linux/fs/ext4/mballoc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   4 * Written by Alex Tomas <alex@clusterfs.com>
   5 */
   6
   7
   8/*
   9 * mballoc.c contains the multiblocks allocation routines
  10 */
  11
  12#include "ext4_jbd2.h"
  13#include "mballoc.h"
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/nospec.h>
  18#include <linux/backing-dev.h>
  19#include <trace/events/ext4.h>
  20
  21#ifdef CONFIG_EXT4_DEBUG
  22ushort ext4_mballoc_debug __read_mostly;
  23
  24module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
  25MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
  26#endif
  27
  28/*
  29 * MUSTDO:
  30 *   - test ext4_ext_search_left() and ext4_ext_search_right()
  31 *   - search for metadata in few groups
  32 *
  33 * TODO v4:
  34 *   - normalization should take into account whether file is still open
  35 *   - discard preallocations if no free space left (policy?)
  36 *   - don't normalize tails
  37 *   - quota
  38 *   - reservation for superuser
  39 *
  40 * TODO v3:
  41 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
  42 *   - track min/max extents in each group for better group selection
  43 *   - mb_mark_used() may allocate chunk right after splitting buddy
  44 *   - tree of groups sorted by number of free blocks
  45 *   - error handling
  46 */
  47
  48/*
  49 * The allocation request involve request for multiple number of blocks
  50 * near to the goal(block) value specified.
  51 *
  52 * During initialization phase of the allocator we decide to use the
  53 * group preallocation or inode preallocation depending on the size of
  54 * the file. The size of the file could be the resulting file size we
  55 * would have after allocation, or the current file size, which ever
  56 * is larger. If the size is less than sbi->s_mb_stream_request we
  57 * select to use the group preallocation. The default value of
  58 * s_mb_stream_request is 16 blocks. This can also be tuned via
  59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
  60 * terms of number of blocks.
  61 *
  62 * The main motivation for having small file use group preallocation is to
  63 * ensure that we have small files closer together on the disk.
  64 *
  65 * First stage the allocator looks at the inode prealloc list,
  66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
  67 * spaces for this particular inode. The inode prealloc space is
  68 * represented as:
  69 *
  70 * pa_lstart -> the logical start block for this prealloc space
  71 * pa_pstart -> the physical start block for this prealloc space
  72 * pa_len    -> length for this prealloc space (in clusters)
  73 * pa_free   ->  free space available in this prealloc space (in clusters)
  74 *
  75 * The inode preallocation space is used looking at the _logical_ start
  76 * block. If only the logical file block falls within the range of prealloc
  77 * space we will consume the particular prealloc space. This makes sure that
  78 * we have contiguous physical blocks representing the file blocks
  79 *
  80 * The important thing to be noted in case of inode prealloc space is that
  81 * we don't modify the values associated to inode prealloc space except
  82 * pa_free.
  83 *
  84 * If we are not able to find blocks in the inode prealloc space and if we
  85 * have the group allocation flag set then we look at the locality group
  86 * prealloc space. These are per CPU prealloc list represented as
  87 *
  88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
  89 *
  90 * The reason for having a per cpu locality group is to reduce the contention
  91 * between CPUs. It is possible to get scheduled at this point.
  92 *
  93 * The locality group prealloc space is used looking at whether we have
  94 * enough free space (pa_free) within the prealloc space.
  95 *
  96 * If we can't allocate blocks via inode prealloc or/and locality group
  97 * prealloc then we look at the buddy cache. The buddy cache is represented
  98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
  99 * mapped to the buddy and bitmap information regarding different
 100 * groups. The buddy information is attached to buddy cache inode so that
 101 * we can access them through the page cache. The information regarding
 102 * each group is loaded via ext4_mb_load_buddy.  The information involve
 103 * block bitmap and buddy information. The information are stored in the
 104 * inode as:
 105 *
 106 *  {                        page                        }
 107 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 108 *
 109 *
 110 * one block each for bitmap and buddy information.  So for each group we
 111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
 112 * blocksize) blocks.  So it can have information regarding groups_per_page
 113 * which is blocks_per_page/2
 114 *
 115 * The buddy cache inode is not stored on disk. The inode is thrown
 116 * away when the filesystem is unmounted.
 117 *
 118 * We look for count number of blocks in the buddy cache. If we were able
 119 * to locate that many free blocks we return with additional information
 120 * regarding rest of the contiguous physical block available
 121 *
 122 * Before allocating blocks via buddy cache we normalize the request
 123 * blocks. This ensure we ask for more blocks that we needed. The extra
 124 * blocks that we get after allocation is added to the respective prealloc
 125 * list. In case of inode preallocation we follow a list of heuristics
 126 * based on file size. This can be found in ext4_mb_normalize_request. If
 127 * we are doing a group prealloc we try to normalize the request to
 128 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 129 * dependent on the cluster size; for non-bigalloc file systems, it is
 130 * 512 blocks. This can be tuned via
 131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
 132 * terms of number of blocks. If we have mounted the file system with -O
 133 * stripe=<value> option the group prealloc request is normalized to the
 134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 135 * greater than the default mb_group_prealloc.
 136 *
 137 * The regular allocator (using the buddy cache) supports a few tunables.
 138 *
 139 * /sys/fs/ext4/<partition>/mb_min_to_scan
 140 * /sys/fs/ext4/<partition>/mb_max_to_scan
 141 * /sys/fs/ext4/<partition>/mb_order2_req
 142 *
 143 * The regular allocator uses buddy scan only if the request len is power of
 144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 145 * value of s_mb_order2_reqs can be tuned via
 146 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
 147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
 148 * stripe size. This should result in better allocation on RAID setups. If
 149 * not, we search in the specific group using bitmap for best extents. The
 150 * tunable min_to_scan and max_to_scan control the behaviour here.
 151 * min_to_scan indicate how long the mballoc __must__ look for a best
 152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
 153 * best extent in the found extents. Searching for the blocks starts with
 154 * the group specified as the goal value in allocation context via
 155 * ac_g_ex. Each group is first checked based on the criteria whether it
 156 * can be used for allocation. ext4_mb_good_group explains how the groups are
 157 * checked.
 158 *
 159 * Both the prealloc space are getting populated as above. So for the first
 160 * request we will hit the buddy cache which will result in this prealloc
 161 * space getting filled. The prealloc space is then later used for the
 162 * subsequent request.
 163 */
 164
 165/*
 166 * mballoc operates on the following data:
 167 *  - on-disk bitmap
 168 *  - in-core buddy (actually includes buddy and bitmap)
 169 *  - preallocation descriptors (PAs)
 170 *
 171 * there are two types of preallocations:
 172 *  - inode
 173 *    assiged to specific inode and can be used for this inode only.
 174 *    it describes part of inode's space preallocated to specific
 175 *    physical blocks. any block from that preallocated can be used
 176 *    independent. the descriptor just tracks number of blocks left
 177 *    unused. so, before taking some block from descriptor, one must
 178 *    make sure corresponded logical block isn't allocated yet. this
 179 *    also means that freeing any block within descriptor's range
 180 *    must discard all preallocated blocks.
 181 *  - locality group
 182 *    assigned to specific locality group which does not translate to
 183 *    permanent set of inodes: inode can join and leave group. space
 184 *    from this type of preallocation can be used for any inode. thus
 185 *    it's consumed from the beginning to the end.
 186 *
 187 * relation between them can be expressed as:
 188 *    in-core buddy = on-disk bitmap + preallocation descriptors
 189 *
 190 * this mean blocks mballoc considers used are:
 191 *  - allocated blocks (persistent)
 192 *  - preallocated blocks (non-persistent)
 193 *
 194 * consistency in mballoc world means that at any time a block is either
 195 * free or used in ALL structures. notice: "any time" should not be read
 196 * literally -- time is discrete and delimited by locks.
 197 *
 198 *  to keep it simple, we don't use block numbers, instead we count number of
 199 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 200 *
 201 * all operations can be expressed as:
 202 *  - init buddy:                       buddy = on-disk + PAs
 203 *  - new PA:                           buddy += N; PA = N
 204 *  - use inode PA:                     on-disk += N; PA -= N
 205 *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
 206 *  - use locality group PA             on-disk += N; PA -= N
 207 *  - discard locality group PA         buddy -= PA; PA = 0
 208 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 209 *        is used in real operation because we can't know actual used
 210 *        bits from PA, only from on-disk bitmap
 211 *
 212 * if we follow this strict logic, then all operations above should be atomic.
 213 * given some of them can block, we'd have to use something like semaphores
 214 * killing performance on high-end SMP hardware. let's try to relax it using
 215 * the following knowledge:
 216 *  1) if buddy is referenced, it's already initialized
 217 *  2) while block is used in buddy and the buddy is referenced,
 218 *     nobody can re-allocate that block
 219 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 220 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 221 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 222 *     block
 223 *
 224 * so, now we're building a concurrency table:
 225 *  - init buddy vs.
 226 *    - new PA
 227 *      blocks for PA are allocated in the buddy, buddy must be referenced
 228 *      until PA is linked to allocation group to avoid concurrent buddy init
 229 *    - use inode PA
 230 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 231 *      given (3) we care that PA-=N operation doesn't interfere with init
 232 *    - discard inode PA
 233 *      the simplest way would be to have buddy initialized by the discard
 234 *    - use locality group PA
 235 *      again PA-=N must be serialized with init
 236 *    - discard locality group PA
 237 *      the simplest way would be to have buddy initialized by the discard
 238 *  - new PA vs.
 239 *    - use inode PA
 240 *      i_data_sem serializes them
 241 *    - discard inode PA
 242 *      discard process must wait until PA isn't used by another process
 243 *    - use locality group PA
 244 *      some mutex should serialize them
 245 *    - discard locality group PA
 246 *      discard process must wait until PA isn't used by another process
 247 *  - use inode PA
 248 *    - use inode PA
 249 *      i_data_sem or another mutex should serializes them
 250 *    - discard inode PA
 251 *      discard process must wait until PA isn't used by another process
 252 *    - use locality group PA
 253 *      nothing wrong here -- they're different PAs covering different blocks
 254 *    - discard locality group PA
 255 *      discard process must wait until PA isn't used by another process
 256 *
 257 * now we're ready to make few consequences:
 258 *  - PA is referenced and while it is no discard is possible
 259 *  - PA is referenced until block isn't marked in on-disk bitmap
 260 *  - PA changes only after on-disk bitmap
 261 *  - discard must not compete with init. either init is done before
 262 *    any discard or they're serialized somehow
 263 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 264 *
 265 * a special case when we've used PA to emptiness. no need to modify buddy
 266 * in this case, but we should care about concurrent init
 267 *
 268 */
 269
 270 /*
 271 * Logic in few words:
 272 *
 273 *  - allocation:
 274 *    load group
 275 *    find blocks
 276 *    mark bits in on-disk bitmap
 277 *    release group
 278 *
 279 *  - use preallocation:
 280 *    find proper PA (per-inode or group)
 281 *    load group
 282 *    mark bits in on-disk bitmap
 283 *    release group
 284 *    release PA
 285 *
 286 *  - free:
 287 *    load group
 288 *    mark bits in on-disk bitmap
 289 *    release group
 290 *
 291 *  - discard preallocations in group:
 292 *    mark PAs deleted
 293 *    move them onto local list
 294 *    load on-disk bitmap
 295 *    load group
 296 *    remove PA from object (inode or locality group)
 297 *    mark free blocks in-core
 298 *
 299 *  - discard inode's preallocations:
 300 */
 301
 302/*
 303 * Locking rules
 304 *
 305 * Locks:
 306 *  - bitlock on a group        (group)
 307 *  - object (inode/locality)   (object)
 308 *  - per-pa lock               (pa)
 309 *
 310 * Paths:
 311 *  - new pa
 312 *    object
 313 *    group
 314 *
 315 *  - find and use pa:
 316 *    pa
 317 *
 318 *  - release consumed pa:
 319 *    pa
 320 *    group
 321 *    object
 322 *
 323 *  - generate in-core bitmap:
 324 *    group
 325 *        pa
 326 *
 327 *  - discard all for given object (inode, locality group):
 328 *    object
 329 *        pa
 330 *    group
 331 *
 332 *  - discard all for given group:
 333 *    group
 334 *        pa
 335 *    group
 336 *        object
 337 *
 338 */
 339static struct kmem_cache *ext4_pspace_cachep;
 340static struct kmem_cache *ext4_ac_cachep;
 341static struct kmem_cache *ext4_free_data_cachep;
 342
 343/* We create slab caches for groupinfo data structures based on the
 344 * superblock block size.  There will be one per mounted filesystem for
 345 * each unique s_blocksize_bits */
 346#define NR_GRPINFO_CACHES 8
 347static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
 348
 349static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
 350        "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
 351        "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
 352        "ext4_groupinfo_64k", "ext4_groupinfo_128k"
 353};
 354
 355static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
 356                                        ext4_group_t group);
 357static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
 358                                                ext4_group_t group);
 359
 360static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
 361{
 362#if BITS_PER_LONG == 64
 363        *bit += ((unsigned long) addr & 7UL) << 3;
 364        addr = (void *) ((unsigned long) addr & ~7UL);
 365#elif BITS_PER_LONG == 32
 366        *bit += ((unsigned long) addr & 3UL) << 3;
 367        addr = (void *) ((unsigned long) addr & ~3UL);
 368#else
 369#error "how many bits you are?!"
 370#endif
 371        return addr;
 372}
 373
 374static inline int mb_test_bit(int bit, void *addr)
 375{
 376        /*
 377         * ext4_test_bit on architecture like powerpc
 378         * needs unsigned long aligned address
 379         */
 380        addr = mb_correct_addr_and_bit(&bit, addr);
 381        return ext4_test_bit(bit, addr);
 382}
 383
 384static inline void mb_set_bit(int bit, void *addr)
 385{
 386        addr = mb_correct_addr_and_bit(&bit, addr);
 387        ext4_set_bit(bit, addr);
 388}
 389
 390static inline void mb_clear_bit(int bit, void *addr)
 391{
 392        addr = mb_correct_addr_and_bit(&bit, addr);
 393        ext4_clear_bit(bit, addr);
 394}
 395
 396static inline int mb_test_and_clear_bit(int bit, void *addr)
 397{
 398        addr = mb_correct_addr_and_bit(&bit, addr);
 399        return ext4_test_and_clear_bit(bit, addr);
 400}
 401
 402static inline int mb_find_next_zero_bit(void *addr, int max, int start)
 403{
 404        int fix = 0, ret, tmpmax;
 405        addr = mb_correct_addr_and_bit(&fix, addr);
 406        tmpmax = max + fix;
 407        start += fix;
 408
 409        ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
 410        if (ret > max)
 411                return max;
 412        return ret;
 413}
 414
 415static inline int mb_find_next_bit(void *addr, int max, int start)
 416{
 417        int fix = 0, ret, tmpmax;
 418        addr = mb_correct_addr_and_bit(&fix, addr);
 419        tmpmax = max + fix;
 420        start += fix;
 421
 422        ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
 423        if (ret > max)
 424                return max;
 425        return ret;
 426}
 427
 428static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
 429{
 430        char *bb;
 431
 432        BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
 433        BUG_ON(max == NULL);
 434
 435        if (order > e4b->bd_blkbits + 1) {
 436                *max = 0;
 437                return NULL;
 438        }
 439
 440        /* at order 0 we see each particular block */
 441        if (order == 0) {
 442                *max = 1 << (e4b->bd_blkbits + 3);
 443                return e4b->bd_bitmap;
 444        }
 445
 446        bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
 447        *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
 448
 449        return bb;
 450}
 451
 452#ifdef DOUBLE_CHECK
 453static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
 454                           int first, int count)
 455{
 456        int i;
 457        struct super_block *sb = e4b->bd_sb;
 458
 459        if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 460                return;
 461        assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
 462        for (i = 0; i < count; i++) {
 463                if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
 464                        ext4_fsblk_t blocknr;
 465
 466                        blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
 467                        blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
 468                        ext4_grp_locked_error(sb, e4b->bd_group,
 469                                              inode ? inode->i_ino : 0,
 470                                              blocknr,
 471                                              "freeing block already freed "
 472                                              "(bit %u)",
 473                                              first + i);
 474                        ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
 475                                        EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 476                }
 477                mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
 478        }
 479}
 480
 481static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
 482{
 483        int i;
 484
 485        if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 486                return;
 487        assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
 488        for (i = 0; i < count; i++) {
 489                BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
 490                mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
 491        }
 492}
 493
 494static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 495{
 496        if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
 497                unsigned char *b1, *b2;
 498                int i;
 499                b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
 500                b2 = (unsigned char *) bitmap;
 501                for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
 502                        if (b1[i] != b2[i]) {
 503                                ext4_msg(e4b->bd_sb, KERN_ERR,
 504                                         "corruption in group %u "
 505                                         "at byte %u(%u): %x in copy != %x "
 506                                         "on disk/prealloc",
 507                                         e4b->bd_group, i, i * 8, b1[i], b2[i]);
 508                                BUG();
 509                        }
 510                }
 511        }
 512}
 513
 514#else
 515static inline void mb_free_blocks_double(struct inode *inode,
 516                                struct ext4_buddy *e4b, int first, int count)
 517{
 518        return;
 519}
 520static inline void mb_mark_used_double(struct ext4_buddy *e4b,
 521                                                int first, int count)
 522{
 523        return;
 524}
 525static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 526{
 527        return;
 528}
 529#endif
 530
 531#ifdef AGGRESSIVE_CHECK
 532
 533#define MB_CHECK_ASSERT(assert)                                         \
 534do {                                                                    \
 535        if (!(assert)) {                                                \
 536                printk(KERN_EMERG                                       \
 537                        "Assertion failure in %s() at %s:%d: \"%s\"\n", \
 538                        function, file, line, # assert);                \
 539                BUG();                                                  \
 540        }                                                               \
 541} while (0)
 542
 543static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
 544                                const char *function, int line)
 545{
 546        struct super_block *sb = e4b->bd_sb;
 547        int order = e4b->bd_blkbits + 1;
 548        int max;
 549        int max2;
 550        int i;
 551        int j;
 552        int k;
 553        int count;
 554        struct ext4_group_info *grp;
 555        int fragments = 0;
 556        int fstart;
 557        struct list_head *cur;
 558        void *buddy;
 559        void *buddy2;
 560
 561        {
 562                static int mb_check_counter;
 563                if (mb_check_counter++ % 100 != 0)
 564                        return 0;
 565        }
 566
 567        while (order > 1) {
 568                buddy = mb_find_buddy(e4b, order, &max);
 569                MB_CHECK_ASSERT(buddy);
 570                buddy2 = mb_find_buddy(e4b, order - 1, &max2);
 571                MB_CHECK_ASSERT(buddy2);
 572                MB_CHECK_ASSERT(buddy != buddy2);
 573                MB_CHECK_ASSERT(max * 2 == max2);
 574
 575                count = 0;
 576                for (i = 0; i < max; i++) {
 577
 578                        if (mb_test_bit(i, buddy)) {
 579                                /* only single bit in buddy2 may be 1 */
 580                                if (!mb_test_bit(i << 1, buddy2)) {
 581                                        MB_CHECK_ASSERT(
 582                                                mb_test_bit((i<<1)+1, buddy2));
 583                                } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
 584                                        MB_CHECK_ASSERT(
 585                                                mb_test_bit(i << 1, buddy2));
 586                                }
 587                                continue;
 588                        }
 589
 590                        /* both bits in buddy2 must be 1 */
 591                        MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
 592                        MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
 593
 594                        for (j = 0; j < (1 << order); j++) {
 595                                k = (i * (1 << order)) + j;
 596                                MB_CHECK_ASSERT(
 597                                        !mb_test_bit(k, e4b->bd_bitmap));
 598                        }
 599                        count++;
 600                }
 601                MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
 602                order--;
 603        }
 604
 605        fstart = -1;
 606        buddy = mb_find_buddy(e4b, 0, &max);
 607        for (i = 0; i < max; i++) {
 608                if (!mb_test_bit(i, buddy)) {
 609                        MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
 610                        if (fstart == -1) {
 611                                fragments++;
 612                                fstart = i;
 613                        }
 614                        continue;
 615                }
 616                fstart = -1;
 617                /* check used bits only */
 618                for (j = 0; j < e4b->bd_blkbits + 1; j++) {
 619                        buddy2 = mb_find_buddy(e4b, j, &max2);
 620                        k = i >> j;
 621                        MB_CHECK_ASSERT(k < max2);
 622                        MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
 623                }
 624        }
 625        MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
 626        MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
 627
 628        grp = ext4_get_group_info(sb, e4b->bd_group);
 629        list_for_each(cur, &grp->bb_prealloc_list) {
 630                ext4_group_t groupnr;
 631                struct ext4_prealloc_space *pa;
 632                pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 633                ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
 634                MB_CHECK_ASSERT(groupnr == e4b->bd_group);
 635                for (i = 0; i < pa->pa_len; i++)
 636                        MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
 637        }
 638        return 0;
 639}
 640#undef MB_CHECK_ASSERT
 641#define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
 642                                        __FILE__, __func__, __LINE__)
 643#else
 644#define mb_check_buddy(e4b)
 645#endif
 646
 647/*
 648 * Divide blocks started from @first with length @len into
 649 * smaller chunks with power of 2 blocks.
 650 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 651 * then increase bb_counters[] for corresponded chunk size.
 652 */
 653static void ext4_mb_mark_free_simple(struct super_block *sb,
 654                                void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
 655                                        struct ext4_group_info *grp)
 656{
 657        struct ext4_sb_info *sbi = EXT4_SB(sb);
 658        ext4_grpblk_t min;
 659        ext4_grpblk_t max;
 660        ext4_grpblk_t chunk;
 661        unsigned int border;
 662
 663        BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
 664
 665        border = 2 << sb->s_blocksize_bits;
 666
 667        while (len > 0) {
 668                /* find how many blocks can be covered since this position */
 669                max = ffs(first | border) - 1;
 670
 671                /* find how many blocks of power 2 we need to mark */
 672                min = fls(len) - 1;
 673
 674                if (max < min)
 675                        min = max;
 676                chunk = 1 << min;
 677
 678                /* mark multiblock chunks only */
 679                grp->bb_counters[min]++;
 680                if (min > 0)
 681                        mb_clear_bit(first >> min,
 682                                     buddy + sbi->s_mb_offsets[min]);
 683
 684                len -= chunk;
 685                first += chunk;
 686        }
 687}
 688
 689/*
 690 * Cache the order of the largest free extent we have available in this block
 691 * group.
 692 */
 693static void
 694mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
 695{
 696        int i;
 697        int bits;
 698
 699        grp->bb_largest_free_order = -1; /* uninit */
 700
 701        bits = sb->s_blocksize_bits + 1;
 702        for (i = bits; i >= 0; i--) {
 703                if (grp->bb_counters[i] > 0) {
 704                        grp->bb_largest_free_order = i;
 705                        break;
 706                }
 707        }
 708}
 709
 710static noinline_for_stack
 711void ext4_mb_generate_buddy(struct super_block *sb,
 712                                void *buddy, void *bitmap, ext4_group_t group)
 713{
 714        struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 715        struct ext4_sb_info *sbi = EXT4_SB(sb);
 716        ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
 717        ext4_grpblk_t i = 0;
 718        ext4_grpblk_t first;
 719        ext4_grpblk_t len;
 720        unsigned free = 0;
 721        unsigned fragments = 0;
 722        unsigned long long period = get_cycles();
 723
 724        /* initialize buddy from bitmap which is aggregation
 725         * of on-disk bitmap and preallocations */
 726        i = mb_find_next_zero_bit(bitmap, max, 0);
 727        grp->bb_first_free = i;
 728        while (i < max) {
 729                fragments++;
 730                first = i;
 731                i = mb_find_next_bit(bitmap, max, i);
 732                len = i - first;
 733                free += len;
 734                if (len > 1)
 735                        ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
 736                else
 737                        grp->bb_counters[0]++;
 738                if (i < max)
 739                        i = mb_find_next_zero_bit(bitmap, max, i);
 740        }
 741        grp->bb_fragments = fragments;
 742
 743        if (free != grp->bb_free) {
 744                ext4_grp_locked_error(sb, group, 0, 0,
 745                                      "block bitmap and bg descriptor "
 746                                      "inconsistent: %u vs %u free clusters",
 747                                      free, grp->bb_free);
 748                /*
 749                 * If we intend to continue, we consider group descriptor
 750                 * corrupt and update bb_free using bitmap value
 751                 */
 752                grp->bb_free = free;
 753                ext4_mark_group_bitmap_corrupted(sb, group,
 754                                        EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 755        }
 756        mb_set_largest_free_order(sb, grp);
 757
 758        clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
 759
 760        period = get_cycles() - period;
 761        spin_lock(&sbi->s_bal_lock);
 762        sbi->s_mb_buddies_generated++;
 763        sbi->s_mb_generation_time += period;
 764        spin_unlock(&sbi->s_bal_lock);
 765}
 766
 767static void mb_regenerate_buddy(struct ext4_buddy *e4b)
 768{
 769        int count;
 770        int order = 1;
 771        void *buddy;
 772
 773        while ((buddy = mb_find_buddy(e4b, order++, &count))) {
 774                ext4_set_bits(buddy, 0, count);
 775        }
 776        e4b->bd_info->bb_fragments = 0;
 777        memset(e4b->bd_info->bb_counters, 0,
 778                sizeof(*e4b->bd_info->bb_counters) *
 779                (e4b->bd_sb->s_blocksize_bits + 2));
 780
 781        ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
 782                e4b->bd_bitmap, e4b->bd_group);
 783}
 784
 785/* The buddy information is attached the buddy cache inode
 786 * for convenience. The information regarding each group
 787 * is loaded via ext4_mb_load_buddy. The information involve
 788 * block bitmap and buddy information. The information are
 789 * stored in the inode as
 790 *
 791 * {                        page                        }
 792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 793 *
 794 *
 795 * one block each for bitmap and buddy information.
 796 * So for each group we take up 2 blocks. A page can
 797 * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
 798 * So it can have information regarding groups_per_page which
 799 * is blocks_per_page/2
 800 *
 801 * Locking note:  This routine takes the block group lock of all groups
 802 * for this page; do not hold this lock when calling this routine!
 803 */
 804
 805static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
 806{
 807        ext4_group_t ngroups;
 808        int blocksize;
 809        int blocks_per_page;
 810        int groups_per_page;
 811        int err = 0;
 812        int i;
 813        ext4_group_t first_group, group;
 814        int first_block;
 815        struct super_block *sb;
 816        struct buffer_head *bhs;
 817        struct buffer_head **bh = NULL;
 818        struct inode *inode;
 819        char *data;
 820        char *bitmap;
 821        struct ext4_group_info *grinfo;
 822
 823        mb_debug(1, "init page %lu\n", page->index);
 824
 825        inode = page->mapping->host;
 826        sb = inode->i_sb;
 827        ngroups = ext4_get_groups_count(sb);
 828        blocksize = i_blocksize(inode);
 829        blocks_per_page = PAGE_SIZE / blocksize;
 830
 831        groups_per_page = blocks_per_page >> 1;
 832        if (groups_per_page == 0)
 833                groups_per_page = 1;
 834
 835        /* allocate buffer_heads to read bitmaps */
 836        if (groups_per_page > 1) {
 837                i = sizeof(struct buffer_head *) * groups_per_page;
 838                bh = kzalloc(i, gfp);
 839                if (bh == NULL) {
 840                        err = -ENOMEM;
 841                        goto out;
 842                }
 843        } else
 844                bh = &bhs;
 845
 846        first_group = page->index * blocks_per_page / 2;
 847
 848        /* read all groups the page covers into the cache */
 849        for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 850                if (group >= ngroups)
 851                        break;
 852
 853                grinfo = ext4_get_group_info(sb, group);
 854                /*
 855                 * If page is uptodate then we came here after online resize
 856                 * which added some new uninitialized group info structs, so
 857                 * we must skip all initialized uptodate buddies on the page,
 858                 * which may be currently in use by an allocating task.
 859                 */
 860                if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
 861                        bh[i] = NULL;
 862                        continue;
 863                }
 864                bh[i] = ext4_read_block_bitmap_nowait(sb, group);
 865                if (IS_ERR(bh[i])) {
 866                        err = PTR_ERR(bh[i]);
 867                        bh[i] = NULL;
 868                        goto out;
 869                }
 870                mb_debug(1, "read bitmap for group %u\n", group);
 871        }
 872
 873        /* wait for I/O completion */
 874        for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 875                int err2;
 876
 877                if (!bh[i])
 878                        continue;
 879                err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
 880                if (!err)
 881                        err = err2;
 882        }
 883
 884        first_block = page->index * blocks_per_page;
 885        for (i = 0; i < blocks_per_page; i++) {
 886                group = (first_block + i) >> 1;
 887                if (group >= ngroups)
 888                        break;
 889
 890                if (!bh[group - first_group])
 891                        /* skip initialized uptodate buddy */
 892                        continue;
 893
 894                if (!buffer_verified(bh[group - first_group]))
 895                        /* Skip faulty bitmaps */
 896                        continue;
 897                err = 0;
 898
 899                /*
 900                 * data carry information regarding this
 901                 * particular group in the format specified
 902                 * above
 903                 *
 904                 */
 905                data = page_address(page) + (i * blocksize);
 906                bitmap = bh[group - first_group]->b_data;
 907
 908                /*
 909                 * We place the buddy block and bitmap block
 910                 * close together
 911                 */
 912                if ((first_block + i) & 1) {
 913                        /* this is block of buddy */
 914                        BUG_ON(incore == NULL);
 915                        mb_debug(1, "put buddy for group %u in page %lu/%x\n",
 916                                group, page->index, i * blocksize);
 917                        trace_ext4_mb_buddy_bitmap_load(sb, group);
 918                        grinfo = ext4_get_group_info(sb, group);
 919                        grinfo->bb_fragments = 0;
 920                        memset(grinfo->bb_counters, 0,
 921                               sizeof(*grinfo->bb_counters) *
 922                                (sb->s_blocksize_bits+2));
 923                        /*
 924                         * incore got set to the group block bitmap below
 925                         */
 926                        ext4_lock_group(sb, group);
 927                        /* init the buddy */
 928                        memset(data, 0xff, blocksize);
 929                        ext4_mb_generate_buddy(sb, data, incore, group);
 930                        ext4_unlock_group(sb, group);
 931                        incore = NULL;
 932                } else {
 933                        /* this is block of bitmap */
 934                        BUG_ON(incore != NULL);
 935                        mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
 936                                group, page->index, i * blocksize);
 937                        trace_ext4_mb_bitmap_load(sb, group);
 938
 939                        /* see comments in ext4_mb_put_pa() */
 940                        ext4_lock_group(sb, group);
 941                        memcpy(data, bitmap, blocksize);
 942
 943                        /* mark all preallocated blks used in in-core bitmap */
 944                        ext4_mb_generate_from_pa(sb, data, group);
 945                        ext4_mb_generate_from_freelist(sb, data, group);
 946                        ext4_unlock_group(sb, group);
 947
 948                        /* set incore so that the buddy information can be
 949                         * generated using this
 950                         */
 951                        incore = data;
 952                }
 953        }
 954        SetPageUptodate(page);
 955
 956out:
 957        if (bh) {
 958                for (i = 0; i < groups_per_page; i++)
 959                        brelse(bh[i]);
 960                if (bh != &bhs)
 961                        kfree(bh);
 962        }
 963        return err;
 964}
 965
 966/*
 967 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 968 * on the same buddy page doesn't happen whild holding the buddy page lock.
 969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
 971 */
 972static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
 973                ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
 974{
 975        struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
 976        int block, pnum, poff;
 977        int blocks_per_page;
 978        struct page *page;
 979
 980        e4b->bd_buddy_page = NULL;
 981        e4b->bd_bitmap_page = NULL;
 982
 983        blocks_per_page = PAGE_SIZE / sb->s_blocksize;
 984        /*
 985         * the buddy cache inode stores the block bitmap
 986         * and buddy information in consecutive blocks.
 987         * So for each group we need two blocks.
 988         */
 989        block = group * 2;
 990        pnum = block / blocks_per_page;
 991        poff = block % blocks_per_page;
 992        page = find_or_create_page(inode->i_mapping, pnum, gfp);
 993        if (!page)
 994                return -ENOMEM;
 995        BUG_ON(page->mapping != inode->i_mapping);
 996        e4b->bd_bitmap_page = page;
 997        e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
 998
 999        if (blocks_per_page >= 2) {
1000                /* buddy and bitmap are on the same page */
1001                return 0;
1002        }
1003
1004        block++;
1005        pnum = block / blocks_per_page;
1006        page = find_or_create_page(inode->i_mapping, pnum, gfp);
1007        if (!page)
1008                return -ENOMEM;
1009        BUG_ON(page->mapping != inode->i_mapping);
1010        e4b->bd_buddy_page = page;
1011        return 0;
1012}
1013
1014static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1015{
1016        if (e4b->bd_bitmap_page) {
1017                unlock_page(e4b->bd_bitmap_page);
1018                put_page(e4b->bd_bitmap_page);
1019        }
1020        if (e4b->bd_buddy_page) {
1021                unlock_page(e4b->bd_buddy_page);
1022                put_page(e4b->bd_buddy_page);
1023        }
1024}
1025
1026/*
1027 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1028 * block group lock of all groups for this page; do not hold the BG lock when
1029 * calling this routine!
1030 */
1031static noinline_for_stack
1032int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1033{
1034
1035        struct ext4_group_info *this_grp;
1036        struct ext4_buddy e4b;
1037        struct page *page;
1038        int ret = 0;
1039
1040        might_sleep();
1041        mb_debug(1, "init group %u\n", group);
1042        this_grp = ext4_get_group_info(sb, group);
1043        /*
1044         * This ensures that we don't reinit the buddy cache
1045         * page which map to the group from which we are already
1046         * allocating. If we are looking at the buddy cache we would
1047         * have taken a reference using ext4_mb_load_buddy and that
1048         * would have pinned buddy page to page cache.
1049         * The call to ext4_mb_get_buddy_page_lock will mark the
1050         * page accessed.
1051         */
1052        ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1053        if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1054                /*
1055                 * somebody initialized the group
1056                 * return without doing anything
1057                 */
1058                goto err;
1059        }
1060
1061        page = e4b.bd_bitmap_page;
1062        ret = ext4_mb_init_cache(page, NULL, gfp);
1063        if (ret)
1064                goto err;
1065        if (!PageUptodate(page)) {
1066                ret = -EIO;
1067                goto err;
1068        }
1069
1070        if (e4b.bd_buddy_page == NULL) {
1071                /*
1072                 * If both the bitmap and buddy are in
1073                 * the same page we don't need to force
1074                 * init the buddy
1075                 */
1076                ret = 0;
1077                goto err;
1078        }
1079        /* init buddy cache */
1080        page = e4b.bd_buddy_page;
1081        ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1082        if (ret)
1083                goto err;
1084        if (!PageUptodate(page)) {
1085                ret = -EIO;
1086                goto err;
1087        }
1088err:
1089        ext4_mb_put_buddy_page_lock(&e4b);
1090        return ret;
1091}
1092
1093/*
1094 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1095 * block group lock of all groups for this page; do not hold the BG lock when
1096 * calling this routine!
1097 */
1098static noinline_for_stack int
1099ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1100                       struct ext4_buddy *e4b, gfp_t gfp)
1101{
1102        int blocks_per_page;
1103        int block;
1104        int pnum;
1105        int poff;
1106        struct page *page;
1107        int ret;
1108        struct ext4_group_info *grp;
1109        struct ext4_sb_info *sbi = EXT4_SB(sb);
1110        struct inode *inode = sbi->s_buddy_cache;
1111
1112        might_sleep();
1113        mb_debug(1, "load group %u\n", group);
1114
1115        blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1116        grp = ext4_get_group_info(sb, group);
1117
1118        e4b->bd_blkbits = sb->s_blocksize_bits;
1119        e4b->bd_info = grp;
1120        e4b->bd_sb = sb;
1121        e4b->bd_group = group;
1122        e4b->bd_buddy_page = NULL;
1123        e4b->bd_bitmap_page = NULL;
1124
1125        if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1126                /*
1127                 * we need full data about the group
1128                 * to make a good selection
1129                 */
1130                ret = ext4_mb_init_group(sb, group, gfp);
1131                if (ret)
1132                        return ret;
1133        }
1134
1135        /*
1136         * the buddy cache inode stores the block bitmap
1137         * and buddy information in consecutive blocks.
1138         * So for each group we need two blocks.
1139         */
1140        block = group * 2;
1141        pnum = block / blocks_per_page;
1142        poff = block % blocks_per_page;
1143
1144        /* we could use find_or_create_page(), but it locks page
1145         * what we'd like to avoid in fast path ... */
1146        page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1147        if (page == NULL || !PageUptodate(page)) {
1148                if (page)
1149                        /*
1150                         * drop the page reference and try
1151                         * to get the page with lock. If we
1152                         * are not uptodate that implies
1153                         * somebody just created the page but
1154                         * is yet to initialize the same. So
1155                         * wait for it to initialize.
1156                         */
1157                        put_page(page);
1158                page = find_or_create_page(inode->i_mapping, pnum, gfp);
1159                if (page) {
1160                        BUG_ON(page->mapping != inode->i_mapping);
1161                        if (!PageUptodate(page)) {
1162                                ret = ext4_mb_init_cache(page, NULL, gfp);
1163                                if (ret) {
1164                                        unlock_page(page);
1165                                        goto err;
1166                                }
1167                                mb_cmp_bitmaps(e4b, page_address(page) +
1168                                               (poff * sb->s_blocksize));
1169                        }
1170                        unlock_page(page);
1171                }
1172        }
1173        if (page == NULL) {
1174                ret = -ENOMEM;
1175                goto err;
1176        }
1177        if (!PageUptodate(page)) {
1178                ret = -EIO;
1179                goto err;
1180        }
1181
1182        /* Pages marked accessed already */
1183        e4b->bd_bitmap_page = page;
1184        e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1185
1186        block++;
1187        pnum = block / blocks_per_page;
1188        poff = block % blocks_per_page;
1189
1190        page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1191        if (page == NULL || !PageUptodate(page)) {
1192                if (page)
1193                        put_page(page);
1194                page = find_or_create_page(inode->i_mapping, pnum, gfp);
1195                if (page) {
1196                        BUG_ON(page->mapping != inode->i_mapping);
1197                        if (!PageUptodate(page)) {
1198                                ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1199                                                         gfp);
1200                                if (ret) {
1201                                        unlock_page(page);
1202                                        goto err;
1203                                }
1204                        }
1205                        unlock_page(page);
1206                }
1207        }
1208        if (page == NULL) {
1209                ret = -ENOMEM;
1210                goto err;
1211        }
1212        if (!PageUptodate(page)) {
1213                ret = -EIO;
1214                goto err;
1215        }
1216
1217        /* Pages marked accessed already */
1218        e4b->bd_buddy_page = page;
1219        e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1220
1221        BUG_ON(e4b->bd_bitmap_page == NULL);
1222        BUG_ON(e4b->bd_buddy_page == NULL);
1223
1224        return 0;
1225
1226err:
1227        if (page)
1228                put_page(page);
1229        if (e4b->bd_bitmap_page)
1230                put_page(e4b->bd_bitmap_page);
1231        if (e4b->bd_buddy_page)
1232                put_page(e4b->bd_buddy_page);
1233        e4b->bd_buddy = NULL;
1234        e4b->bd_bitmap = NULL;
1235        return ret;
1236}
1237
1238static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1239                              struct ext4_buddy *e4b)
1240{
1241        return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1242}
1243
1244static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1245{
1246        if (e4b->bd_bitmap_page)
1247                put_page(e4b->bd_bitmap_page);
1248        if (e4b->bd_buddy_page)
1249                put_page(e4b->bd_buddy_page);
1250}
1251
1252
1253static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1254{
1255        int order = 1;
1256        int bb_incr = 1 << (e4b->bd_blkbits - 1);
1257        void *bb;
1258
1259        BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1260        BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1261
1262        bb = e4b->bd_buddy;
1263        while (order <= e4b->bd_blkbits + 1) {
1264                block = block >> 1;
1265                if (!mb_test_bit(block, bb)) {
1266                        /* this block is part of buddy of order 'order' */
1267                        return order;
1268                }
1269                bb += bb_incr;
1270                bb_incr >>= 1;
1271                order++;
1272        }
1273        return 0;
1274}
1275
1276static void mb_clear_bits(void *bm, int cur, int len)
1277{
1278        __u32 *addr;
1279
1280        len = cur + len;
1281        while (cur < len) {
1282                if ((cur & 31) == 0 && (len - cur) >= 32) {
1283                        /* fast path: clear whole word at once */
1284                        addr = bm + (cur >> 3);
1285                        *addr = 0;
1286                        cur += 32;
1287                        continue;
1288                }
1289                mb_clear_bit(cur, bm);
1290                cur++;
1291        }
1292}
1293
1294/* clear bits in given range
1295 * will return first found zero bit if any, -1 otherwise
1296 */
1297static int mb_test_and_clear_bits(void *bm, int cur, int len)
1298{
1299        __u32 *addr;
1300        int zero_bit = -1;
1301
1302        len = cur + len;
1303        while (cur < len) {
1304                if ((cur & 31) == 0 && (len - cur) >= 32) {
1305                        /* fast path: clear whole word at once */
1306                        addr = bm + (cur >> 3);
1307                        if (*addr != (__u32)(-1) && zero_bit == -1)
1308                                zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1309                        *addr = 0;
1310                        cur += 32;
1311                        continue;
1312                }
1313                if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1314                        zero_bit = cur;
1315                cur++;
1316        }
1317
1318        return zero_bit;
1319}
1320
1321void ext4_set_bits(void *bm, int cur, int len)
1322{
1323        __u32 *addr;
1324
1325        len = cur + len;
1326        while (cur < len) {
1327                if ((cur & 31) == 0 && (len - cur) >= 32) {
1328                        /* fast path: set whole word at once */
1329                        addr = bm + (cur >> 3);
1330                        *addr = 0xffffffff;
1331                        cur += 32;
1332                        continue;
1333                }
1334                mb_set_bit(cur, bm);
1335                cur++;
1336        }
1337}
1338
1339/*
1340 * _________________________________________________________________ */
1341
1342static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1343{
1344        if (mb_test_bit(*bit + side, bitmap)) {
1345                mb_clear_bit(*bit, bitmap);
1346                (*bit) -= side;
1347                return 1;
1348        }
1349        else {
1350                (*bit) += side;
1351                mb_set_bit(*bit, bitmap);
1352                return -1;
1353        }
1354}
1355
1356static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1357{
1358        int max;
1359        int order = 1;
1360        void *buddy = mb_find_buddy(e4b, order, &max);
1361
1362        while (buddy) {
1363                void *buddy2;
1364
1365                /* Bits in range [first; last] are known to be set since
1366                 * corresponding blocks were allocated. Bits in range
1367                 * (first; last) will stay set because they form buddies on
1368                 * upper layer. We just deal with borders if they don't
1369                 * align with upper layer and then go up.
1370                 * Releasing entire group is all about clearing
1371                 * single bit of highest order buddy.
1372                 */
1373
1374                /* Example:
1375                 * ---------------------------------
1376                 * |   1   |   1   |   1   |   1   |
1377                 * ---------------------------------
1378                 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1379                 * ---------------------------------
1380                 *   0   1   2   3   4   5   6   7
1381                 *      \_____________________/
1382                 *
1383                 * Neither [1] nor [6] is aligned to above layer.
1384                 * Left neighbour [0] is free, so mark it busy,
1385                 * decrease bb_counters and extend range to
1386                 * [0; 6]
1387                 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1388                 * mark [6] free, increase bb_counters and shrink range to
1389                 * [0; 5].
1390                 * Then shift range to [0; 2], go up and do the same.
1391                 */
1392
1393
1394                if (first & 1)
1395                        e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1396                if (!(last & 1))
1397                        e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1398                if (first > last)
1399                        break;
1400                order++;
1401
1402                if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1403                        mb_clear_bits(buddy, first, last - first + 1);
1404                        e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1405                        break;
1406                }
1407                first >>= 1;
1408                last >>= 1;
1409                buddy = buddy2;
1410        }
1411}
1412
1413static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1414                           int first, int count)
1415{
1416        int left_is_free = 0;
1417        int right_is_free = 0;
1418        int block;
1419        int last = first + count - 1;
1420        struct super_block *sb = e4b->bd_sb;
1421
1422        if (WARN_ON(count == 0))
1423                return;
1424        BUG_ON(last >= (sb->s_blocksize << 3));
1425        assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1426        /* Don't bother if the block group is corrupt. */
1427        if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1428                return;
1429
1430        mb_check_buddy(e4b);
1431        mb_free_blocks_double(inode, e4b, first, count);
1432
1433        e4b->bd_info->bb_free += count;
1434        if (first < e4b->bd_info->bb_first_free)
1435                e4b->bd_info->bb_first_free = first;
1436
1437        /* access memory sequentially: check left neighbour,
1438         * clear range and then check right neighbour
1439         */
1440        if (first != 0)
1441                left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1442        block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1443        if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1444                right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1445
1446        if (unlikely(block != -1)) {
1447                struct ext4_sb_info *sbi = EXT4_SB(sb);
1448                ext4_fsblk_t blocknr;
1449
1450                blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1451                blocknr += EXT4_C2B(sbi, block);
1452                ext4_grp_locked_error(sb, e4b->bd_group,
1453                                      inode ? inode->i_ino : 0,
1454                                      blocknr,
1455                                      "freeing already freed block "
1456                                      "(bit %u); block bitmap corrupt.",
1457                                      block);
1458                ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1459                                EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1460                mb_regenerate_buddy(e4b);
1461                goto done;
1462        }
1463
1464        /* let's maintain fragments counter */
1465        if (left_is_free && right_is_free)
1466                e4b->bd_info->bb_fragments--;
1467        else if (!left_is_free && !right_is_free)
1468                e4b->bd_info->bb_fragments++;
1469
1470        /* buddy[0] == bd_bitmap is a special case, so handle
1471         * it right away and let mb_buddy_mark_free stay free of
1472         * zero order checks.
1473         * Check if neighbours are to be coaleasced,
1474         * adjust bitmap bb_counters and borders appropriately.
1475         */
1476        if (first & 1) {
1477                first += !left_is_free;
1478                e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1479        }
1480        if (!(last & 1)) {
1481                last -= !right_is_free;
1482                e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1483        }
1484
1485        if (first <= last)
1486                mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1487
1488done:
1489        mb_set_largest_free_order(sb, e4b->bd_info);
1490        mb_check_buddy(e4b);
1491}
1492
1493static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494                                int needed, struct ext4_free_extent *ex)
1495{
1496        int next = block;
1497        int max, order;
1498        void *buddy;
1499
1500        assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1501        BUG_ON(ex == NULL);
1502
1503        buddy = mb_find_buddy(e4b, 0, &max);
1504        BUG_ON(buddy == NULL);
1505        BUG_ON(block >= max);
1506        if (mb_test_bit(block, buddy)) {
1507                ex->fe_len = 0;
1508                ex->fe_start = 0;
1509                ex->fe_group = 0;
1510                return 0;
1511        }
1512
1513        /* find actual order */
1514        order = mb_find_order_for_block(e4b, block);
1515        block = block >> order;
1516
1517        ex->fe_len = 1 << order;
1518        ex->fe_start = block << order;
1519        ex->fe_group = e4b->bd_group;
1520
1521        /* calc difference from given start */
1522        next = next - ex->fe_start;
1523        ex->fe_len -= next;
1524        ex->fe_start += next;
1525
1526        while (needed > ex->fe_len &&
1527               mb_find_buddy(e4b, order, &max)) {
1528
1529                if (block + 1 >= max)
1530                        break;
1531
1532                next = (block + 1) * (1 << order);
1533                if (mb_test_bit(next, e4b->bd_bitmap))
1534                        break;
1535
1536                order = mb_find_order_for_block(e4b, next);
1537
1538                block = next >> order;
1539                ex->fe_len += 1 << order;
1540        }
1541
1542        if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1543                /* Should never happen! (but apparently sometimes does?!?) */
1544                WARN_ON(1);
1545                ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1546                           "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1547                           block, order, needed, ex->fe_group, ex->fe_start,
1548                           ex->fe_len, ex->fe_logical);
1549                ex->fe_len = 0;
1550                ex->fe_start = 0;
1551                ex->fe_group = 0;
1552        }
1553        return ex->fe_len;
1554}
1555
1556static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1557{
1558        int ord;
1559        int mlen = 0;
1560        int max = 0;
1561        int cur;
1562        int start = ex->fe_start;
1563        int len = ex->fe_len;
1564        unsigned ret = 0;
1565        int len0 = len;
1566        void *buddy;
1567
1568        BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569        BUG_ON(e4b->bd_group != ex->fe_group);
1570        assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571        mb_check_buddy(e4b);
1572        mb_mark_used_double(e4b, start, len);
1573
1574        e4b->bd_info->bb_free -= len;
1575        if (e4b->bd_info->bb_first_free == start)
1576                e4b->bd_info->bb_first_free += len;
1577
1578        /* let's maintain fragments counter */
1579        if (start != 0)
1580                mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581        if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582                max = !mb_test_bit(start + len, e4b->bd_bitmap);
1583        if (mlen && max)
1584                e4b->bd_info->bb_fragments++;
1585        else if (!mlen && !max)
1586                e4b->bd_info->bb_fragments--;
1587
1588        /* let's maintain buddy itself */
1589        while (len) {
1590                ord = mb_find_order_for_block(e4b, start);
1591
1592                if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593                        /* the whole chunk may be allocated at once! */
1594                        mlen = 1 << ord;
1595                        buddy = mb_find_buddy(e4b, ord, &max);
1596                        BUG_ON((start >> ord) >= max);
1597                        mb_set_bit(start >> ord, buddy);
1598                        e4b->bd_info->bb_counters[ord]--;
1599                        start += mlen;
1600                        len -= mlen;
1601                        BUG_ON(len < 0);
1602                        continue;
1603                }
1604
1605                /* store for history */
1606                if (ret == 0)
1607                        ret = len | (ord << 16);
1608
1609                /* we have to split large buddy */
1610                BUG_ON(ord <= 0);
1611                buddy = mb_find_buddy(e4b, ord, &max);
1612                mb_set_bit(start >> ord, buddy);
1613                e4b->bd_info->bb_counters[ord]--;
1614
1615                ord--;
1616                cur = (start >> ord) & ~1U;
1617                buddy = mb_find_buddy(e4b, ord, &max);
1618                mb_clear_bit(cur, buddy);
1619                mb_clear_bit(cur + 1, buddy);
1620                e4b->bd_info->bb_counters[ord]++;
1621                e4b->bd_info->bb_counters[ord]++;
1622        }
1623        mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1624
1625        ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626        mb_check_buddy(e4b);
1627
1628        return ret;
1629}
1630
1631/*
1632 * Must be called under group lock!
1633 */
1634static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635                                        struct ext4_buddy *e4b)
1636{
1637        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1638        int ret;
1639
1640        BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641        BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1642
1643        ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644        ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645        ret = mb_mark_used(e4b, &ac->ac_b_ex);
1646
1647        /* preallocation can change ac_b_ex, thus we store actually
1648         * allocated blocks for history */
1649        ac->ac_f_ex = ac->ac_b_ex;
1650
1651        ac->ac_status = AC_STATUS_FOUND;
1652        ac->ac_tail = ret & 0xffff;
1653        ac->ac_buddy = ret >> 16;
1654
1655        /*
1656         * take the page reference. We want the page to be pinned
1657         * so that we don't get a ext4_mb_init_cache_call for this
1658         * group until we update the bitmap. That would mean we
1659         * double allocate blocks. The reference is dropped
1660         * in ext4_mb_release_context
1661         */
1662        ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663        get_page(ac->ac_bitmap_page);
1664        ac->ac_buddy_page = e4b->bd_buddy_page;
1665        get_page(ac->ac_buddy_page);
1666        /* store last allocated for subsequent stream allocation */
1667        if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668                spin_lock(&sbi->s_md_lock);
1669                sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670                sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671                spin_unlock(&sbi->s_md_lock);
1672        }
1673}
1674
1675/*
1676 * regular allocator, for general purposes allocation
1677 */
1678
1679static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680                                        struct ext4_buddy *e4b,
1681                                        int finish_group)
1682{
1683        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684        struct ext4_free_extent *bex = &ac->ac_b_ex;
1685        struct ext4_free_extent *gex = &ac->ac_g_ex;
1686        struct ext4_free_extent ex;
1687        int max;
1688
1689        if (ac->ac_status == AC_STATUS_FOUND)
1690                return;
1691        /*
1692         * We don't want to scan for a whole year
1693         */
1694        if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695                        !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696                ac->ac_status = AC_STATUS_BREAK;
1697                return;
1698        }
1699
1700        /*
1701         * Haven't found good chunk so far, let's continue
1702         */
1703        if (bex->fe_len < gex->fe_len)
1704                return;
1705
1706        if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707                        && bex->fe_group == e4b->bd_group) {
1708                /* recheck chunk's availability - we don't know
1709                 * when it was found (within this lock-unlock
1710                 * period or not) */
1711                max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712                if (max >= gex->fe_len) {
1713                        ext4_mb_use_best_found(ac, e4b);
1714                        return;
1715                }
1716        }
1717}
1718
1719/*
1720 * The routine checks whether found extent is good enough. If it is,
1721 * then the extent gets marked used and flag is set to the context
1722 * to stop scanning. Otherwise, the extent is compared with the
1723 * previous found extent and if new one is better, then it's stored
1724 * in the context. Later, the best found extent will be used, if
1725 * mballoc can't find good enough extent.
1726 *
1727 * FIXME: real allocation policy is to be designed yet!
1728 */
1729static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730                                        struct ext4_free_extent *ex,
1731                                        struct ext4_buddy *e4b)
1732{
1733        struct ext4_free_extent *bex = &ac->ac_b_ex;
1734        struct ext4_free_extent *gex = &ac->ac_g_ex;
1735
1736        BUG_ON(ex->fe_len <= 0);
1737        BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738        BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739        BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1740
1741        ac->ac_found++;
1742
1743        /*
1744         * The special case - take what you catch first
1745         */
1746        if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1747                *bex = *ex;
1748                ext4_mb_use_best_found(ac, e4b);
1749                return;
1750        }
1751
1752        /*
1753         * Let's check whether the chuck is good enough
1754         */
1755        if (ex->fe_len == gex->fe_len) {
1756                *bex = *ex;
1757                ext4_mb_use_best_found(ac, e4b);
1758                return;
1759        }
1760
1761        /*
1762         * If this is first found extent, just store it in the context
1763         */
1764        if (bex->fe_len == 0) {
1765                *bex = *ex;
1766                return;
1767        }
1768
1769        /*
1770         * If new found extent is better, store it in the context
1771         */
1772        if (bex->fe_len < gex->fe_len) {
1773                /* if the request isn't satisfied, any found extent
1774                 * larger than previous best one is better */
1775                if (ex->fe_len > bex->fe_len)
1776                        *bex = *ex;
1777        } else if (ex->fe_len > gex->fe_len) {
1778                /* if the request is satisfied, then we try to find
1779                 * an extent that still satisfy the request, but is
1780                 * smaller than previous one */
1781                if (ex->fe_len < bex->fe_len)
1782                        *bex = *ex;
1783        }
1784
1785        ext4_mb_check_limits(ac, e4b, 0);
1786}
1787
1788static noinline_for_stack
1789int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790                                        struct ext4_buddy *e4b)
1791{
1792        struct ext4_free_extent ex = ac->ac_b_ex;
1793        ext4_group_t group = ex.fe_group;
1794        int max;
1795        int err;
1796
1797        BUG_ON(ex.fe_len <= 0);
1798        err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1799        if (err)
1800                return err;
1801
1802        ext4_lock_group(ac->ac_sb, group);
1803        max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1804
1805        if (max > 0) {
1806                ac->ac_b_ex = ex;
1807                ext4_mb_use_best_found(ac, e4b);
1808        }
1809
1810        ext4_unlock_group(ac->ac_sb, group);
1811        ext4_mb_unload_buddy(e4b);
1812
1813        return 0;
1814}
1815
1816static noinline_for_stack
1817int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818                                struct ext4_buddy *e4b)
1819{
1820        ext4_group_t group = ac->ac_g_ex.fe_group;
1821        int max;
1822        int err;
1823        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824        struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825        struct ext4_free_extent ex;
1826
1827        if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1828                return 0;
1829        if (grp->bb_free == 0)
1830                return 0;
1831
1832        err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1833        if (err)
1834                return err;
1835
1836        if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837                ext4_mb_unload_buddy(e4b);
1838                return 0;
1839        }
1840
1841        ext4_lock_group(ac->ac_sb, group);
1842        max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843                             ac->ac_g_ex.fe_len, &ex);
1844        ex.fe_logical = 0xDEADFA11; /* debug value */
1845
1846        if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1847                ext4_fsblk_t start;
1848
1849                start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1850                        ex.fe_start;
1851                /* use do_div to get remainder (would be 64-bit modulo) */
1852                if (do_div(start, sbi->s_stripe) == 0) {
1853                        ac->ac_found++;
1854                        ac->ac_b_ex = ex;
1855                        ext4_mb_use_best_found(ac, e4b);
1856                }
1857        } else if (max >= ac->ac_g_ex.fe_len) {
1858                BUG_ON(ex.fe_len <= 0);
1859                BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860                BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861                ac->ac_found++;
1862                ac->ac_b_ex = ex;
1863                ext4_mb_use_best_found(ac, e4b);
1864        } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865                /* Sometimes, caller may want to merge even small
1866                 * number of blocks to an existing extent */
1867                BUG_ON(ex.fe_len <= 0);
1868                BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869                BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1870                ac->ac_found++;
1871                ac->ac_b_ex = ex;
1872                ext4_mb_use_best_found(ac, e4b);
1873        }
1874        ext4_unlock_group(ac->ac_sb, group);
1875        ext4_mb_unload_buddy(e4b);
1876
1877        return 0;
1878}
1879
1880/*
1881 * The routine scans buddy structures (not bitmap!) from given order
1882 * to max order and tries to find big enough chunk to satisfy the req
1883 */
1884static noinline_for_stack
1885void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886                                        struct ext4_buddy *e4b)
1887{
1888        struct super_block *sb = ac->ac_sb;
1889        struct ext4_group_info *grp = e4b->bd_info;
1890        void *buddy;
1891        int i;
1892        int k;
1893        int max;
1894
1895        BUG_ON(ac->ac_2order <= 0);
1896        for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897                if (grp->bb_counters[i] == 0)
1898                        continue;
1899
1900                buddy = mb_find_buddy(e4b, i, &max);
1901                BUG_ON(buddy == NULL);
1902
1903                k = mb_find_next_zero_bit(buddy, max, 0);
1904                BUG_ON(k >= max);
1905
1906                ac->ac_found++;
1907
1908                ac->ac_b_ex.fe_len = 1 << i;
1909                ac->ac_b_ex.fe_start = k << i;
1910                ac->ac_b_ex.fe_group = e4b->bd_group;
1911
1912                ext4_mb_use_best_found(ac, e4b);
1913
1914                BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1915
1916                if (EXT4_SB(sb)->s_mb_stats)
1917                        atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1918
1919                break;
1920        }
1921}
1922
1923/*
1924 * The routine scans the group and measures all found extents.
1925 * In order to optimize scanning, caller must pass number of
1926 * free blocks in the group, so the routine can know upper limit.
1927 */
1928static noinline_for_stack
1929void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1930                                        struct ext4_buddy *e4b)
1931{
1932        struct super_block *sb = ac->ac_sb;
1933        void *bitmap = e4b->bd_bitmap;
1934        struct ext4_free_extent ex;
1935        int i;
1936        int free;
1937
1938        free = e4b->bd_info->bb_free;
1939        BUG_ON(free <= 0);
1940
1941        i = e4b->bd_info->bb_first_free;
1942
1943        while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1944                i = mb_find_next_zero_bit(bitmap,
1945                                                EXT4_CLUSTERS_PER_GROUP(sb), i);
1946                if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1947                        /*
1948                         * IF we have corrupt bitmap, we won't find any
1949                         * free blocks even though group info says we
1950                         * we have free blocks
1951                         */
1952                        ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953                                        "%d free clusters as per "
1954                                        "group info. But bitmap says 0",
1955                                        free);
1956                        ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1957                                        EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1958                        break;
1959                }
1960
1961                mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1962                BUG_ON(ex.fe_len <= 0);
1963                if (free < ex.fe_len) {
1964                        ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1965                                        "%d free clusters as per "
1966                                        "group info. But got %d blocks",
1967                                        free, ex.fe_len);
1968                        ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1969                                        EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1970                        /*
1971                         * The number of free blocks differs. This mostly
1972                         * indicate that the bitmap is corrupt. So exit
1973                         * without claiming the space.
1974                         */
1975                        break;
1976                }
1977                ex.fe_logical = 0xDEADC0DE; /* debug value */
1978                ext4_mb_measure_extent(ac, &ex, e4b);
1979
1980                i += ex.fe_len;
1981                free -= ex.fe_len;
1982        }
1983
1984        ext4_mb_check_limits(ac, e4b, 1);
1985}
1986
1987/*
1988 * This is a special case for storages like raid5
1989 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1990 */
1991static noinline_for_stack
1992void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1993                                 struct ext4_buddy *e4b)
1994{
1995        struct super_block *sb = ac->ac_sb;
1996        struct ext4_sb_info *sbi = EXT4_SB(sb);
1997        void *bitmap = e4b->bd_bitmap;
1998        struct ext4_free_extent ex;
1999        ext4_fsblk_t first_group_block;
2000        ext4_fsblk_t a;
2001        ext4_grpblk_t i;
2002        int max;
2003
2004        BUG_ON(sbi->s_stripe == 0);
2005
2006        /* find first stripe-aligned block in group */
2007        first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2008
2009        a = first_group_block + sbi->s_stripe - 1;
2010        do_div(a, sbi->s_stripe);
2011        i = (a * sbi->s_stripe) - first_group_block;
2012
2013        while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2014                if (!mb_test_bit(i, bitmap)) {
2015                        max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2016                        if (max >= sbi->s_stripe) {
2017                                ac->ac_found++;
2018                                ex.fe_logical = 0xDEADF00D; /* debug value */
2019                                ac->ac_b_ex = ex;
2020                                ext4_mb_use_best_found(ac, e4b);
2021                                break;
2022                        }
2023                }
2024                i += sbi->s_stripe;
2025        }
2026}
2027
2028/*
2029 * This is now called BEFORE we load the buddy bitmap.
2030 * Returns either 1 or 0 indicating that the group is either suitable
2031 * for the allocation or not. In addition it can also return negative
2032 * error code when something goes wrong.
2033 */
2034static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2035                                ext4_group_t group, int cr)
2036{
2037        unsigned free, fragments;
2038        int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2039        struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2040
2041        BUG_ON(cr < 0 || cr >= 4);
2042
2043        free = grp->bb_free;
2044        if (free == 0)
2045                return 0;
2046        if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2047                return 0;
2048
2049        if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2050                return 0;
2051
2052        /* We only do this if the grp has never been initialized */
2053        if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2054                int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2055                if (ret)
2056                        return ret;
2057        }
2058
2059        fragments = grp->bb_fragments;
2060        if (fragments == 0)
2061                return 0;
2062
2063        switch (cr) {
2064        case 0:
2065                BUG_ON(ac->ac_2order == 0);
2066
2067                /* Avoid using the first bg of a flexgroup for data files */
2068                if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2069                    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2070                    ((group % flex_size) == 0))
2071                        return 0;
2072
2073                if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2074                    (free / fragments) >= ac->ac_g_ex.fe_len)
2075                        return 1;
2076
2077                if (grp->bb_largest_free_order < ac->ac_2order)
2078                        return 0;
2079
2080                return 1;
2081        case 1:
2082                if ((free / fragments) >= ac->ac_g_ex.fe_len)
2083                        return 1;
2084                break;
2085        case 2:
2086                if (free >= ac->ac_g_ex.fe_len)
2087                        return 1;
2088                break;
2089        case 3:
2090                return 1;
2091        default:
2092                BUG();
2093        }
2094
2095        return 0;
2096}
2097
2098static noinline_for_stack int
2099ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2100{
2101        ext4_group_t ngroups, group, i;
2102        int cr;
2103        int err = 0, first_err = 0;
2104        struct ext4_sb_info *sbi;
2105        struct super_block *sb;
2106        struct ext4_buddy e4b;
2107
2108        sb = ac->ac_sb;
2109        sbi = EXT4_SB(sb);
2110        ngroups = ext4_get_groups_count(sb);
2111        /* non-extent files are limited to low blocks/groups */
2112        if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2113                ngroups = sbi->s_blockfile_groups;
2114
2115        BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2116
2117        /* first, try the goal */
2118        err = ext4_mb_find_by_goal(ac, &e4b);
2119        if (err || ac->ac_status == AC_STATUS_FOUND)
2120                goto out;
2121
2122        if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2123                goto out;
2124
2125        /*
2126         * ac->ac2_order is set only if the fe_len is a power of 2
2127         * if ac2_order is set we also set criteria to 0 so that we
2128         * try exact allocation using buddy.
2129         */
2130        i = fls(ac->ac_g_ex.fe_len);
2131        ac->ac_2order = 0;
2132        /*
2133         * We search using buddy data only if the order of the request
2134         * is greater than equal to the sbi_s_mb_order2_reqs
2135         * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2136         * We also support searching for power-of-two requests only for
2137         * requests upto maximum buddy size we have constructed.
2138         */
2139        if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2140                /*
2141                 * This should tell if fe_len is exactly power of 2
2142                 */
2143                if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2144                        ac->ac_2order = array_index_nospec(i - 1,
2145                                                           sb->s_blocksize_bits + 2);
2146        }
2147
2148        /* if stream allocation is enabled, use global goal */
2149        if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150                /* TBD: may be hot point */
2151                spin_lock(&sbi->s_md_lock);
2152                ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153                ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154                spin_unlock(&sbi->s_md_lock);
2155        }
2156
2157        /* Let's just scan groups to find more-less suitable blocks */
2158        cr = ac->ac_2order ? 0 : 1;
2159        /*
2160         * cr == 0 try to get exact allocation,
2161         * cr == 3  try to get anything
2162         */
2163repeat:
2164        for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165                ac->ac_criteria = cr;
2166                /*
2167                 * searching for the right group start
2168                 * from the goal value specified
2169                 */
2170                group = ac->ac_g_ex.fe_group;
2171
2172                for (i = 0; i < ngroups; group++, i++) {
2173                        int ret = 0;
2174                        cond_resched();
2175                        /*
2176                         * Artificially restricted ngroups for non-extent
2177                         * files makes group > ngroups possible on first loop.
2178                         */
2179                        if (group >= ngroups)
2180                                group = 0;
2181
2182                        /* This now checks without needing the buddy page */
2183                        ret = ext4_mb_good_group(ac, group, cr);
2184                        if (ret <= 0) {
2185                                if (!first_err)
2186                                        first_err = ret;
2187                                continue;
2188                        }
2189
2190                        err = ext4_mb_load_buddy(sb, group, &e4b);
2191                        if (err)
2192                                goto out;
2193
2194                        ext4_lock_group(sb, group);
2195
2196                        /*
2197                         * We need to check again after locking the
2198                         * block group
2199                         */
2200                        ret = ext4_mb_good_group(ac, group, cr);
2201                        if (ret <= 0) {
2202                                ext4_unlock_group(sb, group);
2203                                ext4_mb_unload_buddy(&e4b);
2204                                if (!first_err)
2205                                        first_err = ret;
2206                                continue;
2207                        }
2208
2209                        ac->ac_groups_scanned++;
2210                        if (cr == 0)
2211                                ext4_mb_simple_scan_group(ac, &e4b);
2212                        else if (cr == 1 && sbi->s_stripe &&
2213                                        !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214                                ext4_mb_scan_aligned(ac, &e4b);
2215                        else
2216                                ext4_mb_complex_scan_group(ac, &e4b);
2217
2218                        ext4_unlock_group(sb, group);
2219                        ext4_mb_unload_buddy(&e4b);
2220
2221                        if (ac->ac_status != AC_STATUS_CONTINUE)
2222                                break;
2223                }
2224        }
2225
2226        if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227            !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228                /*
2229                 * We've been searching too long. Let's try to allocate
2230                 * the best chunk we've found so far
2231                 */
2232
2233                ext4_mb_try_best_found(ac, &e4b);
2234                if (ac->ac_status != AC_STATUS_FOUND) {
2235                        /*
2236                         * Someone more lucky has already allocated it.
2237                         * The only thing we can do is just take first
2238                         * found block(s)
2239                        printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2240                         */
2241                        ac->ac_b_ex.fe_group = 0;
2242                        ac->ac_b_ex.fe_start = 0;
2243                        ac->ac_b_ex.fe_len = 0;
2244                        ac->ac_status = AC_STATUS_CONTINUE;
2245                        ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246                        cr = 3;
2247                        atomic_inc(&sbi->s_mb_lost_chunks);
2248                        goto repeat;
2249                }
2250        }
2251out:
2252        if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253                err = first_err;
2254        return err;
2255}
2256
2257static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2258{
2259        struct super_block *sb = PDE_DATA(file_inode(seq->file));
2260        ext4_group_t group;
2261
2262        if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263                return NULL;
2264        group = *pos + 1;
2265        return (void *) ((unsigned long) group);
2266}
2267
2268static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2269{
2270        struct super_block *sb = PDE_DATA(file_inode(seq->file));
2271        ext4_group_t group;
2272
2273        ++*pos;
2274        if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275                return NULL;
2276        group = *pos + 1;
2277        return (void *) ((unsigned long) group);
2278}
2279
2280static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2281{
2282        struct super_block *sb = PDE_DATA(file_inode(seq->file));
2283        ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284        int i;
2285        int err, buddy_loaded = 0;
2286        struct ext4_buddy e4b;
2287        struct ext4_group_info *grinfo;
2288        unsigned char blocksize_bits = min_t(unsigned char,
2289                                             sb->s_blocksize_bits,
2290                                             EXT4_MAX_BLOCK_LOG_SIZE);
2291        struct sg {
2292                struct ext4_group_info info;
2293                ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2294        } sg;
2295
2296        group--;
2297        if (group == 0)
2298                seq_puts(seq, "#group: free  frags first ["
2299                              " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2300                              " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2301
2302        i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2303                sizeof(struct ext4_group_info);
2304
2305        grinfo = ext4_get_group_info(sb, group);
2306        /* Load the group info in memory only if not already loaded. */
2307        if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2308                err = ext4_mb_load_buddy(sb, group, &e4b);
2309                if (err) {
2310                        seq_printf(seq, "#%-5u: I/O error\n", group);
2311                        return 0;
2312                }
2313                buddy_loaded = 1;
2314        }
2315
2316        memcpy(&sg, ext4_get_group_info(sb, group), i);
2317
2318        if (buddy_loaded)
2319                ext4_mb_unload_buddy(&e4b);
2320
2321        seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2322                        sg.info.bb_fragments, sg.info.bb_first_free);
2323        for (i = 0; i <= 13; i++)
2324                seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2325                                sg.info.bb_counters[i] : 0);
2326        seq_printf(seq, " ]\n");
2327
2328        return 0;
2329}
2330
2331static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2332{
2333}
2334
2335const struct seq_operations ext4_mb_seq_groups_ops = {
2336        .start  = ext4_mb_seq_groups_start,
2337        .next   = ext4_mb_seq_groups_next,
2338        .stop   = ext4_mb_seq_groups_stop,
2339        .show   = ext4_mb_seq_groups_show,
2340};
2341
2342static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2343{
2344        int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345        struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2346
2347        BUG_ON(!cachep);
2348        return cachep;
2349}
2350
2351/*
2352 * Allocate the top-level s_group_info array for the specified number
2353 * of groups
2354 */
2355int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2356{
2357        struct ext4_sb_info *sbi = EXT4_SB(sb);
2358        unsigned size;
2359        struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2360
2361        size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2362                EXT4_DESC_PER_BLOCK_BITS(sb);
2363        if (size <= sbi->s_group_info_size)
2364                return 0;
2365
2366        size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2367        new_groupinfo = kvzalloc(size, GFP_KERNEL);
2368        if (!new_groupinfo) {
2369                ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2370                return -ENOMEM;
2371        }
2372        rcu_read_lock();
2373        old_groupinfo = rcu_dereference(sbi->s_group_info);
2374        if (old_groupinfo)
2375                memcpy(new_groupinfo, old_groupinfo,
2376                       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2377        rcu_read_unlock();
2378        rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2379        sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2380        if (old_groupinfo)
2381                ext4_kvfree_array_rcu(old_groupinfo);
2382        ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 
2383                   sbi->s_group_info_size);
2384        return 0;
2385}
2386
2387/* Create and initialize ext4_group_info data for the given group. */
2388int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2389                          struct ext4_group_desc *desc)
2390{
2391        int i;
2392        int metalen = 0;
2393        int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2394        struct ext4_sb_info *sbi = EXT4_SB(sb);
2395        struct ext4_group_info **meta_group_info;
2396        struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2397
2398        /*
2399         * First check if this group is the first of a reserved block.
2400         * If it's true, we have to allocate a new table of pointers
2401         * to ext4_group_info structures
2402         */
2403        if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2404                metalen = sizeof(*meta_group_info) <<
2405                        EXT4_DESC_PER_BLOCK_BITS(sb);
2406                meta_group_info = kmalloc(metalen, GFP_NOFS);
2407                if (meta_group_info == NULL) {
2408                        ext4_msg(sb, KERN_ERR, "can't allocate mem "
2409                                 "for a buddy group");
2410                        goto exit_meta_group_info;
2411                }
2412                rcu_read_lock();
2413                rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2414                rcu_read_unlock();
2415        }
2416
2417        meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2418        i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2419
2420        meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2421        if (meta_group_info[i] == NULL) {
2422                ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2423                goto exit_group_info;
2424        }
2425        set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2426                &(meta_group_info[i]->bb_state));
2427
2428        /*
2429         * initialize bb_free to be able to skip
2430         * empty groups without initialization
2431         */
2432        if (ext4_has_group_desc_csum(sb) &&
2433            (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2434                meta_group_info[i]->bb_free =
2435                        ext4_free_clusters_after_init(sb, group, desc);
2436        } else {
2437                meta_group_info[i]->bb_free =
2438                        ext4_free_group_clusters(sb, desc);
2439        }
2440
2441        INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2442        init_rwsem(&meta_group_info[i]->alloc_sem);
2443        meta_group_info[i]->bb_free_root = RB_ROOT;
2444        meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2445
2446#ifdef DOUBLE_CHECK
2447        {
2448                struct buffer_head *bh;
2449                meta_group_info[i]->bb_bitmap =
2450                        kmalloc(sb->s_blocksize, GFP_NOFS);
2451                BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2452                bh = ext4_read_block_bitmap(sb, group);
2453                BUG_ON(IS_ERR_OR_NULL(bh));
2454                memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2455                        sb->s_blocksize);
2456                put_bh(bh);
2457        }
2458#endif
2459
2460        return 0;
2461
2462exit_group_info:
2463        /* If a meta_group_info table has been allocated, release it now */
2464        if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2465                struct ext4_group_info ***group_info;
2466
2467                rcu_read_lock();
2468                group_info = rcu_dereference(sbi->s_group_info);
2469                kfree(group_info[idx]);
2470                group_info[idx] = NULL;
2471                rcu_read_unlock();
2472        }
2473exit_meta_group_info:
2474        return -ENOMEM;
2475} /* ext4_mb_add_groupinfo */
2476
2477static int ext4_mb_init_backend(struct super_block *sb)
2478{
2479        ext4_group_t ngroups = ext4_get_groups_count(sb);
2480        ext4_group_t i;
2481        struct ext4_sb_info *sbi = EXT4_SB(sb);
2482        int err;
2483        struct ext4_group_desc *desc;
2484        struct ext4_group_info ***group_info;
2485        struct kmem_cache *cachep;
2486
2487        err = ext4_mb_alloc_groupinfo(sb, ngroups);
2488        if (err)
2489                return err;
2490
2491        sbi->s_buddy_cache = new_inode(sb);
2492        if (sbi->s_buddy_cache == NULL) {
2493                ext4_msg(sb, KERN_ERR, "can't get new inode");
2494                goto err_freesgi;
2495        }
2496        /* To avoid potentially colliding with an valid on-disk inode number,
2497         * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2498         * not in the inode hash, so it should never be found by iget(), but
2499         * this will avoid confusion if it ever shows up during debugging. */
2500        sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2501        EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2502        for (i = 0; i < ngroups; i++) {
2503                cond_resched();
2504                desc = ext4_get_group_desc(sb, i, NULL);
2505                if (desc == NULL) {
2506                        ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2507                        goto err_freebuddy;
2508                }
2509                if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2510                        goto err_freebuddy;
2511        }
2512
2513        return 0;
2514
2515err_freebuddy:
2516        cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2517        while (i-- > 0)
2518                kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2519        i = sbi->s_group_info_size;
2520        rcu_read_lock();
2521        group_info = rcu_dereference(sbi->s_group_info);
2522        while (i-- > 0)
2523                kfree(group_info[i]);
2524        rcu_read_unlock();
2525        iput(sbi->s_buddy_cache);
2526err_freesgi:
2527        rcu_read_lock();
2528        kvfree(rcu_dereference(sbi->s_group_info));
2529        rcu_read_unlock();
2530        return -ENOMEM;
2531}
2532
2533static void ext4_groupinfo_destroy_slabs(void)
2534{
2535        int i;
2536
2537        for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2538                kmem_cache_destroy(ext4_groupinfo_caches[i]);
2539                ext4_groupinfo_caches[i] = NULL;
2540        }
2541}
2542
2543static int ext4_groupinfo_create_slab(size_t size)
2544{
2545        static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2546        int slab_size;
2547        int blocksize_bits = order_base_2(size);
2548        int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2549        struct kmem_cache *cachep;
2550
2551        if (cache_index >= NR_GRPINFO_CACHES)
2552                return -EINVAL;
2553
2554        if (unlikely(cache_index < 0))
2555                cache_index = 0;
2556
2557        mutex_lock(&ext4_grpinfo_slab_create_mutex);
2558        if (ext4_groupinfo_caches[cache_index]) {
2559                mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2560                return 0;       /* Already created */
2561        }
2562
2563        slab_size = offsetof(struct ext4_group_info,
2564                                bb_counters[blocksize_bits + 2]);
2565
2566        cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2567                                        slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2568                                        NULL);
2569
2570        ext4_groupinfo_caches[cache_index] = cachep;
2571
2572        mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2573        if (!cachep) {
2574                printk(KERN_EMERG
2575                       "EXT4-fs: no memory for groupinfo slab cache\n");
2576                return -ENOMEM;
2577        }
2578
2579        return 0;
2580}
2581
2582int ext4_mb_init(struct super_block *sb)
2583{
2584        struct ext4_sb_info *sbi = EXT4_SB(sb);
2585        unsigned i, j;
2586        unsigned offset, offset_incr;
2587        unsigned max;
2588        int ret;
2589
2590        i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2591
2592        sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2593        if (sbi->s_mb_offsets == NULL) {
2594                ret = -ENOMEM;
2595                goto out;
2596        }
2597
2598        i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2599        sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2600        if (sbi->s_mb_maxs == NULL) {
2601                ret = -ENOMEM;
2602                goto out;
2603        }
2604
2605        ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2606        if (ret < 0)
2607                goto out;
2608
2609        /* order 0 is regular bitmap */
2610        sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2611        sbi->s_mb_offsets[0] = 0;
2612
2613        i = 1;
2614        offset = 0;
2615        offset_incr = 1 << (sb->s_blocksize_bits - 1);
2616        max = sb->s_blocksize << 2;
2617        do {
2618                sbi->s_mb_offsets[i] = offset;
2619                sbi->s_mb_maxs[i] = max;
2620                offset += offset_incr;
2621                offset_incr = offset_incr >> 1;
2622                max = max >> 1;
2623                i++;
2624        } while (i <= sb->s_blocksize_bits + 1);
2625
2626        spin_lock_init(&sbi->s_md_lock);
2627        spin_lock_init(&sbi->s_bal_lock);
2628        sbi->s_mb_free_pending = 0;
2629        INIT_LIST_HEAD(&sbi->s_freed_data_list);
2630
2631        sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2632        sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2633        sbi->s_mb_stats = MB_DEFAULT_STATS;
2634        sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2635        sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2636        /*
2637         * The default group preallocation is 512, which for 4k block
2638         * sizes translates to 2 megabytes.  However for bigalloc file
2639         * systems, this is probably too big (i.e, if the cluster size
2640         * is 1 megabyte, then group preallocation size becomes half a
2641         * gigabyte!).  As a default, we will keep a two megabyte
2642         * group pralloc size for cluster sizes up to 64k, and after
2643         * that, we will force a minimum group preallocation size of
2644         * 32 clusters.  This translates to 8 megs when the cluster
2645         * size is 256k, and 32 megs when the cluster size is 1 meg,
2646         * which seems reasonable as a default.
2647         */
2648        sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2649                                       sbi->s_cluster_bits, 32);
2650        /*
2651         * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2652         * to the lowest multiple of s_stripe which is bigger than
2653         * the s_mb_group_prealloc as determined above. We want
2654         * the preallocation size to be an exact multiple of the
2655         * RAID stripe size so that preallocations don't fragment
2656         * the stripes.
2657         */
2658        if (sbi->s_stripe > 1) {
2659                sbi->s_mb_group_prealloc = roundup(
2660                        sbi->s_mb_group_prealloc, sbi->s_stripe);
2661        }
2662
2663        sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2664        if (sbi->s_locality_groups == NULL) {
2665                ret = -ENOMEM;
2666                goto out;
2667        }
2668        for_each_possible_cpu(i) {
2669                struct ext4_locality_group *lg;
2670                lg = per_cpu_ptr(sbi->s_locality_groups, i);
2671                mutex_init(&lg->lg_mutex);
2672                for (j = 0; j < PREALLOC_TB_SIZE; j++)
2673                        INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2674                spin_lock_init(&lg->lg_prealloc_lock);
2675        }
2676
2677        /* init file for buddy data */
2678        ret = ext4_mb_init_backend(sb);
2679        if (ret != 0)
2680                goto out_free_locality_groups;
2681
2682        return 0;
2683
2684out_free_locality_groups:
2685        free_percpu(sbi->s_locality_groups);
2686        sbi->s_locality_groups = NULL;
2687out:
2688        kfree(sbi->s_mb_offsets);
2689        sbi->s_mb_offsets = NULL;
2690        kfree(sbi->s_mb_maxs);
2691        sbi->s_mb_maxs = NULL;
2692        return ret;
2693}
2694
2695/* need to called with the ext4 group lock held */
2696static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2697{
2698        struct ext4_prealloc_space *pa;
2699        struct list_head *cur, *tmp;
2700        int count = 0;
2701
2702        list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2703                pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2704                list_del(&pa->pa_group_list);
2705                count++;
2706                kmem_cache_free(ext4_pspace_cachep, pa);
2707        }
2708        if (count)
2709                mb_debug(1, "mballoc: %u PAs left\n", count);
2710
2711}
2712
2713int ext4_mb_release(struct super_block *sb)
2714{
2715        ext4_group_t ngroups = ext4_get_groups_count(sb);
2716        ext4_group_t i;
2717        int num_meta_group_infos;
2718        struct ext4_group_info *grinfo, ***group_info;
2719        struct ext4_sb_info *sbi = EXT4_SB(sb);
2720        struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2721
2722        if (sbi->s_group_info) {
2723                for (i = 0; i < ngroups; i++) {
2724                        cond_resched();
2725                        grinfo = ext4_get_group_info(sb, i);
2726#ifdef DOUBLE_CHECK
2727                        kfree(grinfo->bb_bitmap);
2728#endif
2729                        ext4_lock_group(sb, i);
2730                        ext4_mb_cleanup_pa(grinfo);
2731                        ext4_unlock_group(sb, i);
2732                        kmem_cache_free(cachep, grinfo);
2733                }
2734                num_meta_group_infos = (ngroups +
2735                                EXT4_DESC_PER_BLOCK(sb) - 1) >>
2736                        EXT4_DESC_PER_BLOCK_BITS(sb);
2737                rcu_read_lock();
2738                group_info = rcu_dereference(sbi->s_group_info);
2739                for (i = 0; i < num_meta_group_infos; i++)
2740                        kfree(group_info[i]);
2741                kvfree(group_info);
2742                rcu_read_unlock();
2743        }
2744        kfree(sbi->s_mb_offsets);
2745        kfree(sbi->s_mb_maxs);
2746        iput(sbi->s_buddy_cache);
2747        if (sbi->s_mb_stats) {
2748                ext4_msg(sb, KERN_INFO,
2749                       "mballoc: %u blocks %u reqs (%u success)",
2750                                atomic_read(&sbi->s_bal_allocated),
2751                                atomic_read(&sbi->s_bal_reqs),
2752                                atomic_read(&sbi->s_bal_success));
2753                ext4_msg(sb, KERN_INFO,
2754                      "mballoc: %u extents scanned, %u goal hits, "
2755                                "%u 2^N hits, %u breaks, %u lost",
2756                                atomic_read(&sbi->s_bal_ex_scanned),
2757                                atomic_read(&sbi->s_bal_goals),
2758                                atomic_read(&sbi->s_bal_2orders),
2759                                atomic_read(&sbi->s_bal_breaks),
2760                                atomic_read(&sbi->s_mb_lost_chunks));
2761                ext4_msg(sb, KERN_INFO,
2762                       "mballoc: %lu generated and it took %Lu",
2763                                sbi->s_mb_buddies_generated,
2764                                sbi->s_mb_generation_time);
2765                ext4_msg(sb, KERN_INFO,
2766                       "mballoc: %u preallocated, %u discarded",
2767                                atomic_read(&sbi->s_mb_preallocated),
2768                                atomic_read(&sbi->s_mb_discarded));
2769        }
2770
2771        free_percpu(sbi->s_locality_groups);
2772
2773        return 0;
2774}
2775
2776static inline int ext4_issue_discard(struct super_block *sb,
2777                ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2778                struct bio **biop)
2779{
2780        ext4_fsblk_t discard_block;
2781
2782        discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2783                         ext4_group_first_block_no(sb, block_group));
2784        count = EXT4_C2B(EXT4_SB(sb), count);
2785        trace_ext4_discard_blocks(sb,
2786                        (unsigned long long) discard_block, count);
2787        if (biop) {
2788                return __blkdev_issue_discard(sb->s_bdev,
2789                        (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2790                        (sector_t)count << (sb->s_blocksize_bits - 9),
2791                        GFP_NOFS, 0, biop);
2792        } else
2793                return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2794}
2795
2796static void ext4_free_data_in_buddy(struct super_block *sb,
2797                                    struct ext4_free_data *entry)
2798{
2799        struct ext4_buddy e4b;
2800        struct ext4_group_info *db;
2801        int err, count = 0, count2 = 0;
2802
2803        mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2804                 entry->efd_count, entry->efd_group, entry);
2805
2806        err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2807        /* we expect to find existing buddy because it's pinned */
2808        BUG_ON(err != 0);
2809
2810        spin_lock(&EXT4_SB(sb)->s_md_lock);
2811        EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2812        spin_unlock(&EXT4_SB(sb)->s_md_lock);
2813
2814        db = e4b.bd_info;
2815        /* there are blocks to put in buddy to make them really free */
2816        count += entry->efd_count;
2817        count2++;
2818        ext4_lock_group(sb, entry->efd_group);
2819        /* Take it out of per group rb tree */
2820        rb_erase(&entry->efd_node, &(db->bb_free_root));
2821        mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2822
2823        /*
2824         * Clear the trimmed flag for the group so that the next
2825         * ext4_trim_fs can trim it.
2826         * If the volume is mounted with -o discard, online discard
2827         * is supported and the free blocks will be trimmed online.
2828         */
2829        if (!test_opt(sb, DISCARD))
2830                EXT4_MB_GRP_CLEAR_TRIMMED(db);
2831
2832        if (!db->bb_free_root.rb_node) {
2833                /* No more items in the per group rb tree
2834                 * balance refcounts from ext4_mb_free_metadata()
2835                 */
2836                put_page(e4b.bd_buddy_page);
2837                put_page(e4b.bd_bitmap_page);
2838        }
2839        ext4_unlock_group(sb, entry->efd_group);
2840        kmem_cache_free(ext4_free_data_cachep, entry);
2841        ext4_mb_unload_buddy(&e4b);
2842
2843        mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2844}
2845
2846/*
2847 * This function is called by the jbd2 layer once the commit has finished,
2848 * so we know we can free the blocks that were released with that commit.
2849 */
2850void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2851{
2852        struct ext4_sb_info *sbi = EXT4_SB(sb);
2853        struct ext4_free_data *entry, *tmp;
2854        struct bio *discard_bio = NULL;
2855        struct list_head freed_data_list;
2856        struct list_head *cut_pos = NULL;
2857        int err;
2858
2859        INIT_LIST_HEAD(&freed_data_list);
2860
2861        spin_lock(&sbi->s_md_lock);
2862        list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2863                if (entry->efd_tid != commit_tid)
2864                        break;
2865                cut_pos = &entry->efd_list;
2866        }
2867        if (cut_pos)
2868                list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2869                                  cut_pos);
2870        spin_unlock(&sbi->s_md_lock);
2871
2872        if (test_opt(sb, DISCARD)) {
2873                list_for_each_entry(entry, &freed_data_list, efd_list) {
2874                        err = ext4_issue_discard(sb, entry->efd_group,
2875                                                 entry->efd_start_cluster,
2876                                                 entry->efd_count,
2877                                                 &discard_bio);
2878                        if (err && err != -EOPNOTSUPP) {
2879                                ext4_msg(sb, KERN_WARNING, "discard request in"
2880                                         " group:%d block:%d count:%d failed"
2881                                         " with %d", entry->efd_group,
2882                                         entry->efd_start_cluster,
2883                                         entry->efd_count, err);
2884                        } else if (err == -EOPNOTSUPP)
2885                                break;
2886                }
2887
2888                if (discard_bio) {
2889                        submit_bio_wait(discard_bio);
2890                        bio_put(discard_bio);
2891                }
2892        }
2893
2894        list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2895                ext4_free_data_in_buddy(sb, entry);
2896}
2897
2898int __init ext4_init_mballoc(void)
2899{
2900        ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2901                                        SLAB_RECLAIM_ACCOUNT);
2902        if (ext4_pspace_cachep == NULL)
2903                return -ENOMEM;
2904
2905        ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2906                                    SLAB_RECLAIM_ACCOUNT);
2907        if (ext4_ac_cachep == NULL) {
2908                kmem_cache_destroy(ext4_pspace_cachep);
2909                return -ENOMEM;
2910        }
2911
2912        ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2913                                           SLAB_RECLAIM_ACCOUNT);
2914        if (ext4_free_data_cachep == NULL) {
2915                kmem_cache_destroy(ext4_pspace_cachep);
2916                kmem_cache_destroy(ext4_ac_cachep);
2917                return -ENOMEM;
2918        }
2919        return 0;
2920}
2921
2922void ext4_exit_mballoc(void)
2923{
2924        /*
2925         * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2926         * before destroying the slab cache.
2927         */
2928        rcu_barrier();
2929        kmem_cache_destroy(ext4_pspace_cachep);
2930        kmem_cache_destroy(ext4_ac_cachep);
2931        kmem_cache_destroy(ext4_free_data_cachep);
2932        ext4_groupinfo_destroy_slabs();
2933}
2934
2935
2936/*
2937 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2938 * Returns 0 if success or error code
2939 */
2940static noinline_for_stack int
2941ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2942                                handle_t *handle, unsigned int reserv_clstrs)
2943{
2944        struct buffer_head *bitmap_bh = NULL;
2945        struct ext4_group_desc *gdp;
2946        struct buffer_head *gdp_bh;
2947        struct ext4_sb_info *sbi;
2948        struct super_block *sb;
2949        ext4_fsblk_t block;
2950        int err, len;
2951
2952        BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2953        BUG_ON(ac->ac_b_ex.fe_len <= 0);
2954
2955        sb = ac->ac_sb;
2956        sbi = EXT4_SB(sb);
2957
2958        bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2959        if (IS_ERR(bitmap_bh)) {
2960                err = PTR_ERR(bitmap_bh);
2961                bitmap_bh = NULL;
2962                goto out_err;
2963        }
2964
2965        BUFFER_TRACE(bitmap_bh, "getting write access");
2966        err = ext4_journal_get_write_access(handle, bitmap_bh);
2967        if (err)
2968                goto out_err;
2969
2970        err = -EIO;
2971        gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2972        if (!gdp)
2973                goto out_err;
2974
2975        ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2976                        ext4_free_group_clusters(sb, gdp));
2977
2978        BUFFER_TRACE(gdp_bh, "get_write_access");
2979        err = ext4_journal_get_write_access(handle, gdp_bh);
2980        if (err)
2981                goto out_err;
2982
2983        block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2984
2985        len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2986        if (!ext4_data_block_valid(sbi, block, len)) {
2987                ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2988                           "fs metadata", block, block+len);
2989                /* File system mounted not to panic on error
2990                 * Fix the bitmap and return EFSCORRUPTED
2991                 * We leak some of the blocks here.
2992                 */
2993                ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2994                ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2995                              ac->ac_b_ex.fe_len);
2996                ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2997                err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2998                if (!err)
2999                        err = -EFSCORRUPTED;
3000                goto out_err;
3001        }
3002
3003        ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3004#ifdef AGGRESSIVE_CHECK
3005        {
3006                int i;
3007                for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3008                        BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3009                                                bitmap_bh->b_data));
3010                }
3011        }
3012#endif
3013        ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3014                      ac->ac_b_ex.fe_len);
3015        if (ext4_has_group_desc_csum(sb) &&
3016            (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3017                gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3018                ext4_free_group_clusters_set(sb, gdp,
3019                                             ext4_free_clusters_after_init(sb,
3020                                                ac->ac_b_ex.fe_group, gdp));
3021        }
3022        len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3023        ext4_free_group_clusters_set(sb, gdp, len);
3024        ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3025        ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3026
3027        ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3028        percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3029        /*
3030         * Now reduce the dirty block count also. Should not go negative
3031         */
3032        if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3033                /* release all the reserved blocks if non delalloc */
3034                percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3035                                   reserv_clstrs);
3036
3037        if (sbi->s_log_groups_per_flex) {
3038                ext4_group_t flex_group = ext4_flex_group(sbi,
3039                                                          ac->ac_b_ex.fe_group);
3040                atomic64_sub(ac->ac_b_ex.fe_len,
3041                             &sbi_array_rcu_deref(sbi, s_flex_groups,
3042                                                  flex_group)->free_clusters);
3043        }
3044
3045        err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3046        if (err)
3047                goto out_err;
3048        err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3049
3050out_err:
3051        brelse(bitmap_bh);
3052        return err;
3053}
3054
3055/*
3056 * here we normalize request for locality group
3057 * Group request are normalized to s_mb_group_prealloc, which goes to
3058 * s_strip if we set the same via mount option.
3059 * s_mb_group_prealloc can be configured via
3060 * /sys/fs/ext4/<partition>/mb_group_prealloc
3061 *
3062 * XXX: should we try to preallocate more than the group has now?
3063 */
3064static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3065{
3066        struct super_block *sb = ac->ac_sb;
3067        struct ext4_locality_group *lg = ac->ac_lg;
3068
3069        BUG_ON(lg == NULL);
3070        ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3071        mb_debug(1, "#%u: goal %u blocks for locality group\n",
3072                current->pid, ac->ac_g_ex.fe_len);
3073}
3074
3075/*
3076 * Normalization means making request better in terms of
3077 * size and alignment
3078 */
3079static noinline_for_stack void
3080ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3081                                struct ext4_allocation_request *ar)
3082{
3083        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3084        int bsbits, max;
3085        ext4_lblk_t end;
3086        loff_t size, start_off;
3087        loff_t orig_size __maybe_unused;
3088        ext4_lblk_t start;
3089        struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3090        struct ext4_prealloc_space *pa;
3091
3092        /* do normalize only data requests, metadata requests
3093           do not need preallocation */
3094        if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3095                return;
3096
3097        /* sometime caller may want exact blocks */
3098        if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3099                return;
3100
3101        /* caller may indicate that preallocation isn't
3102         * required (it's a tail, for example) */
3103        if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3104                return;
3105
3106        if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3107                ext4_mb_normalize_group_request(ac);
3108                return ;
3109        }
3110
3111        bsbits = ac->ac_sb->s_blocksize_bits;
3112
3113        /* first, let's learn actual file size
3114         * given current request is allocated */
3115        size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3116        size = size << bsbits;
3117        if (size < i_size_read(ac->ac_inode))
3118                size = i_size_read(ac->ac_inode);
3119        orig_size = size;
3120
3121        /* max size of free chunks */
3122        max = 2 << bsbits;
3123
3124#define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
3125                (req <= (size) || max <= (chunk_size))
3126
3127        /* first, try to predict filesize */
3128        /* XXX: should this table be tunable? */
3129        start_off = 0;
3130        if (size <= 16 * 1024) {
3131                size = 16 * 1024;
3132        } else if (size <= 32 * 1024) {
3133                size = 32 * 1024;
3134        } else if (size <= 64 * 1024) {
3135                size = 64 * 1024;
3136        } else if (size <= 128 * 1024) {
3137                size = 128 * 1024;
3138        } else if (size <= 256 * 1024) {
3139                size = 256 * 1024;
3140        } else if (size <= 512 * 1024) {
3141                size = 512 * 1024;
3142        } else if (size <= 1024 * 1024) {
3143                size = 1024 * 1024;
3144        } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3145                start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3146                                                (21 - bsbits)) << 21;
3147                size = 2 * 1024 * 1024;
3148        } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3149                start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3150                                                        (22 - bsbits)) << 22;
3151                size = 4 * 1024 * 1024;
3152        } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3153                                        (8<<20)>>bsbits, max, 8 * 1024)) {
3154                start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3155                                                        (23 - bsbits)) << 23;
3156                size = 8 * 1024 * 1024;
3157        } else {
3158                start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3159                size      = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3160                                              ac->ac_o_ex.fe_len) << bsbits;
3161        }
3162        size = size >> bsbits;
3163        start = start_off >> bsbits;
3164
3165        /* don't cover already allocated blocks in selected range */
3166        if (ar->pleft && start <= ar->lleft) {
3167                size -= ar->lleft + 1 - start;
3168                start = ar->lleft + 1;
3169        }
3170        if (ar->pright && start + size - 1 >= ar->lright)
3171                size -= start + size - ar->lright;
3172
3173        /*
3174         * Trim allocation request for filesystems with artificially small
3175         * groups.
3176         */
3177        if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3178                size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3179
3180        end = start + size;
3181
3182        /* check we don't cross already preallocated blocks */
3183        rcu_read_lock();
3184        list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3185                ext4_lblk_t pa_end;
3186
3187                if (pa->pa_deleted)
3188                        continue;
3189                spin_lock(&pa->pa_lock);
3190                if (pa->pa_deleted) {
3191                        spin_unlock(&pa->pa_lock);
3192                        continue;
3193                }
3194
3195                pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3196                                                  pa->pa_len);
3197
3198                /* PA must not overlap original request */
3199                BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3200                        ac->ac_o_ex.fe_logical < pa->pa_lstart));
3201
3202                /* skip PAs this normalized request doesn't overlap with */
3203                if (pa->pa_lstart >= end || pa_end <= start) {
3204                        spin_unlock(&pa->pa_lock);
3205                        continue;
3206                }
3207                BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3208
3209                /* adjust start or end to be adjacent to this pa */
3210                if (pa_end <= ac->ac_o_ex.fe_logical) {
3211                        BUG_ON(pa_end < start);
3212                        start = pa_end;
3213                } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3214                        BUG_ON(pa->pa_lstart > end);
3215                        end = pa->pa_lstart;
3216                }
3217                spin_unlock(&pa->pa_lock);
3218        }
3219        rcu_read_unlock();
3220        size = end - start;
3221
3222        /* XXX: extra loop to check we really don't overlap preallocations */
3223        rcu_read_lock();
3224        list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3225                ext4_lblk_t pa_end;
3226
3227                spin_lock(&pa->pa_lock);
3228                if (pa->pa_deleted == 0) {
3229                        pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3230                                                          pa->pa_len);
3231                        BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3232                }
3233                spin_unlock(&pa->pa_lock);
3234        }
3235        rcu_read_unlock();
3236
3237        if (start + size <= ac->ac_o_ex.fe_logical &&
3238                        start > ac->ac_o_ex.fe_logical) {
3239                ext4_msg(ac->ac_sb, KERN_ERR,
3240                         "start %lu, size %lu, fe_logical %lu",
3241                         (unsigned long) start, (unsigned long) size,
3242                         (unsigned long) ac->ac_o_ex.fe_logical);
3243                BUG();
3244        }
3245        BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3246
3247        /* now prepare goal request */
3248
3249        /* XXX: is it better to align blocks WRT to logical
3250         * placement or satisfy big request as is */
3251        ac->ac_g_ex.fe_logical = start;
3252        ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3253
3254        /* define goal start in order to merge */
3255        if (ar->pright && (ar->lright == (start + size))) {
3256                /* merge to the right */
3257                ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3258                                                &ac->ac_f_ex.fe_group,
3259                                                &ac->ac_f_ex.fe_start);
3260                ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3261        }
3262        if (ar->pleft && (ar->lleft + 1 == start)) {
3263                /* merge to the left */
3264                ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3265                                                &ac->ac_f_ex.fe_group,
3266                                                &ac->ac_f_ex.fe_start);
3267                ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3268        }
3269
3270        mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3271                (unsigned) orig_size, (unsigned) start);
3272}
3273
3274static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3275{
3276        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3277
3278        if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3279                atomic_inc(&sbi->s_bal_reqs);
3280                atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3281                if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3282                        atomic_inc(&sbi->s_bal_success);
3283                atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3284                if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3285                                ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3286                        atomic_inc(&sbi->s_bal_goals);
3287                if (ac->ac_found > sbi->s_mb_max_to_scan)
3288                        atomic_inc(&sbi->s_bal_breaks);
3289        }
3290
3291        if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3292                trace_ext4_mballoc_alloc(ac);
3293        else
3294                trace_ext4_mballoc_prealloc(ac);
3295}
3296
3297/*
3298 * Called on failure; free up any blocks from the inode PA for this
3299 * context.  We don't need this for MB_GROUP_PA because we only change
3300 * pa_free in ext4_mb_release_context(), but on failure, we've already
3301 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3302 */
3303static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3304{
3305        struct ext4_prealloc_space *pa = ac->ac_pa;
3306        struct ext4_buddy e4b;
3307        int err;
3308
3309        if (pa == NULL) {
3310                if (ac->ac_f_ex.fe_len == 0)
3311                        return;
3312                err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3313                if (err) {
3314                        /*
3315                         * This should never happen since we pin the
3316                         * pages in the ext4_allocation_context so
3317                         * ext4_mb_load_buddy() should never fail.
3318                         */
3319                        WARN(1, "mb_load_buddy failed (%d)", err);
3320                        return;
3321                }
3322                ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3323                mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3324                               ac->ac_f_ex.fe_len);
3325                ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3326                ext4_mb_unload_buddy(&e4b);
3327                return;
3328        }
3329        if (pa->pa_type == MB_INODE_PA)
3330                pa->pa_free += ac->ac_b_ex.fe_len;
3331}
3332
3333/*
3334 * use blocks preallocated to inode
3335 */
3336static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3337                                struct ext4_prealloc_space *pa)
3338{
3339        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3340        ext4_fsblk_t start;
3341        ext4_fsblk_t end;
3342        int len;
3343
3344        /* found preallocated blocks, use them */
3345        start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3346        end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3347                  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3348        len = EXT4_NUM_B2C(sbi, end - start);
3349        ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3350                                        &ac->ac_b_ex.fe_start);
3351        ac->ac_b_ex.fe_len = len;
3352        ac->ac_status = AC_STATUS_FOUND;
3353        ac->ac_pa = pa;
3354
3355        BUG_ON(start < pa->pa_pstart);
3356        BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3357        BUG_ON(pa->pa_free < len);
3358        pa->pa_free -= len;
3359
3360        mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3361}
3362
3363/*
3364 * use blocks preallocated to locality group
3365 */
3366static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3367                                struct ext4_prealloc_space *pa)
3368{
3369        unsigned int len = ac->ac_o_ex.fe_len;
3370
3371        ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3372                                        &ac->ac_b_ex.fe_group,
3373                                        &ac->ac_b_ex.fe_start);
3374        ac->ac_b_ex.fe_len = len;
3375        ac->ac_status = AC_STATUS_FOUND;
3376        ac->ac_pa = pa;
3377
3378        /* we don't correct pa_pstart or pa_plen here to avoid
3379         * possible race when the group is being loaded concurrently
3380         * instead we correct pa later, after blocks are marked
3381         * in on-disk bitmap -- see ext4_mb_release_context()
3382         * Other CPUs are prevented from allocating from this pa by lg_mutex
3383         */
3384        mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3385}
3386
3387/*
3388 * Return the prealloc space that have minimal distance
3389 * from the goal block. @cpa is the prealloc
3390 * space that is having currently known minimal distance
3391 * from the goal block.
3392 */
3393static struct ext4_prealloc_space *
3394ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3395                        struct ext4_prealloc_space *pa,
3396                        struct ext4_prealloc_space *cpa)
3397{
3398        ext4_fsblk_t cur_distance, new_distance;
3399
3400        if (cpa == NULL) {
3401                atomic_inc(&pa->pa_count);
3402                return pa;
3403        }
3404        cur_distance = abs(goal_block - cpa->pa_pstart);
3405        new_distance = abs(goal_block - pa->pa_pstart);
3406
3407        if (cur_distance <= new_distance)
3408                return cpa;
3409
3410        /* drop the previous reference */
3411        atomic_dec(&cpa->pa_count);
3412        atomic_inc(&pa->pa_count);
3413        return pa;
3414}
3415
3416/*
3417 * search goal blocks in preallocated space
3418 */
3419static noinline_for_stack int
3420ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3421{
3422        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3423        int order, i;
3424        struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3425        struct ext4_locality_group *lg;
3426        struct ext4_prealloc_space *pa, *cpa = NULL;
3427        ext4_fsblk_t goal_block;
3428
3429        /* only data can be preallocated */
3430        if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3431                return 0;
3432
3433        /* first, try per-file preallocation */
3434        rcu_read_lock();
3435        list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3436
3437                /* all fields in this condition don't change,
3438                 * so we can skip locking for them */
3439                if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3440                    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3441                                               EXT4_C2B(sbi, pa->pa_len)))
3442                        continue;
3443
3444                /* non-extent files can't have physical blocks past 2^32 */
3445                if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3446                    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3447                     EXT4_MAX_BLOCK_FILE_PHYS))
3448                        continue;
3449
3450                /* found preallocated blocks, use them */
3451                spin_lock(&pa->pa_lock);
3452                if (pa->pa_deleted == 0 && pa->pa_free) {
3453                        atomic_inc(&pa->pa_count);
3454                        ext4_mb_use_inode_pa(ac, pa);
3455                        spin_unlock(&pa->pa_lock);
3456                        ac->ac_criteria = 10;
3457                        rcu_read_unlock();
3458                        return 1;
3459                }
3460                spin_unlock(&pa->pa_lock);
3461        }
3462        rcu_read_unlock();
3463
3464        /* can we use group allocation? */
3465        if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3466                return 0;
3467
3468        /* inode may have no locality group for some reason */
3469        lg = ac->ac_lg;
3470        if (lg == NULL)
3471                return 0;
3472        order  = fls(ac->ac_o_ex.fe_len) - 1;
3473        if (order > PREALLOC_TB_SIZE - 1)
3474                /* The max size of hash table is PREALLOC_TB_SIZE */
3475                order = PREALLOC_TB_SIZE - 1;
3476
3477        goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3478        /*
3479         * search for the prealloc space that is having
3480         * minimal distance from the goal block.
3481         */
3482        for (i = order; i < PREALLOC_TB_SIZE; i++) {
3483                rcu_read_lock();
3484                list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3485                                        pa_inode_list) {
3486                        spin_lock(&pa->pa_lock);
3487                        if (pa->pa_deleted == 0 &&
3488                                        pa->pa_free >= ac->ac_o_ex.fe_len) {
3489
3490                                cpa = ext4_mb_check_group_pa(goal_block,
3491                                                                pa, cpa);
3492                        }
3493                        spin_unlock(&pa->pa_lock);
3494                }
3495                rcu_read_unlock();
3496        }
3497        if (cpa) {
3498                ext4_mb_use_group_pa(ac, cpa);
3499                ac->ac_criteria = 20;
3500                return 1;
3501        }
3502        return 0;
3503}
3504
3505/*
3506 * the function goes through all block freed in the group
3507 * but not yet committed and marks them used in in-core bitmap.
3508 * buddy must be generated from this bitmap
3509 * Need to be called with the ext4 group lock held
3510 */
3511static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3512                                                ext4_group_t group)
3513{
3514        struct rb_node *n;
3515        struct ext4_group_info *grp;
3516        struct ext4_free_data *entry;
3517
3518        grp = ext4_get_group_info(sb, group);
3519        n = rb_first(&(grp->bb_free_root));
3520
3521        while (n) {
3522                entry = rb_entry(n, struct ext4_free_data, efd_node);
3523                ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3524                n = rb_next(n);
3525        }
3526        return;
3527}
3528
3529/*
3530 * the function goes through all preallocation in this group and marks them
3531 * used in in-core bitmap. buddy must be generated from this bitmap
3532 * Need to be called with ext4 group lock held
3533 */
3534static noinline_for_stack
3535void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3536                                        ext4_group_t group)
3537{
3538        struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3539        struct ext4_prealloc_space *pa;
3540        struct list_head *cur;
3541        ext4_group_t groupnr;
3542        ext4_grpblk_t start;
3543        int preallocated = 0;
3544        int len;
3545
3546        /* all form of preallocation discards first load group,
3547         * so the only competing code is preallocation use.
3548         * we don't need any locking here
3549         * notice we do NOT ignore preallocations with pa_deleted
3550         * otherwise we could leave used blocks available for
3551         * allocation in buddy when concurrent ext4_mb_put_pa()
3552         * is dropping preallocation
3553         */
3554        list_for_each(cur, &grp->bb_prealloc_list) {
3555                pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3556                spin_lock(&pa->pa_lock);
3557                ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3558                                             &groupnr, &start);
3559                len = pa->pa_len;
3560                spin_unlock(&pa->pa_lock);
3561                if (unlikely(len == 0))
3562                        continue;
3563                BUG_ON(groupnr != group);
3564                ext4_set_bits(bitmap, start, len);
3565                preallocated += len;
3566        }
3567        mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3568}
3569
3570static void ext4_mb_pa_callback(struct rcu_head *head)
3571{
3572        struct ext4_prealloc_space *pa;
3573        pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3574
3575        BUG_ON(atomic_read(&pa->pa_count));
3576        BUG_ON(pa->pa_deleted == 0);
3577        kmem_cache_free(ext4_pspace_cachep, pa);
3578}
3579
3580/*
3581 * drops a reference to preallocated space descriptor
3582 * if this was the last reference and the space is consumed
3583 */
3584static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3585                        struct super_block *sb, struct ext4_prealloc_space *pa)
3586{
3587        ext4_group_t grp;
3588        ext4_fsblk_t grp_blk;
3589
3590        /* in this short window concurrent discard can set pa_deleted */
3591        spin_lock(&pa->pa_lock);
3592        if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3593                spin_unlock(&pa->pa_lock);
3594                return;
3595        }
3596
3597        if (pa->pa_deleted == 1) {
3598                spin_unlock(&pa->pa_lock);
3599                return;
3600        }
3601
3602        pa->pa_deleted = 1;
3603        spin_unlock(&pa->pa_lock);
3604
3605        grp_blk = pa->pa_pstart;
3606        /*
3607         * If doing group-based preallocation, pa_pstart may be in the
3608         * next group when pa is used up
3609         */
3610        if (pa->pa_type == MB_GROUP_PA)
3611                grp_blk--;
3612
3613        grp = ext4_get_group_number(sb, grp_blk);
3614
3615        /*
3616         * possible race:
3617         *
3618         *  P1 (buddy init)                     P2 (regular allocation)
3619         *                                      find block B in PA
3620         *  copy on-disk bitmap to buddy
3621         *                                      mark B in on-disk bitmap
3622         *                                      drop PA from group
3623         *  mark all PAs in buddy
3624         *
3625         * thus, P1 initializes buddy with B available. to prevent this
3626         * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3627         * against that pair
3628         */
3629        ext4_lock_group(sb, grp);
3630        list_del(&pa->pa_group_list);
3631        ext4_unlock_group(sb, grp);
3632
3633        spin_lock(pa->pa_obj_lock);
3634        list_del_rcu(&pa->pa_inode_list);
3635        spin_unlock(pa->pa_obj_lock);
3636
3637        call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3638}
3639
3640/*
3641 * creates new preallocated space for given inode
3642 */
3643static noinline_for_stack int
3644ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3645{
3646        struct super_block *sb = ac->ac_sb;
3647        struct ext4_sb_info *sbi = EXT4_SB(sb);
3648        struct ext4_prealloc_space *pa;
3649        struct ext4_group_info *grp;
3650        struct ext4_inode_info *ei;
3651
3652        /* preallocate only when found space is larger then requested */
3653        BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3654        BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3655        BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3656
3657        pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3658        if (pa == NULL)
3659                return -ENOMEM;
3660
3661        if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3662                int winl;
3663                int wins;
3664                int win;
3665                int offs;
3666
3667                /* we can't allocate as much as normalizer wants.
3668                 * so, found space must get proper lstart
3669                 * to cover original request */
3670                BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3671                BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3672
3673                /* we're limited by original request in that
3674                 * logical block must be covered any way
3675                 * winl is window we can move our chunk within */
3676                winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3677
3678                /* also, we should cover whole original request */
3679                wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3680
3681                /* the smallest one defines real window */
3682                win = min(winl, wins);
3683
3684                offs = ac->ac_o_ex.fe_logical %
3685                        EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3686                if (offs && offs < win)
3687                        win = offs;
3688
3689                ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3690                        EXT4_NUM_B2C(sbi, win);
3691                BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3692                BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3693        }
3694
3695        /* preallocation can change ac_b_ex, thus we store actually
3696         * allocated blocks for history */
3697        ac->ac_f_ex = ac->ac_b_ex;
3698
3699        pa->pa_lstart = ac->ac_b_ex.fe_logical;
3700        pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3701        pa->pa_len = ac->ac_b_ex.fe_len;
3702        pa->pa_free = pa->pa_len;
3703        atomic_set(&pa->pa_count, 1);
3704        spin_lock_init(&pa->pa_lock);
3705        INIT_LIST_HEAD(&pa->pa_inode_list);
3706        INIT_LIST_HEAD(&pa->pa_group_list);
3707        pa->pa_deleted = 0;
3708        pa->pa_type = MB_INODE_PA;
3709
3710        mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3711                        pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3712        trace_ext4_mb_new_inode_pa(ac, pa);
3713
3714        ext4_mb_use_inode_pa(ac, pa);
3715        atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3716
3717        ei = EXT4_I(ac->ac_inode);
3718        grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3719
3720        pa->pa_obj_lock = &ei->i_prealloc_lock;
3721        pa->pa_inode = ac->ac_inode;
3722
3723        ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3724        list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3725        ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3726
3727        spin_lock(pa->pa_obj_lock);
3728        list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3729        spin_unlock(pa->pa_obj_lock);
3730
3731        return 0;
3732}
3733
3734/*
3735 * creates new preallocated space for locality group inodes belongs to
3736 */
3737static noinline_for_stack int
3738ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3739{
3740        struct super_block *sb = ac->ac_sb;
3741        struct ext4_locality_group *lg;
3742        struct ext4_prealloc_space *pa;
3743        struct ext4_group_info *grp;
3744
3745        /* preallocate only when found space is larger then requested */
3746        BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3747        BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3748        BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3749
3750        BUG_ON(ext4_pspace_cachep == NULL);
3751        pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3752        if (pa == NULL)
3753                return -ENOMEM;
3754
3755        /* preallocation can change ac_b_ex, thus we store actually
3756         * allocated blocks for history */
3757        ac->ac_f_ex = ac->ac_b_ex;
3758
3759        pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3760        pa->pa_lstart = pa->pa_pstart;
3761        pa->pa_len = ac->ac_b_ex.fe_len;
3762        pa->pa_free = pa->pa_len;
3763        atomic_set(&pa->pa_count, 1);
3764        spin_lock_init(&pa->pa_lock);
3765        INIT_LIST_HEAD(&pa->pa_inode_list);
3766        INIT_LIST_HEAD(&pa->pa_group_list);
3767        pa->pa_deleted = 0;
3768        pa->pa_type = MB_GROUP_PA;
3769
3770        mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3771                        pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3772        trace_ext4_mb_new_group_pa(ac, pa);
3773
3774        ext4_mb_use_group_pa(ac, pa);
3775        atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3776
3777        grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3778        lg = ac->ac_lg;
3779        BUG_ON(lg == NULL);
3780
3781        pa->pa_obj_lock = &lg->lg_prealloc_lock;
3782        pa->pa_inode = NULL;
3783
3784        ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3785        list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3786        ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3787
3788        /*
3789         * We will later add the new pa to the right bucket
3790         * after updating the pa_free in ext4_mb_release_context
3791         */
3792        return 0;
3793}
3794
3795static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3796{
3797        int err;
3798
3799        if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3800                err = ext4_mb_new_group_pa(ac);
3801        else
3802                err = ext4_mb_new_inode_pa(ac);
3803        return err;
3804}
3805
3806/*
3807 * finds all unused blocks in on-disk bitmap, frees them in
3808 * in-core bitmap and buddy.
3809 * @pa must be unlinked from inode and group lists, so that
3810 * nobody else can find/use it.
3811 * the caller MUST hold group/inode locks.
3812 * TODO: optimize the case when there are no in-core structures yet
3813 */
3814static noinline_for_stack int
3815ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3816                        struct ext4_prealloc_space *pa)
3817{
3818        struct super_block *sb = e4b->bd_sb;
3819        struct ext4_sb_info *sbi = EXT4_SB(sb);
3820        unsigned int end;
3821        unsigned int next;
3822        ext4_group_t group;
3823        ext4_grpblk_t bit;
3824        unsigned long long grp_blk_start;
3825        int free = 0;
3826
3827        BUG_ON(pa->pa_deleted == 0);
3828        ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3829        grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3830        BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3831        end = bit + pa->pa_len;
3832
3833        while (bit < end) {
3834                bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3835                if (bit >= end)
3836                        break;
3837                next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3838                mb_debug(1, "    free preallocated %u/%u in group %u\n",
3839                         (unsigned) ext4_group_first_block_no(sb, group) + bit,
3840                         (unsigned) next - bit, (unsigned) group);
3841                free += next - bit;
3842
3843                trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3844                trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3845                                                    EXT4_C2B(sbi, bit)),
3846                                               next - bit);
3847                mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3848                bit = next + 1;
3849        }
3850        if (free != pa->pa_free) {
3851                ext4_msg(e4b->bd_sb, KERN_CRIT,
3852                         "pa %p: logic %lu, phys. %lu, len %lu",
3853                         pa, (unsigned long) pa->pa_lstart,
3854                         (unsigned long) pa->pa_pstart,
3855                         (unsigned long) pa->pa_len);
3856                ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3857                                        free, pa->pa_free);
3858                /*
3859                 * pa is already deleted so we use the value obtained
3860                 * from the bitmap and continue.
3861                 */
3862        }
3863        atomic_add(free, &sbi->s_mb_discarded);
3864
3865        return 0;
3866}
3867
3868static noinline_for_stack int
3869ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3870                                struct ext4_prealloc_space *pa)
3871{
3872        struct super_block *sb = e4b->bd_sb;
3873        ext4_group_t group;
3874        ext4_grpblk_t bit;
3875
3876        trace_ext4_mb_release_group_pa(sb, pa);
3877        BUG_ON(pa->pa_deleted == 0);
3878        ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3879        BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3880        mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3881        atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3882        trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3883
3884        return 0;
3885}
3886
3887/*
3888 * releases all preallocations in given group
3889 *
3890 * first, we need to decide discard policy:
3891 * - when do we discard
3892 *   1) ENOSPC
3893 * - how many do we discard
3894 *   1) how many requested
3895 */
3896static noinline_for_stack int
3897ext4_mb_discard_group_preallocations(struct super_block *sb,
3898                                        ext4_group_t group, int needed)
3899{
3900        struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3901        struct buffer_head *bitmap_bh = NULL;
3902        struct ext4_prealloc_space *pa, *tmp;
3903        struct list_head list;
3904        struct ext4_buddy e4b;
3905        int err;
3906        int busy = 0;
3907        int free = 0;
3908
3909        mb_debug(1, "discard preallocation for group %u\n", group);
3910
3911        if (list_empty(&grp->bb_prealloc_list))
3912                return 0;
3913
3914        bitmap_bh = ext4_read_block_bitmap(sb, group);
3915        if (IS_ERR(bitmap_bh)) {
3916                err = PTR_ERR(bitmap_bh);
3917                ext4_set_errno(sb, -err);
3918                ext4_error(sb, "Error %d reading block bitmap for %u",
3919                           err, group);
3920                return 0;
3921        }
3922
3923        err = ext4_mb_load_buddy(sb, group, &e4b);
3924        if (err) {
3925                ext4_warning(sb, "Error %d loading buddy information for %u",
3926                             err, group);
3927                put_bh(bitmap_bh);
3928                return 0;
3929        }
3930
3931        if (needed == 0)
3932                needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3933
3934        INIT_LIST_HEAD(&list);
3935repeat:
3936        ext4_lock_group(sb, group);
3937        list_for_each_entry_safe(pa, tmp,
3938                                &grp->bb_prealloc_list, pa_group_list) {
3939                spin_lock(&pa->pa_lock);
3940                if (atomic_read(&pa->pa_count)) {
3941                        spin_unlock(&pa->pa_lock);
3942                        busy = 1;
3943                        continue;
3944                }
3945                if (pa->pa_deleted) {
3946                        spin_unlock(&pa->pa_lock);
3947                        continue;
3948                }
3949
3950                /* seems this one can be freed ... */
3951                pa->pa_deleted = 1;
3952
3953                /* we can trust pa_free ... */
3954                free += pa->pa_free;
3955
3956                spin_unlock(&pa->pa_lock);
3957
3958                list_del(&pa->pa_group_list);
3959                list_add(&pa->u.pa_tmp_list, &list);
3960        }
3961
3962        /* if we still need more blocks and some PAs were used, try again */
3963        if (free < needed && busy) {
3964                busy = 0;
3965                ext4_unlock_group(sb, group);
3966                cond_resched();
3967                goto repeat;
3968        }
3969
3970        /* found anything to free? */
3971        if (list_empty(&list)) {
3972                BUG_ON(free != 0);
3973                goto out;
3974        }
3975
3976        /* now free all selected PAs */
3977        list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3978
3979                /* remove from object (inode or locality group) */
3980                spin_lock(pa->pa_obj_lock);
3981                list_del_rcu(&pa->pa_inode_list);
3982                spin_unlock(pa->pa_obj_lock);
3983
3984                if (pa->pa_type == MB_GROUP_PA)
3985                        ext4_mb_release_group_pa(&e4b, pa);
3986                else
3987                        ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3988
3989                list_del(&pa->u.pa_tmp_list);
3990                call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3991        }
3992
3993out:
3994        ext4_unlock_group(sb, group);
3995        ext4_mb_unload_buddy(&e4b);
3996        put_bh(bitmap_bh);
3997        return free;
3998}
3999
4000/*
4001 * releases all non-used preallocated blocks for given inode
4002 *
4003 * It's important to discard preallocations under i_data_sem
4004 * We don't want another block to be served from the prealloc
4005 * space when we are discarding the inode prealloc space.
4006 *
4007 * FIXME!! Make sure it is valid at all the call sites
4008 */
4009void ext4_discard_preallocations(struct inode *inode)
4010{
4011        struct ext4_inode_info *ei = EXT4_I(inode);
4012        struct super_block *sb = inode->i_sb;
4013        struct buffer_head *bitmap_bh = NULL;
4014        struct ext4_prealloc_space *pa, *tmp;
4015        ext4_group_t group = 0;
4016        struct list_head list;
4017        struct ext4_buddy e4b;
4018        int err;
4019
4020        if (!S_ISREG(inode->i_mode)) {
4021                /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4022                return;
4023        }
4024
4025        mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4026        trace_ext4_discard_preallocations(inode);
4027
4028        INIT_LIST_HEAD(&list);
4029
4030repeat:
4031        /* first, collect all pa's in the inode */
4032        spin_lock(&ei->i_prealloc_lock);
4033        while (!list_empty(&ei->i_prealloc_list)) {
4034                pa = list_entry(ei->i_prealloc_list.next,
4035                                struct ext4_prealloc_space, pa_inode_list);
4036                BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4037                spin_lock(&pa->pa_lock);
4038                if (atomic_read(&pa->pa_count)) {
4039                        /* this shouldn't happen often - nobody should
4040                         * use preallocation while we're discarding it */
4041                        spin_unlock(&pa->pa_lock);
4042                        spin_unlock(&ei->i_prealloc_lock);
4043                        ext4_msg(sb, KERN_ERR,
4044                                 "uh-oh! used pa while discarding");
4045                        WARN_ON(1);
4046                        schedule_timeout_uninterruptible(HZ);
4047                        goto repeat;
4048
4049                }
4050                if (pa->pa_deleted == 0) {
4051                        pa->pa_deleted = 1;
4052                        spin_unlock(&pa->pa_lock);
4053                        list_del_rcu(&pa->pa_inode_list);
4054                        list_add(&pa->u.pa_tmp_list, &list);
4055                        continue;
4056                }
4057
4058                /* someone is deleting pa right now */
4059                spin_unlock(&pa->pa_lock);
4060                spin_unlock(&ei->i_prealloc_lock);
4061
4062                /* we have to wait here because pa_deleted
4063                 * doesn't mean pa is already unlinked from
4064                 * the list. as we might be called from
4065                 * ->clear_inode() the inode will get freed
4066                 * and concurrent thread which is unlinking
4067                 * pa from inode's list may access already
4068                 * freed memory, bad-bad-bad */
4069
4070                /* XXX: if this happens too often, we can
4071                 * add a flag to force wait only in case
4072                 * of ->clear_inode(), but not in case of
4073                 * regular truncate */
4074                schedule_timeout_uninterruptible(HZ);
4075                goto repeat;
4076        }
4077        spin_unlock(&ei->i_prealloc_lock);
4078
4079        list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4080                BUG_ON(pa->pa_type != MB_INODE_PA);
4081                group = ext4_get_group_number(sb, pa->pa_pstart);
4082
4083                err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4084                                             GFP_NOFS|__GFP_NOFAIL);
4085                if (err) {
4086                        ext4_set_errno(sb, -err);
4087                        ext4_error(sb, "Error %d loading buddy information for %u",
4088                                   err, group);
4089                        continue;
4090                }
4091
4092                bitmap_bh = ext4_read_block_bitmap(sb, group);
4093                if (IS_ERR(bitmap_bh)) {
4094                        err = PTR_ERR(bitmap_bh);
4095                        ext4_set_errno(sb, -err);
4096                        ext4_error(sb, "Error %d reading block bitmap for %u",
4097                                        err, group);
4098                        ext4_mb_unload_buddy(&e4b);
4099                        continue;
4100                }
4101
4102                ext4_lock_group(sb, group);
4103                list_del(&pa->pa_group_list);
4104                ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4105                ext4_unlock_group(sb, group);
4106
4107                ext4_mb_unload_buddy(&e4b);
4108                put_bh(bitmap_bh);
4109
4110                list_del(&pa->u.pa_tmp_list);
4111                call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4112        }
4113}
4114
4115#ifdef CONFIG_EXT4_DEBUG
4116static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4117{
4118        struct super_block *sb = ac->ac_sb;
4119        ext4_group_t ngroups, i;
4120
4121        if (!ext4_mballoc_debug ||
4122            (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4123                return;
4124
4125        ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4126                        " Allocation context details:");
4127        ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4128                        ac->ac_status, ac->ac_flags);
4129        ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4130                        "goal %lu/%lu/%lu@%lu, "
4131                        "best %lu/%lu/%lu@%lu cr %d",
4132                        (unsigned long)ac->ac_o_ex.fe_group,
4133                        (unsigned long)ac->ac_o_ex.fe_start,
4134                        (unsigned long)ac->ac_o_ex.fe_len,
4135                        (unsigned long)ac->ac_o_ex.fe_logical,
4136                        (unsigned long)ac->ac_g_ex.fe_group,
4137                        (unsigned long)ac->ac_g_ex.fe_start,
4138                        (unsigned long)ac->ac_g_ex.fe_len,
4139                        (unsigned long)ac->ac_g_ex.fe_logical,
4140                        (unsigned long)ac->ac_b_ex.fe_group,
4141                        (unsigned long)ac->ac_b_ex.fe_start,
4142                        (unsigned long)ac->ac_b_ex.fe_len,
4143                        (unsigned long)ac->ac_b_ex.fe_logical,
4144                        (int)ac->ac_criteria);
4145        ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4146        ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4147        ngroups = ext4_get_groups_count(sb);
4148        for (i = 0; i < ngroups; i++) {
4149                struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4150                struct ext4_prealloc_space *pa;
4151                ext4_grpblk_t start;
4152                struct list_head *cur;
4153                ext4_lock_group(sb, i);
4154                list_for_each(cur, &grp->bb_prealloc_list) {
4155                        pa = list_entry(cur, struct ext4_prealloc_space,
4156                                        pa_group_list);
4157                        spin_lock(&pa->pa_lock);
4158                        ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4159                                                     NULL, &start);
4160                        spin_unlock(&pa->pa_lock);
4161                        printk(KERN_ERR "PA:%u:%d:%u \n", i,
4162                               start, pa->pa_len);
4163                }
4164                ext4_unlock_group(sb, i);
4165
4166                if (grp->bb_free == 0)
4167                        continue;
4168                printk(KERN_ERR "%u: %d/%d \n",
4169                       i, grp->bb_free, grp->bb_fragments);
4170        }
4171        printk(KERN_ERR "\n");
4172}
4173#else
4174static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4175{
4176        return;
4177}
4178#endif
4179
4180/*
4181 * We use locality group preallocation for small size file. The size of the
4182 * file is determined by the current size or the resulting size after
4183 * allocation which ever is larger
4184 *
4185 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4186 */
4187static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4188{
4189        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4190        int bsbits = ac->ac_sb->s_blocksize_bits;
4191        loff_t size, isize;
4192
4193        if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4194                return;
4195
4196        if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4197                return;
4198
4199        size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4200        isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4201                >> bsbits;
4202
4203        if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4204            !inode_is_open_for_write(ac->ac_inode)) {
4205                ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4206                return;
4207        }
4208
4209        if (sbi->s_mb_group_prealloc <= 0) {
4210                ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4211                return;
4212        }
4213
4214        /* don't use group allocation for large files */
4215        size = max(size, isize);
4216        if (size > sbi->s_mb_stream_request) {
4217                ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4218                return;
4219        }
4220
4221        BUG_ON(ac->ac_lg != NULL);
4222        /*
4223         * locality group prealloc space are per cpu. The reason for having
4224         * per cpu locality group is to reduce the contention between block
4225         * request from multiple CPUs.
4226         */
4227        ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4228
4229        /* we're going to use group allocation */
4230        ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4231
4232        /* serialize all allocations in the group */
4233        mutex_lock(&ac->ac_lg->lg_mutex);
4234}
4235
4236static noinline_for_stack int
4237ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4238                                struct ext4_allocation_request *ar)
4239{
4240        struct super_block *sb = ar->inode->i_sb;
4241        struct ext4_sb_info *sbi = EXT4_SB(sb);
4242        struct ext4_super_block *es = sbi->s_es;
4243        ext4_group_t group;
4244        unsigned int len;
4245        ext4_fsblk_t goal;
4246        ext4_grpblk_t block;
4247
4248        /* we can't allocate > group size */
4249        len = ar->len;
4250
4251        /* just a dirty hack to filter too big requests  */
4252        if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4253                len = EXT4_CLUSTERS_PER_GROUP(sb);
4254
4255        /* start searching from the goal */
4256        goal = ar->goal;
4257        if (goal < le32_to_cpu(es->s_first_data_block) ||
4258                        goal >= ext4_blocks_count(es))
4259                goal = le32_to_cpu(es->s_first_data_block);
4260        ext4_get_group_no_and_offset(sb, goal, &group, &block);
4261
4262        /* set up allocation goals */
4263        ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4264        ac->ac_status = AC_STATUS_CONTINUE;
4265        ac->ac_sb = sb;
4266        ac->ac_inode = ar->inode;
4267        ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4268        ac->ac_o_ex.fe_group = group;
4269        ac->ac_o_ex.fe_start = block;
4270        ac->ac_o_ex.fe_len = len;
4271        ac->ac_g_ex = ac->ac_o_ex;
4272        ac->ac_flags = ar->flags;
4273
4274        /* we have to define context: we'll we work with a file or
4275         * locality group. this is a policy, actually */
4276        ext4_mb_group_or_file(ac);
4277
4278        mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4279                        "left: %u/%u, right %u/%u to %swritable\n",
4280                        (unsigned) ar->len, (unsigned) ar->logical,
4281                        (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4282                        (unsigned) ar->lleft, (unsigned) ar->pleft,
4283                        (unsigned) ar->lright, (unsigned) ar->pright,
4284                        inode_is_open_for_write(ar->inode) ? "" : "non-");
4285        return 0;
4286
4287}
4288
4289static noinline_for_stack void
4290ext4_mb_discard_lg_preallocations(struct super_block *sb,
4291                                        struct ext4_locality_group *lg,
4292                                        int order, int total_entries)
4293{
4294        ext4_group_t group = 0;
4295        struct ext4_buddy e4b;
4296        struct list_head discard_list;
4297        struct ext4_prealloc_space *pa, *tmp;
4298
4299        mb_debug(1, "discard locality group preallocation\n");
4300
4301        INIT_LIST_HEAD(&discard_list);
4302
4303        spin_lock(&lg->lg_prealloc_lock);
4304        list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4305                                                pa_inode_list) {
4306                spin_lock(&pa->pa_lock);
4307                if (atomic_read(&pa->pa_count)) {
4308                        /*
4309                         * This is the pa that we just used
4310                         * for block allocation. So don't
4311                         * free that
4312                         */
4313                        spin_unlock(&pa->pa_lock);
4314                        continue;
4315                }
4316                if (pa->pa_deleted) {
4317                        spin_unlock(&pa->pa_lock);
4318                        continue;
4319                }
4320                /* only lg prealloc space */
4321                BUG_ON(pa->pa_type != MB_GROUP_PA);
4322
4323                /* seems this one can be freed ... */
4324                pa->pa_deleted = 1;
4325                spin_unlock(&pa->pa_lock);
4326
4327                list_del_rcu(&pa->pa_inode_list);
4328                list_add(&pa->u.pa_tmp_list, &discard_list);
4329
4330                total_entries--;
4331                if (total_entries <= 5) {
4332                        /*
4333                         * we want to keep only 5 entries
4334                         * allowing it to grow to 8. This
4335                         * mak sure we don't call discard
4336                         * soon for this list.
4337                         */
4338                        break;
4339                }
4340        }
4341        spin_unlock(&lg->lg_prealloc_lock);
4342
4343        list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4344                int err;
4345
4346                group = ext4_get_group_number(sb, pa->pa_pstart);
4347                err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4348                                             GFP_NOFS|__GFP_NOFAIL);
4349                if (err) {
4350                        ext4_set_errno(sb, -err);
4351                        ext4_error(sb, "Error %d loading buddy information for %u",
4352                                   err, group);
4353                        continue;
4354                }
4355                ext4_lock_group(sb, group);
4356                list_del(&pa->pa_group_list);
4357                ext4_mb_release_group_pa(&e4b, pa);
4358                ext4_unlock_group(sb, group);
4359
4360                ext4_mb_unload_buddy(&e4b);
4361                list_del(&pa->u.pa_tmp_list);
4362                call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4363        }
4364}
4365
4366/*
4367 * We have incremented pa_count. So it cannot be freed at this
4368 * point. Also we hold lg_mutex. So no parallel allocation is
4369 * possible from this lg. That means pa_free cannot be updated.
4370 *
4371 * A parallel ext4_mb_discard_group_preallocations is possible.
4372 * which can cause the lg_prealloc_list to be updated.
4373 */
4374
4375static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4376{
4377        int order, added = 0, lg_prealloc_count = 1;
4378        struct super_block *sb = ac->ac_sb;
4379        struct ext4_locality_group *lg = ac->ac_lg;
4380        struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4381
4382        order = fls(pa->pa_free) - 1;
4383        if (order > PREALLOC_TB_SIZE - 1)
4384                /* The max size of hash table is PREALLOC_TB_SIZE */
4385                order = PREALLOC_TB_SIZE - 1;
4386        /* Add the prealloc space to lg */
4387        spin_lock(&lg->lg_prealloc_lock);
4388        list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4389                                                pa_inode_list) {
4390                spin_lock(&tmp_pa->pa_lock);
4391                if (tmp_pa->pa_deleted) {
4392                        spin_unlock(&tmp_pa->pa_lock);
4393                        continue;
4394                }
4395                if (!added && pa->pa_free < tmp_pa->pa_free) {
4396                        /* Add to the tail of the previous entry */
4397                        list_add_tail_rcu(&pa->pa_inode_list,
4398                                                &tmp_pa->pa_inode_list);
4399                        added = 1;
4400                        /*
4401                         * we want to count the total
4402                         * number of entries in the list
4403                         */
4404                }
4405                spin_unlock(&tmp_pa->pa_lock);
4406                lg_prealloc_count++;
4407        }
4408        if (!added)
4409                list_add_tail_rcu(&pa->pa_inode_list,
4410                                        &lg->lg_prealloc_list[order]);
4411        spin_unlock(&lg->lg_prealloc_lock);
4412
4413        /* Now trim the list to be not more than 8 elements */
4414        if (lg_prealloc_count > 8) {
4415                ext4_mb_discard_lg_preallocations(sb, lg,
4416                                                  order, lg_prealloc_count);
4417                return;
4418        }
4419        return ;
4420}
4421
4422/*
4423 * release all resource we used in allocation
4424 */
4425static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4426{
4427        struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4428        struct ext4_prealloc_space *pa = ac->ac_pa;
4429        if (pa) {
4430                if (pa->pa_type == MB_GROUP_PA) {
4431                        /* see comment in ext4_mb_use_group_pa() */
4432                        spin_lock(&pa->pa_lock);
4433                        pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4434                        pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4435                        pa->pa_free -= ac->ac_b_ex.fe_len;
4436                        pa->pa_len -= ac->ac_b_ex.fe_len;
4437                        spin_unlock(&pa->pa_lock);
4438                }
4439        }
4440        if (pa) {
4441                /*
4442                 * We want to add the pa to the right bucket.
4443                 * Remove it from the list and while adding
4444                 * make sure the list to which we are adding
4445                 * doesn't grow big.
4446                 */
4447                if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4448                        spin_lock(pa->pa_obj_lock);
4449                        list_del_rcu(&pa->pa_inode_list);
4450                        spin_unlock(pa->pa_obj_lock);
4451                        ext4_mb_add_n_trim(ac);
4452                }
4453                ext4_mb_put_pa(ac, ac->ac_sb, pa);
4454        }
4455        if (ac->ac_bitmap_page)
4456                put_page(ac->ac_bitmap_page);
4457        if (ac->ac_buddy_page)
4458                put_page(ac->ac_buddy_page);
4459        if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4460                mutex_unlock(&ac->ac_lg->lg_mutex);
4461        ext4_mb_collect_stats(ac);
4462        return 0;
4463}
4464
4465static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4466{
4467        ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4468        int ret;
4469        int freed = 0;
4470
4471        trace_ext4_mb_discard_preallocations(sb, needed);
4472        for (i = 0; i < ngroups && needed > 0; i++) {
4473                ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4474                freed += ret;
4475                needed -= ret;
4476        }
4477
4478        return freed;
4479}
4480
4481/*
4482 * Main entry point into mballoc to allocate blocks
4483 * it tries to use preallocation first, then falls back
4484 * to usual allocation
4485 */
4486ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4487                                struct ext4_allocation_request *ar, int *errp)
4488{
4489        int freed;
4490        struct ext4_allocation_context *ac = NULL;
4491        struct ext4_sb_info *sbi;
4492        struct super_block *sb;
4493        ext4_fsblk_t block = 0;
4494        unsigned int inquota = 0;
4495        unsigned int reserv_clstrs = 0;
4496
4497        might_sleep();
4498        sb = ar->inode->i_sb;
4499        sbi = EXT4_SB(sb);
4500
4501        trace_ext4_request_blocks(ar);
4502
4503        /* Allow to use superuser reservation for quota file */
4504        if (ext4_is_quota_file(ar->inode))
4505                ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4506
4507        if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4508                /* Without delayed allocation we need to verify
4509                 * there is enough free blocks to do block allocation
4510                 * and verify allocation doesn't exceed the quota limits.
4511                 */
4512                while (ar->len &&
4513                        ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4514
4515                        /* let others to free the space */
4516                        cond_resched();
4517                        ar->len = ar->len >> 1;
4518                }
4519                if (!ar->len) {
4520                        *errp = -ENOSPC;
4521                        return 0;
4522                }
4523                reserv_clstrs = ar->len;
4524                if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4525                        dquot_alloc_block_nofail(ar->inode,
4526                                                 EXT4_C2B(sbi, ar->len));
4527                } else {
4528                        while (ar->len &&
4529                                dquot_alloc_block(ar->inode,
4530                                                  EXT4_C2B(sbi, ar->len))) {
4531
4532                                ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4533                                ar->len--;
4534                        }
4535                }
4536                inquota = ar->len;
4537                if (ar->len == 0) {
4538                        *errp = -EDQUOT;
4539                        goto out;
4540                }
4541        }
4542
4543        ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4544        if (!ac) {
4545                ar->len = 0;
4546                *errp = -ENOMEM;
4547                goto out;
4548        }
4549
4550        *errp = ext4_mb_initialize_context(ac, ar);
4551        if (*errp) {
4552                ar->len = 0;
4553                goto out;
4554        }
4555
4556        ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4557        if (!ext4_mb_use_preallocated(ac)) {
4558                ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4559                ext4_mb_normalize_request(ac, ar);
4560repeat:
4561                /* allocate space in core */
4562                *errp = ext4_mb_regular_allocator(ac);
4563                if (*errp)
4564                        goto discard_and_exit;
4565
4566                /* as we've just preallocated more space than
4567                 * user requested originally, we store allocated
4568                 * space in a special descriptor */
4569                if (ac->ac_status == AC_STATUS_FOUND &&
4570                    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4571                        *errp = ext4_mb_new_preallocation(ac);
4572                if (*errp) {
4573                discard_and_exit:
4574                        ext4_discard_allocated_blocks(ac);
4575                        goto errout;
4576                }
4577        }
4578        if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4579                *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4580                if (*errp) {
4581                        ext4_discard_allocated_blocks(ac);
4582                        goto errout;
4583                } else {
4584                        block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4585                        ar->len = ac->ac_b_ex.fe_len;
4586                }
4587        } else {
4588                freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4589                if (freed)
4590                        goto repeat;
4591                *errp = -ENOSPC;
4592        }
4593
4594errout:
4595        if (*errp) {
4596                ac->ac_b_ex.fe_len = 0;
4597                ar->len = 0;
4598                ext4_mb_show_ac(ac);
4599        }
4600        ext4_mb_release_context(ac);
4601out:
4602        if (ac)
4603                kmem_cache_free(ext4_ac_cachep, ac);
4604        if (inquota && ar->len < inquota)
4605                dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4606        if (!ar->len) {
4607                if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4608                        /* release all the reserved blocks if non delalloc */
4609                        percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4610                                                reserv_clstrs);
4611        }
4612
4613        trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4614
4615        return block;
4616}
4617
4618/*
4619 * We can merge two free data extents only if the physical blocks
4620 * are contiguous, AND the extents were freed by the same transaction,
4621 * AND the blocks are associated with the same group.
4622 */
4623static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4624                                        struct ext4_free_data *entry,
4625                                        struct ext4_free_data *new_entry,
4626                                        struct rb_root *entry_rb_root)
4627{
4628        if ((entry->efd_tid != new_entry->efd_tid) ||
4629            (entry->efd_group != new_entry->efd_group))
4630                return;
4631        if (entry->efd_start_cluster + entry->efd_count ==
4632            new_entry->efd_start_cluster) {
4633                new_entry->efd_start_cluster = entry->efd_start_cluster;
4634                new_entry->efd_count += entry->efd_count;
4635        } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4636                   entry->efd_start_cluster) {
4637                new_entry->efd_count += entry->efd_count;
4638        } else
4639                return;
4640        spin_lock(&sbi->s_md_lock);
4641        list_del(&entry->efd_list);
4642        spin_unlock(&sbi->s_md_lock);
4643        rb_erase(&entry->efd_node, entry_rb_root);
4644        kmem_cache_free(ext4_free_data_cachep, entry);
4645}
4646
4647static noinline_for_stack int
4648ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4649                      struct ext4_free_data *new_entry)
4650{
4651        ext4_group_t group = e4b->bd_group;
4652        ext4_grpblk_t cluster;
4653        ext4_grpblk_t clusters = new_entry->efd_count;
4654        struct ext4_free_data *entry;
4655        struct ext4_group_info *db = e4b->bd_info;
4656        struct super_block *sb = e4b->bd_sb;
4657        struct ext4_sb_info *sbi = EXT4_SB(sb);
4658        struct rb_node **n = &db->bb_free_root.rb_node, *node;
4659        struct rb_node *parent = NULL, *new_node;
4660
4661        BUG_ON(!ext4_handle_valid(handle));
4662        BUG_ON(e4b->bd_bitmap_page == NULL);
4663        BUG_ON(e4b->bd_buddy_page == NULL);
4664
4665        new_node = &new_entry->efd_node;
4666        cluster = new_entry->efd_start_cluster;
4667
4668        if (!*n) {
4669                /* first free block exent. We need to
4670                   protect buddy cache from being freed,
4671                 * otherwise we'll refresh it from
4672                 * on-disk bitmap and lose not-yet-available
4673                 * blocks */
4674                get_page(e4b->bd_buddy_page);
4675                get_page(e4b->bd_bitmap_page);
4676        }
4677        while (*n) {
4678                parent = *n;
4679                entry = rb_entry(parent, struct ext4_free_data, efd_node);
4680                if (cluster < entry->efd_start_cluster)
4681                        n = &(*n)->rb_left;
4682                else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4683                        n = &(*n)->rb_right;
4684                else {
4685                        ext4_grp_locked_error(sb, group, 0,
4686                                ext4_group_first_block_no(sb, group) +
4687                                EXT4_C2B(sbi, cluster),
4688                                "Block already on to-be-freed list");
4689                        return 0;
4690                }
4691        }
4692
4693        rb_link_node(new_node, parent, n);
4694        rb_insert_color(new_node, &db->bb_free_root);
4695
4696        /* Now try to see the extent can be merged to left and right */
4697        node = rb_prev(new_node);
4698        if (node) {
4699                entry = rb_entry(node, struct ext4_free_data, efd_node);
4700                ext4_try_merge_freed_extent(sbi, entry, new_entry,
4701                                            &(db->bb_free_root));
4702        }
4703
4704        node = rb_next(new_node);
4705        if (node) {
4706                entry = rb_entry(node, struct ext4_free_data, efd_node);
4707                ext4_try_merge_freed_extent(sbi, entry, new_entry,
4708                                            &(db->bb_free_root));
4709        }
4710
4711        spin_lock(&sbi->s_md_lock);
4712        list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4713        sbi->s_mb_free_pending += clusters;
4714        spin_unlock(&sbi->s_md_lock);
4715        return 0;
4716}
4717
4718/**
4719 * ext4_free_blocks() -- Free given blocks and update quota
4720 * @handle:             handle for this transaction
4721 * @inode:              inode
4722 * @bh:                 optional buffer of the block to be freed
4723 * @block:              starting physical block to be freed
4724 * @count:              number of blocks to be freed
4725 * @flags:              flags used by ext4_free_blocks
4726 */
4727void ext4_free_blocks(handle_t *handle, struct inode *inode,
4728                      struct buffer_head *bh, ext4_fsblk_t block,
4729                      unsigned long count, int flags)
4730{
4731        struct buffer_head *bitmap_bh = NULL;
4732        struct super_block *sb = inode->i_sb;
4733        struct ext4_group_desc *gdp;
4734        unsigned int overflow;
4735        ext4_grpblk_t bit;
4736        struct buffer_head *gd_bh;
4737        ext4_group_t block_group;
4738        struct ext4_sb_info *sbi;
4739        struct ext4_buddy e4b;
4740        unsigned int count_clusters;
4741        int err = 0;
4742        int ret;
4743
4744        might_sleep();
4745        if (bh) {
4746                if (block)
4747                        BUG_ON(block != bh->b_blocknr);
4748                else
4749                        block = bh->b_blocknr;
4750        }
4751
4752        sbi = EXT4_SB(sb);
4753        if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4754            !ext4_data_block_valid(sbi, block, count)) {
4755                ext4_error(sb, "Freeing blocks not in datazone - "
4756                           "block = %llu, count = %lu", block, count);
4757                goto error_return;
4758        }
4759
4760        ext4_debug("freeing block %llu\n", block);
4761        trace_ext4_free_blocks(inode, block, count, flags);
4762
4763        if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4764                BUG_ON(count > 1);
4765
4766                ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4767                            inode, bh, block);
4768        }
4769
4770        /*
4771         * If the extent to be freed does not begin on a cluster
4772         * boundary, we need to deal with partial clusters at the
4773         * beginning and end of the extent.  Normally we will free
4774         * blocks at the beginning or the end unless we are explicitly
4775         * requested to avoid doing so.
4776         */
4777        overflow = EXT4_PBLK_COFF(sbi, block);
4778        if (overflow) {
4779                if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4780                        overflow = sbi->s_cluster_ratio - overflow;
4781                        block += overflow;
4782                        if (count > overflow)
4783                                count -= overflow;
4784                        else
4785                                return;
4786                } else {
4787                        block -= overflow;
4788                        count += overflow;
4789                }
4790        }
4791        overflow = EXT4_LBLK_COFF(sbi, count);
4792        if (overflow) {
4793                if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4794                        if (count > overflow)
4795                                count -= overflow;
4796                        else
4797                                return;
4798                } else
4799                        count += sbi->s_cluster_ratio - overflow;
4800        }
4801
4802        if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4803                int i;
4804                int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4805
4806                for (i = 0; i < count; i++) {
4807                        cond_resched();
4808                        if (is_metadata)
4809                                bh = sb_find_get_block(inode->i_sb, block + i);
4810                        ext4_forget(handle, is_metadata, inode, bh, block + i);
4811                }
4812        }
4813
4814do_more:
4815        overflow = 0;
4816        ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4817
4818        if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4819                        ext4_get_group_info(sb, block_group))))
4820                return;
4821
4822        /*
4823         * Check to see if we are freeing blocks across a group
4824         * boundary.
4825         */
4826        if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4827                overflow = EXT4_C2B(sbi, bit) + count -
4828                        EXT4_BLOCKS_PER_GROUP(sb);
4829                count -= overflow;
4830        }
4831        count_clusters = EXT4_NUM_B2C(sbi, count);
4832        bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4833        if (IS_ERR(bitmap_bh)) {
4834                err = PTR_ERR(bitmap_bh);
4835                bitmap_bh = NULL;
4836                goto error_return;
4837        }
4838        gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4839        if (!gdp) {
4840                err = -EIO;
4841                goto error_return;
4842        }
4843
4844        if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4845            in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4846            in_range(block, ext4_inode_table(sb, gdp),
4847                     sbi->s_itb_per_group) ||
4848            in_range(block + count - 1, ext4_inode_table(sb, gdp),
4849                     sbi->s_itb_per_group)) {
4850
4851                ext4_error(sb, "Freeing blocks in system zone - "
4852                           "Block = %llu, count = %lu", block, count);
4853                /* err = 0. ext4_std_error should be a no op */
4854                goto error_return;
4855        }
4856
4857        BUFFER_TRACE(bitmap_bh, "getting write access");
4858        err = ext4_journal_get_write_access(handle, bitmap_bh);
4859        if (err)
4860                goto error_return;
4861
4862        /*
4863         * We are about to modify some metadata.  Call the journal APIs
4864         * to unshare ->b_data if a currently-committing transaction is
4865         * using it
4866         */
4867        BUFFER_TRACE(gd_bh, "get_write_access");
4868        err = ext4_journal_get_write_access(handle, gd_bh);
4869        if (err)
4870                goto error_return;
4871#ifdef AGGRESSIVE_CHECK
4872        {
4873                int i;
4874                for (i = 0; i < count_clusters; i++)
4875                        BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4876        }
4877#endif
4878        trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4879
4880        /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4881        err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4882                                     GFP_NOFS|__GFP_NOFAIL);
4883        if (err)
4884                goto error_return;
4885
4886        /*
4887         * We need to make sure we don't reuse the freed block until after the
4888         * transaction is committed. We make an exception if the inode is to be
4889         * written in writeback mode since writeback mode has weak data
4890         * consistency guarantees.
4891         */
4892        if (ext4_handle_valid(handle) &&
4893            ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4894             !ext4_should_writeback_data(inode))) {
4895                struct ext4_free_data *new_entry;
4896                /*
4897                 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4898                 * to fail.
4899                 */
4900                new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4901                                GFP_NOFS|__GFP_NOFAIL);
4902                new_entry->efd_start_cluster = bit;
4903                new_entry->efd_group = block_group;
4904                new_entry->efd_count = count_clusters;
4905                new_entry->efd_tid = handle->h_transaction->t_tid;
4906
4907                ext4_lock_group(sb, block_group);
4908                mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4909                ext4_mb_free_metadata(handle, &e4b, new_entry);
4910        } else {
4911                /* need to update group_info->bb_free and bitmap
4912                 * with group lock held. generate_buddy look at
4913                 * them with group lock_held
4914                 */
4915                if (test_opt(sb, DISCARD)) {
4916                        err = ext4_issue_discard(sb, block_group, bit, count,
4917                                                 NULL);
4918                        if (err && err != -EOPNOTSUPP)
4919                                ext4_msg(sb, KERN_WARNING, "discard request in"
4920                                         " group:%d block:%d count:%lu failed"
4921                                         " with %d", block_group, bit, count,
4922                                         err);
4923                } else
4924                        EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4925
4926                ext4_lock_group(sb, block_group);
4927                mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4928                mb_free_blocks(inode, &e4b, bit, count_clusters);
4929        }
4930
4931        ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4932        ext4_free_group_clusters_set(sb, gdp, ret);
4933        ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4934        ext4_group_desc_csum_set(sb, block_group, gdp);
4935        ext4_unlock_group(sb, block_group);
4936
4937        if (sbi->s_log_groups_per_flex) {
4938                ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4939                atomic64_add(count_clusters,
4940                             &sbi_array_rcu_deref(sbi, s_flex_groups,
4941                                                  flex_group)->free_clusters);
4942        }
4943
4944        /*
4945         * on a bigalloc file system, defer the s_freeclusters_counter
4946         * update to the caller (ext4_remove_space and friends) so they
4947         * can determine if a cluster freed here should be rereserved
4948         */
4949        if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
4950                if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4951                        dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4952                percpu_counter_add(&sbi->s_freeclusters_counter,
4953                                   count_clusters);
4954        }
4955
4956        ext4_mb_unload_buddy(&e4b);
4957
4958        /* We dirtied the bitmap block */
4959        BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4960        err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4961
4962        /* And the group descriptor block */
4963        BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4964        ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4965        if (!err)
4966                err = ret;
4967
4968        if (overflow && !err) {
4969                block += count;
4970                count = overflow;
4971                put_bh(bitmap_bh);
4972                goto do_more;
4973        }
4974error_return:
4975        brelse(bitmap_bh);
4976        ext4_std_error(sb, err);
4977        return;
4978}
4979
4980/**
4981 * ext4_group_add_blocks() -- Add given blocks to an existing group
4982 * @handle:                     handle to this transaction
4983 * @sb:                         super block
4984 * @block:                      start physical block to add to the block group
4985 * @count:                      number of blocks to free
4986 *
4987 * This marks the blocks as free in the bitmap and buddy.
4988 */
4989int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4990                         ext4_fsblk_t block, unsigned long count)
4991{
4992        struct buffer_head *bitmap_bh = NULL;
4993        struct buffer_head *gd_bh;
4994        ext4_group_t block_group;
4995        ext4_grpblk_t bit;
4996        unsigned int i;
4997        struct ext4_group_desc *desc;
4998        struct ext4_sb_info *sbi = EXT4_SB(sb);
4999        struct ext4_buddy e4b;
5000        int err = 0, ret, free_clusters_count;
5001        ext4_grpblk_t clusters_freed;
5002        ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5003        ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5004        unsigned long cluster_count = last_cluster - first_cluster + 1;
5005
5006        ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5007
5008        if (count == 0)
5009                return 0;
5010
5011        ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5012        /*
5013         * Check to see if we are freeing blocks across a group
5014         * boundary.
5015         */
5016        if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5017                ext4_warning(sb, "too many blocks added to group %u",
5018                             block_group);
5019                err = -EINVAL;
5020                goto error_return;
5021        }
5022
5023        bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5024        if (IS_ERR(bitmap_bh)) {
5025                err = PTR_ERR(bitmap_bh);
5026                bitmap_bh = NULL;
5027                goto error_return;
5028        }
5029
5030        desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5031        if (!desc) {
5032                err = -EIO;
5033                goto error_return;
5034        }
5035
5036        if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5037            in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5038            in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5039            in_range(block + count - 1, ext4_inode_table(sb, desc),
5040                     sbi->s_itb_per_group)) {
5041                ext4_error(sb, "Adding blocks in system zones - "
5042                           "Block = %llu, count = %lu",
5043                           block, count);
5044                err = -EINVAL;
5045                goto error_return;
5046        }
5047
5048        BUFFER_TRACE(bitmap_bh, "getting write access");
5049        err = ext4_journal_get_write_access(handle, bitmap_bh);
5050        if (err)
5051                goto error_return;
5052
5053        /*
5054         * We are about to modify some metadata.  Call the journal APIs
5055         * to unshare ->b_data if a currently-committing transaction is
5056         * using it
5057         */
5058        BUFFER_TRACE(gd_bh, "get_write_access");
5059        err = ext4_journal_get_write_access(handle, gd_bh);
5060        if (err)
5061                goto error_return;
5062
5063        for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5064                BUFFER_TRACE(bitmap_bh, "clear bit");
5065                if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5066                        ext4_error(sb, "bit already cleared for block %llu",
5067                                   (ext4_fsblk_t)(block + i));
5068                        BUFFER_TRACE(bitmap_bh, "bit already cleared");
5069                } else {
5070                        clusters_freed++;
5071                }
5072        }
5073
5074        err = ext4_mb_load_buddy(sb, block_group, &e4b);
5075        if (err)
5076                goto error_return;
5077
5078        /*
5079         * need to update group_info->bb_free and bitmap
5080         * with group lock held. generate_buddy look at
5081         * them with group lock_held
5082         */
5083        ext4_lock_group(sb, block_group);
5084        mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5085        mb_free_blocks(NULL, &e4b, bit, cluster_count);
5086        free_clusters_count = clusters_freed +
5087                ext4_free_group_clusters(sb, desc);
5088        ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5089        ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5090        ext4_group_desc_csum_set(sb, block_group, desc);
5091        ext4_unlock_group(sb, block_group);
5092        percpu_counter_add(&sbi->s_freeclusters_counter,
5093                           clusters_freed);
5094
5095        if (sbi->s_log_groups_per_flex) {
5096                ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5097                atomic64_add(clusters_freed,
5098                             &sbi_array_rcu_deref(sbi, s_flex_groups,
5099                                                  flex_group)->free_clusters);
5100        }
5101
5102        ext4_mb_unload_buddy(&e4b);
5103
5104        /* We dirtied the bitmap block */
5105        BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5106        err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5107
5108        /* And the group descriptor block */
5109        BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5110        ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5111        if (!err)
5112                err = ret;
5113
5114error_return:
5115        brelse(bitmap_bh);
5116        ext4_std_error(sb, err);
5117        return err;
5118}
5119
5120/**
5121 * ext4_trim_extent -- function to TRIM one single free extent in the group
5122 * @sb:         super block for the file system
5123 * @start:      starting block of the free extent in the alloc. group
5124 * @count:      number of blocks to TRIM
5125 * @group:      alloc. group we are working with
5126 * @e4b:        ext4 buddy for the group
5127 *
5128 * Trim "count" blocks starting at "start" in the "group". To assure that no
5129 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5130 * be called with under the group lock.
5131 */
5132static int ext4_trim_extent(struct super_block *sb, int start, int count,
5133                             ext4_group_t group, struct ext4_buddy *e4b)
5134__releases(bitlock)
5135__acquires(bitlock)
5136{
5137        struct ext4_free_extent ex;
5138        int ret = 0;
5139
5140        trace_ext4_trim_extent(sb, group, start, count);
5141
5142        assert_spin_locked(ext4_group_lock_ptr(sb, group));
5143
5144        ex.fe_start = start;
5145        ex.fe_group = group;
5146        ex.fe_len = count;
5147
5148        /*
5149         * Mark blocks used, so no one can reuse them while
5150         * being trimmed.
5151         */
5152        mb_mark_used(e4b, &ex);
5153        ext4_unlock_group(sb, group);
5154        ret = ext4_issue_discard(sb, group, start, count, NULL);
5155        ext4_lock_group(sb, group);
5156        mb_free_blocks(NULL, e4b, start, ex.fe_len);
5157        return ret;
5158}
5159
5160/**
5161 * ext4_trim_all_free -- function to trim all free space in alloc. group
5162 * @sb:                 super block for file system
5163 * @group:              group to be trimmed
5164 * @start:              first group block to examine
5165 * @max:                last group block to examine
5166 * @minblocks:          minimum extent block count
5167 *
5168 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5169 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5170 * the extent.
5171 *
5172 *
5173 * ext4_trim_all_free walks through group's block bitmap searching for free
5174 * extents. When the free extent is found, mark it as used in group buddy
5175 * bitmap. Then issue a TRIM command on this extent and free the extent in
5176 * the group buddy bitmap. This is done until whole group is scanned.
5177 */
5178static ext4_grpblk_t
5179ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5180                   ext4_grpblk_t start, ext4_grpblk_t max,
5181                   ext4_grpblk_t minblocks)
5182{
5183        void *bitmap;
5184        ext4_grpblk_t next, count = 0, free_count = 0;
5185        struct ext4_buddy e4b;
5186        int ret = 0;
5187
5188        trace_ext4_trim_all_free(sb, group, start, max);
5189
5190        ret = ext4_mb_load_buddy(sb, group, &e4b);
5191        if (ret) {
5192                ext4_warning(sb, "Error %d loading buddy information for %u",
5193                             ret, group);
5194                return ret;
5195        }
5196        bitmap = e4b.bd_bitmap;
5197
5198        ext4_lock_group(sb, group);
5199        if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5200            minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5201                goto out;
5202
5203        start = (e4b.bd_info->bb_first_free > start) ?
5204                e4b.bd_info->bb_first_free : start;
5205
5206        while (start <= max) {
5207                start = mb_find_next_zero_bit(bitmap, max + 1, start);
5208                if (start > max)
5209                        break;
5210                next = mb_find_next_bit(bitmap, max + 1, start);
5211
5212                if ((next - start) >= minblocks) {
5213                        ret = ext4_trim_extent(sb, start,
5214                                               next - start, group, &e4b);
5215                        if (ret && ret != -EOPNOTSUPP)
5216                                break;
5217                        ret = 0;
5218                        count += next - start;
5219                }
5220                free_count += next - start;
5221                start = next + 1;
5222
5223                if (fatal_signal_pending(current)) {
5224                        count = -ERESTARTSYS;
5225                        break;
5226                }
5227
5228                if (need_resched()) {
5229                        ext4_unlock_group(sb, group);
5230                        cond_resched();
5231                        ext4_lock_group(sb, group);
5232                }
5233
5234                if ((e4b.bd_info->bb_free - free_count) < minblocks)
5235                        break;
5236        }
5237
5238        if (!ret) {
5239                ret = count;
5240                EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5241        }
5242out:
5243        ext4_unlock_group(sb, group);
5244        ext4_mb_unload_buddy(&e4b);
5245
5246        ext4_debug("trimmed %d blocks in the group %d\n",
5247                count, group);
5248
5249        return ret;
5250}
5251
5252/**
5253 * ext4_trim_fs() -- trim ioctl handle function
5254 * @sb:                 superblock for filesystem
5255 * @range:              fstrim_range structure
5256 *
5257 * start:       First Byte to trim
5258 * len:         number of Bytes to trim from start
5259 * minlen:      minimum extent length in Bytes
5260 * ext4_trim_fs goes through all allocation groups containing Bytes from
5261 * start to start+len. For each such a group ext4_trim_all_free function
5262 * is invoked to trim all free space.
5263 */
5264int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5265{
5266        struct ext4_group_info *grp;
5267        ext4_group_t group, first_group, last_group;
5268        ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5269        uint64_t start, end, minlen, trimmed = 0;
5270        ext4_fsblk_t first_data_blk =
5271                        le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5272        ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5273        int ret = 0;
5274
5275        start = range->start >> sb->s_blocksize_bits;
5276        end = start + (range->len >> sb->s_blocksize_bits) - 1;
5277        minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5278                              range->minlen >> sb->s_blocksize_bits);
5279
5280        if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5281            start >= max_blks ||
5282            range->len < sb->s_blocksize)
5283                return -EINVAL;
5284        if (end >= max_blks)
5285                end = max_blks - 1;
5286        if (end <= first_data_blk)
5287                goto out;
5288        if (start < first_data_blk)
5289                start = first_data_blk;
5290
5291        /* Determine first and last group to examine based on start and end */
5292        ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5293                                     &first_group, &first_cluster);
5294        ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5295                                     &last_group, &last_cluster);
5296
5297        /* end now represents the last cluster to discard in this group */
5298        end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5299
5300        for (group = first_group; group <= last_group; group++) {
5301                grp = ext4_get_group_info(sb, group);
5302                /* We only do this if the grp has never been initialized */
5303                if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5304                        ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5305                        if (ret)
5306                                break;
5307                }
5308
5309                /*
5310                 * For all the groups except the last one, last cluster will
5311                 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5312                 * change it for the last group, note that last_cluster is
5313                 * already computed earlier by ext4_get_group_no_and_offset()
5314                 */
5315                if (group == last_group)
5316                        end = last_cluster;
5317
5318                if (grp->bb_free >= minlen) {
5319                        cnt = ext4_trim_all_free(sb, group, first_cluster,
5320                                                end, minlen);
5321                        if (cnt < 0) {
5322                                ret = cnt;
5323                                break;
5324                        }
5325                        trimmed += cnt;
5326                }
5327
5328                /*
5329                 * For every group except the first one, we are sure
5330                 * that the first cluster to discard will be cluster #0.
5331                 */
5332                first_cluster = 0;
5333        }
5334
5335        if (!ret)
5336                atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5337
5338out:
5339        range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5340        return ret;
5341}
5342
5343/* Iterate all the free extents in the group. */
5344int
5345ext4_mballoc_query_range(
5346        struct super_block              *sb,
5347        ext4_group_t                    group,
5348        ext4_grpblk_t                   start,
5349        ext4_grpblk_t                   end,
5350        ext4_mballoc_query_range_fn     formatter,
5351        void                            *priv)
5352{
5353        void                            *bitmap;
5354        ext4_grpblk_t                   next;
5355        struct ext4_buddy               e4b;
5356        int                             error;
5357
5358        error = ext4_mb_load_buddy(sb, group, &e4b);
5359        if (error)
5360                return error;
5361        bitmap = e4b.bd_bitmap;
5362
5363        ext4_lock_group(sb, group);
5364
5365        start = (e4b.bd_info->bb_first_free > start) ?
5366                e4b.bd_info->bb_first_free : start;
5367        if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5368                end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5369
5370        while (start <= end) {
5371                start = mb_find_next_zero_bit(bitmap, end + 1, start);
5372                if (start > end)
5373                        break;
5374                next = mb_find_next_bit(bitmap, end + 1, start);
5375
5376                ext4_unlock_group(sb, group);
5377                error = formatter(sb, group, start, next - start, priv);
5378                if (error)
5379                        goto out_unload;
5380                ext4_lock_group(sb, group);
5381
5382                start = next + 1;
5383        }
5384
5385        ext4_unlock_group(sb, group);
5386out_unload:
5387        ext4_mb_unload_buddy(&e4b);
5388
5389        return error;
5390}
5391