. Do not handle this
3817                 * situation at all because it won't ever happen.
3818                 */
3819                btrfs_err(fs_info,
3820                           "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3821                       fs_info->nodesize,
3822                       BTRFS_STRIPE_LEN);
3823                return -EINVAL;
3824        }
3825
3826        if (fs_info->sectorsize != PAGE_SIZE) {
3827                /* not supported for data w/o checksums */
3828                btrfs_err_rl(fs_info,
3829                           "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3830                       fs_info->sectorsize, PAGE_SIZE);
3831                return -EINVAL;
3832        }
3833
3834        if (fs_info->nodesize >
3835            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3836            fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3837                /*
3838                 * would exhaust the array bounds of pagev member in
3839                 * struct scrub_block
3840                 */
3841                btrfs_err(fs_info,
3842                          "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3843                       fs_info->nodesize,
3844                       SCRUB_MAX_PAGES_PER_BLOCK,
3845                       fs_info->sectorsize,
3846                       SCRUB_MAX_PAGES_PER_BLOCK);
3847                return -EINVAL;
3848        }
3849
3850        /* Allocate outside of device_list_mutex */
3851        sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3852        if (IS_ERR(sctx))
3853                return PTR_ERR(sctx);
3854
3855        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3856        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3857        if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3858                     !is_dev_replace)) {
3859                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3860                ret = -ENODEV;
3861                goto out_free_ctx;
3862        }
3863
3864        if (!is_dev_replace && !readonly &&
3865            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3866                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3867                btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3868                                rcu_str_deref(dev->name));
3869                ret = -EROFS;
3870                goto out_free_ctx;
3871        }
3872
3873        mutex_lock(&fs_info->scrub_lock);
3874        if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3875            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3876                mutex_unlock(&fs_info->scrub_lock);
3877                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3878                ret = -EIO;
3879                goto out_free_ctx;
3880        }
3881
3882        down_read(&fs_info->dev_replace.rwsem);
3883        if (dev->scrub_ctx ||
3884            (!is_dev_replace &&
3885             btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3886                up_read(&fs_info->dev_replace.rwsem);
3887                mutex_unlock(&fs_info->scrub_lock);
3888                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889                ret = -EINPROGRESS;
3890                goto out_free_ctx;
3891        }
3892        up_read(&fs_info->dev_replace.rwsem);
3893
3894        ret = scrub_workers_get(fs_info, is_dev_replace);
3895        if (ret) {
3896                mutex_unlock(&fs_info->scrub_lock);
3897                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3898                goto out_free_ctx;
3899        }
3900
3901        sctx->readonly = readonly;
3902        dev->scrub_ctx = sctx;
3903        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3904
3905        /*
3906         * checking @scrub_pause_req here, we can avoid
3907         * race between committing transaction and scrubbing.
3908         */
3909        __scrub_blocked_if_needed(fs_info);
3910        atomic_inc(&fs_info->scrubs_running);
3911        mutex_unlock(&fs_info->scrub_lock);
3912
3913        /*
3914         * In order to avoid deadlock with reclaim when there is a transaction
3915         * trying to pause scrub, make sure we use GFP_NOFS for all the
3916         * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3917         * invoked by our callees. The pausing request is done when the
3918         * transaction commit starts, and it blocks the transaction until scrub
3919         * is paused (done at specific points at scrub_stripe() or right above
3920         * before incrementing fs_info->scrubs_running).
3921         */
3922        nofs_flag = memalloc_nofs_save();
3923        if (!is_dev_replace) {
3924                btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3925                /*
3926                 * by holding device list mutex, we can
3927                 * kick off writing super in log tree sync.
3928                 */
3929                mutex_lock(&fs_info->fs_devices->device_list_mutex);
3930                ret = scrub_supers(sctx, dev);
3931                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932        }
3933
3934        if (!ret)
3935                ret = scrub_enumerate_chunks(sctx, dev, start, end);
3936        memalloc_nofs_restore(nofs_flag);
3937
3938        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3939        atomic_dec(&fs_info->scrubs_running);
3940        wake_up(&fs_info->scrub_pause_wait);
3941
3942        wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3943
3944        if (progress)
3945                memcpy(progress, &sctx->stat, sizeof(*progress));
3946
3947        if (!is_dev_replace)
3948                btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3949                        ret ? "not finished" : "finished", devid, ret);
3950
3951        mutex_lock(&fs_info->scrub_lock);
3952        dev->scrub_ctx = NULL;
3953        if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3954                scrub_workers = fs_info->scrub_workers;
3955                scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3956                scrub_parity = fs_info->scrub_parity_workers;
3957
3958                fs_info->scrub_workers = NULL;
3959                fs_info->scrub_wr_completion_workers = NULL;
3960                fs_info->scrub_parity_workers = NULL;
3961        }
3962        mutex_unlock(&fs_info->scrub_lock);
3963
3964        btrfs_destroy_workqueue(scrub_workers);
3965        btrfs_destroy_workqueue(scrub_wr_comp);
3966        btrfs_destroy_workqueue(scrub_parity);
3967        scrub_put_ctx(sctx);
3968
3969        return ret;
3970
3971out_free_ctx:
3972        scrub_free_ctx(sctx);
3973
3974        return ret;
3975}
3976
3977void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3978{
3979        mutex_lock(&fs_info->scrub_lock);
3980        atomic_inc(&fs_info->scrub_pause_req);
3981        while (atomic_read(&fs_info->scrubs_paused) !=
3982               atomic_read(&fs_info->scrubs_running)) {
3983                mutex_unlock(&fs_info->scrub_lock);
3984                wait_event(fs_info->scrub_pause_wait,
3985                           atomic_read(&fs_info->scrubs_paused) ==
3986                           atomic_read(&fs_info->scrubs_running));
3987                mutex_lock(&fs_info->scrub_lock);
3988        }
3989        mutex_unlock(&fs_info->scrub_lock);
3990}
3991
3992void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3993{
3994        atomic_dec(&fs_info->scrub_pause_req);
3995        wake_up(&fs_info->scrub_pause_wait);
3996}
3997
3998int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3999{
4000        mutex_lock(&fs_info->scrub_lock);
4001        if (!atomic_read(&fs_info->scrubs_running)) {
4002                mutex_unlock(&fs_info->scrub_lock);
4003                return -ENOTCONN;
4004        }
4005
4006        atomic_inc(&fs_info->scrub_cancel_req);
4007        while (atomic_read(&fs_info->scrubs_running)) {
4008                mutex_unlock(&fs_info->scrub_lock);
4009                wait_event(fs_info->scrub_pause_wait,
4010                           atomic_read(&fs_info->scrubs_running) == 0);
4011                mutex_lock(&fs_info->scrub_lock);
4012        }
4013        atomic_dec(&fs_info->scrub_cancel_req);
4014        mutex_unlock(&fs_info->scrub_lock);
4015
4016        return 0;
4017}
4018
4019int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4020{
4021        struct btrfs_fs_info *fs_info = dev->fs_info;
4022        struct scrub_ctx *sctx;
4023
4024        mutex_lock(&fs_info->scrub_lock);
4025        sctx = dev->scrub_ctx;
4026        if (!sctx) {
4027                mutex_unlock(&fs_info->scrub_lock);
4028                return -ENOTCONN;
4029        }
4030        atomic_inc(&sctx->cancel_req);
4031        while (dev->scrub_ctx) {
4032                mutex_unlock(&fs_info->scrub_lock);
4033                wait_event(fs_info->scrub_pause_wait,
4034                           dev->scrub_ctx == NULL);
4035                mutex_lock(&fs_info->scrub_lock);
4036        }
4037        mutex_unlock(&fs_info->scrub_lock);
4038
4039        return 0;
4040}
4041
4042int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4043                         struct btrfs_scrub_progress *progress)
4044{
4045        struct btrfs_device *dev;
4046        struct scrub_ctx *sctx = NULL;
4047
4048        mutex_lock(&fs_info->fs_devices->device_list_mutex);
4049        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4050        if (dev)
4051                sctx = dev->scrub_ctx;
4052        if (sctx)
4053                memcpy(progress, &sctx->stat, sizeof(*progress));
4054        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4055
4056        return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4057}
4058
4059static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4060                               u64 extent_logical, u64 extent_len,
4061                               u64 *extent_physical,
4062                               struct btrfs_device **extent_dev,
4063                               int *extent_mirror_num)
4064{
4065        u64 mapped_length;
4066        struct btrfs_bio *bbio = NULL;
4067        int ret;
4068
4069        mapped_length = extent_len;
4070        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4071                              &mapped_length, &bbio, 0);
4072        if (ret || !bbio || mapped_length < extent_len ||
4073            !bbio->stripes[0].dev->bdev) {
4074                btrfs_put_bbio(bbio);
4075                return;
4076        }
4077
4078        *extent_physical = bbio->stripes[0].physical;
4079        *extent_mirror_num = bbio->mirror_num;
4080        *extent_dev = bbio->stripes[0].dev;
4081        btrfs_put_bbio(bbio);
4082}
4083