linux/fs/xfs/libxfs/xfs_btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_buf_item.h"
  17#include "xfs_btree.h"
  18#include "xfs_errortag.h"
  19#include "xfs_error.h"
  20#include "xfs_trace.h"
  21#include "xfs_alloc.h"
  22#include "xfs_log.h"
  23
  24/*
  25 * Cursor allocation zone.
  26 */
  27kmem_zone_t     *xfs_btree_cur_zone;
  28
  29/*
  30 * Btree magic numbers.
  31 */
  32static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  33        { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  34          XFS_FIBT_MAGIC, 0 },
  35        { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  36          XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  37          XFS_REFC_CRC_MAGIC }
  38};
  39
  40uint32_t
  41xfs_btree_magic(
  42        int                     crc,
  43        xfs_btnum_t             btnum)
  44{
  45        uint32_t                magic = xfs_magics[crc][btnum];
  46
  47        /* Ensure we asked for crc for crc-only magics. */
  48        ASSERT(magic != 0);
  49        return magic;
  50}
  51
  52/*
  53 * Check a long btree block header.  Return the address of the failing check,
  54 * or NULL if everything is ok.
  55 */
  56xfs_failaddr_t
  57__xfs_btree_check_lblock(
  58        struct xfs_btree_cur    *cur,
  59        struct xfs_btree_block  *block,
  60        int                     level,
  61        struct xfs_buf          *bp)
  62{
  63        struct xfs_mount        *mp = cur->bc_mp;
  64        xfs_btnum_t             btnum = cur->bc_btnum;
  65        int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
  66
  67        if (crc) {
  68                if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
  69                        return __this_address;
  70                if (block->bb_u.l.bb_blkno !=
  71                    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
  72                        return __this_address;
  73                if (block->bb_u.l.bb_pad != cpu_to_be32(0))
  74                        return __this_address;
  75        }
  76
  77        if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
  78                return __this_address;
  79        if (be16_to_cpu(block->bb_level) != level)
  80                return __this_address;
  81        if (be16_to_cpu(block->bb_numrecs) >
  82            cur->bc_ops->get_maxrecs(cur, level))
  83                return __this_address;
  84        if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
  85            !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
  86                        level + 1))
  87                return __this_address;
  88        if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
  89            !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
  90                        level + 1))
  91                return __this_address;
  92
  93        return NULL;
  94}
  95
  96/* Check a long btree block header. */
  97static int
  98xfs_btree_check_lblock(
  99        struct xfs_btree_cur    *cur,
 100        struct xfs_btree_block  *block,
 101        int                     level,
 102        struct xfs_buf          *bp)
 103{
 104        struct xfs_mount        *mp = cur->bc_mp;
 105        xfs_failaddr_t          fa;
 106
 107        fa = __xfs_btree_check_lblock(cur, block, level, bp);
 108        if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 109            XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
 110                if (bp)
 111                        trace_xfs_btree_corrupt(bp, _RET_IP_);
 112                return -EFSCORRUPTED;
 113        }
 114        return 0;
 115}
 116
 117/*
 118 * Check a short btree block header.  Return the address of the failing check,
 119 * or NULL if everything is ok.
 120 */
 121xfs_failaddr_t
 122__xfs_btree_check_sblock(
 123        struct xfs_btree_cur    *cur,
 124        struct xfs_btree_block  *block,
 125        int                     level,
 126        struct xfs_buf          *bp)
 127{
 128        struct xfs_mount        *mp = cur->bc_mp;
 129        xfs_btnum_t             btnum = cur->bc_btnum;
 130        int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
 131
 132        if (crc) {
 133                if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
 134                        return __this_address;
 135                if (block->bb_u.s.bb_blkno !=
 136                    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
 137                        return __this_address;
 138        }
 139
 140        if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 141                return __this_address;
 142        if (be16_to_cpu(block->bb_level) != level)
 143                return __this_address;
 144        if (be16_to_cpu(block->bb_numrecs) >
 145            cur->bc_ops->get_maxrecs(cur, level))
 146                return __this_address;
 147        if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
 148            !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
 149                        level + 1))
 150                return __this_address;
 151        if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
 152            !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
 153                        level + 1))
 154                return __this_address;
 155
 156        return NULL;
 157}
 158
 159/* Check a short btree block header. */
 160STATIC int
 161xfs_btree_check_sblock(
 162        struct xfs_btree_cur    *cur,
 163        struct xfs_btree_block  *block,
 164        int                     level,
 165        struct xfs_buf          *bp)
 166{
 167        struct xfs_mount        *mp = cur->bc_mp;
 168        xfs_failaddr_t          fa;
 169
 170        fa = __xfs_btree_check_sblock(cur, block, level, bp);
 171        if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 172            XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
 173                if (bp)
 174                        trace_xfs_btree_corrupt(bp, _RET_IP_);
 175                return -EFSCORRUPTED;
 176        }
 177        return 0;
 178}
 179
 180/*
 181 * Debug routine: check that block header is ok.
 182 */
 183int
 184xfs_btree_check_block(
 185        struct xfs_btree_cur    *cur,   /* btree cursor */
 186        struct xfs_btree_block  *block, /* generic btree block pointer */
 187        int                     level,  /* level of the btree block */
 188        struct xfs_buf          *bp)    /* buffer containing block, if any */
 189{
 190        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 191                return xfs_btree_check_lblock(cur, block, level, bp);
 192        else
 193                return xfs_btree_check_sblock(cur, block, level, bp);
 194}
 195
 196/* Check that this long pointer is valid and points within the fs. */
 197bool
 198xfs_btree_check_lptr(
 199        struct xfs_btree_cur    *cur,
 200        xfs_fsblock_t           fsbno,
 201        int                     level)
 202{
 203        if (level <= 0)
 204                return false;
 205        return xfs_verify_fsbno(cur->bc_mp, fsbno);
 206}
 207
 208/* Check that this short pointer is valid and points within the AG. */
 209bool
 210xfs_btree_check_sptr(
 211        struct xfs_btree_cur    *cur,
 212        xfs_agblock_t           agbno,
 213        int                     level)
 214{
 215        if (level <= 0)
 216                return false;
 217        return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
 218}
 219
 220/*
 221 * Check that a given (indexed) btree pointer at a certain level of a
 222 * btree is valid and doesn't point past where it should.
 223 */
 224static int
 225xfs_btree_check_ptr(
 226        struct xfs_btree_cur    *cur,
 227        union xfs_btree_ptr     *ptr,
 228        int                     index,
 229        int                     level)
 230{
 231        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 232                if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
 233                                level))
 234                        return 0;
 235                xfs_err(cur->bc_mp,
 236"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
 237                                cur->bc_private.b.ip->i_ino,
 238                                cur->bc_private.b.whichfork, cur->bc_btnum,
 239                                level, index);
 240        } else {
 241                if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
 242                                level))
 243                        return 0;
 244                xfs_err(cur->bc_mp,
 245"AG %u: Corrupt btree %d pointer at level %d index %d.",
 246                                cur->bc_private.a.agno, cur->bc_btnum,
 247                                level, index);
 248        }
 249
 250        return -EFSCORRUPTED;
 251}
 252
 253#ifdef DEBUG
 254# define xfs_btree_debug_check_ptr      xfs_btree_check_ptr
 255#else
 256# define xfs_btree_debug_check_ptr(...) (0)
 257#endif
 258
 259/*
 260 * Calculate CRC on the whole btree block and stuff it into the
 261 * long-form btree header.
 262 *
 263 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 264 * it into the buffer so recovery knows what the last modification was that made
 265 * it to disk.
 266 */
 267void
 268xfs_btree_lblock_calc_crc(
 269        struct xfs_buf          *bp)
 270{
 271        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 272        struct xfs_buf_log_item *bip = bp->b_log_item;
 273
 274        if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
 275                return;
 276        if (bip)
 277                block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 278        xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 279}
 280
 281bool
 282xfs_btree_lblock_verify_crc(
 283        struct xfs_buf          *bp)
 284{
 285        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 286        struct xfs_mount        *mp = bp->b_mount;
 287
 288        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 289                if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 290                        return false;
 291                return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 292        }
 293
 294        return true;
 295}
 296
 297/*
 298 * Calculate CRC on the whole btree block and stuff it into the
 299 * short-form btree header.
 300 *
 301 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 302 * it into the buffer so recovery knows what the last modification was that made
 303 * it to disk.
 304 */
 305void
 306xfs_btree_sblock_calc_crc(
 307        struct xfs_buf          *bp)
 308{
 309        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 310        struct xfs_buf_log_item *bip = bp->b_log_item;
 311
 312        if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
 313                return;
 314        if (bip)
 315                block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 316        xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 317}
 318
 319bool
 320xfs_btree_sblock_verify_crc(
 321        struct xfs_buf          *bp)
 322{
 323        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 324        struct xfs_mount        *mp = bp->b_mount;
 325
 326        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 327                if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 328                        return false;
 329                return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 330        }
 331
 332        return true;
 333}
 334
 335static int
 336xfs_btree_free_block(
 337        struct xfs_btree_cur    *cur,
 338        struct xfs_buf          *bp)
 339{
 340        int                     error;
 341
 342        error = cur->bc_ops->free_block(cur, bp);
 343        if (!error) {
 344                xfs_trans_binval(cur->bc_tp, bp);
 345                XFS_BTREE_STATS_INC(cur, free);
 346        }
 347        return error;
 348}
 349
 350/*
 351 * Delete the btree cursor.
 352 */
 353void
 354xfs_btree_del_cursor(
 355        xfs_btree_cur_t *cur,           /* btree cursor */
 356        int             error)          /* del because of error */
 357{
 358        int             i;              /* btree level */
 359
 360        /*
 361         * Clear the buffer pointers, and release the buffers.
 362         * If we're doing this in the face of an error, we
 363         * need to make sure to inspect all of the entries
 364         * in the bc_bufs array for buffers to be unlocked.
 365         * This is because some of the btree code works from
 366         * level n down to 0, and if we get an error along
 367         * the way we won't have initialized all the entries
 368         * down to 0.
 369         */
 370        for (i = 0; i < cur->bc_nlevels; i++) {
 371                if (cur->bc_bufs[i])
 372                        xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
 373                else if (!error)
 374                        break;
 375        }
 376        /*
 377         * Can't free a bmap cursor without having dealt with the
 378         * allocated indirect blocks' accounting.
 379         */
 380        ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
 381               cur->bc_private.b.allocated == 0);
 382        /*
 383         * Free the cursor.
 384         */
 385        kmem_cache_free(xfs_btree_cur_zone, cur);
 386}
 387
 388/*
 389 * Duplicate the btree cursor.
 390 * Allocate a new one, copy the record, re-get the buffers.
 391 */
 392int                                     /* error */
 393xfs_btree_dup_cursor(
 394        xfs_btree_cur_t *cur,           /* input cursor */
 395        xfs_btree_cur_t **ncur)         /* output cursor */
 396{
 397        xfs_buf_t       *bp;            /* btree block's buffer pointer */
 398        int             error;          /* error return value */
 399        int             i;              /* level number of btree block */
 400        xfs_mount_t     *mp;            /* mount structure for filesystem */
 401        xfs_btree_cur_t *new;           /* new cursor value */
 402        xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
 403
 404        tp = cur->bc_tp;
 405        mp = cur->bc_mp;
 406
 407        /*
 408         * Allocate a new cursor like the old one.
 409         */
 410        new = cur->bc_ops->dup_cursor(cur);
 411
 412        /*
 413         * Copy the record currently in the cursor.
 414         */
 415        new->bc_rec = cur->bc_rec;
 416
 417        /*
 418         * For each level current, re-get the buffer and copy the ptr value.
 419         */
 420        for (i = 0; i < new->bc_nlevels; i++) {
 421                new->bc_ptrs[i] = cur->bc_ptrs[i];
 422                new->bc_ra[i] = cur->bc_ra[i];
 423                bp = cur->bc_bufs[i];
 424                if (bp) {
 425                        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 426                                                   XFS_BUF_ADDR(bp), mp->m_bsize,
 427                                                   0, &bp,
 428                                                   cur->bc_ops->buf_ops);
 429                        if (error) {
 430                                xfs_btree_del_cursor(new, error);
 431                                *ncur = NULL;
 432                                return error;
 433                        }
 434                }
 435                new->bc_bufs[i] = bp;
 436        }
 437        *ncur = new;
 438        return 0;
 439}
 440
 441/*
 442 * XFS btree block layout and addressing:
 443 *
 444 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 445 *
 446 * The leaf record start with a header then followed by records containing
 447 * the values.  A non-leaf block also starts with the same header, and
 448 * then first contains lookup keys followed by an equal number of pointers
 449 * to the btree blocks at the previous level.
 450 *
 451 *              +--------+-------+-------+-------+-------+-------+-------+
 452 * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 453 *              +--------+-------+-------+-------+-------+-------+-------+
 454 *
 455 *              +--------+-------+-------+-------+-------+-------+-------+
 456 * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 457 *              +--------+-------+-------+-------+-------+-------+-------+
 458 *
 459 * The header is called struct xfs_btree_block for reasons better left unknown
 460 * and comes in different versions for short (32bit) and long (64bit) block
 461 * pointers.  The record and key structures are defined by the btree instances
 462 * and opaque to the btree core.  The block pointers are simple disk endian
 463 * integers, available in a short (32bit) and long (64bit) variant.
 464 *
 465 * The helpers below calculate the offset of a given record, key or pointer
 466 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 467 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 468 * inside the btree block is done using indices starting at one, not zero!
 469 *
 470 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 471 * overlapping intervals.  In such a tree, records are still sorted lowest to
 472 * highest and indexed by the smallest key value that refers to the record.
 473 * However, nodes are different: each pointer has two associated keys -- one
 474 * indexing the lowest key available in the block(s) below (the same behavior
 475 * as the key in a regular btree) and another indexing the highest key
 476 * available in the block(s) below.  Because records are /not/ sorted by the
 477 * highest key, all leaf block updates require us to compute the highest key
 478 * that matches any record in the leaf and to recursively update the high keys
 479 * in the nodes going further up in the tree, if necessary.  Nodes look like
 480 * this:
 481 *
 482 *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
 483 * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 484 *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
 485 *
 486 * To perform an interval query on an overlapped tree, perform the usual
 487 * depth-first search and use the low and high keys to decide if we can skip
 488 * that particular node.  If a leaf node is reached, return the records that
 489 * intersect the interval.  Note that an interval query may return numerous
 490 * entries.  For a non-overlapped tree, simply search for the record associated
 491 * with the lowest key and iterate forward until a non-matching record is
 492 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 493 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 494 * more detail.
 495 *
 496 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 497 * reverse mapping records on a reflink filesystem:
 498 *
 499 * 1: +- file A startblock B offset C length D -----------+
 500 * 2:      +- file E startblock F offset G length H --------------+
 501 * 3:      +- file I startblock F offset J length K --+
 502 * 4:                                                        +- file L... --+
 503 *
 504 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 505 * we'd simply increment the length of record 1.  But how do we find the record
 506 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 507 * record 3 because the keys are ordered first by startblock.  An interval
 508 * query would return records 1 and 2 because they both overlap (B+D-1), and
 509 * from that we can pick out record 1 as the appropriate left neighbor.
 510 *
 511 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 512 * because a record's interval must end before the next record.
 513 */
 514
 515/*
 516 * Return size of the btree block header for this btree instance.
 517 */
 518static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 519{
 520        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 521                if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 522                        return XFS_BTREE_LBLOCK_CRC_LEN;
 523                return XFS_BTREE_LBLOCK_LEN;
 524        }
 525        if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 526                return XFS_BTREE_SBLOCK_CRC_LEN;
 527        return XFS_BTREE_SBLOCK_LEN;
 528}
 529
 530/*
 531 * Return size of btree block pointers for this btree instance.
 532 */
 533static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 534{
 535        return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 536                sizeof(__be64) : sizeof(__be32);
 537}
 538
 539/*
 540 * Calculate offset of the n-th record in a btree block.
 541 */
 542STATIC size_t
 543xfs_btree_rec_offset(
 544        struct xfs_btree_cur    *cur,
 545        int                     n)
 546{
 547        return xfs_btree_block_len(cur) +
 548                (n - 1) * cur->bc_ops->rec_len;
 549}
 550
 551/*
 552 * Calculate offset of the n-th key in a btree block.
 553 */
 554STATIC size_t
 555xfs_btree_key_offset(
 556        struct xfs_btree_cur    *cur,
 557        int                     n)
 558{
 559        return xfs_btree_block_len(cur) +
 560                (n - 1) * cur->bc_ops->key_len;
 561}
 562
 563/*
 564 * Calculate offset of the n-th high key in a btree block.
 565 */
 566STATIC size_t
 567xfs_btree_high_key_offset(
 568        struct xfs_btree_cur    *cur,
 569        int                     n)
 570{
 571        return xfs_btree_block_len(cur) +
 572                (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 573}
 574
 575/*
 576 * Calculate offset of the n-th block pointer in a btree block.
 577 */
 578STATIC size_t
 579xfs_btree_ptr_offset(
 580        struct xfs_btree_cur    *cur,
 581        int                     n,
 582        int                     level)
 583{
 584        return xfs_btree_block_len(cur) +
 585                cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 586                (n - 1) * xfs_btree_ptr_len(cur);
 587}
 588
 589/*
 590 * Return a pointer to the n-th record in the btree block.
 591 */
 592union xfs_btree_rec *
 593xfs_btree_rec_addr(
 594        struct xfs_btree_cur    *cur,
 595        int                     n,
 596        struct xfs_btree_block  *block)
 597{
 598        return (union xfs_btree_rec *)
 599                ((char *)block + xfs_btree_rec_offset(cur, n));
 600}
 601
 602/*
 603 * Return a pointer to the n-th key in the btree block.
 604 */
 605union xfs_btree_key *
 606xfs_btree_key_addr(
 607        struct xfs_btree_cur    *cur,
 608        int                     n,
 609        struct xfs_btree_block  *block)
 610{
 611        return (union xfs_btree_key *)
 612                ((char *)block + xfs_btree_key_offset(cur, n));
 613}
 614
 615/*
 616 * Return a pointer to the n-th high key in the btree block.
 617 */
 618union xfs_btree_key *
 619xfs_btree_high_key_addr(
 620        struct xfs_btree_cur    *cur,
 621        int                     n,
 622        struct xfs_btree_block  *block)
 623{
 624        return (union xfs_btree_key *)
 625                ((char *)block + xfs_btree_high_key_offset(cur, n));
 626}
 627
 628/*
 629 * Return a pointer to the n-th block pointer in the btree block.
 630 */
 631union xfs_btree_ptr *
 632xfs_btree_ptr_addr(
 633        struct xfs_btree_cur    *cur,
 634        int                     n,
 635        struct xfs_btree_block  *block)
 636{
 637        int                     level = xfs_btree_get_level(block);
 638
 639        ASSERT(block->bb_level != 0);
 640
 641        return (union xfs_btree_ptr *)
 642                ((char *)block + xfs_btree_ptr_offset(cur, n, level));
 643}
 644
 645/*
 646 * Get the root block which is stored in the inode.
 647 *
 648 * For now this btree implementation assumes the btree root is always
 649 * stored in the if_broot field of an inode fork.
 650 */
 651STATIC struct xfs_btree_block *
 652xfs_btree_get_iroot(
 653        struct xfs_btree_cur    *cur)
 654{
 655        struct xfs_ifork        *ifp;
 656
 657        ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
 658        return (struct xfs_btree_block *)ifp->if_broot;
 659}
 660
 661/*
 662 * Retrieve the block pointer from the cursor at the given level.
 663 * This may be an inode btree root or from a buffer.
 664 */
 665struct xfs_btree_block *                /* generic btree block pointer */
 666xfs_btree_get_block(
 667        struct xfs_btree_cur    *cur,   /* btree cursor */
 668        int                     level,  /* level in btree */
 669        struct xfs_buf          **bpp)  /* buffer containing the block */
 670{
 671        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 672            (level == cur->bc_nlevels - 1)) {
 673                *bpp = NULL;
 674                return xfs_btree_get_iroot(cur);
 675        }
 676
 677        *bpp = cur->bc_bufs[level];
 678        return XFS_BUF_TO_BLOCK(*bpp);
 679}
 680
 681/*
 682 * Change the cursor to point to the first record at the given level.
 683 * Other levels are unaffected.
 684 */
 685STATIC int                              /* success=1, failure=0 */
 686xfs_btree_firstrec(
 687        xfs_btree_cur_t         *cur,   /* btree cursor */
 688        int                     level)  /* level to change */
 689{
 690        struct xfs_btree_block  *block; /* generic btree block pointer */
 691        xfs_buf_t               *bp;    /* buffer containing block */
 692
 693        /*
 694         * Get the block pointer for this level.
 695         */
 696        block = xfs_btree_get_block(cur, level, &bp);
 697        if (xfs_btree_check_block(cur, block, level, bp))
 698                return 0;
 699        /*
 700         * It's empty, there is no such record.
 701         */
 702        if (!block->bb_numrecs)
 703                return 0;
 704        /*
 705         * Set the ptr value to 1, that's the first record/key.
 706         */
 707        cur->bc_ptrs[level] = 1;
 708        return 1;
 709}
 710
 711/*
 712 * Change the cursor to point to the last record in the current block
 713 * at the given level.  Other levels are unaffected.
 714 */
 715STATIC int                              /* success=1, failure=0 */
 716xfs_btree_lastrec(
 717        xfs_btree_cur_t         *cur,   /* btree cursor */
 718        int                     level)  /* level to change */
 719{
 720        struct xfs_btree_block  *block; /* generic btree block pointer */
 721        xfs_buf_t               *bp;    /* buffer containing block */
 722
 723        /*
 724         * Get the block pointer for this level.
 725         */
 726        block = xfs_btree_get_block(cur, level, &bp);
 727        if (xfs_btree_check_block(cur, block, level, bp))
 728                return 0;
 729        /*
 730         * It's empty, there is no such record.
 731         */
 732        if (!block->bb_numrecs)
 733                return 0;
 734        /*
 735         * Set the ptr value to numrecs, that's the last record/key.
 736         */
 737        cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
 738        return 1;
 739}
 740
 741/*
 742 * Compute first and last byte offsets for the fields given.
 743 * Interprets the offsets table, which contains struct field offsets.
 744 */
 745void
 746xfs_btree_offsets(
 747        int64_t         fields,         /* bitmask of fields */
 748        const short     *offsets,       /* table of field offsets */
 749        int             nbits,          /* number of bits to inspect */
 750        int             *first,         /* output: first byte offset */
 751        int             *last)          /* output: last byte offset */
 752{
 753        int             i;              /* current bit number */
 754        int64_t         imask;          /* mask for current bit number */
 755
 756        ASSERT(fields != 0);
 757        /*
 758         * Find the lowest bit, so the first byte offset.
 759         */
 760        for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
 761                if (imask & fields) {
 762                        *first = offsets[i];
 763                        break;
 764                }
 765        }
 766        /*
 767         * Find the highest bit, so the last byte offset.
 768         */
 769        for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
 770                if (imask & fields) {
 771                        *last = offsets[i + 1] - 1;
 772                        break;
 773                }
 774        }
 775}
 776
 777/*
 778 * Get a buffer for the block, return it read in.
 779 * Long-form addressing.
 780 */
 781int
 782xfs_btree_read_bufl(
 783        struct xfs_mount        *mp,            /* file system mount point */
 784        struct xfs_trans        *tp,            /* transaction pointer */
 785        xfs_fsblock_t           fsbno,          /* file system block number */
 786        struct xfs_buf          **bpp,          /* buffer for fsbno */
 787        int                     refval,         /* ref count value for buffer */
 788        const struct xfs_buf_ops *ops)
 789{
 790        struct xfs_buf          *bp;            /* return value */
 791        xfs_daddr_t             d;              /* real disk block address */
 792        int                     error;
 793
 794        if (!xfs_verify_fsbno(mp, fsbno))
 795                return -EFSCORRUPTED;
 796        d = XFS_FSB_TO_DADDR(mp, fsbno);
 797        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 798                                   mp->m_bsize, 0, &bp, ops);
 799        if (error)
 800                return error;
 801        if (bp)
 802                xfs_buf_set_ref(bp, refval);
 803        *bpp = bp;
 804        return 0;
 805}
 806
 807/*
 808 * Read-ahead the block, don't wait for it, don't return a buffer.
 809 * Long-form addressing.
 810 */
 811/* ARGSUSED */
 812void
 813xfs_btree_reada_bufl(
 814        struct xfs_mount        *mp,            /* file system mount point */
 815        xfs_fsblock_t           fsbno,          /* file system block number */
 816        xfs_extlen_t            count,          /* count of filesystem blocks */
 817        const struct xfs_buf_ops *ops)
 818{
 819        xfs_daddr_t             d;
 820
 821        ASSERT(fsbno != NULLFSBLOCK);
 822        d = XFS_FSB_TO_DADDR(mp, fsbno);
 823        xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 824}
 825
 826/*
 827 * Read-ahead the block, don't wait for it, don't return a buffer.
 828 * Short-form addressing.
 829 */
 830/* ARGSUSED */
 831void
 832xfs_btree_reada_bufs(
 833        struct xfs_mount        *mp,            /* file system mount point */
 834        xfs_agnumber_t          agno,           /* allocation group number */
 835        xfs_agblock_t           agbno,          /* allocation group block number */
 836        xfs_extlen_t            count,          /* count of filesystem blocks */
 837        const struct xfs_buf_ops *ops)
 838{
 839        xfs_daddr_t             d;
 840
 841        ASSERT(agno != NULLAGNUMBER);
 842        ASSERT(agbno != NULLAGBLOCK);
 843        d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 844        xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 845}
 846
 847STATIC int
 848xfs_btree_readahead_lblock(
 849        struct xfs_btree_cur    *cur,
 850        int                     lr,
 851        struct xfs_btree_block  *block)
 852{
 853        int                     rval = 0;
 854        xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 855        xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 856
 857        if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 858                xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 859                                     cur->bc_ops->buf_ops);
 860                rval++;
 861        }
 862
 863        if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 864                xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 865                                     cur->bc_ops->buf_ops);
 866                rval++;
 867        }
 868
 869        return rval;
 870}
 871
 872STATIC int
 873xfs_btree_readahead_sblock(
 874        struct xfs_btree_cur    *cur,
 875        int                     lr,
 876        struct xfs_btree_block *block)
 877{
 878        int                     rval = 0;
 879        xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 880        xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 881
 882
 883        if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 884                xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 885                                     left, 1, cur->bc_ops->buf_ops);
 886                rval++;
 887        }
 888
 889        if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 890                xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 891                                     right, 1, cur->bc_ops->buf_ops);
 892                rval++;
 893        }
 894
 895        return rval;
 896}
 897
 898/*
 899 * Read-ahead btree blocks, at the given level.
 900 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 901 */
 902STATIC int
 903xfs_btree_readahead(
 904        struct xfs_btree_cur    *cur,           /* btree cursor */
 905        int                     lev,            /* level in btree */
 906        int                     lr)             /* left/right bits */
 907{
 908        struct xfs_btree_block  *block;
 909
 910        /*
 911         * No readahead needed if we are at the root level and the
 912         * btree root is stored in the inode.
 913         */
 914        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 915            (lev == cur->bc_nlevels - 1))
 916                return 0;
 917
 918        if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
 919                return 0;
 920
 921        cur->bc_ra[lev] |= lr;
 922        block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
 923
 924        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 925                return xfs_btree_readahead_lblock(cur, lr, block);
 926        return xfs_btree_readahead_sblock(cur, lr, block);
 927}
 928
 929STATIC int
 930xfs_btree_ptr_to_daddr(
 931        struct xfs_btree_cur    *cur,
 932        union xfs_btree_ptr     *ptr,
 933        xfs_daddr_t             *daddr)
 934{
 935        xfs_fsblock_t           fsbno;
 936        xfs_agblock_t           agbno;
 937        int                     error;
 938
 939        error = xfs_btree_check_ptr(cur, ptr, 0, 1);
 940        if (error)
 941                return error;
 942
 943        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 944                fsbno = be64_to_cpu(ptr->l);
 945                *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
 946        } else {
 947                agbno = be32_to_cpu(ptr->s);
 948                *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
 949                                agbno);
 950        }
 951
 952        return 0;
 953}
 954
 955/*
 956 * Readahead @count btree blocks at the given @ptr location.
 957 *
 958 * We don't need to care about long or short form btrees here as we have a
 959 * method of converting the ptr directly to a daddr available to us.
 960 */
 961STATIC void
 962xfs_btree_readahead_ptr(
 963        struct xfs_btree_cur    *cur,
 964        union xfs_btree_ptr     *ptr,
 965        xfs_extlen_t            count)
 966{
 967        xfs_daddr_t             daddr;
 968
 969        if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
 970                return;
 971        xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
 972                          cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
 973}
 974
 975/*
 976 * Set the buffer for level "lev" in the cursor to bp, releasing
 977 * any previous buffer.
 978 */
 979STATIC void
 980xfs_btree_setbuf(
 981        xfs_btree_cur_t         *cur,   /* btree cursor */
 982        int                     lev,    /* level in btree */
 983        xfs_buf_t               *bp)    /* new buffer to set */
 984{
 985        struct xfs_btree_block  *b;     /* btree block */
 986
 987        if (cur->bc_bufs[lev])
 988                xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
 989        cur->bc_bufs[lev] = bp;
 990        cur->bc_ra[lev] = 0;
 991
 992        b = XFS_BUF_TO_BLOCK(bp);
 993        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 994                if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
 995                        cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
 996                if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
 997                        cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
 998        } else {
 999                if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1000                        cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1001                if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1002                        cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1003        }
1004}
1005
1006bool
1007xfs_btree_ptr_is_null(
1008        struct xfs_btree_cur    *cur,
1009        union xfs_btree_ptr     *ptr)
1010{
1011        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1012                return ptr->l == cpu_to_be64(NULLFSBLOCK);
1013        else
1014                return ptr->s == cpu_to_be32(NULLAGBLOCK);
1015}
1016
1017STATIC void
1018xfs_btree_set_ptr_null(
1019        struct xfs_btree_cur    *cur,
1020        union xfs_btree_ptr     *ptr)
1021{
1022        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1023                ptr->l = cpu_to_be64(NULLFSBLOCK);
1024        else
1025                ptr->s = cpu_to_be32(NULLAGBLOCK);
1026}
1027
1028/*
1029 * Get/set/init sibling pointers
1030 */
1031void
1032xfs_btree_get_sibling(
1033        struct xfs_btree_cur    *cur,
1034        struct xfs_btree_block  *block,
1035        union xfs_btree_ptr     *ptr,
1036        int                     lr)
1037{
1038        ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1039
1040        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1041                if (lr == XFS_BB_RIGHTSIB)
1042                        ptr->l = block->bb_u.l.bb_rightsib;
1043                else
1044                        ptr->l = block->bb_u.l.bb_leftsib;
1045        } else {
1046                if (lr == XFS_BB_RIGHTSIB)
1047                        ptr->s = block->bb_u.s.bb_rightsib;
1048                else
1049                        ptr->s = block->bb_u.s.bb_leftsib;
1050        }
1051}
1052
1053STATIC void
1054xfs_btree_set_sibling(
1055        struct xfs_btree_cur    *cur,
1056        struct xfs_btree_block  *block,
1057        union xfs_btree_ptr     *ptr,
1058        int                     lr)
1059{
1060        ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1061
1062        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1063                if (lr == XFS_BB_RIGHTSIB)
1064                        block->bb_u.l.bb_rightsib = ptr->l;
1065                else
1066                        block->bb_u.l.bb_leftsib = ptr->l;
1067        } else {
1068                if (lr == XFS_BB_RIGHTSIB)
1069                        block->bb_u.s.bb_rightsib = ptr->s;
1070                else
1071                        block->bb_u.s.bb_leftsib = ptr->s;
1072        }
1073}
1074
1075void
1076xfs_btree_init_block_int(
1077        struct xfs_mount        *mp,
1078        struct xfs_btree_block  *buf,
1079        xfs_daddr_t             blkno,
1080        xfs_btnum_t             btnum,
1081        __u16                   level,
1082        __u16                   numrecs,
1083        __u64                   owner,
1084        unsigned int            flags)
1085{
1086        int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
1087        __u32                   magic = xfs_btree_magic(crc, btnum);
1088
1089        buf->bb_magic = cpu_to_be32(magic);
1090        buf->bb_level = cpu_to_be16(level);
1091        buf->bb_numrecs = cpu_to_be16(numrecs);
1092
1093        if (flags & XFS_BTREE_LONG_PTRS) {
1094                buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1095                buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1096                if (crc) {
1097                        buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1098                        buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1099                        uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1100                        buf->bb_u.l.bb_pad = 0;
1101                        buf->bb_u.l.bb_lsn = 0;
1102                }
1103        } else {
1104                /* owner is a 32 bit value on short blocks */
1105                __u32 __owner = (__u32)owner;
1106
1107                buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1108                buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1109                if (crc) {
1110                        buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1111                        buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1112                        uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1113                        buf->bb_u.s.bb_lsn = 0;
1114                }
1115        }
1116}
1117
1118void
1119xfs_btree_init_block(
1120        struct xfs_mount *mp,
1121        struct xfs_buf  *bp,
1122        xfs_btnum_t     btnum,
1123        __u16           level,
1124        __u16           numrecs,
1125        __u64           owner)
1126{
1127        xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1128                                 btnum, level, numrecs, owner, 0);
1129}
1130
1131STATIC void
1132xfs_btree_init_block_cur(
1133        struct xfs_btree_cur    *cur,
1134        struct xfs_buf          *bp,
1135        int                     level,
1136        int                     numrecs)
1137{
1138        __u64                   owner;
1139
1140        /*
1141         * we can pull the owner from the cursor right now as the different
1142         * owners align directly with the pointer size of the btree. This may
1143         * change in future, but is safe for current users of the generic btree
1144         * code.
1145         */
1146        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1147                owner = cur->bc_private.b.ip->i_ino;
1148        else
1149                owner = cur->bc_private.a.agno;
1150
1151        xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1152                                 cur->bc_btnum, level, numrecs,
1153                                 owner, cur->bc_flags);
1154}
1155
1156/*
1157 * Return true if ptr is the last record in the btree and
1158 * we need to track updates to this record.  The decision
1159 * will be further refined in the update_lastrec method.
1160 */
1161STATIC int
1162xfs_btree_is_lastrec(
1163        struct xfs_btree_cur    *cur,
1164        struct xfs_btree_block  *block,
1165        int                     level)
1166{
1167        union xfs_btree_ptr     ptr;
1168
1169        if (level > 0)
1170                return 0;
1171        if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1172                return 0;
1173
1174        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1175        if (!xfs_btree_ptr_is_null(cur, &ptr))
1176                return 0;
1177        return 1;
1178}
1179
1180STATIC void
1181xfs_btree_buf_to_ptr(
1182        struct xfs_btree_cur    *cur,
1183        struct xfs_buf          *bp,
1184        union xfs_btree_ptr     *ptr)
1185{
1186        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1187                ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1188                                        XFS_BUF_ADDR(bp)));
1189        else {
1190                ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1191                                        XFS_BUF_ADDR(bp)));
1192        }
1193}
1194
1195STATIC void
1196xfs_btree_set_refs(
1197        struct xfs_btree_cur    *cur,
1198        struct xfs_buf          *bp)
1199{
1200        switch (cur->bc_btnum) {
1201        case XFS_BTNUM_BNO:
1202        case XFS_BTNUM_CNT:
1203                xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1204                break;
1205        case XFS_BTNUM_INO:
1206        case XFS_BTNUM_FINO:
1207                xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1208                break;
1209        case XFS_BTNUM_BMAP:
1210                xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1211                break;
1212        case XFS_BTNUM_RMAP:
1213                xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1214                break;
1215        case XFS_BTNUM_REFC:
1216                xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1217                break;
1218        default:
1219                ASSERT(0);
1220        }
1221}
1222
1223STATIC int
1224xfs_btree_get_buf_block(
1225        struct xfs_btree_cur    *cur,
1226        union xfs_btree_ptr     *ptr,
1227        struct xfs_btree_block  **block,
1228        struct xfs_buf          **bpp)
1229{
1230        struct xfs_mount        *mp = cur->bc_mp;
1231        xfs_daddr_t             d;
1232        int                     error;
1233
1234        error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1235        if (error)
1236                return error;
1237        error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1238                        0, bpp);
1239        if (error)
1240                return error;
1241
1242        (*bpp)->b_ops = cur->bc_ops->buf_ops;
1243        *block = XFS_BUF_TO_BLOCK(*bpp);
1244        return 0;
1245}
1246
1247/*
1248 * Read in the buffer at the given ptr and return the buffer and
1249 * the block pointer within the buffer.
1250 */
1251STATIC int
1252xfs_btree_read_buf_block(
1253        struct xfs_btree_cur    *cur,
1254        union xfs_btree_ptr     *ptr,
1255        int                     flags,
1256        struct xfs_btree_block  **block,
1257        struct xfs_buf          **bpp)
1258{
1259        struct xfs_mount        *mp = cur->bc_mp;
1260        xfs_daddr_t             d;
1261        int                     error;
1262
1263        /* need to sort out how callers deal with failures first */
1264        ASSERT(!(flags & XBF_TRYLOCK));
1265
1266        error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1267        if (error)
1268                return error;
1269        error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1270                                   mp->m_bsize, flags, bpp,
1271                                   cur->bc_ops->buf_ops);
1272        if (error)
1273                return error;
1274
1275        xfs_btree_set_refs(cur, *bpp);
1276        *block = XFS_BUF_TO_BLOCK(*bpp);
1277        return 0;
1278}
1279
1280/*
1281 * Copy keys from one btree block to another.
1282 */
1283STATIC void
1284xfs_btree_copy_keys(
1285        struct xfs_btree_cur    *cur,
1286        union xfs_btree_key     *dst_key,
1287        union xfs_btree_key     *src_key,
1288        int                     numkeys)
1289{
1290        ASSERT(numkeys >= 0);
1291        memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1292}
1293
1294/*
1295 * Copy records from one btree block to another.
1296 */
1297STATIC void
1298xfs_btree_copy_recs(
1299        struct xfs_btree_cur    *cur,
1300        union xfs_btree_rec     *dst_rec,
1301        union xfs_btree_rec     *src_rec,
1302        int                     numrecs)
1303{
1304        ASSERT(numrecs >= 0);
1305        memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1306}
1307
1308/*
1309 * Copy block pointers from one btree block to another.
1310 */
1311STATIC void
1312xfs_btree_copy_ptrs(
1313        struct xfs_btree_cur    *cur,
1314        union xfs_btree_ptr     *dst_ptr,
1315        union xfs_btree_ptr     *src_ptr,
1316        int                     numptrs)
1317{
1318        ASSERT(numptrs >= 0);
1319        memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1320}
1321
1322/*
1323 * Shift keys one index left/right inside a single btree block.
1324 */
1325STATIC void
1326xfs_btree_shift_keys(
1327        struct xfs_btree_cur    *cur,
1328        union xfs_btree_key     *key,
1329        int                     dir,
1330        int                     numkeys)
1331{
1332        char                    *dst_key;
1333
1334        ASSERT(numkeys >= 0);
1335        ASSERT(dir == 1 || dir == -1);
1336
1337        dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1338        memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1339}
1340
1341/*
1342 * Shift records one index left/right inside a single btree block.
1343 */
1344STATIC void
1345xfs_btree_shift_recs(
1346        struct xfs_btree_cur    *cur,
1347        union xfs_btree_rec     *rec,
1348        int                     dir,
1349        int                     numrecs)
1350{
1351        char                    *dst_rec;
1352
1353        ASSERT(numrecs >= 0);
1354        ASSERT(dir == 1 || dir == -1);
1355
1356        dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1357        memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1358}
1359
1360/*
1361 * Shift block pointers one index left/right inside a single btree block.
1362 */
1363STATIC void
1364xfs_btree_shift_ptrs(
1365        struct xfs_btree_cur    *cur,
1366        union xfs_btree_ptr     *ptr,
1367        int                     dir,
1368        int                     numptrs)
1369{
1370        char                    *dst_ptr;
1371
1372        ASSERT(numptrs >= 0);
1373        ASSERT(dir == 1 || dir == -1);
1374
1375        dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1376        memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1377}
1378
1379/*
1380 * Log key values from the btree block.
1381 */
1382STATIC void
1383xfs_btree_log_keys(
1384        struct xfs_btree_cur    *cur,
1385        struct xfs_buf          *bp,
1386        int                     first,
1387        int                     last)
1388{
1389
1390        if (bp) {
1391                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1392                xfs_trans_log_buf(cur->bc_tp, bp,
1393                                  xfs_btree_key_offset(cur, first),
1394                                  xfs_btree_key_offset(cur, last + 1) - 1);
1395        } else {
1396                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1397                                xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1398        }
1399}
1400
1401/*
1402 * Log record values from the btree block.
1403 */
1404void
1405xfs_btree_log_recs(
1406        struct xfs_btree_cur    *cur,
1407        struct xfs_buf          *bp,
1408        int                     first,
1409        int                     last)
1410{
1411
1412        xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1413        xfs_trans_log_buf(cur->bc_tp, bp,
1414                          xfs_btree_rec_offset(cur, first),
1415                          xfs_btree_rec_offset(cur, last + 1) - 1);
1416
1417}
1418
1419/*
1420 * Log block pointer fields from a btree block (nonleaf).
1421 */
1422STATIC void
1423xfs_btree_log_ptrs(
1424        struct xfs_btree_cur    *cur,   /* btree cursor */
1425        struct xfs_buf          *bp,    /* buffer containing btree block */
1426        int                     first,  /* index of first pointer to log */
1427        int                     last)   /* index of last pointer to log */
1428{
1429
1430        if (bp) {
1431                struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1432                int                     level = xfs_btree_get_level(block);
1433
1434                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1435                xfs_trans_log_buf(cur->bc_tp, bp,
1436                                xfs_btree_ptr_offset(cur, first, level),
1437                                xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1438        } else {
1439                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1440                        xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1441        }
1442
1443}
1444
1445/*
1446 * Log fields from a btree block header.
1447 */
1448void
1449xfs_btree_log_block(
1450        struct xfs_btree_cur    *cur,   /* btree cursor */
1451        struct xfs_buf          *bp,    /* buffer containing btree block */
1452        int                     fields) /* mask of fields: XFS_BB_... */
1453{
1454        int                     first;  /* first byte offset logged */
1455        int                     last;   /* last byte offset logged */
1456        static const short      soffsets[] = {  /* table of offsets (short) */
1457                offsetof(struct xfs_btree_block, bb_magic),
1458                offsetof(struct xfs_btree_block, bb_level),
1459                offsetof(struct xfs_btree_block, bb_numrecs),
1460                offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1461                offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1462                offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1463                offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1464                offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1465                offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1466                offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1467                XFS_BTREE_SBLOCK_CRC_LEN
1468        };
1469        static const short      loffsets[] = {  /* table of offsets (long) */
1470                offsetof(struct xfs_btree_block, bb_magic),
1471                offsetof(struct xfs_btree_block, bb_level),
1472                offsetof(struct xfs_btree_block, bb_numrecs),
1473                offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1474                offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1475                offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1476                offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1477                offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1478                offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1479                offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1480                offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1481                XFS_BTREE_LBLOCK_CRC_LEN
1482        };
1483
1484        if (bp) {
1485                int nbits;
1486
1487                if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1488                        /*
1489                         * We don't log the CRC when updating a btree
1490                         * block but instead recreate it during log
1491                         * recovery.  As the log buffers have checksums
1492                         * of their own this is safe and avoids logging a crc
1493                         * update in a lot of places.
1494                         */
1495                        if (fields == XFS_BB_ALL_BITS)
1496                                fields = XFS_BB_ALL_BITS_CRC;
1497                        nbits = XFS_BB_NUM_BITS_CRC;
1498                } else {
1499                        nbits = XFS_BB_NUM_BITS;
1500                }
1501                xfs_btree_offsets(fields,
1502                                  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1503                                        loffsets : soffsets,
1504                                  nbits, &first, &last);
1505                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1506                xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1507        } else {
1508                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1509                        xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1510        }
1511}
1512
1513/*
1514 * Increment cursor by one record at the level.
1515 * For nonzero levels the leaf-ward information is untouched.
1516 */
1517int                                             /* error */
1518xfs_btree_increment(
1519        struct xfs_btree_cur    *cur,
1520        int                     level,
1521        int                     *stat)          /* success/failure */
1522{
1523        struct xfs_btree_block  *block;
1524        union xfs_btree_ptr     ptr;
1525        struct xfs_buf          *bp;
1526        int                     error;          /* error return value */
1527        int                     lev;
1528
1529        ASSERT(level < cur->bc_nlevels);
1530
1531        /* Read-ahead to the right at this level. */
1532        xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1533
1534        /* Get a pointer to the btree block. */
1535        block = xfs_btree_get_block(cur, level, &bp);
1536
1537#ifdef DEBUG
1538        error = xfs_btree_check_block(cur, block, level, bp);
1539        if (error)
1540                goto error0;
1541#endif
1542
1543        /* We're done if we remain in the block after the increment. */
1544        if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1545                goto out1;
1546
1547        /* Fail if we just went off the right edge of the tree. */
1548        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1549        if (xfs_btree_ptr_is_null(cur, &ptr))
1550                goto out0;
1551
1552        XFS_BTREE_STATS_INC(cur, increment);
1553
1554        /*
1555         * March up the tree incrementing pointers.
1556         * Stop when we don't go off the right edge of a block.
1557         */
1558        for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1559                block = xfs_btree_get_block(cur, lev, &bp);
1560
1561#ifdef DEBUG
1562                error = xfs_btree_check_block(cur, block, lev, bp);
1563                if (error)
1564                        goto error0;
1565#endif
1566
1567                if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1568                        break;
1569
1570                /* Read-ahead the right block for the next loop. */
1571                xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1572        }
1573
1574        /*
1575         * If we went off the root then we are either seriously
1576         * confused or have the tree root in an inode.
1577         */
1578        if (lev == cur->bc_nlevels) {
1579                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1580                        goto out0;
1581                ASSERT(0);
1582                error = -EFSCORRUPTED;
1583                goto error0;
1584        }
1585        ASSERT(lev < cur->bc_nlevels);
1586
1587        /*
1588         * Now walk back down the tree, fixing up the cursor's buffer
1589         * pointers and key numbers.
1590         */
1591        for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1592                union xfs_btree_ptr     *ptrp;
1593
1594                ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1595                --lev;
1596                error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1597                if (error)
1598                        goto error0;
1599
1600                xfs_btree_setbuf(cur, lev, bp);
1601                cur->bc_ptrs[lev] = 1;
1602        }
1603out1:
1604        *stat = 1;
1605        return 0;
1606
1607out0:
1608        *stat = 0;
1609        return 0;
1610
1611error0:
1612        return error;
1613}
1614
1615/*
1616 * Decrement cursor by one record at the level.
1617 * For nonzero levels the leaf-ward information is untouched.
1618 */
1619int                                             /* error */
1620xfs_btree_decrement(
1621        struct xfs_btree_cur    *cur,
1622        int                     level,
1623        int                     *stat)          /* success/failure */
1624{
1625        struct xfs_btree_block  *block;
1626        xfs_buf_t               *bp;
1627        int                     error;          /* error return value */
1628        int                     lev;
1629        union xfs_btree_ptr     ptr;
1630
1631        ASSERT(level < cur->bc_nlevels);
1632
1633        /* Read-ahead to the left at this level. */
1634        xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1635
1636        /* We're done if we remain in the block after the decrement. */
1637        if (--cur->bc_ptrs[level] > 0)
1638                goto out1;
1639
1640        /* Get a pointer to the btree block. */
1641        block = xfs_btree_get_block(cur, level, &bp);
1642
1643#ifdef DEBUG
1644        error = xfs_btree_check_block(cur, block, level, bp);
1645        if (error)
1646                goto error0;
1647#endif
1648
1649        /* Fail if we just went off the left edge of the tree. */
1650        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1651        if (xfs_btree_ptr_is_null(cur, &ptr))
1652                goto out0;
1653
1654        XFS_BTREE_STATS_INC(cur, decrement);
1655
1656        /*
1657         * March up the tree decrementing pointers.
1658         * Stop when we don't go off the left edge of a block.
1659         */
1660        for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1661                if (--cur->bc_ptrs[lev] > 0)
1662                        break;
1663                /* Read-ahead the left block for the next loop. */
1664                xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1665        }
1666
1667        /*
1668         * If we went off the root then we are seriously confused.
1669         * or the root of the tree is in an inode.
1670         */
1671        if (lev == cur->bc_nlevels) {
1672                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1673                        goto out0;
1674                ASSERT(0);
1675                error = -EFSCORRUPTED;
1676                goto error0;
1677        }
1678        ASSERT(lev < cur->bc_nlevels);
1679
1680        /*
1681         * Now walk back down the tree, fixing up the cursor's buffer
1682         * pointers and key numbers.
1683         */
1684        for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1685                union xfs_btree_ptr     *ptrp;
1686
1687                ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1688                --lev;
1689                error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1690                if (error)
1691                        goto error0;
1692                xfs_btree_setbuf(cur, lev, bp);
1693                cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1694        }
1695out1:
1696        *stat = 1;
1697        return 0;
1698
1699out0:
1700        *stat = 0;
1701        return 0;
1702
1703error0:
1704        return error;
1705}
1706
1707int
1708xfs_btree_lookup_get_block(
1709        struct xfs_btree_cur    *cur,   /* btree cursor */
1710        int                     level,  /* level in the btree */
1711        union xfs_btree_ptr     *pp,    /* ptr to btree block */
1712        struct xfs_btree_block  **blkp) /* return btree block */
1713{
1714        struct xfs_buf          *bp;    /* buffer pointer for btree block */
1715        xfs_daddr_t             daddr;
1716        int                     error = 0;
1717
1718        /* special case the root block if in an inode */
1719        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1720            (level == cur->bc_nlevels - 1)) {
1721                *blkp = xfs_btree_get_iroot(cur);
1722                return 0;
1723        }
1724
1725        /*
1726         * If the old buffer at this level for the disk address we are
1727         * looking for re-use it.
1728         *
1729         * Otherwise throw it away and get a new one.
1730         */
1731        bp = cur->bc_bufs[level];
1732        error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1733        if (error)
1734                return error;
1735        if (bp && XFS_BUF_ADDR(bp) == daddr) {
1736                *blkp = XFS_BUF_TO_BLOCK(bp);
1737                return 0;
1738        }
1739
1740        error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1741        if (error)
1742                return error;
1743
1744        /* Check the inode owner since the verifiers don't. */
1745        if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1746            !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1747            (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1748            be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1749                        cur->bc_private.b.ip->i_ino)
1750                goto out_bad;
1751
1752        /* Did we get the level we were looking for? */
1753        if (be16_to_cpu((*blkp)->bb_level) != level)
1754                goto out_bad;
1755
1756        /* Check that internal nodes have at least one record. */
1757        if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1758                goto out_bad;
1759
1760        xfs_btree_setbuf(cur, level, bp);
1761        return 0;
1762
1763out_bad:
1764        *blkp = NULL;
1765        xfs_buf_corruption_error(bp);
1766        xfs_trans_brelse(cur->bc_tp, bp);
1767        return -EFSCORRUPTED;
1768}
1769
1770/*
1771 * Get current search key.  For level 0 we don't actually have a key
1772 * structure so we make one up from the record.  For all other levels
1773 * we just return the right key.
1774 */
1775STATIC union xfs_btree_key *
1776xfs_lookup_get_search_key(
1777        struct xfs_btree_cur    *cur,
1778        int                     level,
1779        int                     keyno,
1780        struct xfs_btree_block  *block,
1781        union xfs_btree_key     *kp)
1782{
1783        if (level == 0) {
1784                cur->bc_ops->init_key_from_rec(kp,
1785                                xfs_btree_rec_addr(cur, keyno, block));
1786                return kp;
1787        }
1788
1789        return xfs_btree_key_addr(cur, keyno, block);
1790}
1791
1792/*
1793 * Lookup the record.  The cursor is made to point to it, based on dir.
1794 * stat is set to 0 if can't find any such record, 1 for success.
1795 */
1796int                                     /* error */
1797xfs_btree_lookup(
1798        struct xfs_btree_cur    *cur,   /* btree cursor */
1799        xfs_lookup_t            dir,    /* <=, ==, or >= */
1800        int                     *stat)  /* success/failure */
1801{
1802        struct xfs_btree_block  *block; /* current btree block */
1803        int64_t                 diff;   /* difference for the current key */
1804        int                     error;  /* error return value */
1805        int                     keyno;  /* current key number */
1806        int                     level;  /* level in the btree */
1807        union xfs_btree_ptr     *pp;    /* ptr to btree block */
1808        union xfs_btree_ptr     ptr;    /* ptr to btree block */
1809
1810        XFS_BTREE_STATS_INC(cur, lookup);
1811
1812        /* No such thing as a zero-level tree. */
1813        if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1814                return -EFSCORRUPTED;
1815
1816        block = NULL;
1817        keyno = 0;
1818
1819        /* initialise start pointer from cursor */
1820        cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1821        pp = &ptr;
1822
1823        /*
1824         * Iterate over each level in the btree, starting at the root.
1825         * For each level above the leaves, find the key we need, based
1826         * on the lookup record, then follow the corresponding block
1827         * pointer down to the next level.
1828         */
1829        for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1830                /* Get the block we need to do the lookup on. */
1831                error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1832                if (error)
1833                        goto error0;
1834
1835                if (diff == 0) {
1836                        /*
1837                         * If we already had a key match at a higher level, we
1838                         * know we need to use the first entry in this block.
1839                         */
1840                        keyno = 1;
1841                } else {
1842                        /* Otherwise search this block. Do a binary search. */
1843
1844                        int     high;   /* high entry number */
1845                        int     low;    /* low entry number */
1846
1847                        /* Set low and high entry numbers, 1-based. */
1848                        low = 1;
1849                        high = xfs_btree_get_numrecs(block);
1850                        if (!high) {
1851                                /* Block is empty, must be an empty leaf. */
1852                                if (level != 0 || cur->bc_nlevels != 1) {
1853                                        XFS_CORRUPTION_ERROR(__func__,
1854                                                        XFS_ERRLEVEL_LOW,
1855                                                        cur->bc_mp, block,
1856                                                        sizeof(*block));
1857                                        return -EFSCORRUPTED;
1858                                }
1859
1860                                cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1861                                *stat = 0;
1862                                return 0;
1863                        }
1864
1865                        /* Binary search the block. */
1866                        while (low <= high) {
1867                                union xfs_btree_key     key;
1868                                union xfs_btree_key     *kp;
1869
1870                                XFS_BTREE_STATS_INC(cur, compare);
1871
1872                                /* keyno is average of low and high. */
1873                                keyno = (low + high) >> 1;
1874
1875                                /* Get current search key */
1876                                kp = xfs_lookup_get_search_key(cur, level,
1877                                                keyno, block, &key);
1878
1879                                /*
1880                                 * Compute difference to get next direction:
1881                                 *  - less than, move right
1882                                 *  - greater than, move left
1883                                 *  - equal, we're done
1884                                 */
1885                                diff = cur->bc_ops->key_diff(cur, kp);
1886                                if (diff < 0)
1887                                        low = keyno + 1;
1888                                else if (diff > 0)
1889                                        high = keyno - 1;
1890                                else
1891                                        break;
1892                        }
1893                }
1894
1895                /*
1896                 * If there are more levels, set up for the next level
1897                 * by getting the block number and filling in the cursor.
1898                 */
1899                if (level > 0) {
1900                        /*
1901                         * If we moved left, need the previous key number,
1902                         * unless there isn't one.
1903                         */
1904                        if (diff > 0 && --keyno < 1)
1905                                keyno = 1;
1906                        pp = xfs_btree_ptr_addr(cur, keyno, block);
1907
1908                        error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1909                        if (error)
1910                                goto error0;
1911
1912                        cur->bc_ptrs[level] = keyno;
1913                }
1914        }
1915
1916        /* Done with the search. See if we need to adjust the results. */
1917        if (dir != XFS_LOOKUP_LE && diff < 0) {
1918                keyno++;
1919                /*
1920                 * If ge search and we went off the end of the block, but it's
1921                 * not the last block, we're in the wrong block.
1922                 */
1923                xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1924                if (dir == XFS_LOOKUP_GE &&
1925                    keyno > xfs_btree_get_numrecs(block) &&
1926                    !xfs_btree_ptr_is_null(cur, &ptr)) {
1927                        int     i;
1928
1929                        cur->bc_ptrs[0] = keyno;
1930                        error = xfs_btree_increment(cur, 0, &i);
1931                        if (error)
1932                                goto error0;
1933                        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1934                                return -EFSCORRUPTED;
1935                        *stat = 1;
1936                        return 0;
1937                }
1938        } else if (dir == XFS_LOOKUP_LE && diff > 0)
1939                keyno--;
1940        cur->bc_ptrs[0] = keyno;
1941
1942        /* Return if we succeeded or not. */
1943        if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1944                *stat = 0;
1945        else if (dir != XFS_LOOKUP_EQ || diff == 0)
1946                *stat = 1;
1947        else
1948                *stat = 0;
1949        return 0;
1950
1951error0:
1952        return error;
1953}
1954
1955/* Find the high key storage area from a regular key. */
1956union xfs_btree_key *
1957xfs_btree_high_key_from_key(
1958        struct xfs_btree_cur    *cur,
1959        union xfs_btree_key     *key)
1960{
1961        ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1962        return (union xfs_btree_key *)((char *)key +
1963                        (cur->bc_ops->key_len / 2));
1964}
1965
1966/* Determine the low (and high if overlapped) keys of a leaf block */
1967STATIC void
1968xfs_btree_get_leaf_keys(
1969        struct xfs_btree_cur    *cur,
1970        struct xfs_btree_block  *block,
1971        union xfs_btree_key     *key)
1972{
1973        union xfs_btree_key     max_hkey;
1974        union xfs_btree_key     hkey;
1975        union xfs_btree_rec     *rec;
1976        union xfs_btree_key     *high;
1977        int                     n;
1978
1979        rec = xfs_btree_rec_addr(cur, 1, block);
1980        cur->bc_ops->init_key_from_rec(key, rec);
1981
1982        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1983
1984                cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1985                for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1986                        rec = xfs_btree_rec_addr(cur, n, block);
1987                        cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1988                        if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1989                                        > 0)
1990                                max_hkey = hkey;
1991                }
1992
1993                high = xfs_btree_high_key_from_key(cur, key);
1994                memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
1995        }
1996}
1997
1998/* Determine the low (and high if overlapped) keys of a node block */
1999STATIC void
2000xfs_btree_get_node_keys(
2001        struct xfs_btree_cur    *cur,
2002        struct xfs_btree_block  *block,
2003        union xfs_btree_key     *key)
2004{
2005        union xfs_btree_key     *hkey;
2006        union xfs_btree_key     *max_hkey;
2007        union xfs_btree_key     *high;
2008        int                     n;
2009
2010        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2011                memcpy(key, xfs_btree_key_addr(cur, 1, block),
2012                                cur->bc_ops->key_len / 2);
2013
2014                max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2015                for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2016                        hkey = xfs_btree_high_key_addr(cur, n, block);
2017                        if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2018                                max_hkey = hkey;
2019                }
2020
2021                high = xfs_btree_high_key_from_key(cur, key);
2022                memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2023        } else {
2024                memcpy(key, xfs_btree_key_addr(cur, 1, block),
2025                                cur->bc_ops->key_len);
2026        }
2027}
2028
2029/* Derive the keys for any btree block. */
2030void
2031xfs_btree_get_keys(
2032        struct xfs_btree_cur    *cur,
2033        struct xfs_btree_block  *block,
2034        union xfs_btree_key     *key)
2035{
2036        if (be16_to_cpu(block->bb_level) == 0)
2037                xfs_btree_get_leaf_keys(cur, block, key);
2038        else
2039                xfs_btree_get_node_keys(cur, block, key);
2040}
2041
2042/*
2043 * Decide if we need to update the parent keys of a btree block.  For
2044 * a standard btree this is only necessary if we're updating the first
2045 * record/key.  For an overlapping btree, we must always update the
2046 * keys because the highest key can be in any of the records or keys
2047 * in the block.
2048 */
2049static inline bool
2050xfs_btree_needs_key_update(
2051        struct xfs_btree_cur    *cur,
2052        int                     ptr)
2053{
2054        return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2055}
2056
2057/*
2058 * Update the low and high parent keys of the given level, progressing
2059 * towards the root.  If force_all is false, stop if the keys for a given
2060 * level do not need updating.
2061 */
2062STATIC int
2063__xfs_btree_updkeys(
2064        struct xfs_btree_cur    *cur,
2065        int                     level,
2066        struct xfs_btree_block  *block,
2067        struct xfs_buf          *bp0,
2068        bool                    force_all)
2069{
2070        union xfs_btree_key     key;    /* keys from current level */
2071        union xfs_btree_key     *lkey;  /* keys from the next level up */
2072        union xfs_btree_key     *hkey;
2073        union xfs_btree_key     *nlkey; /* keys from the next level up */
2074        union xfs_btree_key     *nhkey;
2075        struct xfs_buf          *bp;
2076        int                     ptr;
2077
2078        ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2079
2080        /* Exit if there aren't any parent levels to update. */
2081        if (level + 1 >= cur->bc_nlevels)
2082                return 0;
2083
2084        trace_xfs_btree_updkeys(cur, level, bp0);
2085
2086        lkey = &key;
2087        hkey = xfs_btree_high_key_from_key(cur, lkey);
2088        xfs_btree_get_keys(cur, block, lkey);
2089        for (level++; level < cur->bc_nlevels; level++) {
2090#ifdef DEBUG
2091                int             error;
2092#endif
2093                block = xfs_btree_get_block(cur, level, &bp);
2094                trace_xfs_btree_updkeys(cur, level, bp);
2095#ifdef DEBUG
2096                error = xfs_btree_check_block(cur, block, level, bp);
2097                if (error)
2098                        return error;
2099#endif
2100                ptr = cur->bc_ptrs[level];
2101                nlkey = xfs_btree_key_addr(cur, ptr, block);
2102                nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2103                if (!force_all &&
2104                    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2105                      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2106                        break;
2107                xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2108                xfs_btree_log_keys(cur, bp, ptr, ptr);
2109                if (level + 1 >= cur->bc_nlevels)
2110                        break;
2111                xfs_btree_get_node_keys(cur, block, lkey);
2112        }
2113
2114        return 0;
2115}
2116
2117/* Update all the keys from some level in cursor back to the root. */
2118STATIC int
2119xfs_btree_updkeys_force(
2120        struct xfs_btree_cur    *cur,
2121        int                     level)
2122{
2123        struct xfs_buf          *bp;
2124        struct xfs_btree_block  *block;
2125
2126        block = xfs_btree_get_block(cur, level, &bp);
2127        return __xfs_btree_updkeys(cur, level, block, bp, true);
2128}
2129
2130/*
2131 * Update the parent keys of the given level, progressing towards the root.
2132 */
2133STATIC int
2134xfs_btree_update_keys(
2135        struct xfs_btree_cur    *cur,
2136        int                     level)
2137{
2138        struct xfs_btree_block  *block;
2139        struct xfs_buf          *bp;
2140        union xfs_btree_key     *kp;
2141        union xfs_btree_key     key;
2142        int                     ptr;
2143
2144        ASSERT(level >= 0);
2145
2146        block = xfs_btree_get_block(cur, level, &bp);
2147        if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2148                return __xfs_btree_updkeys(cur, level, block, bp, false);
2149
2150        /*
2151         * Go up the tree from this level toward the root.
2152         * At each level, update the key value to the value input.
2153         * Stop when we reach a level where the cursor isn't pointing
2154         * at the first entry in the block.
2155         */
2156        xfs_btree_get_keys(cur, block, &key);
2157        for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2158#ifdef DEBUG
2159                int             error;
2160#endif
2161                block = xfs_btree_get_block(cur, level, &bp);
2162#ifdef DEBUG
2163                error = xfs_btree_check_block(cur, block, level, bp);
2164                if (error)
2165                        return error;
2166#endif
2167                ptr = cur->bc_ptrs[level];
2168                kp = xfs_btree_key_addr(cur, ptr, block);
2169                xfs_btree_copy_keys(cur, kp, &key, 1);
2170                xfs_btree_log_keys(cur, bp, ptr, ptr);
2171        }
2172
2173        return 0;
2174}
2175
2176/*
2177 * Update the record referred to by cur to the value in the
2178 * given record. This either works (return 0) or gets an
2179 * EFSCORRUPTED error.
2180 */
2181int
2182xfs_btree_update(
2183        struct xfs_btree_cur    *cur,
2184        union xfs_btree_rec     *rec)
2185{
2186        struct xfs_btree_block  *block;
2187        struct xfs_buf          *bp;
2188        int                     error;
2189        int                     ptr;
2190        union xfs_btree_rec     *rp;
2191
2192        /* Pick up the current block. */
2193        block = xfs_btree_get_block(cur, 0, &bp);
2194
2195#ifdef DEBUG
2196        error = xfs_btree_check_block(cur, block, 0, bp);
2197        if (error)
2198                goto error0;
2199#endif
2200        /* Get the address of the rec to be updated. */
2201        ptr = cur->bc_ptrs[0];
2202        rp = xfs_btree_rec_addr(cur, ptr, block);
2203
2204        /* Fill in the new contents and log them. */
2205        xfs_btree_copy_recs(cur, rp, rec, 1);
2206        xfs_btree_log_recs(cur, bp, ptr, ptr);
2207
2208        /*
2209         * If we are tracking the last record in the tree and
2210         * we are at the far right edge of the tree, update it.
2211         */
2212        if (xfs_btree_is_lastrec(cur, block, 0)) {
2213                cur->bc_ops->update_lastrec(cur, block, rec,
2214                                            ptr, LASTREC_UPDATE);
2215        }
2216
2217        /* Pass new key value up to our parent. */
2218        if (xfs_btree_needs_key_update(cur, ptr)) {
2219                error = xfs_btree_update_keys(cur, 0);
2220                if (error)
2221                        goto error0;
2222        }
2223
2224        return 0;
2225
2226error0:
2227        return error;
2228}
2229
2230/*
2231 * Move 1 record left from cur/level if possible.
2232 * Update cur to reflect the new path.
2233 */
2234STATIC int                                      /* error */
2235xfs_btree_lshift(
2236        struct xfs_btree_cur    *cur,
2237        int                     level,
2238        int                     *stat)          /* success/failure */
2239{
2240        struct xfs_buf          *lbp;           /* left buffer pointer */
2241        struct xfs_btree_block  *left;          /* left btree block */
2242        int                     lrecs;          /* left record count */
2243        struct xfs_buf          *rbp;           /* right buffer pointer */
2244        struct xfs_btree_block  *right;         /* right btree block */
2245        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2246        int                     rrecs;          /* right record count */
2247        union xfs_btree_ptr     lptr;           /* left btree pointer */
2248        union xfs_btree_key     *rkp = NULL;    /* right btree key */
2249        union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2250        union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2251        int                     error;          /* error return value */
2252        int                     i;
2253
2254        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2255            level == cur->bc_nlevels - 1)
2256                goto out0;
2257
2258        /* Set up variables for this block as "right". */
2259        right = xfs_btree_get_block(cur, level, &rbp);
2260
2261#ifdef DEBUG
2262        error = xfs_btree_check_block(cur, right, level, rbp);
2263        if (error)
2264                goto error0;
2265#endif
2266
2267        /* If we've got no left sibling then we can't shift an entry left. */
2268        xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2269        if (xfs_btree_ptr_is_null(cur, &lptr))
2270                goto out0;
2271
2272        /*
2273         * If the cursor entry is the one that would be moved, don't
2274         * do it... it's too complicated.
2275         */
2276        if (cur->bc_ptrs[level] <= 1)
2277                goto out0;
2278
2279        /* Set up the left neighbor as "left". */
2280        error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2281        if (error)
2282                goto error0;
2283
2284        /* If it's full, it can't take another entry. */
2285        lrecs = xfs_btree_get_numrecs(left);
2286        if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2287                goto out0;
2288
2289        rrecs = xfs_btree_get_numrecs(right);
2290
2291        /*
2292         * We add one entry to the left side and remove one for the right side.
2293         * Account for it here, the changes will be updated on disk and logged
2294         * later.
2295         */
2296        lrecs++;
2297        rrecs--;
2298
2299        XFS_BTREE_STATS_INC(cur, lshift);
2300        XFS_BTREE_STATS_ADD(cur, moves, 1);
2301
2302        /*
2303         * If non-leaf, copy a key and a ptr to the left block.
2304         * Log the changes to the left block.
2305         */
2306        if (level > 0) {
2307                /* It's a non-leaf.  Move keys and pointers. */
2308                union xfs_btree_key     *lkp;   /* left btree key */
2309                union xfs_btree_ptr     *lpp;   /* left address pointer */
2310
2311                lkp = xfs_btree_key_addr(cur, lrecs, left);
2312                rkp = xfs_btree_key_addr(cur, 1, right);
2313
2314                lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2315                rpp = xfs_btree_ptr_addr(cur, 1, right);
2316
2317                error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2318                if (error)
2319                        goto error0;
2320
2321                xfs_btree_copy_keys(cur, lkp, rkp, 1);
2322                xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2323
2324                xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2325                xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2326
2327                ASSERT(cur->bc_ops->keys_inorder(cur,
2328                        xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2329        } else {
2330                /* It's a leaf.  Move records.  */
2331                union xfs_btree_rec     *lrp;   /* left record pointer */
2332
2333                lrp = xfs_btree_rec_addr(cur, lrecs, left);
2334                rrp = xfs_btree_rec_addr(cur, 1, right);
2335
2336                xfs_btree_copy_recs(cur, lrp, rrp, 1);
2337                xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2338
2339                ASSERT(cur->bc_ops->recs_inorder(cur,
2340                        xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2341        }
2342
2343        xfs_btree_set_numrecs(left, lrecs);
2344        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2345
2346        xfs_btree_set_numrecs(right, rrecs);
2347        xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2348
2349        /*
2350         * Slide the contents of right down one entry.
2351         */
2352        XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2353        if (level > 0) {
2354                /* It's a nonleaf. operate on keys and ptrs */
2355                for (i = 0; i < rrecs; i++) {
2356                        error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2357                        if (error)
2358                                goto error0;
2359                }
2360
2361                xfs_btree_shift_keys(cur,
2362                                xfs_btree_key_addr(cur, 2, right),
2363                                -1, rrecs);
2364                xfs_btree_shift_ptrs(cur,
2365                                xfs_btree_ptr_addr(cur, 2, right),
2366                                -1, rrecs);
2367
2368                xfs_btree_log_keys(cur, rbp, 1, rrecs);
2369                xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2370        } else {
2371                /* It's a leaf. operate on records */
2372                xfs_btree_shift_recs(cur,
2373                        xfs_btree_rec_addr(cur, 2, right),
2374                        -1, rrecs);
2375                xfs_btree_log_recs(cur, rbp, 1, rrecs);
2376        }
2377
2378        /*
2379         * Using a temporary cursor, update the parent key values of the
2380         * block on the left.
2381         */
2382        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2383                error = xfs_btree_dup_cursor(cur, &tcur);
2384                if (error)
2385                        goto error0;
2386                i = xfs_btree_firstrec(tcur, level);
2387                if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2388                        error = -EFSCORRUPTED;
2389                        goto error0;
2390                }
2391
2392                error = xfs_btree_decrement(tcur, level, &i);
2393                if (error)
2394                        goto error1;
2395
2396                /* Update the parent high keys of the left block, if needed. */
2397                error = xfs_btree_update_keys(tcur, level);
2398                if (error)
2399                        goto error1;
2400
2401                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2402        }
2403
2404        /* Update the parent keys of the right block. */
2405        error = xfs_btree_update_keys(cur, level);
2406        if (error)
2407                goto error0;
2408
2409        /* Slide the cursor value left one. */
2410        cur->bc_ptrs[level]--;
2411
2412        *stat = 1;
2413        return 0;
2414
2415out0:
2416        *stat = 0;
2417        return 0;
2418
2419error0:
2420        return error;
2421
2422error1:
2423        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2424        return error;
2425}
2426
2427/*
2428 * Move 1 record right from cur/level if possible.
2429 * Update cur to reflect the new path.
2430 */
2431STATIC int                                      /* error */
2432xfs_btree_rshift(
2433        struct xfs_btree_cur    *cur,
2434        int                     level,
2435        int                     *stat)          /* success/failure */
2436{
2437        struct xfs_buf          *lbp;           /* left buffer pointer */
2438        struct xfs_btree_block  *left;          /* left btree block */
2439        struct xfs_buf          *rbp;           /* right buffer pointer */
2440        struct xfs_btree_block  *right;         /* right btree block */
2441        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2442        union xfs_btree_ptr     rptr;           /* right block pointer */
2443        union xfs_btree_key     *rkp;           /* right btree key */
2444        int                     rrecs;          /* right record count */
2445        int                     lrecs;          /* left record count */
2446        int                     error;          /* error return value */
2447        int                     i;              /* loop counter */
2448
2449        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2450            (level == cur->bc_nlevels - 1))
2451                goto out0;
2452
2453        /* Set up variables for this block as "left". */
2454        left = xfs_btree_get_block(cur, level, &lbp);
2455
2456#ifdef DEBUG
2457        error = xfs_btree_check_block(cur, left, level, lbp);
2458        if (error)
2459                goto error0;
2460#endif
2461
2462        /* If we've got no right sibling then we can't shift an entry right. */
2463        xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2464        if (xfs_btree_ptr_is_null(cur, &rptr))
2465                goto out0;
2466
2467        /*
2468         * If the cursor entry is the one that would be moved, don't
2469         * do it... it's too complicated.
2470         */
2471        lrecs = xfs_btree_get_numrecs(left);
2472        if (cur->bc_ptrs[level] >= lrecs)
2473                goto out0;
2474
2475        /* Set up the right neighbor as "right". */
2476        error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2477        if (error)
2478                goto error0;
2479
2480        /* If it's full, it can't take another entry. */
2481        rrecs = xfs_btree_get_numrecs(right);
2482        if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2483                goto out0;
2484
2485        XFS_BTREE_STATS_INC(cur, rshift);
2486        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2487
2488        /*
2489         * Make a hole at the start of the right neighbor block, then
2490         * copy the last left block entry to the hole.
2491         */
2492        if (level > 0) {
2493                /* It's a nonleaf. make a hole in the keys and ptrs */
2494                union xfs_btree_key     *lkp;
2495                union xfs_btree_ptr     *lpp;
2496                union xfs_btree_ptr     *rpp;
2497
2498                lkp = xfs_btree_key_addr(cur, lrecs, left);
2499                lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2500                rkp = xfs_btree_key_addr(cur, 1, right);
2501                rpp = xfs_btree_ptr_addr(cur, 1, right);
2502
2503                for (i = rrecs - 1; i >= 0; i--) {
2504                        error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2505                        if (error)
2506                                goto error0;
2507                }
2508
2509                xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2510                xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2511
2512                error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2513                if (error)
2514                        goto error0;
2515
2516                /* Now put the new data in, and log it. */
2517                xfs_btree_copy_keys(cur, rkp, lkp, 1);
2518                xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2519
2520                xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2521                xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2522
2523                ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2524                        xfs_btree_key_addr(cur, 2, right)));
2525        } else {
2526                /* It's a leaf. make a hole in the records */
2527                union xfs_btree_rec     *lrp;
2528                union xfs_btree_rec     *rrp;
2529
2530                lrp = xfs_btree_rec_addr(cur, lrecs, left);
2531                rrp = xfs_btree_rec_addr(cur, 1, right);
2532
2533                xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2534
2535                /* Now put the new data in, and log it. */
2536                xfs_btree_copy_recs(cur, rrp, lrp, 1);
2537                xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2538        }
2539
2540        /*
2541         * Decrement and log left's numrecs, bump and log right's numrecs.
2542         */
2543        xfs_btree_set_numrecs(left, --lrecs);
2544        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2545
2546        xfs_btree_set_numrecs(right, ++rrecs);
2547        xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2548
2549        /*
2550         * Using a temporary cursor, update the parent key values of the
2551         * block on the right.
2552         */
2553        error = xfs_btree_dup_cursor(cur, &tcur);
2554        if (error)
2555                goto error0;
2556        i = xfs_btree_lastrec(tcur, level);
2557        if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2558                error = -EFSCORRUPTED;
2559                goto error0;
2560        }
2561
2562        error = xfs_btree_increment(tcur, level, &i);
2563        if (error)
2564                goto error1;
2565
2566        /* Update the parent high keys of the left block, if needed. */
2567        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2568                error = xfs_btree_update_keys(cur, level);
2569                if (error)
2570                        goto error1;
2571        }
2572
2573        /* Update the parent keys of the right block. */
2574        error = xfs_btree_update_keys(tcur, level);
2575        if (error)
2576                goto error1;
2577
2578        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2579
2580        *stat = 1;
2581        return 0;
2582
2583out0:
2584        *stat = 0;
2585        return 0;
2586
2587error0:
2588        return error;
2589
2590error1:
2591        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2592        return error;
2593}
2594
2595/*
2596 * Split cur/level block in half.
2597 * Return new block number and the key to its first
2598 * record (to be inserted into parent).
2599 */
2600STATIC int                                      /* error */
2601__xfs_btree_split(
2602        struct xfs_btree_cur    *cur,
2603        int                     level,
2604        union xfs_btree_ptr     *ptrp,
2605        union xfs_btree_key     *key,
2606        struct xfs_btree_cur    **curp,
2607        int                     *stat)          /* success/failure */
2608{
2609        union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2610        struct xfs_buf          *lbp;           /* left buffer pointer */
2611        struct xfs_btree_block  *left;          /* left btree block */
2612        union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2613        struct xfs_buf          *rbp;           /* right buffer pointer */
2614        struct xfs_btree_block  *right;         /* right btree block */
2615        union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2616        struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2617        struct xfs_btree_block  *rrblock;       /* right-right btree block */
2618        int                     lrecs;
2619        int                     rrecs;
2620        int                     src_index;
2621        int                     error;          /* error return value */
2622        int                     i;
2623
2624        XFS_BTREE_STATS_INC(cur, split);
2625
2626        /* Set up left block (current one). */
2627        left = xfs_btree_get_block(cur, level, &lbp);
2628
2629#ifdef DEBUG
2630        error = xfs_btree_check_block(cur, left, level, lbp);
2631        if (error)
2632                goto error0;
2633#endif
2634
2635        xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2636
2637        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2638        error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2639        if (error)
2640                goto error0;
2641        if (*stat == 0)
2642                goto out0;
2643        XFS_BTREE_STATS_INC(cur, alloc);
2644
2645        /* Set up the new block as "right". */
2646        error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2647        if (error)
2648                goto error0;
2649
2650        /* Fill in the btree header for the new right block. */
2651        xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2652
2653        /*
2654         * Split the entries between the old and the new block evenly.
2655         * Make sure that if there's an odd number of entries now, that
2656         * each new block will have the same number of entries.
2657         */
2658        lrecs = xfs_btree_get_numrecs(left);
2659        rrecs = lrecs / 2;
2660        if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2661                rrecs++;
2662        src_index = (lrecs - rrecs + 1);
2663
2664        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2665
2666        /* Adjust numrecs for the later get_*_keys() calls. */
2667        lrecs -= rrecs;
2668        xfs_btree_set_numrecs(left, lrecs);
2669        xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2670
2671        /*
2672         * Copy btree block entries from the left block over to the
2673         * new block, the right. Update the right block and log the
2674         * changes.
2675         */
2676        if (level > 0) {
2677                /* It's a non-leaf.  Move keys and pointers. */
2678                union xfs_btree_key     *lkp;   /* left btree key */
2679                union xfs_btree_ptr     *lpp;   /* left address pointer */
2680                union xfs_btree_key     *rkp;   /* right btree key */
2681                union xfs_btree_ptr     *rpp;   /* right address pointer */
2682
2683                lkp = xfs_btree_key_addr(cur, src_index, left);
2684                lpp = xfs_btree_ptr_addr(cur, src_index, left);
2685                rkp = xfs_btree_key_addr(cur, 1, right);
2686                rpp = xfs_btree_ptr_addr(cur, 1, right);
2687
2688                for (i = src_index; i < rrecs; i++) {
2689                        error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2690                        if (error)
2691                                goto error0;
2692                }
2693
2694                /* Copy the keys & pointers to the new block. */
2695                xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2696                xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2697
2698                xfs_btree_log_keys(cur, rbp, 1, rrecs);
2699                xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2700
2701                /* Stash the keys of the new block for later insertion. */
2702                xfs_btree_get_node_keys(cur, right, key);
2703        } else {
2704                /* It's a leaf.  Move records.  */
2705                union xfs_btree_rec     *lrp;   /* left record pointer */
2706                union xfs_btree_rec     *rrp;   /* right record pointer */
2707
2708                lrp = xfs_btree_rec_addr(cur, src_index, left);
2709                rrp = xfs_btree_rec_addr(cur, 1, right);
2710
2711                /* Copy records to the new block. */
2712                xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2713                xfs_btree_log_recs(cur, rbp, 1, rrecs);
2714
2715                /* Stash the keys of the new block for later insertion. */
2716                xfs_btree_get_leaf_keys(cur, right, key);
2717        }
2718
2719        /*
2720         * Find the left block number by looking in the buffer.
2721         * Adjust sibling pointers.
2722         */
2723        xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2724        xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2725        xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2726        xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2727
2728        xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2729        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2730
2731        /*
2732         * If there's a block to the new block's right, make that block
2733         * point back to right instead of to left.
2734         */
2735        if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2736                error = xfs_btree_read_buf_block(cur, &rrptr,
2737                                                        0, &rrblock, &rrbp);
2738                if (error)
2739                        goto error0;
2740                xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2741                xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2742        }
2743
2744        /* Update the parent high keys of the left block, if needed. */
2745        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2746                error = xfs_btree_update_keys(cur, level);
2747                if (error)
2748                        goto error0;
2749        }
2750
2751        /*
2752         * If the cursor is really in the right block, move it there.
2753         * If it's just pointing past the last entry in left, then we'll
2754         * insert there, so don't change anything in that case.
2755         */
2756        if (cur->bc_ptrs[level] > lrecs + 1) {
2757                xfs_btree_setbuf(cur, level, rbp);
2758                cur->bc_ptrs[level] -= lrecs;
2759        }
2760        /*
2761         * If there are more levels, we'll need another cursor which refers
2762         * the right block, no matter where this cursor was.
2763         */
2764        if (level + 1 < cur->bc_nlevels) {
2765                error = xfs_btree_dup_cursor(cur, curp);
2766                if (error)
2767                        goto error0;
2768                (*curp)->bc_ptrs[level + 1]++;
2769        }
2770        *ptrp = rptr;
2771        *stat = 1;
2772        return 0;
2773out0:
2774        *stat = 0;
2775        return 0;
2776
2777error0:
2778        return error;
2779}
2780
2781struct xfs_btree_split_args {
2782        struct xfs_btree_cur    *cur;
2783        int                     level;
2784        union xfs_btree_ptr     *ptrp;
2785        union xfs_btree_key     *key;
2786        struct xfs_btree_cur    **curp;
2787        int                     *stat;          /* success/failure */
2788        int                     result;
2789        bool                    kswapd; /* allocation in kswapd context */
2790        struct completion       *done;
2791        struct work_struct      work;
2792};
2793
2794/*
2795 * Stack switching interfaces for allocation
2796 */
2797static void
2798xfs_btree_split_worker(
2799        struct work_struct      *work)
2800{
2801        struct xfs_btree_split_args     *args = container_of(work,
2802                                                struct xfs_btree_split_args, work);
2803        unsigned long           pflags;
2804        unsigned long           new_pflags = PF_MEMALLOC_NOFS;
2805
2806        /*
2807         * we are in a transaction context here, but may also be doing work
2808         * in kswapd context, and hence we may need to inherit that state
2809         * temporarily to ensure that we don't block waiting for memory reclaim
2810         * in any way.
2811         */
2812        if (args->kswapd)
2813                new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2814
2815        current_set_flags_nested(&pflags, new_pflags);
2816
2817        args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2818                                         args->key, args->curp, args->stat);
2819        complete(args->done);
2820
2821        current_restore_flags_nested(&pflags, new_pflags);
2822}
2823
2824/*
2825 * BMBT split requests often come in with little stack to work on. Push
2826 * them off to a worker thread so there is lots of stack to use. For the other
2827 * btree types, just call directly to avoid the context switch overhead here.
2828 */
2829STATIC int                                      /* error */
2830xfs_btree_split(
2831        struct xfs_btree_cur    *cur,
2832        int                     level,
2833        union xfs_btree_ptr     *ptrp,
2834        union xfs_btree_key     *key,
2835        struct xfs_btree_cur    **curp,
2836        int                     *stat)          /* success/failure */
2837{
2838        struct xfs_btree_split_args     args;
2839        DECLARE_COMPLETION_ONSTACK(done);
2840
2841        if (cur->bc_btnum != XFS_BTNUM_BMAP)
2842                return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2843
2844        args.cur = cur;
2845        args.level = level;
2846        args.ptrp = ptrp;
2847        args.key = key;
2848        args.curp = curp;
2849        args.stat = stat;
2850        args.done = &done;
2851        args.kswapd = current_is_kswapd();
2852        INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2853        queue_work(xfs_alloc_wq, &args.work);
2854        wait_for_completion(&done);
2855        destroy_work_on_stack(&args.work);
2856        return args.result;
2857}
2858
2859
2860/*
2861 * Copy the old inode root contents into a real block and make the
2862 * broot point to it.
2863 */
2864int                                             /* error */
2865xfs_btree_new_iroot(
2866        struct xfs_btree_cur    *cur,           /* btree cursor */
2867        int                     *logflags,      /* logging flags for inode */
2868        int                     *stat)          /* return status - 0 fail */
2869{
2870        struct xfs_buf          *cbp;           /* buffer for cblock */
2871        struct xfs_btree_block  *block;         /* btree block */
2872        struct xfs_btree_block  *cblock;        /* child btree block */
2873        union xfs_btree_key     *ckp;           /* child key pointer */
2874        union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2875        union xfs_btree_key     *kp;            /* pointer to btree key */
2876        union xfs_btree_ptr     *pp;            /* pointer to block addr */
2877        union xfs_btree_ptr     nptr;           /* new block addr */
2878        int                     level;          /* btree level */
2879        int                     error;          /* error return code */
2880        int                     i;              /* loop counter */
2881
2882        XFS_BTREE_STATS_INC(cur, newroot);
2883
2884        ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2885
2886        level = cur->bc_nlevels - 1;
2887
2888        block = xfs_btree_get_iroot(cur);
2889        pp = xfs_btree_ptr_addr(cur, 1, block);
2890
2891        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2892        error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2893        if (error)
2894                goto error0;
2895        if (*stat == 0)
2896                return 0;
2897
2898        XFS_BTREE_STATS_INC(cur, alloc);
2899
2900        /* Copy the root into a real block. */
2901        error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2902        if (error)
2903                goto error0;
2904
2905        /*
2906         * we can't just memcpy() the root in for CRC enabled btree blocks.
2907         * In that case have to also ensure the blkno remains correct
2908         */
2909        memcpy(cblock, block, xfs_btree_block_len(cur));
2910        if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2911                if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2912                        cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2913                else
2914                        cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2915        }
2916
2917        be16_add_cpu(&block->bb_level, 1);
2918        xfs_btree_set_numrecs(block, 1);
2919        cur->bc_nlevels++;
2920        cur->bc_ptrs[level + 1] = 1;
2921
2922        kp = xfs_btree_key_addr(cur, 1, block);
2923        ckp = xfs_btree_key_addr(cur, 1, cblock);
2924        xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2925
2926        cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2927        for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2928                error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2929                if (error)
2930                        goto error0;
2931        }
2932
2933        xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2934
2935        error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2936        if (error)
2937                goto error0;
2938
2939        xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2940
2941        xfs_iroot_realloc(cur->bc_private.b.ip,
2942                          1 - xfs_btree_get_numrecs(cblock),
2943                          cur->bc_private.b.whichfork);
2944
2945        xfs_btree_setbuf(cur, level, cbp);
2946
2947        /*
2948         * Do all this logging at the end so that
2949         * the root is at the right level.
2950         */
2951        xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2952        xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2953        xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2954
2955        *logflags |=
2956                XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
2957        *stat = 1;
2958        return 0;
2959error0:
2960        return error;
2961}
2962
2963/*
2964 * Allocate a new root block, fill it in.
2965 */
2966STATIC int                              /* error */
2967xfs_btree_new_root(
2968        struct xfs_btree_cur    *cur,   /* btree cursor */
2969        int                     *stat)  /* success/failure */
2970{
2971        struct xfs_btree_block  *block; /* one half of the old root block */
2972        struct xfs_buf          *bp;    /* buffer containing block */
2973        int                     error;  /* error return value */
2974        struct xfs_buf          *lbp;   /* left buffer pointer */
2975        struct xfs_btree_block  *left;  /* left btree block */
2976        struct xfs_buf          *nbp;   /* new (root) buffer */
2977        struct xfs_btree_block  *new;   /* new (root) btree block */
2978        int                     nptr;   /* new value for key index, 1 or 2 */
2979        struct xfs_buf          *rbp;   /* right buffer pointer */
2980        struct xfs_btree_block  *right; /* right btree block */
2981        union xfs_btree_ptr     rptr;
2982        union xfs_btree_ptr     lptr;
2983
2984        XFS_BTREE_STATS_INC(cur, newroot);
2985
2986        /* initialise our start point from the cursor */
2987        cur->bc_ops->init_ptr_from_cur(cur, &rptr);
2988
2989        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2990        error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
2991        if (error)
2992                goto error0;
2993        if (*stat == 0)
2994                goto out0;
2995        XFS_BTREE_STATS_INC(cur, alloc);
2996
2997        /* Set up the new block. */
2998        error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
2999        if (error)
3000                goto error0;
3001
3002        /* Set the root in the holding structure  increasing the level by 1. */
3003        cur->bc_ops->set_root(cur, &lptr, 1);
3004
3005        /*
3006         * At the previous root level there are now two blocks: the old root,
3007         * and the new block generated when it was split.  We don't know which
3008         * one the cursor is pointing at, so we set up variables "left" and
3009         * "right" for each case.
3010         */
3011        block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3012
3013#ifdef DEBUG
3014        error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3015        if (error)
3016                goto error0;
3017#endif
3018
3019        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3020        if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3021                /* Our block is left, pick up the right block. */
3022                lbp = bp;
3023                xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3024                left = block;
3025                error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3026                if (error)
3027                        goto error0;
3028                bp = rbp;
3029                nptr = 1;
3030        } else {
3031                /* Our block is right, pick up the left block. */
3032                rbp = bp;
3033                xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3034                right = block;
3035                xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3036                error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3037                if (error)
3038                        goto error0;
3039                bp = lbp;
3040                nptr = 2;
3041        }
3042
3043        /* Fill in the new block's btree header and log it. */
3044        xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3045        xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3046        ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3047                        !xfs_btree_ptr_is_null(cur, &rptr));
3048
3049        /* Fill in the key data in the new root. */
3050        if (xfs_btree_get_level(left) > 0) {
3051                /*
3052                 * Get the keys for the left block's keys and put them directly
3053                 * in the parent block.  Do the same for the right block.
3054                 */
3055                xfs_btree_get_node_keys(cur, left,
3056                                xfs_btree_key_addr(cur, 1, new));
3057                xfs_btree_get_node_keys(cur, right,
3058                                xfs_btree_key_addr(cur, 2, new));
3059        } else {
3060                /*
3061                 * Get the keys for the left block's records and put them
3062                 * directly in the parent block.  Do the same for the right
3063                 * block.
3064                 */
3065                xfs_btree_get_leaf_keys(cur, left,
3066                        xfs_btree_key_addr(cur, 1, new));
3067                xfs_btree_get_leaf_keys(cur, right,
3068                        xfs_btree_key_addr(cur, 2, new));
3069        }
3070        xfs_btree_log_keys(cur, nbp, 1, 2);
3071
3072        /* Fill in the pointer data in the new root. */
3073        xfs_btree_copy_ptrs(cur,
3074                xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3075        xfs_btree_copy_ptrs(cur,
3076                xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3077        xfs_btree_log_ptrs(cur, nbp, 1, 2);
3078
3079        /* Fix up the cursor. */
3080        xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3081        cur->bc_ptrs[cur->bc_nlevels] = nptr;
3082        cur->bc_nlevels++;
3083        *stat = 1;
3084        return 0;
3085error0:
3086        return error;
3087out0:
3088        *stat = 0;
3089        return 0;
3090}
3091
3092STATIC int
3093xfs_btree_make_block_unfull(
3094        struct xfs_btree_cur    *cur,   /* btree cursor */
3095        int                     level,  /* btree level */
3096        int                     numrecs,/* # of recs in block */
3097        int                     *oindex,/* old tree index */
3098        int                     *index, /* new tree index */
3099        union xfs_btree_ptr     *nptr,  /* new btree ptr */
3100        struct xfs_btree_cur    **ncur, /* new btree cursor */
3101        union xfs_btree_key     *key,   /* key of new block */
3102        int                     *stat)
3103{
3104        int                     error = 0;
3105
3106        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3107            level == cur->bc_nlevels - 1) {
3108                struct xfs_inode *ip = cur->bc_private.b.ip;
3109
3110                if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3111                        /* A root block that can be made bigger. */
3112                        xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3113                        *stat = 1;
3114                } else {
3115                        /* A root block that needs replacing */
3116                        int     logflags = 0;
3117
3118                        error = xfs_btree_new_iroot(cur, &logflags, stat);
3119                        if (error || *stat == 0)
3120                                return error;
3121
3122                        xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3123                }
3124
3125                return 0;
3126        }
3127
3128        /* First, try shifting an entry to the right neighbor. */
3129        error = xfs_btree_rshift(cur, level, stat);
3130        if (error || *stat)
3131                return error;
3132
3133        /* Next, try shifting an entry to the left neighbor. */
3134        error = xfs_btree_lshift(cur, level, stat);
3135        if (error)
3136                return error;
3137
3138        if (*stat) {
3139                *oindex = *index = cur->bc_ptrs[level];
3140                return 0;
3141        }
3142
3143        /*
3144         * Next, try splitting the current block in half.
3145         *
3146         * If this works we have to re-set our variables because we
3147         * could be in a different block now.
3148         */
3149        error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3150        if (error || *stat == 0)
3151                return error;
3152
3153
3154        *index = cur->bc_ptrs[level];
3155        return 0;
3156}
3157
3158/*
3159 * Insert one record/level.  Return information to the caller
3160 * allowing the next level up to proceed if necessary.
3161 */
3162STATIC int
3163xfs_btree_insrec(
3164        struct xfs_btree_cur    *cur,   /* btree cursor */
3165        int                     level,  /* level to insert record at */
3166        union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3167        union xfs_btree_rec     *rec,   /* record to insert */
3168        union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3169        struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3170        int                     *stat)  /* success/failure */
3171{
3172        struct xfs_btree_block  *block; /* btree block */
3173        struct xfs_buf          *bp;    /* buffer for block */
3174        union xfs_btree_ptr     nptr;   /* new block ptr */
3175        struct xfs_btree_cur    *ncur;  /* new btree cursor */
3176        union xfs_btree_key     nkey;   /* new block key */
3177        union xfs_btree_key     *lkey;
3178        int                     optr;   /* old key/record index */
3179        int                     ptr;    /* key/record index */
3180        int                     numrecs;/* number of records */
3181        int                     error;  /* error return value */
3182        int                     i;
3183        xfs_daddr_t             old_bn;
3184
3185        ncur = NULL;
3186        lkey = &nkey;
3187
3188        /*
3189         * If we have an external root pointer, and we've made it to the
3190         * root level, allocate a new root block and we're done.
3191         */
3192        if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3193            (level >= cur->bc_nlevels)) {
3194                error = xfs_btree_new_root(cur, stat);
3195                xfs_btree_set_ptr_null(cur, ptrp);
3196
3197                return error;
3198        }
3199
3200        /* If we're off the left edge, return failure. */
3201        ptr = cur->bc_ptrs[level];
3202        if (ptr == 0) {
3203                *stat = 0;
3204                return 0;
3205        }
3206
3207        optr = ptr;
3208
3209        XFS_BTREE_STATS_INC(cur, insrec);
3210
3211        /* Get pointers to the btree buffer and block. */
3212        block = xfs_btree_get_block(cur, level, &bp);
3213        old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3214        numrecs = xfs_btree_get_numrecs(block);
3215
3216#ifdef DEBUG
3217        error = xfs_btree_check_block(cur, block, level, bp);
3218        if (error)
3219                goto error0;
3220
3221        /* Check that the new entry is being inserted in the right place. */
3222        if (ptr <= numrecs) {
3223                if (level == 0) {
3224                        ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3225                                xfs_btree_rec_addr(cur, ptr, block)));
3226                } else {
3227                        ASSERT(cur->bc_ops->keys_inorder(cur, key,
3228                                xfs_btree_key_addr(cur, ptr, block)));
3229                }
3230        }
3231#endif
3232
3233        /*
3234         * If the block is full, we can't insert the new entry until we
3235         * make the block un-full.
3236         */
3237        xfs_btree_set_ptr_null(cur, &nptr);
3238        if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3239                error = xfs_btree_make_block_unfull(cur, level, numrecs,
3240                                        &optr, &ptr, &nptr, &ncur, lkey, stat);
3241                if (error || *stat == 0)
3242                        goto error0;
3243        }
3244
3245        /*
3246         * The current block may have changed if the block was
3247         * previously full and we have just made space in it.
3248         */
3249        block = xfs_btree_get_block(cur, level, &bp);
3250        numrecs = xfs_btree_get_numrecs(block);
3251
3252#ifdef DEBUG
3253        error = xfs_btree_check_block(cur, block, level, bp);
3254        if (error)
3255                return error;
3256#endif
3257
3258        /*
3259         * At this point we know there's room for our new entry in the block
3260         * we're pointing at.
3261         */
3262        XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3263
3264        if (level > 0) {
3265                /* It's a nonleaf. make a hole in the keys and ptrs */
3266                union xfs_btree_key     *kp;
3267                union xfs_btree_ptr     *pp;
3268
3269                kp = xfs_btree_key_addr(cur, ptr, block);
3270                pp = xfs_btree_ptr_addr(cur, ptr, block);
3271
3272                for (i = numrecs - ptr; i >= 0; i--) {
3273                        error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3274                        if (error)
3275                                return error;
3276                }
3277
3278                xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3279                xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3280
3281                error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3282                if (error)
3283                        goto error0;
3284
3285                /* Now put the new data in, bump numrecs and log it. */
3286                xfs_btree_copy_keys(cur, kp, key, 1);
3287                xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3288                numrecs++;
3289                xfs_btree_set_numrecs(block, numrecs);
3290                xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3291                xfs_btree_log_keys(cur, bp, ptr, numrecs);
3292#ifdef DEBUG
3293                if (ptr < numrecs) {
3294                        ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3295                                xfs_btree_key_addr(cur, ptr + 1, block)));
3296                }
3297#endif
3298        } else {
3299                /* It's a leaf. make a hole in the records */
3300                union xfs_btree_rec             *rp;
3301
3302                rp = xfs_btree_rec_addr(cur, ptr, block);
3303
3304                xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3305
3306                /* Now put the new data in, bump numrecs and log it. */
3307                xfs_btree_copy_recs(cur, rp, rec, 1);
3308                xfs_btree_set_numrecs(block, ++numrecs);
3309                xfs_btree_log_recs(cur, bp, ptr, numrecs);
3310#ifdef DEBUG
3311                if (ptr < numrecs) {
3312                        ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3313                                xfs_btree_rec_addr(cur, ptr + 1, block)));
3314                }
3315#endif
3316        }
3317
3318        /* Log the new number of records in the btree header. */
3319        xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3320
3321        /*
3322         * If we just inserted into a new tree block, we have to
3323         * recalculate nkey here because nkey is out of date.
3324         *
3325         * Otherwise we're just updating an existing block (having shoved
3326         * some records into the new tree block), so use the regular key
3327         * update mechanism.
3328         */
3329        if (bp && bp->b_bn != old_bn) {
3330                xfs_btree_get_keys(cur, block, lkey);
3331        } else if (xfs_btree_needs_key_update(cur, optr)) {
3332                error = xfs_btree_update_keys(cur, level);
3333                if (error)
3334                        goto error0;
3335        }
3336
3337        /*
3338         * If we are tracking the last record in the tree and
3339         * we are at the far right edge of the tree, update it.
3340         */
3341        if (xfs_btree_is_lastrec(cur, block, level)) {
3342                cur->bc_ops->update_lastrec(cur, block, rec,
3343                                            ptr, LASTREC_INSREC);
3344        }
3345
3346        /*
3347         * Return the new block number, if any.
3348         * If there is one, give back a record value and a cursor too.
3349         */
3350        *ptrp = nptr;
3351        if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3352                xfs_btree_copy_keys(cur, key, lkey, 1);
3353                *curp = ncur;
3354        }
3355
3356        *stat = 1;
3357        return 0;
3358
3359error0:
3360        return error;
3361}
3362
3363/*
3364 * Insert the record at the point referenced by cur.
3365 *
3366 * A multi-level split of the tree on insert will invalidate the original
3367 * cursor.  All callers of this function should assume that the cursor is
3368 * no longer valid and revalidate it.
3369 */
3370int
3371xfs_btree_insert(
3372        struct xfs_btree_cur    *cur,
3373        int                     *stat)
3374{
3375        int                     error;  /* error return value */
3376        int                     i;      /* result value, 0 for failure */
3377        int                     level;  /* current level number in btree */
3378        union xfs_btree_ptr     nptr;   /* new block number (split result) */
3379        struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3380        struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3381        union xfs_btree_key     bkey;   /* key of block to insert */
3382        union xfs_btree_key     *key;
3383        union xfs_btree_rec     rec;    /* record to insert */
3384
3385        level = 0;
3386        ncur = NULL;
3387        pcur = cur;
3388        key = &bkey;
3389
3390        xfs_btree_set_ptr_null(cur, &nptr);
3391
3392        /* Make a key out of the record data to be inserted, and save it. */
3393        cur->bc_ops->init_rec_from_cur(cur, &rec);
3394        cur->bc_ops->init_key_from_rec(key, &rec);
3395
3396        /*
3397         * Loop going up the tree, starting at the leaf level.
3398         * Stop when we don't get a split block, that must mean that
3399         * the insert is finished with this level.
3400         */
3401        do {
3402                /*
3403                 * Insert nrec/nptr into this level of the tree.
3404                 * Note if we fail, nptr will be null.
3405                 */
3406                error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3407                                &ncur, &i);
3408                if (error) {
3409                        if (pcur != cur)
3410                                xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3411                        goto error0;
3412                }
3413
3414                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3415                        error = -EFSCORRUPTED;
3416                        goto error0;
3417                }
3418                level++;
3419
3420                /*
3421                 * See if the cursor we just used is trash.
3422                 * Can't trash the caller's cursor, but otherwise we should
3423                 * if ncur is a new cursor or we're about to be done.
3424                 */
3425                if (pcur != cur &&
3426                    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3427                        /* Save the state from the cursor before we trash it */
3428                        if (cur->bc_ops->update_cursor)
3429                                cur->bc_ops->update_cursor(pcur, cur);
3430                        cur->bc_nlevels = pcur->bc_nlevels;
3431                        xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3432                }
3433                /* If we got a new cursor, switch to it. */
3434                if (ncur) {
3435                        pcur = ncur;
3436                        ncur = NULL;
3437                }
3438        } while (!xfs_btree_ptr_is_null(cur, &nptr));
3439
3440        *stat = i;
3441        return 0;
3442error0:
3443        return error;
3444}
3445
3446/*
3447 * Try to merge a non-leaf block back into the inode root.
3448 *
3449 * Note: the killroot names comes from the fact that we're effectively
3450 * killing the old root block.  But because we can't just delete the
3451 * inode we have to copy the single block it was pointing to into the
3452 * inode.
3453 */
3454STATIC int
3455xfs_btree_kill_iroot(
3456        struct xfs_btree_cur    *cur)
3457{
3458        int                     whichfork = cur->bc_private.b.whichfork;
3459        struct xfs_inode        *ip = cur->bc_private.b.ip;
3460        struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3461        struct xfs_btree_block  *block;
3462        struct xfs_btree_block  *cblock;
3463        union xfs_btree_key     *kp;
3464        union xfs_btree_key     *ckp;
3465        union xfs_btree_ptr     *pp;
3466        union xfs_btree_ptr     *cpp;
3467        struct xfs_buf          *cbp;
3468        int                     level;
3469        int                     index;
3470        int                     numrecs;
3471        int                     error;
3472#ifdef DEBUG
3473        union xfs_btree_ptr     ptr;
3474#endif
3475        int                     i;
3476
3477        ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3478        ASSERT(cur->bc_nlevels > 1);
3479
3480        /*
3481         * Don't deal with the root block needs to be a leaf case.
3482         * We're just going to turn the thing back into extents anyway.
3483         */
3484        level = cur->bc_nlevels - 1;
3485        if (level == 1)
3486                goto out0;
3487
3488        /*
3489         * Give up if the root has multiple children.
3490         */
3491        block = xfs_btree_get_iroot(cur);
3492        if (xfs_btree_get_numrecs(block) != 1)
3493                goto out0;
3494
3495        cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3496        numrecs = xfs_btree_get_numrecs(cblock);
3497
3498        /*
3499         * Only do this if the next level will fit.
3500         * Then the data must be copied up to the inode,
3501         * instead of freeing the root you free the next level.
3502         */
3503        if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3504                goto out0;
3505
3506        XFS_BTREE_STATS_INC(cur, killroot);
3507
3508#ifdef DEBUG
3509        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3510        ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3511        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3512        ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3513#endif
3514
3515        index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3516        if (index) {
3517                xfs_iroot_realloc(cur->bc_private.b.ip, index,
3518                                  cur->bc_private.b.whichfork);
3519                block = ifp->if_broot;
3520        }
3521
3522        be16_add_cpu(&block->bb_numrecs, index);
3523        ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3524
3525        kp = xfs_btree_key_addr(cur, 1, block);
3526        ckp = xfs_btree_key_addr(cur, 1, cblock);
3527        xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3528
3529        pp = xfs_btree_ptr_addr(cur, 1, block);
3530        cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3531
3532        for (i = 0; i < numrecs; i++) {
3533                error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3534                if (error)
3535                        return error;
3536        }
3537
3538        xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3539
3540        error = xfs_btree_free_block(cur, cbp);
3541        if (error)
3542                return error;
3543
3544        cur->bc_bufs[level - 1] = NULL;
3545        be16_add_cpu(&block->bb_level, -1);
3546        xfs_trans_log_inode(cur->bc_tp, ip,
3547                XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3548        cur->bc_nlevels--;
3549out0:
3550        return 0;
3551}
3552
3553/*
3554 * Kill the current root node, and replace it with it's only child node.
3555 */
3556STATIC int
3557xfs_btree_kill_root(
3558        struct xfs_btree_cur    *cur,
3559        struct xfs_buf          *bp,
3560        int                     level,
3561        union xfs_btree_ptr     *newroot)
3562{
3563        int                     error;
3564
3565        XFS_BTREE_STATS_INC(cur, killroot);
3566
3567        /*
3568         * Update the root pointer, decreasing the level by 1 and then
3569         * free the old root.
3570         */
3571        cur->bc_ops->set_root(cur, newroot, -1);
3572
3573        error = xfs_btree_free_block(cur, bp);
3574        if (error)
3575                return error;
3576
3577        cur->bc_bufs[level] = NULL;
3578        cur->bc_ra[level] = 0;
3579        cur->bc_nlevels--;
3580
3581        return 0;
3582}
3583
3584STATIC int
3585xfs_btree_dec_cursor(
3586        struct xfs_btree_cur    *cur,
3587        int                     level,
3588        int                     *stat)
3589{
3590        int                     error;
3591        int                     i;
3592
3593        if (level > 0) {
3594                error = xfs_btree_decrement(cur, level, &i);
3595                if (error)
3596                        return error;
3597        }
3598
3599        *stat = 1;
3600        return 0;
3601}
3602
3603/*
3604 * Single level of the btree record deletion routine.
3605 * Delete record pointed to by cur/level.
3606 * Remove the record from its block then rebalance the tree.
3607 * Return 0 for error, 1 for done, 2 to go on to the next level.
3608 */
3609STATIC int                                      /* error */
3610xfs_btree_delrec(
3611        struct xfs_btree_cur    *cur,           /* btree cursor */
3612        int                     level,          /* level removing record from */
3613        int                     *stat)          /* fail/done/go-on */
3614{
3615        struct xfs_btree_block  *block;         /* btree block */
3616        union xfs_btree_ptr     cptr;           /* current block ptr */
3617        struct xfs_buf          *bp;            /* buffer for block */
3618        int                     error;          /* error return value */
3619        int                     i;              /* loop counter */
3620        union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3621        struct xfs_buf          *lbp;           /* left buffer pointer */
3622        struct xfs_btree_block  *left;          /* left btree block */
3623        int                     lrecs = 0;      /* left record count */
3624        int                     ptr;            /* key/record index */
3625        union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3626        struct xfs_buf          *rbp;           /* right buffer pointer */
3627        struct xfs_btree_block  *right;         /* right btree block */
3628        struct xfs_btree_block  *rrblock;       /* right-right btree block */
3629        struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3630        int                     rrecs = 0;      /* right record count */
3631        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3632        int                     numrecs;        /* temporary numrec count */
3633
3634        tcur = NULL;
3635
3636        /* Get the index of the entry being deleted, check for nothing there. */
3637        ptr = cur->bc_ptrs[level];
3638        if (ptr == 0) {
3639                *stat = 0;
3640                return 0;
3641        }
3642
3643        /* Get the buffer & block containing the record or key/ptr. */
3644        block = xfs_btree_get_block(cur, level, &bp);
3645        numrecs = xfs_btree_get_numrecs(block);
3646
3647#ifdef DEBUG
3648        error = xfs_btree_check_block(cur, block, level, bp);
3649        if (error)
3650                goto error0;
3651#endif
3652
3653        /* Fail if we're off the end of the block. */
3654        if (ptr > numrecs) {
3655                *stat = 0;
3656                return 0;
3657        }
3658
3659        XFS_BTREE_STATS_INC(cur, delrec);
3660        XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3661
3662        /* Excise the entries being deleted. */
3663        if (level > 0) {
3664                /* It's a nonleaf. operate on keys and ptrs */
3665                union xfs_btree_key     *lkp;
3666                union xfs_btree_ptr     *lpp;
3667
3668                lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3669                lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3670
3671                for (i = 0; i < numrecs - ptr; i++) {
3672                        error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3673                        if (error)
3674                                goto error0;
3675                }
3676
3677                if (ptr < numrecs) {
3678                        xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3679                        xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3680                        xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3681                        xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3682                }
3683        } else {
3684                /* It's a leaf. operate on records */
3685                if (ptr < numrecs) {
3686                        xfs_btree_shift_recs(cur,
3687                                xfs_btree_rec_addr(cur, ptr + 1, block),
3688                                -1, numrecs - ptr);
3689                        xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3690                }
3691        }
3692
3693        /*
3694         * Decrement and log the number of entries in the block.
3695         */
3696        xfs_btree_set_numrecs(block, --numrecs);
3697        xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3698
3699        /*
3700         * If we are tracking the last record in the tree and
3701         * we are at the far right edge of the tree, update it.
3702         */
3703        if (xfs_btree_is_lastrec(cur, block, level)) {
3704                cur->bc_ops->update_lastrec(cur, block, NULL,
3705                                            ptr, LASTREC_DELREC);
3706        }
3707
3708        /*
3709         * We're at the root level.  First, shrink the root block in-memory.
3710         * Try to get rid of the next level down.  If we can't then there's
3711         * nothing left to do.
3712         */
3713        if (level == cur->bc_nlevels - 1) {
3714                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3715                        xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3716                                          cur->bc_private.b.whichfork);
3717
3718                        error = xfs_btree_kill_iroot(cur);
3719                        if (error)
3720                                goto error0;
3721
3722                        error = xfs_btree_dec_cursor(cur, level, stat);
3723                        if (error)
3724                                goto error0;
3725                        *stat = 1;
3726                        return 0;
3727                }
3728
3729                /*
3730                 * If this is the root level, and there's only one entry left,
3731                 * and it's NOT the leaf level, then we can get rid of this
3732                 * level.
3733                 */
3734                if (numrecs == 1 && level > 0) {
3735                        union xfs_btree_ptr     *pp;
3736                        /*
3737                         * pp is still set to the first pointer in the block.
3738                         * Make it the new root of the btree.
3739                         */
3740                        pp = xfs_btree_ptr_addr(cur, 1, block);
3741                        error = xfs_btree_kill_root(cur, bp, level, pp);
3742                        if (error)
3743                                goto error0;
3744                } else if (level > 0) {
3745                        error = xfs_btree_dec_cursor(cur, level, stat);
3746                        if (error)
3747                                goto error0;
3748                }
3749                *stat = 1;
3750                return 0;
3751        }
3752
3753        /*
3754         * If we deleted the leftmost entry in the block, update the
3755         * key values above us in the tree.
3756         */
3757        if (xfs_btree_needs_key_update(cur, ptr)) {
3758                error = xfs_btree_update_keys(cur, level);
3759                if (error)
3760                        goto error0;
3761        }
3762
3763        /*
3764         * If the number of records remaining in the block is at least
3765         * the minimum, we're done.
3766         */
3767        if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3768                error = xfs_btree_dec_cursor(cur, level, stat);
3769                if (error)
3770                        goto error0;
3771                return 0;
3772        }
3773
3774        /*
3775         * Otherwise, we have to move some records around to keep the
3776         * tree balanced.  Look at the left and right sibling blocks to
3777         * see if we can re-balance by moving only one record.
3778         */
3779        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3780        xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3781
3782        if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3783                /*
3784                 * One child of root, need to get a chance to copy its contents
3785                 * into the root and delete it. Can't go up to next level,
3786                 * there's nothing to delete there.
3787                 */
3788                if (xfs_btree_ptr_is_null(cur, &rptr) &&
3789                    xfs_btree_ptr_is_null(cur, &lptr) &&
3790                    level == cur->bc_nlevels - 2) {
3791                        error = xfs_btree_kill_iroot(cur);
3792                        if (!error)
3793                                error = xfs_btree_dec_cursor(cur, level, stat);
3794                        if (error)
3795                                goto error0;
3796                        return 0;
3797                }
3798        }
3799
3800        ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3801               !xfs_btree_ptr_is_null(cur, &lptr));
3802
3803        /*
3804         * Duplicate the cursor so our btree manipulations here won't
3805         * disrupt the next level up.
3806         */
3807        error = xfs_btree_dup_cursor(cur, &tcur);
3808        if (error)
3809                goto error0;
3810
3811        /*
3812         * If there's a right sibling, see if it's ok to shift an entry
3813         * out of it.
3814         */
3815        if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3816                /*
3817                 * Move the temp cursor to the last entry in the next block.
3818                 * Actually any entry but the first would suffice.
3819                 */
3820                i = xfs_btree_lastrec(tcur, level);
3821                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3822                        error = -EFSCORRUPTED;
3823                        goto error0;
3824                }
3825
3826                error = xfs_btree_increment(tcur, level, &i);
3827                if (error)
3828                        goto error0;
3829                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3830                        error = -EFSCORRUPTED;
3831                        goto error0;
3832                }
3833
3834                i = xfs_btree_lastrec(tcur, level);
3835                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3836                        error = -EFSCORRUPTED;
3837                        goto error0;
3838                }
3839
3840                /* Grab a pointer to the block. */
3841                right = xfs_btree_get_block(tcur, level, &rbp);
3842#ifdef DEBUG
3843                error = xfs_btree_check_block(tcur, right, level, rbp);
3844                if (error)
3845                        goto error0;
3846#endif
3847                /* Grab the current block number, for future use. */
3848                xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3849
3850                /*
3851                 * If right block is full enough so that removing one entry
3852                 * won't make it too empty, and left-shifting an entry out
3853                 * of right to us works, we're done.
3854                 */
3855                if (xfs_btree_get_numrecs(right) - 1 >=
3856                    cur->bc_ops->get_minrecs(tcur, level)) {
3857                        error = xfs_btree_lshift(tcur, level, &i);
3858                        if (error)
3859                                goto error0;
3860                        if (i) {
3861                                ASSERT(xfs_btree_get_numrecs(block) >=
3862                                       cur->bc_ops->get_minrecs(tcur, level));
3863
3864                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3865                                tcur = NULL;
3866
3867                                error = xfs_btree_dec_cursor(cur, level, stat);
3868                                if (error)
3869                                        goto error0;
3870                                return 0;
3871                        }
3872                }
3873
3874                /*
3875                 * Otherwise, grab the number of records in right for
3876                 * future reference, and fix up the temp cursor to point
3877                 * to our block again (last record).
3878                 */
3879                rrecs = xfs_btree_get_numrecs(right);
3880                if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3881                        i = xfs_btree_firstrec(tcur, level);
3882                        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3883                                error = -EFSCORRUPTED;
3884                                goto error0;
3885                        }
3886
3887                        error = xfs_btree_decrement(tcur, level, &i);
3888                        if (error)
3889                                goto error0;
3890                        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3891                                error = -EFSCORRUPTED;
3892                                goto error0;
3893                        }
3894                }
3895        }
3896
3897        /*
3898         * If there's a left sibling, see if it's ok to shift an entry
3899         * out of it.
3900         */
3901        if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3902                /*
3903                 * Move the temp cursor to the first entry in the
3904                 * previous block.
3905                 */
3906                i = xfs_btree_firstrec(tcur, level);
3907                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3908                        error = -EFSCORRUPTED;
3909                        goto error0;
3910                }
3911
3912                error = xfs_btree_decrement(tcur, level, &i);
3913                if (error)
3914                        goto error0;
3915                i = xfs_btree_firstrec(tcur, level);
3916                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3917                        error = -EFSCORRUPTED;
3918                        goto error0;
3919                }
3920
3921                /* Grab a pointer to the block. */
3922                left = xfs_btree_get_block(tcur, level, &lbp);
3923#ifdef DEBUG
3924                error = xfs_btree_check_block(cur, left, level, lbp);
3925                if (error)
3926                        goto error0;
3927#endif
3928                /* Grab the current block number, for future use. */
3929                xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3930
3931                /*
3932                 * If left block is full enough so that removing one entry
3933                 * won't make it too empty, and right-shifting an entry out
3934                 * of left to us works, we're done.
3935                 */
3936                if (xfs_btree_get_numrecs(left) - 1 >=
3937                    cur->bc_ops->get_minrecs(tcur, level)) {
3938                        error = xfs_btree_rshift(tcur, level, &i);
3939                        if (error)
3940                                goto error0;
3941                        if (i) {
3942                                ASSERT(xfs_btree_get_numrecs(block) >=
3943                                       cur->bc_ops->get_minrecs(tcur, level));
3944                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3945                                tcur = NULL;
3946                                if (level == 0)
3947                                        cur->bc_ptrs[0]++;
3948
3949                                *stat = 1;
3950                                return 0;
3951                        }
3952                }
3953
3954                /*
3955                 * Otherwise, grab the number of records in right for
3956                 * future reference.
3957                 */
3958                lrecs = xfs_btree_get_numrecs(left);
3959        }
3960
3961        /* Delete the temp cursor, we're done with it. */
3962        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3963        tcur = NULL;
3964
3965        /* If here, we need to do a join to keep the tree balanced. */
3966        ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3967
3968        if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3969            lrecs + xfs_btree_get_numrecs(block) <=
3970                        cur->bc_ops->get_maxrecs(cur, level)) {
3971                /*
3972                 * Set "right" to be the starting block,
3973                 * "left" to be the left neighbor.
3974                 */
3975                rptr = cptr;
3976                right = block;
3977                rbp = bp;
3978                error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3979                if (error)
3980                        goto error0;
3981
3982        /*
3983         * If that won't work, see if we can join with the right neighbor block.
3984         */
3985        } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
3986                   rrecs + xfs_btree_get_numrecs(block) <=
3987                        cur->bc_ops->get_maxrecs(cur, level)) {
3988                /*
3989                 * Set "left" to be the starting block,
3990                 * "right" to be the right neighbor.
3991                 */
3992                lptr = cptr;
3993                left = block;
3994                lbp = bp;
3995                error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3996                if (error)
3997                        goto error0;
3998
3999        /*
4000         * Otherwise, we can't fix the imbalance.
4001         * Just return.  This is probably a logic error, but it's not fatal.
4002         */
4003        } else {
4004                error = xfs_btree_dec_cursor(cur, level, stat);
4005                if (error)
4006                        goto error0;
4007                return 0;
4008        }
4009
4010        rrecs = xfs_btree_get_numrecs(right);
4011        lrecs = xfs_btree_get_numrecs(left);
4012
4013        /*
4014         * We're now going to join "left" and "right" by moving all the stuff
4015         * in "right" to "left" and deleting "right".
4016         */
4017        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4018        if (level > 0) {
4019                /* It's a non-leaf.  Move keys and pointers. */
4020                union xfs_btree_key     *lkp;   /* left btree key */
4021                union xfs_btree_ptr     *lpp;   /* left address pointer */
4022                union xfs_btree_key     *rkp;   /* right btree key */
4023                union xfs_btree_ptr     *rpp;   /* right address pointer */
4024
4025                lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4026                lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4027                rkp = xfs_btree_key_addr(cur, 1, right);
4028                rpp = xfs_btree_ptr_addr(cur, 1, right);
4029
4030                for (i = 1; i < rrecs; i++) {
4031                        error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4032                        if (error)
4033                                goto error0;
4034                }
4035
4036                xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4037                xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4038
4039                xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4040                xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4041        } else {
4042                /* It's a leaf.  Move records.  */
4043                union xfs_btree_rec     *lrp;   /* left record pointer */
4044                union xfs_btree_rec     *rrp;   /* right record pointer */
4045
4046                lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4047                rrp = xfs_btree_rec_addr(cur, 1, right);
4048
4049                xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4050                xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4051        }
4052
4053        XFS_BTREE_STATS_INC(cur, join);
4054
4055        /*
4056         * Fix up the number of records and right block pointer in the
4057         * surviving block, and log it.
4058         */
4059        xfs_btree_set_numrecs(left, lrecs + rrecs);
4060        xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4061        xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4062        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4063
4064        /* If there is a right sibling, point it to the remaining block. */
4065        xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4066        if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4067                error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4068                if (error)
4069                        goto error0;
4070                xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4071                xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4072        }
4073
4074        /* Free the deleted block. */
4075        error = xfs_btree_free_block(cur, rbp);
4076        if (error)
4077                goto error0;
4078
4079        /*
4080         * If we joined with the left neighbor, set the buffer in the
4081         * cursor to the left block, and fix up the index.
4082         */
4083        if (bp != lbp) {
4084                cur->bc_bufs[level] = lbp;
4085                cur->bc_ptrs[level] += lrecs;
4086                cur->bc_ra[level] = 0;
4087        }
4088        /*
4089         * If we joined with the right neighbor and there's a level above
4090         * us, increment the cursor at that level.
4091         */
4092        else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4093                   (level + 1 < cur->bc_nlevels)) {
4094                error = xfs_btree_increment(cur, level + 1, &i);
4095                if (error)
4096                        goto error0;
4097        }
4098
4099        /*
4100         * Readjust the ptr at this level if it's not a leaf, since it's
4101         * still pointing at the deletion point, which makes the cursor
4102         * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4103         * We can't use decrement because it would change the next level up.
4104         */
4105        if (level > 0)
4106                cur->bc_ptrs[level]--;
4107
4108        /*
4109         * We combined blocks, so we have to update the parent keys if the
4110         * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4111         * points to the old block so that the caller knows which record to
4112         * delete.  Therefore, the caller must be savvy enough to call updkeys
4113         * for us if we return stat == 2.  The other exit points from this
4114         * function don't require deletions further up the tree, so they can
4115         * call updkeys directly.
4116         */
4117
4118        /* Return value means the next level up has something to do. */
4119        *stat = 2;
4120        return 0;
4121
4122error0:
4123        if (tcur)
4124                xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4125        return error;
4126}
4127
4128/*
4129 * Delete the record pointed to by cur.
4130 * The cursor refers to the place where the record was (could be inserted)
4131 * when the operation returns.
4132 */
4133int                                     /* error */
4134xfs_btree_delete(
4135        struct xfs_btree_cur    *cur,
4136        int                     *stat)  /* success/failure */
4137{
4138        int                     error;  /* error return value */
4139        int                     level;
4140        int                     i;
4141        bool                    joined = false;
4142
4143        /*
4144         * Go up the tree, starting at leaf level.
4145         *
4146         * If 2 is returned then a join was done; go to the next level.
4147         * Otherwise we are done.
4148         */
4149        for (level = 0, i = 2; i == 2; level++) {
4150                error = xfs_btree_delrec(cur, level, &i);
4151                if (error)
4152                        goto error0;
4153                if (i == 2)
4154                        joined = true;
4155        }
4156
4157        /*
4158         * If we combined blocks as part of deleting the record, delrec won't
4159         * have updated the parent high keys so we have to do that here.
4160         */
4161        if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4162                error = xfs_btree_updkeys_force(cur, 0);
4163                if (error)
4164                        goto error0;
4165        }
4166
4167        if (i == 0) {
4168                for (level = 1; level < cur->bc_nlevels; level++) {
4169                        if (cur->bc_ptrs[level] == 0) {
4170                                error = xfs_btree_decrement(cur, level, &i);
4171                                if (error)
4172                                        goto error0;
4173                                break;
4174                        }
4175                }
4176        }
4177
4178        *stat = i;
4179        return 0;
4180error0:
4181        return error;
4182}
4183
4184/*
4185 * Get the data from the pointed-to record.
4186 */
4187int                                     /* error */
4188xfs_btree_get_rec(
4189        struct xfs_btree_cur    *cur,   /* btree cursor */
4190        union xfs_btree_rec     **recp, /* output: btree record */
4191        int                     *stat)  /* output: success/failure */
4192{
4193        struct xfs_btree_block  *block; /* btree block */
4194        struct xfs_buf          *bp;    /* buffer pointer */
4195        int                     ptr;    /* record number */
4196#ifdef DEBUG
4197        int                     error;  /* error return value */
4198#endif
4199
4200        ptr = cur->bc_ptrs[0];
4201        block = xfs_btree_get_block(cur, 0, &bp);
4202
4203#ifdef DEBUG
4204        error = xfs_btree_check_block(cur, block, 0, bp);
4205        if (error)
4206                return error;
4207#endif
4208
4209        /*
4210         * Off the right end or left end, return failure.
4211         */
4212        if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4213                *stat = 0;
4214                return 0;
4215        }
4216
4217        /*
4218         * Point to the record and extract its data.
4219         */
4220        *recp = xfs_btree_rec_addr(cur, ptr, block);
4221        *stat = 1;
4222        return 0;
4223}
4224
4225/* Visit a block in a btree. */
4226STATIC int
4227xfs_btree_visit_block(
4228        struct xfs_btree_cur            *cur,
4229        int                             level,
4230        xfs_btree_visit_blocks_fn       fn,
4231        void                            *data)
4232{
4233        struct xfs_btree_block          *block;
4234        struct xfs_buf                  *bp;
4235        union xfs_btree_ptr             rptr;
4236        int                             error;
4237
4238        /* do right sibling readahead */
4239        xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4240        block = xfs_btree_get_block(cur, level, &bp);
4241
4242        /* process the block */
4243        error = fn(cur, level, data);
4244        if (error)
4245                return error;
4246
4247        /* now read rh sibling block for next iteration */
4248        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4249        if (xfs_btree_ptr_is_null(cur, &rptr))
4250                return -ENOENT;
4251
4252        return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4253}
4254
4255
4256/* Visit every block in a btree. */
4257int
4258xfs_btree_visit_blocks(
4259        struct xfs_btree_cur            *cur,
4260        xfs_btree_visit_blocks_fn       fn,
4261        unsigned int                    flags,
4262        void                            *data)
4263{
4264        union xfs_btree_ptr             lptr;
4265        int                             level;
4266        struct xfs_btree_block          *block = NULL;
4267        int                             error = 0;
4268
4269        cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4270
4271        /* for each level */
4272        for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4273                /* grab the left hand block */
4274                error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4275                if (error)
4276                        return error;
4277
4278                /* readahead the left most block for the next level down */
4279                if (level > 0) {
4280                        union xfs_btree_ptr     *ptr;
4281
4282                        ptr = xfs_btree_ptr_addr(cur, 1, block);
4283                        xfs_btree_readahead_ptr(cur, ptr, 1);
4284
4285                        /* save for the next iteration of the loop */
4286                        xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4287
4288                        if (!(flags & XFS_BTREE_VISIT_LEAVES))
4289                                continue;
4290                } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4291                        continue;
4292                }
4293
4294                /* for each buffer in the level */
4295                do {
4296                        error = xfs_btree_visit_block(cur, level, fn, data);
4297                } while (!error);
4298
4299                if (error != -ENOENT)
4300                        return error;
4301        }
4302
4303        return 0;
4304}
4305
4306/*
4307 * Change the owner of a btree.
4308 *
4309 * The mechanism we use here is ordered buffer logging. Because we don't know
4310 * how many buffers were are going to need to modify, we don't really want to
4311 * have to make transaction reservations for the worst case of every buffer in a
4312 * full size btree as that may be more space that we can fit in the log....
4313 *
4314 * We do the btree walk in the most optimal manner possible - we have sibling
4315 * pointers so we can just walk all the blocks on each level from left to right
4316 * in a single pass, and then move to the next level and do the same. We can
4317 * also do readahead on the sibling pointers to get IO moving more quickly,
4318 * though for slow disks this is unlikely to make much difference to performance
4319 * as the amount of CPU work we have to do before moving to the next block is
4320 * relatively small.
4321 *
4322 * For each btree block that we load, modify the owner appropriately, set the
4323 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4324 * we mark the region we change dirty so that if the buffer is relogged in
4325 * a subsequent transaction the changes we make here as an ordered buffer are
4326 * correctly relogged in that transaction.  If we are in recovery context, then
4327 * just queue the modified buffer as delayed write buffer so the transaction
4328 * recovery completion writes the changes to disk.
4329 */
4330struct xfs_btree_block_change_owner_info {
4331        uint64_t                new_owner;
4332        struct list_head        *buffer_list;
4333};
4334
4335static int
4336xfs_btree_block_change_owner(
4337        struct xfs_btree_cur    *cur,
4338        int                     level,
4339        void                    *data)
4340{
4341        struct xfs_btree_block_change_owner_info        *bbcoi = data;
4342        struct xfs_btree_block  *block;
4343        struct xfs_buf          *bp;
4344
4345        /* modify the owner */
4346        block = xfs_btree_get_block(cur, level, &bp);
4347        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4348                if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4349                        return 0;
4350                block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4351        } else {
4352                if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4353                        return 0;
4354                block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4355        }
4356
4357        /*
4358         * If the block is a root block hosted in an inode, we might not have a
4359         * buffer pointer here and we shouldn't attempt to log the change as the
4360         * information is already held in the inode and discarded when the root
4361         * block is formatted into the on-disk inode fork. We still change it,
4362         * though, so everything is consistent in memory.
4363         */
4364        if (!bp) {
4365                ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4366                ASSERT(level == cur->bc_nlevels - 1);
4367                return 0;
4368        }
4369
4370        if (cur->bc_tp) {
4371                if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4372                        xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4373                        return -EAGAIN;
4374                }
4375        } else {
4376                xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4377        }
4378
4379        return 0;
4380}
4381
4382int
4383xfs_btree_change_owner(
4384        struct xfs_btree_cur    *cur,
4385        uint64_t                new_owner,
4386        struct list_head        *buffer_list)
4387{
4388        struct xfs_btree_block_change_owner_info        bbcoi;
4389
4390        bbcoi.new_owner = new_owner;
4391        bbcoi.buffer_list = buffer_list;
4392
4393        return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4394                        XFS_BTREE_VISIT_ALL, &bbcoi);
4395}
4396
4397/* Verify the v5 fields of a long-format btree block. */
4398xfs_failaddr_t
4399xfs_btree_lblock_v5hdr_verify(
4400        struct xfs_buf          *bp,
4401        uint64_t                owner)
4402{
4403        struct xfs_mount        *mp = bp->b_mount;
4404        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4405
4406        if (!xfs_sb_version_hascrc(&mp->m_sb))
4407                return __this_address;
4408        if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4409                return __this_address;
4410        if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4411                return __this_address;
4412        if (owner != XFS_RMAP_OWN_UNKNOWN &&
4413            be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4414                return __this_address;
4415        return NULL;
4416}
4417
4418/* Verify a long-format btree block. */
4419xfs_failaddr_t
4420xfs_btree_lblock_verify(
4421        struct xfs_buf          *bp,
4422        unsigned int            max_recs)
4423{
4424        struct xfs_mount        *mp = bp->b_mount;
4425        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4426
4427        /* numrecs verification */
4428        if (be16_to_cpu(block->bb_numrecs) > max_recs)
4429                return __this_address;
4430
4431        /* sibling pointer verification */
4432        if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4433            !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4434                return __this_address;
4435        if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4436            !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4437                return __this_address;
4438
4439        return NULL;
4440}
4441
4442/**
4443 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4444 *                                    btree block
4445 *
4446 * @bp: buffer containing the btree block
4447 */
4448xfs_failaddr_t
4449xfs_btree_sblock_v5hdr_verify(
4450        struct xfs_buf          *bp)
4451{
4452        struct xfs_mount        *mp = bp->b_mount;
4453        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4454        struct xfs_perag        *pag = bp->b_pag;
4455
4456        if (!xfs_sb_version_hascrc(&mp->m_sb))
4457                return __this_address;
4458        if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4459                return __this_address;
4460        if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4461                return __this_address;
4462        if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4463                return __this_address;
4464        return NULL;
4465}
4466
4467/**
4468 * xfs_btree_sblock_verify() -- verify a short-format btree block
4469 *
4470 * @bp: buffer containing the btree block
4471 * @max_recs: maximum records allowed in this btree node
4472 */
4473xfs_failaddr_t
4474xfs_btree_sblock_verify(
4475        struct xfs_buf          *bp,
4476        unsigned int            max_recs)
4477{
4478        struct xfs_mount        *mp = bp->b_mount;
4479        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4480        xfs_agblock_t           agno;
4481
4482        /* numrecs verification */
4483        if (be16_to_cpu(block->bb_numrecs) > max_recs)
4484                return __this_address;
4485
4486        /* sibling pointer verification */
4487        agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4488        if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4489            !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4490                return __this_address;
4491        if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4492            !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4493                return __this_address;
4494
4495        return NULL;
4496}
4497
4498/*
4499 * Calculate the number of btree levels needed to store a given number of
4500 * records in a short-format btree.
4501 */
4502uint
4503xfs_btree_compute_maxlevels(
4504        uint                    *limits,
4505        unsigned long           len)
4506{
4507        uint                    level;
4508        unsigned long           maxblocks;
4509
4510        maxblocks = (len + limits[0] - 1) / limits[0];
4511        for (level = 1; maxblocks > 1; level++)
4512                maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4513        return level;
4514}
4515
4516/*
4517 * Query a regular btree for all records overlapping a given interval.
4518 * Start with a LE lookup of the key of low_rec and return all records
4519 * until we find a record with a key greater than the key of high_rec.
4520 */
4521STATIC int
4522xfs_btree_simple_query_range(
4523        struct xfs_btree_cur            *cur,
4524        union xfs_btree_key             *low_key,
4525        union xfs_btree_key             *high_key,
4526        xfs_btree_query_range_fn        fn,
4527        void                            *priv)
4528{
4529        union xfs_btree_rec             *recp;
4530        union xfs_btree_key             rec_key;
4531        int64_t                         diff;
4532        int                             stat;
4533        bool                            firstrec = true;
4534        int                             error;
4535
4536        ASSERT(cur->bc_ops->init_high_key_from_rec);
4537        ASSERT(cur->bc_ops->diff_two_keys);
4538
4539        /*
4540         * Find the leftmost record.  The btree cursor must be set
4541         * to the low record used to generate low_key.
4542         */
4543        stat = 0;
4544        error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4545        if (error)
4546                goto out;
4547
4548        /* Nothing?  See if there's anything to the right. */
4549        if (!stat) {
4550                error = xfs_btree_increment(cur, 0, &stat);
4551                if (error)
4552                        goto out;
4553        }
4554
4555        while (stat) {
4556                /* Find the record. */
4557                error = xfs_btree_get_rec(cur, &recp, &stat);
4558                if (error || !stat)
4559                        break;
4560
4561                /* Skip if high_key(rec) < low_key. */
4562                if (firstrec) {
4563                        cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4564                        firstrec = false;
4565                        diff = cur->bc_ops->diff_two_keys(cur, low_key,
4566                                        &rec_key);
4567                        if (diff > 0)
4568                                goto advloop;
4569                }
4570
4571                /* Stop if high_key < low_key(rec). */
4572                cur->bc_ops->init_key_from_rec(&rec_key, recp);
4573                diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4574                if (diff > 0)
4575                        break;
4576
4577                /* Callback */
4578                error = fn(cur, recp, priv);
4579                if (error)
4580                        break;
4581
4582advloop:
4583                /* Move on to the next record. */
4584                error = xfs_btree_increment(cur, 0, &stat);
4585                if (error)
4586                        break;
4587        }
4588
4589out:
4590        return error;
4591}
4592
4593/*
4594 * Query an overlapped interval btree for all records overlapping a given
4595 * interval.  This function roughly follows the algorithm given in
4596 * "Interval Trees" of _Introduction to Algorithms_, which is section
4597 * 14.3 in the 2nd and 3rd editions.
4598 *
4599 * First, generate keys for the low and high records passed in.
4600 *
4601 * For any leaf node, generate the high and low keys for the record.
4602 * If the record keys overlap with the query low/high keys, pass the
4603 * record to the function iterator.
4604 *
4605 * For any internal node, compare the low and high keys of each
4606 * pointer against the query low/high keys.  If there's an overlap,
4607 * follow the pointer.
4608 *
4609 * As an optimization, we stop scanning a block when we find a low key
4610 * that is greater than the query's high key.
4611 */
4612STATIC int
4613xfs_btree_overlapped_query_range(
4614        struct xfs_btree_cur            *cur,
4615        union xfs_btree_key             *low_key,
4616        union xfs_btree_key             *high_key,
4617        xfs_btree_query_range_fn        fn,
4618        void                            *priv)
4619{
4620        union xfs_btree_ptr             ptr;
4621        union xfs_btree_ptr             *pp;
4622        union xfs_btree_key             rec_key;
4623        union xfs_btree_key             rec_hkey;
4624        union xfs_btree_key             *lkp;
4625        union xfs_btree_key             *hkp;
4626        union xfs_btree_rec             *recp;
4627        struct xfs_btree_block          *block;
4628        int64_t                         ldiff;
4629        int64_t                         hdiff;
4630        int                             level;
4631        struct xfs_buf                  *bp;
4632        int                             i;
4633        int                             error;
4634
4635        /* Load the root of the btree. */
4636        level = cur->bc_nlevels - 1;
4637        cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4638        error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4639        if (error)
4640                return error;
4641        xfs_btree_get_block(cur, level, &bp);
4642        trace_xfs_btree_overlapped_query_range(cur, level, bp);
4643#ifdef DEBUG
4644        error = xfs_btree_check_block(cur, block, level, bp);
4645        if (error)
4646                goto out;
4647#endif
4648        cur->bc_ptrs[level] = 1;
4649
4650        while (level < cur->bc_nlevels) {
4651                block = xfs_btree_get_block(cur, level, &bp);
4652
4653                /* End of node, pop back towards the root. */
4654                if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4655pop_up:
4656                        if (level < cur->bc_nlevels - 1)
4657                                cur->bc_ptrs[level + 1]++;
4658                        level++;
4659                        continue;
4660                }
4661
4662                if (level == 0) {
4663                        /* Handle a leaf node. */
4664                        recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4665
4666                        cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4667                        ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4668                                        low_key);
4669
4670                        cur->bc_ops->init_key_from_rec(&rec_key, recp);
4671                        hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4672                                        &rec_key);
4673
4674                        /*
4675                         * If (record's high key >= query's low key) and
4676                         *    (query's high key >= record's low key), then
4677                         * this record overlaps the query range; callback.
4678                         */
4679                        if (ldiff >= 0 && hdiff >= 0) {
4680                                error = fn(cur, recp, priv);
4681                                if (error)
4682                                        break;
4683                        } else if (hdiff < 0) {
4684                                /* Record is larger than high key; pop. */
4685                                goto pop_up;
4686                        }
4687                        cur->bc_ptrs[level]++;
4688                        continue;
4689                }
4690
4691                /* Handle an internal node. */
4692                lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4693                hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4694                pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4695
4696                ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4697                hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4698
4699                /*
4700                 * If (pointer's high key >= query's low key) and
4701                 *    (query's high key >= pointer's low key), then
4702                 * this record overlaps the query range; follow pointer.
4703                 */
4704                if (ldiff >= 0 && hdiff >= 0) {
4705                        level--;
4706                        error = xfs_btree_lookup_get_block(cur, level, pp,
4707                                        &block);
4708                        if (error)
4709                                goto out;
4710                        xfs_btree_get_block(cur, level, &bp);
4711                        trace_xfs_btree_overlapped_query_range(cur, level, bp);
4712#ifdef DEBUG
4713                        error = xfs_btree_check_block(cur, block, level, bp);
4714                        if (error)
4715                                goto out;
4716#endif
4717                        cur->bc_ptrs[level] = 1;
4718                        continue;
4719                } else if (hdiff < 0) {
4720                        /* The low key is larger than the upper range; pop. */
4721                        goto pop_up;
4722                }
4723                cur->bc_ptrs[level]++;
4724        }
4725
4726out:
4727        /*
4728         * If we don't end this function with the cursor pointing at a record
4729         * block, a subsequent non-error cursor deletion will not release
4730         * node-level buffers, causing a buffer leak.  This is quite possible
4731         * with a zero-results range query, so release the buffers if we
4732         * failed to return any results.
4733         */
4734        if (cur->bc_bufs[0] == NULL) {
4735                for (i = 0; i < cur->bc_nlevels; i++) {
4736                        if (cur->bc_bufs[i]) {
4737                                xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4738                                cur->bc_bufs[i] = NULL;
4739                                cur->bc_ptrs[i] = 0;
4740                                cur->bc_ra[i] = 0;
4741                        }
4742                }
4743        }
4744
4745        return error;
4746}
4747
4748/*
4749 * Query a btree for all records overlapping a given interval of keys.  The
4750 * supplied function will be called with each record found; return one of the
4751 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4752 * code.  This function returns -ECANCELED, zero, or a negative error code.
4753 */
4754int
4755xfs_btree_query_range(
4756        struct xfs_btree_cur            *cur,
4757        union xfs_btree_irec            *low_rec,
4758        union xfs_btree_irec            *high_rec,
4759        xfs_btree_query_range_fn        fn,
4760        void                            *priv)
4761{
4762        union xfs_btree_rec             rec;
4763        union xfs_btree_key             low_key;
4764        union xfs_btree_key             high_key;
4765
4766        /* Find the keys of both ends of the interval. */
4767        cur->bc_rec = *high_rec;
4768        cur->bc_ops->init_rec_from_cur(cur, &rec);
4769        cur->bc_ops->init_key_from_rec(&high_key, &rec);
4770
4771        cur->bc_rec = *low_rec;
4772        cur->bc_ops->init_rec_from_cur(cur, &rec);
4773        cur->bc_ops->init_key_from_rec(&low_key, &rec);
4774
4775        /* Enforce low key < high key. */
4776        if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4777                return -EINVAL;
4778
4779        if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4780                return xfs_btree_simple_query_range(cur, &low_key,
4781                                &high_key, fn, priv);
4782        return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4783                        fn, priv);
4784}
4785
4786/* Query a btree for all records. */
4787int
4788xfs_btree_query_all(
4789        struct xfs_btree_cur            *cur,
4790        xfs_btree_query_range_fn        fn,
4791        void                            *priv)
4792{
4793        union xfs_btree_key             low_key;
4794        union xfs_btree_key             high_key;
4795
4796        memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4797        memset(&low_key, 0, sizeof(low_key));
4798        memset(&high_key, 0xFF, sizeof(high_key));
4799
4800        return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4801}
4802
4803/*
4804 * Calculate the number of blocks needed to store a given number of records
4805 * in a short-format (per-AG metadata) btree.
4806 */
4807unsigned long long
4808xfs_btree_calc_size(
4809        uint                    *limits,
4810        unsigned long long      len)
4811{
4812        int                     level;
4813        int                     maxrecs;
4814        unsigned long long      rval;
4815
4816        maxrecs = limits[0];
4817        for (level = 0, rval = 0; len > 1; level++) {
4818                len += maxrecs - 1;
4819                do_div(len, maxrecs);
4820                maxrecs = limits[1];
4821                rval += len;
4822        }
4823        return rval;
4824}
4825
4826static int
4827xfs_btree_count_blocks_helper(
4828        struct xfs_btree_cur    *cur,
4829        int                     level,
4830        void                    *data)
4831{
4832        xfs_extlen_t            *blocks = data;
4833        (*blocks)++;
4834
4835        return 0;
4836}
4837
4838/* Count the blocks in a btree and return the result in *blocks. */
4839int
4840xfs_btree_count_blocks(
4841        struct xfs_btree_cur    *cur,
4842        xfs_extlen_t            *blocks)
4843{
4844        *blocks = 0;
4845        return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4846                        XFS_BTREE_VISIT_ALL, blocks);
4847}
4848
4849/* Compare two btree pointers. */
4850int64_t
4851xfs_btree_diff_two_ptrs(
4852        struct xfs_btree_cur            *cur,
4853        const union xfs_btree_ptr       *a,
4854        const union xfs_btree_ptr       *b)
4855{
4856        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4857                return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4858        return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4859}
4860
4861/* If there's an extent, we're done. */
4862STATIC int
4863xfs_btree_has_record_helper(
4864        struct xfs_btree_cur            *cur,
4865        union xfs_btree_rec             *rec,
4866        void                            *priv)
4867{
4868        return -ECANCELED;
4869}
4870
4871/* Is there a record covering a given range of keys? */
4872int
4873xfs_btree_has_record(
4874        struct xfs_btree_cur    *cur,
4875        union xfs_btree_irec    *low,
4876        union xfs_btree_irec    *high,
4877        bool                    *exists)
4878{
4879        int                     error;
4880
4881        error = xfs_btree_query_range(cur, low, high,
4882                        &xfs_btree_has_record_helper, NULL);
4883        if (error == -ECANCELED) {
4884                *exists = true;
4885                return 0;
4886        }
4887        *exists = false;
4888        return error;
4889}
4890
4891/* Are there more records in this btree? */
4892bool
4893xfs_btree_has_more_records(
4894        struct xfs_btree_cur    *cur)
4895{
4896        struct xfs_btree_block  *block;
4897        struct xfs_buf          *bp;
4898
4899        block = xfs_btree_get_block(cur, 0, &bp);
4900
4901        /* There are still records in this block. */
4902        if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4903                return true;
4904
4905        /* There are more record blocks. */
4906        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4907                return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4908        else
4909                return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4910}
4911