linux/fs/crypto/hooks.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/crypto/hooks.c
   4 *
   5 * Encryption hooks for higher-level filesystem operations.
   6 */
   7
   8#include <linux/key.h>
   9
  10#include "fscrypt_private.h"
  11
  12/**
  13 * fscrypt_file_open - prepare to open a possibly-encrypted regular file
  14 * @inode: the inode being opened
  15 * @filp: the struct file being set up
  16 *
  17 * Currently, an encrypted regular file can only be opened if its encryption key
  18 * is available; access to the raw encrypted contents is not supported.
  19 * Therefore, we first set up the inode's encryption key (if not already done)
  20 * and return an error if it's unavailable.
  21 *
  22 * We also verify that if the parent directory (from the path via which the file
  23 * is being opened) is encrypted, then the inode being opened uses the same
  24 * encryption policy.  This is needed as part of the enforcement that all files
  25 * in an encrypted directory tree use the same encryption policy, as a
  26 * protection against certain types of offline attacks.  Note that this check is
  27 * needed even when opening an *unencrypted* file, since it's forbidden to have
  28 * an unencrypted file in an encrypted directory.
  29 *
  30 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
  31 */
  32int fscrypt_file_open(struct inode *inode, struct file *filp)
  33{
  34        int err;
  35        struct dentry *dir;
  36
  37        err = fscrypt_require_key(inode);
  38        if (err)
  39                return err;
  40
  41        dir = dget_parent(file_dentry(filp));
  42        if (IS_ENCRYPTED(d_inode(dir)) &&
  43            !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  44                fscrypt_warn(inode,
  45                             "Inconsistent encryption context (parent directory: %lu)",
  46                             d_inode(dir)->i_ino);
  47                err = -EPERM;
  48        }
  49        dput(dir);
  50        return err;
  51}
  52EXPORT_SYMBOL_GPL(fscrypt_file_open);
  53
  54int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
  55                           struct dentry *dentry)
  56{
  57        int err;
  58
  59        err = fscrypt_require_key(dir);
  60        if (err)
  61                return err;
  62
  63        /* ... in case we looked up ciphertext name before key was added */
  64        if (dentry->d_flags & DCACHE_ENCRYPTED_NAME)
  65                return -ENOKEY;
  66
  67        if (!fscrypt_has_permitted_context(dir, inode))
  68                return -EXDEV;
  69
  70        return 0;
  71}
  72EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
  73
  74int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
  75                             struct inode *new_dir, struct dentry *new_dentry,
  76                             unsigned int flags)
  77{
  78        int err;
  79
  80        err = fscrypt_require_key(old_dir);
  81        if (err)
  82                return err;
  83
  84        err = fscrypt_require_key(new_dir);
  85        if (err)
  86                return err;
  87
  88        /* ... in case we looked up ciphertext name(s) before key was added */
  89        if ((old_dentry->d_flags | new_dentry->d_flags) &
  90            DCACHE_ENCRYPTED_NAME)
  91                return -ENOKEY;
  92
  93        if (old_dir != new_dir) {
  94                if (IS_ENCRYPTED(new_dir) &&
  95                    !fscrypt_has_permitted_context(new_dir,
  96                                                   d_inode(old_dentry)))
  97                        return -EXDEV;
  98
  99                if ((flags & RENAME_EXCHANGE) &&
 100                    IS_ENCRYPTED(old_dir) &&
 101                    !fscrypt_has_permitted_context(old_dir,
 102                                                   d_inode(new_dentry)))
 103                        return -EXDEV;
 104        }
 105        return 0;
 106}
 107EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
 108
 109int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
 110                             struct fscrypt_name *fname)
 111{
 112        int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
 113
 114        if (err && err != -ENOENT)
 115                return err;
 116
 117        if (fname->is_ciphertext_name) {
 118                spin_lock(&dentry->d_lock);
 119                dentry->d_flags |= DCACHE_ENCRYPTED_NAME;
 120                spin_unlock(&dentry->d_lock);
 121                d_set_d_op(dentry, &fscrypt_d_ops);
 122        }
 123        return err;
 124}
 125EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
 126
 127/**
 128 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
 129 * @inode: the inode on which flags are being changed
 130 * @oldflags: the old flags
 131 * @flags: the new flags
 132 *
 133 * The caller should be holding i_rwsem for write.
 134 *
 135 * Return: 0 on success; -errno if the flags change isn't allowed or if
 136 *         another error occurs.
 137 */
 138int fscrypt_prepare_setflags(struct inode *inode,
 139                             unsigned int oldflags, unsigned int flags)
 140{
 141        struct fscrypt_info *ci;
 142        struct fscrypt_master_key *mk;
 143        int err;
 144
 145        /*
 146         * When the CASEFOLD flag is set on an encrypted directory, we must
 147         * derive the secret key needed for the dirhash.  This is only possible
 148         * if the directory uses a v2 encryption policy.
 149         */
 150        if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
 151                err = fscrypt_require_key(inode);
 152                if (err)
 153                        return err;
 154                ci = inode->i_crypt_info;
 155                if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
 156                        return -EINVAL;
 157                mk = ci->ci_master_key->payload.data[0];
 158                down_read(&mk->mk_secret_sem);
 159                if (is_master_key_secret_present(&mk->mk_secret))
 160                        err = fscrypt_derive_dirhash_key(ci, mk);
 161                else
 162                        err = -ENOKEY;
 163                up_read(&mk->mk_secret_sem);
 164                return err;
 165        }
 166        return 0;
 167}
 168
 169int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
 170                              unsigned int max_len,
 171                              struct fscrypt_str *disk_link)
 172{
 173        int err;
 174
 175        /*
 176         * To calculate the size of the encrypted symlink target we need to know
 177         * the amount of NUL padding, which is determined by the flags set in
 178         * the encryption policy which will be inherited from the directory.
 179         * The easiest way to get access to this is to just load the directory's
 180         * fscrypt_info, since we'll need it to create the dir_entry anyway.
 181         *
 182         * Note: in test_dummy_encryption mode, @dir may be unencrypted.
 183         */
 184        err = fscrypt_get_encryption_info(dir);
 185        if (err)
 186                return err;
 187        if (!fscrypt_has_encryption_key(dir))
 188                return -ENOKEY;
 189
 190        /*
 191         * Calculate the size of the encrypted symlink and verify it won't
 192         * exceed max_len.  Note that for historical reasons, encrypted symlink
 193         * targets are prefixed with the ciphertext length, despite this
 194         * actually being redundant with i_size.  This decreases by 2 bytes the
 195         * longest symlink target we can accept.
 196         *
 197         * We could recover 1 byte by not counting a null terminator, but
 198         * counting it (even though it is meaningless for ciphertext) is simpler
 199         * for now since filesystems will assume it is there and subtract it.
 200         */
 201        if (!fscrypt_fname_encrypted_size(dir, len,
 202                                          max_len - sizeof(struct fscrypt_symlink_data),
 203                                          &disk_link->len))
 204                return -ENAMETOOLONG;
 205        disk_link->len += sizeof(struct fscrypt_symlink_data);
 206
 207        disk_link->name = NULL;
 208        return 0;
 209}
 210EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
 211
 212int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
 213                              unsigned int len, struct fscrypt_str *disk_link)
 214{
 215        int err;
 216        struct qstr iname = QSTR_INIT(target, len);
 217        struct fscrypt_symlink_data *sd;
 218        unsigned int ciphertext_len;
 219
 220        err = fscrypt_require_key(inode);
 221        if (err)
 222                return err;
 223
 224        if (disk_link->name) {
 225                /* filesystem-provided buffer */
 226                sd = (struct fscrypt_symlink_data *)disk_link->name;
 227        } else {
 228                sd = kmalloc(disk_link->len, GFP_NOFS);
 229                if (!sd)
 230                        return -ENOMEM;
 231        }
 232        ciphertext_len = disk_link->len - sizeof(*sd);
 233        sd->len = cpu_to_le16(ciphertext_len);
 234
 235        err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
 236                                    ciphertext_len);
 237        if (err)
 238                goto err_free_sd;
 239
 240        /*
 241         * Null-terminating the ciphertext doesn't make sense, but we still
 242         * count the null terminator in the length, so we might as well
 243         * initialize it just in case the filesystem writes it out.
 244         */
 245        sd->encrypted_path[ciphertext_len] = '\0';
 246
 247        /* Cache the plaintext symlink target for later use by get_link() */
 248        err = -ENOMEM;
 249        inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
 250        if (!inode->i_link)
 251                goto err_free_sd;
 252
 253        if (!disk_link->name)
 254                disk_link->name = (unsigned char *)sd;
 255        return 0;
 256
 257err_free_sd:
 258        if (!disk_link->name)
 259                kfree(sd);
 260        return err;
 261}
 262EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
 263
 264/**
 265 * fscrypt_get_symlink - get the target of an encrypted symlink
 266 * @inode: the symlink inode
 267 * @caddr: the on-disk contents of the symlink
 268 * @max_size: size of @caddr buffer
 269 * @done: if successful, will be set up to free the returned target if needed
 270 *
 271 * If the symlink's encryption key is available, we decrypt its target.
 272 * Otherwise, we encode its target for presentation.
 273 *
 274 * This may sleep, so the filesystem must have dropped out of RCU mode already.
 275 *
 276 * Return: the presentable symlink target or an ERR_PTR()
 277 */
 278const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
 279                                unsigned int max_size,
 280                                struct delayed_call *done)
 281{
 282        const struct fscrypt_symlink_data *sd;
 283        struct fscrypt_str cstr, pstr;
 284        bool has_key;
 285        int err;
 286
 287        /* This is for encrypted symlinks only */
 288        if (WARN_ON(!IS_ENCRYPTED(inode)))
 289                return ERR_PTR(-EINVAL);
 290
 291        /* If the decrypted target is already cached, just return it. */
 292        pstr.name = READ_ONCE(inode->i_link);
 293        if (pstr.name)
 294                return pstr.name;
 295
 296        /*
 297         * Try to set up the symlink's encryption key, but we can continue
 298         * regardless of whether the key is available or not.
 299         */
 300        err = fscrypt_get_encryption_info(inode);
 301        if (err)
 302                return ERR_PTR(err);
 303        has_key = fscrypt_has_encryption_key(inode);
 304
 305        /*
 306         * For historical reasons, encrypted symlink targets are prefixed with
 307         * the ciphertext length, even though this is redundant with i_size.
 308         */
 309
 310        if (max_size < sizeof(*sd))
 311                return ERR_PTR(-EUCLEAN);
 312        sd = caddr;
 313        cstr.name = (unsigned char *)sd->encrypted_path;
 314        cstr.len = le16_to_cpu(sd->len);
 315
 316        if (cstr.len == 0)
 317                return ERR_PTR(-EUCLEAN);
 318
 319        if (cstr.len + sizeof(*sd) - 1 > max_size)
 320                return ERR_PTR(-EUCLEAN);
 321
 322        err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
 323        if (err)
 324                return ERR_PTR(err);
 325
 326        err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
 327        if (err)
 328                goto err_kfree;
 329
 330        err = -EUCLEAN;
 331        if (pstr.name[0] == '\0')
 332                goto err_kfree;
 333
 334        pstr.name[pstr.len] = '\0';
 335
 336        /*
 337         * Cache decrypted symlink targets in i_link for later use.  Don't cache
 338         * symlink targets encoded without the key, since those become outdated
 339         * once the key is added.  This pairs with the READ_ONCE() above and in
 340         * the VFS path lookup code.
 341         */
 342        if (!has_key ||
 343            cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
 344                set_delayed_call(done, kfree_link, pstr.name);
 345
 346        return pstr.name;
 347
 348err_kfree:
 349        kfree(pstr.name);
 350        return ERR_PTR(err);
 351}
 352EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
 353