linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t     *xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC int
  28xlog_commit_record(
  29        struct xlog             *log,
  30        struct xlog_ticket      *ticket,
  31        struct xlog_in_core     **iclog,
  32        xfs_lsn_t               *commitlsnp);
  33
  34STATIC struct xlog *
  35xlog_alloc_log(
  36        struct xfs_mount        *mp,
  37        struct xfs_buftarg      *log_target,
  38        xfs_daddr_t             blk_offset,
  39        int                     num_bblks);
  40STATIC int
  41xlog_space_left(
  42        struct xlog             *log,
  43        atomic64_t              *head);
  44STATIC void
  45xlog_dealloc_log(
  46        struct xlog             *log);
  47
  48/* local state machine functions */
  49STATIC void xlog_state_done_syncing(
  50        struct xlog_in_core     *iclog,
  51        bool                    aborted);
  52STATIC int
  53xlog_state_get_iclog_space(
  54        struct xlog             *log,
  55        int                     len,
  56        struct xlog_in_core     **iclog,
  57        struct xlog_ticket      *ticket,
  58        int                     *continued_write,
  59        int                     *logoffsetp);
  60STATIC void
  61xlog_state_switch_iclogs(
  62        struct xlog             *log,
  63        struct xlog_in_core     *iclog,
  64        int                     eventual_size);
  65STATIC void
  66xlog_state_want_sync(
  67        struct xlog             *log,
  68        struct xlog_in_core     *iclog);
  69
  70STATIC void
  71xlog_grant_push_ail(
  72        struct xlog             *log,
  73        int                     need_bytes);
  74STATIC void
  75xlog_regrant_reserve_log_space(
  76        struct xlog             *log,
  77        struct xlog_ticket      *ticket);
  78STATIC void
  79xlog_ungrant_log_space(
  80        struct xlog             *log,
  81        struct xlog_ticket      *ticket);
  82STATIC void
  83xlog_sync(
  84        struct xlog             *log,
  85        struct xlog_in_core     *iclog);
  86#if defined(DEBUG)
  87STATIC void
  88xlog_verify_dest_ptr(
  89        struct xlog             *log,
  90        void                    *ptr);
  91STATIC void
  92xlog_verify_grant_tail(
  93        struct xlog *log);
  94STATIC void
  95xlog_verify_iclog(
  96        struct xlog             *log,
  97        struct xlog_in_core     *iclog,
  98        int                     count);
  99STATIC void
 100xlog_verify_tail_lsn(
 101        struct xlog             *log,
 102        struct xlog_in_core     *iclog,
 103        xfs_lsn_t               tail_lsn);
 104#else
 105#define xlog_verify_dest_ptr(a,b)
 106#define xlog_verify_grant_tail(a)
 107#define xlog_verify_iclog(a,b,c)
 108#define xlog_verify_tail_lsn(a,b,c)
 109#endif
 110
 111STATIC int
 112xlog_iclogs_empty(
 113        struct xlog             *log);
 114
 115static void
 116xlog_grant_sub_space(
 117        struct xlog             *log,
 118        atomic64_t              *head,
 119        int                     bytes)
 120{
 121        int64_t head_val = atomic64_read(head);
 122        int64_t new, old;
 123
 124        do {
 125                int     cycle, space;
 126
 127                xlog_crack_grant_head_val(head_val, &cycle, &space);
 128
 129                space -= bytes;
 130                if (space < 0) {
 131                        space += log->l_logsize;
 132                        cycle--;
 133                }
 134
 135                old = head_val;
 136                new = xlog_assign_grant_head_val(cycle, space);
 137                head_val = atomic64_cmpxchg(head, old, new);
 138        } while (head_val != old);
 139}
 140
 141static void
 142xlog_grant_add_space(
 143        struct xlog             *log,
 144        atomic64_t              *head,
 145        int                     bytes)
 146{
 147        int64_t head_val = atomic64_read(head);
 148        int64_t new, old;
 149
 150        do {
 151                int             tmp;
 152                int             cycle, space;
 153
 154                xlog_crack_grant_head_val(head_val, &cycle, &space);
 155
 156                tmp = log->l_logsize - space;
 157                if (tmp > bytes)
 158                        space += bytes;
 159                else {
 160                        space = bytes - tmp;
 161                        cycle++;
 162                }
 163
 164                old = head_val;
 165                new = xlog_assign_grant_head_val(cycle, space);
 166                head_val = atomic64_cmpxchg(head, old, new);
 167        } while (head_val != old);
 168}
 169
 170STATIC void
 171xlog_grant_head_init(
 172        struct xlog_grant_head  *head)
 173{
 174        xlog_assign_grant_head(&head->grant, 1, 0);
 175        INIT_LIST_HEAD(&head->waiters);
 176        spin_lock_init(&head->lock);
 177}
 178
 179STATIC void
 180xlog_grant_head_wake_all(
 181        struct xlog_grant_head  *head)
 182{
 183        struct xlog_ticket      *tic;
 184
 185        spin_lock(&head->lock);
 186        list_for_each_entry(tic, &head->waiters, t_queue)
 187                wake_up_process(tic->t_task);
 188        spin_unlock(&head->lock);
 189}
 190
 191static inline int
 192xlog_ticket_reservation(
 193        struct xlog             *log,
 194        struct xlog_grant_head  *head,
 195        struct xlog_ticket      *tic)
 196{
 197        if (head == &log->l_write_head) {
 198                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 199                return tic->t_unit_res;
 200        } else {
 201                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 202                        return tic->t_unit_res * tic->t_cnt;
 203                else
 204                        return tic->t_unit_res;
 205        }
 206}
 207
 208STATIC bool
 209xlog_grant_head_wake(
 210        struct xlog             *log,
 211        struct xlog_grant_head  *head,
 212        int                     *free_bytes)
 213{
 214        struct xlog_ticket      *tic;
 215        int                     need_bytes;
 216        bool                    woken_task = false;
 217
 218        list_for_each_entry(tic, &head->waiters, t_queue) {
 219
 220                /*
 221                 * There is a chance that the size of the CIL checkpoints in
 222                 * progress at the last AIL push target calculation resulted in
 223                 * limiting the target to the log head (l_last_sync_lsn) at the
 224                 * time. This may not reflect where the log head is now as the
 225                 * CIL checkpoints may have completed.
 226                 *
 227                 * Hence when we are woken here, it may be that the head of the
 228                 * log that has moved rather than the tail. As the tail didn't
 229                 * move, there still won't be space available for the
 230                 * reservation we require.  However, if the AIL has already
 231                 * pushed to the target defined by the old log head location, we
 232                 * will hang here waiting for something else to update the AIL
 233                 * push target.
 234                 *
 235                 * Therefore, if there isn't space to wake the first waiter on
 236                 * the grant head, we need to push the AIL again to ensure the
 237                 * target reflects both the current log tail and log head
 238                 * position before we wait for the tail to move again.
 239                 */
 240
 241                need_bytes = xlog_ticket_reservation(log, head, tic);
 242                if (*free_bytes < need_bytes) {
 243                        if (!woken_task)
 244                                xlog_grant_push_ail(log, need_bytes);
 245                        return false;
 246                }
 247
 248                *free_bytes -= need_bytes;
 249                trace_xfs_log_grant_wake_up(log, tic);
 250                wake_up_process(tic->t_task);
 251                woken_task = true;
 252        }
 253
 254        return true;
 255}
 256
 257STATIC int
 258xlog_grant_head_wait(
 259        struct xlog             *log,
 260        struct xlog_grant_head  *head,
 261        struct xlog_ticket      *tic,
 262        int                     need_bytes) __releases(&head->lock)
 263                                            __acquires(&head->lock)
 264{
 265        list_add_tail(&tic->t_queue, &head->waiters);
 266
 267        do {
 268                if (XLOG_FORCED_SHUTDOWN(log))
 269                        goto shutdown;
 270                xlog_grant_push_ail(log, need_bytes);
 271
 272                __set_current_state(TASK_UNINTERRUPTIBLE);
 273                spin_unlock(&head->lock);
 274
 275                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 276
 277                trace_xfs_log_grant_sleep(log, tic);
 278                schedule();
 279                trace_xfs_log_grant_wake(log, tic);
 280
 281                spin_lock(&head->lock);
 282                if (XLOG_FORCED_SHUTDOWN(log))
 283                        goto shutdown;
 284        } while (xlog_space_left(log, &head->grant) < need_bytes);
 285
 286        list_del_init(&tic->t_queue);
 287        return 0;
 288shutdown:
 289        list_del_init(&tic->t_queue);
 290        return -EIO;
 291}
 292
 293/*
 294 * Atomically get the log space required for a log ticket.
 295 *
 296 * Once a ticket gets put onto head->waiters, it will only return after the
 297 * needed reservation is satisfied.
 298 *
 299 * This function is structured so that it has a lock free fast path. This is
 300 * necessary because every new transaction reservation will come through this
 301 * path. Hence any lock will be globally hot if we take it unconditionally on
 302 * every pass.
 303 *
 304 * As tickets are only ever moved on and off head->waiters under head->lock, we
 305 * only need to take that lock if we are going to add the ticket to the queue
 306 * and sleep. We can avoid taking the lock if the ticket was never added to
 307 * head->waiters because the t_queue list head will be empty and we hold the
 308 * only reference to it so it can safely be checked unlocked.
 309 */
 310STATIC int
 311xlog_grant_head_check(
 312        struct xlog             *log,
 313        struct xlog_grant_head  *head,
 314        struct xlog_ticket      *tic,
 315        int                     *need_bytes)
 316{
 317        int                     free_bytes;
 318        int                     error = 0;
 319
 320        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 321
 322        /*
 323         * If there are other waiters on the queue then give them a chance at
 324         * logspace before us.  Wake up the first waiters, if we do not wake
 325         * up all the waiters then go to sleep waiting for more free space,
 326         * otherwise try to get some space for this transaction.
 327         */
 328        *need_bytes = xlog_ticket_reservation(log, head, tic);
 329        free_bytes = xlog_space_left(log, &head->grant);
 330        if (!list_empty_careful(&head->waiters)) {
 331                spin_lock(&head->lock);
 332                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 333                    free_bytes < *need_bytes) {
 334                        error = xlog_grant_head_wait(log, head, tic,
 335                                                     *need_bytes);
 336                }
 337                spin_unlock(&head->lock);
 338        } else if (free_bytes < *need_bytes) {
 339                spin_lock(&head->lock);
 340                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 341                spin_unlock(&head->lock);
 342        }
 343
 344        return error;
 345}
 346
 347static void
 348xlog_tic_reset_res(xlog_ticket_t *tic)
 349{
 350        tic->t_res_num = 0;
 351        tic->t_res_arr_sum = 0;
 352        tic->t_res_num_ophdrs = 0;
 353}
 354
 355static void
 356xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 357{
 358        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 359                /* add to overflow and start again */
 360                tic->t_res_o_flow += tic->t_res_arr_sum;
 361                tic->t_res_num = 0;
 362                tic->t_res_arr_sum = 0;
 363        }
 364
 365        tic->t_res_arr[tic->t_res_num].r_len = len;
 366        tic->t_res_arr[tic->t_res_num].r_type = type;
 367        tic->t_res_arr_sum += len;
 368        tic->t_res_num++;
 369}
 370
 371/*
 372 * Replenish the byte reservation required by moving the grant write head.
 373 */
 374int
 375xfs_log_regrant(
 376        struct xfs_mount        *mp,
 377        struct xlog_ticket      *tic)
 378{
 379        struct xlog             *log = mp->m_log;
 380        int                     need_bytes;
 381        int                     error = 0;
 382
 383        if (XLOG_FORCED_SHUTDOWN(log))
 384                return -EIO;
 385
 386        XFS_STATS_INC(mp, xs_try_logspace);
 387
 388        /*
 389         * This is a new transaction on the ticket, so we need to change the
 390         * transaction ID so that the next transaction has a different TID in
 391         * the log. Just add one to the existing tid so that we can see chains
 392         * of rolling transactions in the log easily.
 393         */
 394        tic->t_tid++;
 395
 396        xlog_grant_push_ail(log, tic->t_unit_res);
 397
 398        tic->t_curr_res = tic->t_unit_res;
 399        xlog_tic_reset_res(tic);
 400
 401        if (tic->t_cnt > 0)
 402                return 0;
 403
 404        trace_xfs_log_regrant(log, tic);
 405
 406        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 407                                      &need_bytes);
 408        if (error)
 409                goto out_error;
 410
 411        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 412        trace_xfs_log_regrant_exit(log, tic);
 413        xlog_verify_grant_tail(log);
 414        return 0;
 415
 416out_error:
 417        /*
 418         * If we are failing, make sure the ticket doesn't have any current
 419         * reservations.  We don't want to add this back when the ticket/
 420         * transaction gets cancelled.
 421         */
 422        tic->t_curr_res = 0;
 423        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 424        return error;
 425}
 426
 427/*
 428 * Reserve log space and return a ticket corresponding to the reservation.
 429 *
 430 * Each reservation is going to reserve extra space for a log record header.
 431 * When writes happen to the on-disk log, we don't subtract the length of the
 432 * log record header from any reservation.  By wasting space in each
 433 * reservation, we prevent over allocation problems.
 434 */
 435int
 436xfs_log_reserve(
 437        struct xfs_mount        *mp,
 438        int                     unit_bytes,
 439        int                     cnt,
 440        struct xlog_ticket      **ticp,
 441        uint8_t                 client,
 442        bool                    permanent)
 443{
 444        struct xlog             *log = mp->m_log;
 445        struct xlog_ticket      *tic;
 446        int                     need_bytes;
 447        int                     error = 0;
 448
 449        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 450
 451        if (XLOG_FORCED_SHUTDOWN(log))
 452                return -EIO;
 453
 454        XFS_STATS_INC(mp, xs_try_logspace);
 455
 456        ASSERT(*ticp == NULL);
 457        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
 458        *ticp = tic;
 459
 460        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 461                                            : tic->t_unit_res);
 462
 463        trace_xfs_log_reserve(log, tic);
 464
 465        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 466                                      &need_bytes);
 467        if (error)
 468                goto out_error;
 469
 470        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 471        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 472        trace_xfs_log_reserve_exit(log, tic);
 473        xlog_verify_grant_tail(log);
 474        return 0;
 475
 476out_error:
 477        /*
 478         * If we are failing, make sure the ticket doesn't have any current
 479         * reservations.  We don't want to add this back when the ticket/
 480         * transaction gets cancelled.
 481         */
 482        tic->t_curr_res = 0;
 483        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 484        return error;
 485}
 486
 487
 488/*
 489 * NOTES:
 490 *
 491 *      1. currblock field gets updated at startup and after in-core logs
 492 *              marked as with WANT_SYNC.
 493 */
 494
 495/*
 496 * This routine is called when a user of a log manager ticket is done with
 497 * the reservation.  If the ticket was ever used, then a commit record for
 498 * the associated transaction is written out as a log operation header with
 499 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 500 * a given ticket.  If the ticket was one with a permanent reservation, then
 501 * a few operations are done differently.  Permanent reservation tickets by
 502 * default don't release the reservation.  They just commit the current
 503 * transaction with the belief that the reservation is still needed.  A flag
 504 * must be passed in before permanent reservations are actually released.
 505 * When these type of tickets are not released, they need to be set into
 506 * the inited state again.  By doing this, a start record will be written
 507 * out when the next write occurs.
 508 */
 509xfs_lsn_t
 510xfs_log_done(
 511        struct xfs_mount        *mp,
 512        struct xlog_ticket      *ticket,
 513        struct xlog_in_core     **iclog,
 514        bool                    regrant)
 515{
 516        struct xlog             *log = mp->m_log;
 517        xfs_lsn_t               lsn = 0;
 518
 519        if (XLOG_FORCED_SHUTDOWN(log) ||
 520            /*
 521             * If nothing was ever written, don't write out commit record.
 522             * If we get an error, just continue and give back the log ticket.
 523             */
 524            (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 525             (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 526                lsn = (xfs_lsn_t) -1;
 527                regrant = false;
 528        }
 529
 530
 531        if (!regrant) {
 532                trace_xfs_log_done_nonperm(log, ticket);
 533
 534                /*
 535                 * Release ticket if not permanent reservation or a specific
 536                 * request has been made to release a permanent reservation.
 537                 */
 538                xlog_ungrant_log_space(log, ticket);
 539        } else {
 540                trace_xfs_log_done_perm(log, ticket);
 541
 542                xlog_regrant_reserve_log_space(log, ticket);
 543                /* If this ticket was a permanent reservation and we aren't
 544                 * trying to release it, reset the inited flags; so next time
 545                 * we write, a start record will be written out.
 546                 */
 547                ticket->t_flags |= XLOG_TIC_INITED;
 548        }
 549
 550        xfs_log_ticket_put(ticket);
 551        return lsn;
 552}
 553
 554static bool
 555__xlog_state_release_iclog(
 556        struct xlog             *log,
 557        struct xlog_in_core     *iclog)
 558{
 559        lockdep_assert_held(&log->l_icloglock);
 560
 561        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
 562                /* update tail before writing to iclog */
 563                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 564
 565                iclog->ic_state = XLOG_STATE_SYNCING;
 566                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 567                xlog_verify_tail_lsn(log, iclog, tail_lsn);
 568                /* cycle incremented when incrementing curr_block */
 569                return true;
 570        }
 571
 572        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 573        return false;
 574}
 575
 576/*
 577 * Flush iclog to disk if this is the last reference to the given iclog and the
 578 * it is in the WANT_SYNC state.
 579 */
 580static int
 581xlog_state_release_iclog(
 582        struct xlog             *log,
 583        struct xlog_in_core     *iclog)
 584{
 585        lockdep_assert_held(&log->l_icloglock);
 586
 587        if (iclog->ic_state == XLOG_STATE_IOERROR)
 588                return -EIO;
 589
 590        if (atomic_dec_and_test(&iclog->ic_refcnt) &&
 591            __xlog_state_release_iclog(log, iclog)) {
 592                spin_unlock(&log->l_icloglock);
 593                xlog_sync(log, iclog);
 594                spin_lock(&log->l_icloglock);
 595        }
 596
 597        return 0;
 598}
 599
 600int
 601xfs_log_release_iclog(
 602        struct xfs_mount        *mp,
 603        struct xlog_in_core     *iclog)
 604{
 605        struct xlog             *log = mp->m_log;
 606        bool                    sync;
 607
 608        if (iclog->ic_state == XLOG_STATE_IOERROR) {
 609                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 610                return -EIO;
 611        }
 612
 613        if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
 614                sync = __xlog_state_release_iclog(log, iclog);
 615                spin_unlock(&log->l_icloglock);
 616                if (sync)
 617                        xlog_sync(log, iclog);
 618        }
 619        return 0;
 620}
 621
 622/*
 623 * Mount a log filesystem
 624 *
 625 * mp           - ubiquitous xfs mount point structure
 626 * log_target   - buftarg of on-disk log device
 627 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 628 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 629 *
 630 * Return error or zero.
 631 */
 632int
 633xfs_log_mount(
 634        xfs_mount_t     *mp,
 635        xfs_buftarg_t   *log_target,
 636        xfs_daddr_t     blk_offset,
 637        int             num_bblks)
 638{
 639        bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
 640        int             error = 0;
 641        int             min_logfsbs;
 642
 643        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 644                xfs_notice(mp, "Mounting V%d Filesystem",
 645                           XFS_SB_VERSION_NUM(&mp->m_sb));
 646        } else {
 647                xfs_notice(mp,
 648"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 649                           XFS_SB_VERSION_NUM(&mp->m_sb));
 650                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 651        }
 652
 653        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 654        if (IS_ERR(mp->m_log)) {
 655                error = PTR_ERR(mp->m_log);
 656                goto out;
 657        }
 658
 659        /*
 660         * Validate the given log space and drop a critical message via syslog
 661         * if the log size is too small that would lead to some unexpected
 662         * situations in transaction log space reservation stage.
 663         *
 664         * Note: we can't just reject the mount if the validation fails.  This
 665         * would mean that people would have to downgrade their kernel just to
 666         * remedy the situation as there is no way to grow the log (short of
 667         * black magic surgery with xfs_db).
 668         *
 669         * We can, however, reject mounts for CRC format filesystems, as the
 670         * mkfs binary being used to make the filesystem should never create a
 671         * filesystem with a log that is too small.
 672         */
 673        min_logfsbs = xfs_log_calc_minimum_size(mp);
 674
 675        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 676                xfs_warn(mp,
 677                "Log size %d blocks too small, minimum size is %d blocks",
 678                         mp->m_sb.sb_logblocks, min_logfsbs);
 679                error = -EINVAL;
 680        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 681                xfs_warn(mp,
 682                "Log size %d blocks too large, maximum size is %lld blocks",
 683                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 684                error = -EINVAL;
 685        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 686                xfs_warn(mp,
 687                "log size %lld bytes too large, maximum size is %lld bytes",
 688                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 689                         XFS_MAX_LOG_BYTES);
 690                error = -EINVAL;
 691        } else if (mp->m_sb.sb_logsunit > 1 &&
 692                   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 693                xfs_warn(mp,
 694                "log stripe unit %u bytes must be a multiple of block size",
 695                         mp->m_sb.sb_logsunit);
 696                error = -EINVAL;
 697                fatal = true;
 698        }
 699        if (error) {
 700                /*
 701                 * Log check errors are always fatal on v5; or whenever bad
 702                 * metadata leads to a crash.
 703                 */
 704                if (fatal) {
 705                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 706                        ASSERT(0);
 707                        goto out_free_log;
 708                }
 709                xfs_crit(mp, "Log size out of supported range.");
 710                xfs_crit(mp,
 711"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 712        }
 713
 714        /*
 715         * Initialize the AIL now we have a log.
 716         */
 717        error = xfs_trans_ail_init(mp);
 718        if (error) {
 719                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 720                goto out_free_log;
 721        }
 722        mp->m_log->l_ailp = mp->m_ail;
 723
 724        /*
 725         * skip log recovery on a norecovery mount.  pretend it all
 726         * just worked.
 727         */
 728        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 729                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 730
 731                if (readonly)
 732                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 733
 734                error = xlog_recover(mp->m_log);
 735
 736                if (readonly)
 737                        mp->m_flags |= XFS_MOUNT_RDONLY;
 738                if (error) {
 739                        xfs_warn(mp, "log mount/recovery failed: error %d",
 740                                error);
 741                        xlog_recover_cancel(mp->m_log);
 742                        goto out_destroy_ail;
 743                }
 744        }
 745
 746        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 747                               "log");
 748        if (error)
 749                goto out_destroy_ail;
 750
 751        /* Normal transactions can now occur */
 752        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 753
 754        /*
 755         * Now the log has been fully initialised and we know were our
 756         * space grant counters are, we can initialise the permanent ticket
 757         * needed for delayed logging to work.
 758         */
 759        xlog_cil_init_post_recovery(mp->m_log);
 760
 761        return 0;
 762
 763out_destroy_ail:
 764        xfs_trans_ail_destroy(mp);
 765out_free_log:
 766        xlog_dealloc_log(mp->m_log);
 767out:
 768        return error;
 769}
 770
 771/*
 772 * Finish the recovery of the file system.  This is separate from the
 773 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 774 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 775 * here.
 776 *
 777 * If we finish recovery successfully, start the background log work. If we are
 778 * not doing recovery, then we have a RO filesystem and we don't need to start
 779 * it.
 780 */
 781int
 782xfs_log_mount_finish(
 783        struct xfs_mount        *mp)
 784{
 785        int     error = 0;
 786        bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 787        bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 788
 789        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 790                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 791                return 0;
 792        } else if (readonly) {
 793                /* Allow unlinked processing to proceed */
 794                mp->m_flags &= ~XFS_MOUNT_RDONLY;
 795        }
 796
 797        /*
 798         * During the second phase of log recovery, we need iget and
 799         * iput to behave like they do for an active filesystem.
 800         * xfs_fs_drop_inode needs to be able to prevent the deletion
 801         * of inodes before we're done replaying log items on those
 802         * inodes.  Turn it off immediately after recovery finishes
 803         * so that we don't leak the quota inodes if subsequent mount
 804         * activities fail.
 805         *
 806         * We let all inodes involved in redo item processing end up on
 807         * the LRU instead of being evicted immediately so that if we do
 808         * something to an unlinked inode, the irele won't cause
 809         * premature truncation and freeing of the inode, which results
 810         * in log recovery failure.  We have to evict the unreferenced
 811         * lru inodes after clearing SB_ACTIVE because we don't
 812         * otherwise clean up the lru if there's a subsequent failure in
 813         * xfs_mountfs, which leads to us leaking the inodes if nothing
 814         * else (e.g. quotacheck) references the inodes before the
 815         * mount failure occurs.
 816         */
 817        mp->m_super->s_flags |= SB_ACTIVE;
 818        error = xlog_recover_finish(mp->m_log);
 819        if (!error)
 820                xfs_log_work_queue(mp);
 821        mp->m_super->s_flags &= ~SB_ACTIVE;
 822        evict_inodes(mp->m_super);
 823
 824        /*
 825         * Drain the buffer LRU after log recovery. This is required for v4
 826         * filesystems to avoid leaving around buffers with NULL verifier ops,
 827         * but we do it unconditionally to make sure we're always in a clean
 828         * cache state after mount.
 829         *
 830         * Don't push in the error case because the AIL may have pending intents
 831         * that aren't removed until recovery is cancelled.
 832         */
 833        if (!error && recovered) {
 834                xfs_log_force(mp, XFS_LOG_SYNC);
 835                xfs_ail_push_all_sync(mp->m_ail);
 836        }
 837        xfs_wait_buftarg(mp->m_ddev_targp);
 838
 839        if (readonly)
 840                mp->m_flags |= XFS_MOUNT_RDONLY;
 841
 842        return error;
 843}
 844
 845/*
 846 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 847 * the log.
 848 */
 849void
 850xfs_log_mount_cancel(
 851        struct xfs_mount        *mp)
 852{
 853        xlog_recover_cancel(mp->m_log);
 854        xfs_log_unmount(mp);
 855}
 856
 857/*
 858 * Final log writes as part of unmount.
 859 *
 860 * Mark the filesystem clean as unmount happens.  Note that during relocation
 861 * this routine needs to be executed as part of source-bag while the
 862 * deallocation must not be done until source-end.
 863 */
 864
 865/* Actually write the unmount record to disk. */
 866static void
 867xfs_log_write_unmount_record(
 868        struct xfs_mount        *mp)
 869{
 870        /* the data section must be 32 bit size aligned */
 871        struct xfs_unmount_log_format magic = {
 872                .magic = XLOG_UNMOUNT_TYPE,
 873        };
 874        struct xfs_log_iovec reg = {
 875                .i_addr = &magic,
 876                .i_len = sizeof(magic),
 877                .i_type = XLOG_REG_TYPE_UNMOUNT,
 878        };
 879        struct xfs_log_vec vec = {
 880                .lv_niovecs = 1,
 881                .lv_iovecp = &reg,
 882        };
 883        struct xlog             *log = mp->m_log;
 884        struct xlog_in_core     *iclog;
 885        struct xlog_ticket      *tic = NULL;
 886        xfs_lsn_t               lsn;
 887        uint                    flags = XLOG_UNMOUNT_TRANS;
 888        int                     error;
 889
 890        error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 891        if (error)
 892                goto out_err;
 893
 894        /*
 895         * If we think the summary counters are bad, clear the unmount header
 896         * flag in the unmount record so that the summary counters will be
 897         * recalculated during log recovery at next mount.  Refer to
 898         * xlog_check_unmount_rec for more details.
 899         */
 900        if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 901                        XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 902                xfs_alert(mp, "%s: will fix summary counters at next mount",
 903                                __func__);
 904                flags &= ~XLOG_UNMOUNT_TRANS;
 905        }
 906
 907        /* remove inited flag, and account for space used */
 908        tic->t_flags = 0;
 909        tic->t_curr_res -= sizeof(magic);
 910        error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
 911        /*
 912         * At this point, we're umounting anyway, so there's no point in
 913         * transitioning log state to IOERROR. Just continue...
 914         */
 915out_err:
 916        if (error)
 917                xfs_alert(mp, "%s: unmount record failed", __func__);
 918
 919        spin_lock(&log->l_icloglock);
 920        iclog = log->l_iclog;
 921        atomic_inc(&iclog->ic_refcnt);
 922        xlog_state_want_sync(log, iclog);
 923        error = xlog_state_release_iclog(log, iclog);
 924        switch (iclog->ic_state) {
 925        default:
 926                if (!XLOG_FORCED_SHUTDOWN(log)) {
 927                        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 928                        break;
 929                }
 930                /* fall through */
 931        case XLOG_STATE_ACTIVE:
 932        case XLOG_STATE_DIRTY:
 933                spin_unlock(&log->l_icloglock);
 934                break;
 935        }
 936
 937        if (tic) {
 938                trace_xfs_log_umount_write(log, tic);
 939                xlog_ungrant_log_space(log, tic);
 940                xfs_log_ticket_put(tic);
 941        }
 942}
 943
 944/*
 945 * Unmount record used to have a string "Unmount filesystem--" in the
 946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 947 * We just write the magic number now since that particular field isn't
 948 * currently architecture converted and "Unmount" is a bit foo.
 949 * As far as I know, there weren't any dependencies on the old behaviour.
 950 */
 951
 952static int
 953xfs_log_unmount_write(xfs_mount_t *mp)
 954{
 955        struct xlog      *log = mp->m_log;
 956        xlog_in_core_t   *iclog;
 957#ifdef DEBUG
 958        xlog_in_core_t   *first_iclog;
 959#endif
 960        int              error;
 961
 962        /*
 963         * Don't write out unmount record on norecovery mounts or ro devices.
 964         * Or, if we are doing a forced umount (typically because of IO errors).
 965         */
 966        if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 967            xfs_readonly_buftarg(log->l_targ)) {
 968                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 969                return 0;
 970        }
 971
 972        error = xfs_log_force(mp, XFS_LOG_SYNC);
 973        ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 974
 975#ifdef DEBUG
 976        first_iclog = iclog = log->l_iclog;
 977        do {
 978                if (iclog->ic_state != XLOG_STATE_IOERROR) {
 979                        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 980                        ASSERT(iclog->ic_offset == 0);
 981                }
 982                iclog = iclog->ic_next;
 983        } while (iclog != first_iclog);
 984#endif
 985        if (! (XLOG_FORCED_SHUTDOWN(log))) {
 986                xfs_log_write_unmount_record(mp);
 987        } else {
 988                /*
 989                 * We're already in forced_shutdown mode, couldn't
 990                 * even attempt to write out the unmount transaction.
 991                 *
 992                 * Go through the motions of sync'ing and releasing
 993                 * the iclog, even though no I/O will actually happen,
 994                 * we need to wait for other log I/Os that may already
 995                 * be in progress.  Do this as a separate section of
 996                 * code so we'll know if we ever get stuck here that
 997                 * we're in this odd situation of trying to unmount
 998                 * a file system that went into forced_shutdown as
 999                 * the result of an unmount..
1000                 */
1001                spin_lock(&log->l_icloglock);
1002                iclog = log->l_iclog;
1003                atomic_inc(&iclog->ic_refcnt);
1004                xlog_state_want_sync(log, iclog);
1005                error =  xlog_state_release_iclog(log, iclog);
1006                switch (iclog->ic_state) {
1007                case XLOG_STATE_ACTIVE:
1008                case XLOG_STATE_DIRTY:
1009                case XLOG_STATE_IOERROR:
1010                        spin_unlock(&log->l_icloglock);
1011                        break;
1012                default:
1013                        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
1014                        break;
1015                }
1016        }
1017
1018        return error;
1019}       /* xfs_log_unmount_write */
1020
1021/*
1022 * Empty the log for unmount/freeze.
1023 *
1024 * To do this, we first need to shut down the background log work so it is not
1025 * trying to cover the log as we clean up. We then need to unpin all objects in
1026 * the log so we can then flush them out. Once they have completed their IO and
1027 * run the callbacks removing themselves from the AIL, we can write the unmount
1028 * record.
1029 */
1030void
1031xfs_log_quiesce(
1032        struct xfs_mount        *mp)
1033{
1034        cancel_delayed_work_sync(&mp->m_log->l_work);
1035        xfs_log_force(mp, XFS_LOG_SYNC);
1036
1037        /*
1038         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1039         * will push it, xfs_wait_buftarg() will not wait for it. Further,
1040         * xfs_buf_iowait() cannot be used because it was pushed with the
1041         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1042         * the IO to complete.
1043         */
1044        xfs_ail_push_all_sync(mp->m_ail);
1045        xfs_wait_buftarg(mp->m_ddev_targp);
1046        xfs_buf_lock(mp->m_sb_bp);
1047        xfs_buf_unlock(mp->m_sb_bp);
1048
1049        xfs_log_unmount_write(mp);
1050}
1051
1052/*
1053 * Shut down and release the AIL and Log.
1054 *
1055 * During unmount, we need to ensure we flush all the dirty metadata objects
1056 * from the AIL so that the log is empty before we write the unmount record to
1057 * the log. Once this is done, we can tear down the AIL and the log.
1058 */
1059void
1060xfs_log_unmount(
1061        struct xfs_mount        *mp)
1062{
1063        xfs_log_quiesce(mp);
1064
1065        xfs_trans_ail_destroy(mp);
1066
1067        xfs_sysfs_del(&mp->m_log->l_kobj);
1068
1069        xlog_dealloc_log(mp->m_log);
1070}
1071
1072void
1073xfs_log_item_init(
1074        struct xfs_mount        *mp,
1075        struct xfs_log_item     *item,
1076        int                     type,
1077        const struct xfs_item_ops *ops)
1078{
1079        item->li_mountp = mp;
1080        item->li_ailp = mp->m_ail;
1081        item->li_type = type;
1082        item->li_ops = ops;
1083        item->li_lv = NULL;
1084
1085        INIT_LIST_HEAD(&item->li_ail);
1086        INIT_LIST_HEAD(&item->li_cil);
1087        INIT_LIST_HEAD(&item->li_bio_list);
1088        INIT_LIST_HEAD(&item->li_trans);
1089}
1090
1091/*
1092 * Wake up processes waiting for log space after we have moved the log tail.
1093 */
1094void
1095xfs_log_space_wake(
1096        struct xfs_mount        *mp)
1097{
1098        struct xlog             *log = mp->m_log;
1099        int                     free_bytes;
1100
1101        if (XLOG_FORCED_SHUTDOWN(log))
1102                return;
1103
1104        if (!list_empty_careful(&log->l_write_head.waiters)) {
1105                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1106
1107                spin_lock(&log->l_write_head.lock);
1108                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1109                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1110                spin_unlock(&log->l_write_head.lock);
1111        }
1112
1113        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1114                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1115
1116                spin_lock(&log->l_reserve_head.lock);
1117                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1118                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1119                spin_unlock(&log->l_reserve_head.lock);
1120        }
1121}
1122
1123/*
1124 * Determine if we have a transaction that has gone to disk that needs to be
1125 * covered. To begin the transition to the idle state firstly the log needs to
1126 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1127 * we start attempting to cover the log.
1128 *
1129 * Only if we are then in a state where covering is needed, the caller is
1130 * informed that dummy transactions are required to move the log into the idle
1131 * state.
1132 *
1133 * If there are any items in the AIl or CIL, then we do not want to attempt to
1134 * cover the log as we may be in a situation where there isn't log space
1135 * available to run a dummy transaction and this can lead to deadlocks when the
1136 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1137 * there's no point in running a dummy transaction at this point because we
1138 * can't start trying to idle the log until both the CIL and AIL are empty.
1139 */
1140static int
1141xfs_log_need_covered(xfs_mount_t *mp)
1142{
1143        struct xlog     *log = mp->m_log;
1144        int             needed = 0;
1145
1146        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1147                return 0;
1148
1149        if (!xlog_cil_empty(log))
1150                return 0;
1151
1152        spin_lock(&log->l_icloglock);
1153        switch (log->l_covered_state) {
1154        case XLOG_STATE_COVER_DONE:
1155        case XLOG_STATE_COVER_DONE2:
1156        case XLOG_STATE_COVER_IDLE:
1157                break;
1158        case XLOG_STATE_COVER_NEED:
1159        case XLOG_STATE_COVER_NEED2:
1160                if (xfs_ail_min_lsn(log->l_ailp))
1161                        break;
1162                if (!xlog_iclogs_empty(log))
1163                        break;
1164
1165                needed = 1;
1166                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1167                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1168                else
1169                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1170                break;
1171        default:
1172                needed = 1;
1173                break;
1174        }
1175        spin_unlock(&log->l_icloglock);
1176        return needed;
1177}
1178
1179/*
1180 * We may be holding the log iclog lock upon entering this routine.
1181 */
1182xfs_lsn_t
1183xlog_assign_tail_lsn_locked(
1184        struct xfs_mount        *mp)
1185{
1186        struct xlog             *log = mp->m_log;
1187        struct xfs_log_item     *lip;
1188        xfs_lsn_t               tail_lsn;
1189
1190        assert_spin_locked(&mp->m_ail->ail_lock);
1191
1192        /*
1193         * To make sure we always have a valid LSN for the log tail we keep
1194         * track of the last LSN which was committed in log->l_last_sync_lsn,
1195         * and use that when the AIL was empty.
1196         */
1197        lip = xfs_ail_min(mp->m_ail);
1198        if (lip)
1199                tail_lsn = lip->li_lsn;
1200        else
1201                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1202        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1203        atomic64_set(&log->l_tail_lsn, tail_lsn);
1204        return tail_lsn;
1205}
1206
1207xfs_lsn_t
1208xlog_assign_tail_lsn(
1209        struct xfs_mount        *mp)
1210{
1211        xfs_lsn_t               tail_lsn;
1212
1213        spin_lock(&mp->m_ail->ail_lock);
1214        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1215        spin_unlock(&mp->m_ail->ail_lock);
1216
1217        return tail_lsn;
1218}
1219
1220/*
1221 * Return the space in the log between the tail and the head.  The head
1222 * is passed in the cycle/bytes formal parms.  In the special case where
1223 * the reserve head has wrapped passed the tail, this calculation is no
1224 * longer valid.  In this case, just return 0 which means there is no space
1225 * in the log.  This works for all places where this function is called
1226 * with the reserve head.  Of course, if the write head were to ever
1227 * wrap the tail, we should blow up.  Rather than catch this case here,
1228 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1229 *
1230 * This code also handles the case where the reservation head is behind
1231 * the tail.  The details of this case are described below, but the end
1232 * result is that we return the size of the log as the amount of space left.
1233 */
1234STATIC int
1235xlog_space_left(
1236        struct xlog     *log,
1237        atomic64_t      *head)
1238{
1239        int             free_bytes;
1240        int             tail_bytes;
1241        int             tail_cycle;
1242        int             head_cycle;
1243        int             head_bytes;
1244
1245        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1246        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1247        tail_bytes = BBTOB(tail_bytes);
1248        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1249                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1250        else if (tail_cycle + 1 < head_cycle)
1251                return 0;
1252        else if (tail_cycle < head_cycle) {
1253                ASSERT(tail_cycle == (head_cycle - 1));
1254                free_bytes = tail_bytes - head_bytes;
1255        } else {
1256                /*
1257                 * The reservation head is behind the tail.
1258                 * In this case we just want to return the size of the
1259                 * log as the amount of space left.
1260                 */
1261                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1262                xfs_alert(log->l_mp,
1263                          "  tail_cycle = %d, tail_bytes = %d",
1264                          tail_cycle, tail_bytes);
1265                xfs_alert(log->l_mp,
1266                          "  GH   cycle = %d, GH   bytes = %d",
1267                          head_cycle, head_bytes);
1268                ASSERT(0);
1269                free_bytes = log->l_logsize;
1270        }
1271        return free_bytes;
1272}
1273
1274
1275static void
1276xlog_ioend_work(
1277        struct work_struct      *work)
1278{
1279        struct xlog_in_core     *iclog =
1280                container_of(work, struct xlog_in_core, ic_end_io_work);
1281        struct xlog             *log = iclog->ic_log;
1282        bool                    aborted = false;
1283        int                     error;
1284
1285        error = blk_status_to_errno(iclog->ic_bio.bi_status);
1286#ifdef DEBUG
1287        /* treat writes with injected CRC errors as failed */
1288        if (iclog->ic_fail_crc)
1289                error = -EIO;
1290#endif
1291
1292        /*
1293         * Race to shutdown the filesystem if we see an error.
1294         */
1295        if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1296                xfs_alert(log->l_mp, "log I/O error %d", error);
1297                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1298                /*
1299                 * This flag will be propagated to the trans-committed
1300                 * callback routines to let them know that the log-commit
1301                 * didn't succeed.
1302                 */
1303                aborted = true;
1304        } else if (iclog->ic_state == XLOG_STATE_IOERROR) {
1305                aborted = true;
1306        }
1307
1308        xlog_state_done_syncing(iclog, aborted);
1309        bio_uninit(&iclog->ic_bio);
1310
1311        /*
1312         * Drop the lock to signal that we are done. Nothing references the
1313         * iclog after this, so an unmount waiting on this lock can now tear it
1314         * down safely. As such, it is unsafe to reference the iclog after the
1315         * unlock as we could race with it being freed.
1316         */
1317        up(&iclog->ic_sema);
1318}
1319
1320/*
1321 * Return size of each in-core log record buffer.
1322 *
1323 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1324 *
1325 * If the filesystem blocksize is too large, we may need to choose a
1326 * larger size since the directory code currently logs entire blocks.
1327 */
1328STATIC void
1329xlog_get_iclog_buffer_size(
1330        struct xfs_mount        *mp,
1331        struct xlog             *log)
1332{
1333        if (mp->m_logbufs <= 0)
1334                mp->m_logbufs = XLOG_MAX_ICLOGS;
1335        if (mp->m_logbsize <= 0)
1336                mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1337
1338        log->l_iclog_bufs = mp->m_logbufs;
1339        log->l_iclog_size = mp->m_logbsize;
1340
1341        /*
1342         * # headers = size / 32k - one header holds cycles from 32k of data.
1343         */
1344        log->l_iclog_heads =
1345                DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1346        log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1347}
1348
1349void
1350xfs_log_work_queue(
1351        struct xfs_mount        *mp)
1352{
1353        queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1354                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1355}
1356
1357/*
1358 * Every sync period we need to unpin all items in the AIL and push them to
1359 * disk. If there is nothing dirty, then we might need to cover the log to
1360 * indicate that the filesystem is idle.
1361 */
1362static void
1363xfs_log_worker(
1364        struct work_struct      *work)
1365{
1366        struct xlog             *log = container_of(to_delayed_work(work),
1367                                                struct xlog, l_work);
1368        struct xfs_mount        *mp = log->l_mp;
1369
1370        /* dgc: errors ignored - not fatal and nowhere to report them */
1371        if (xfs_log_need_covered(mp)) {
1372                /*
1373                 * Dump a transaction into the log that contains no real change.
1374                 * This is needed to stamp the current tail LSN into the log
1375                 * during the covering operation.
1376                 *
1377                 * We cannot use an inode here for this - that will push dirty
1378                 * state back up into the VFS and then periodic inode flushing
1379                 * will prevent log covering from making progress. Hence we
1380                 * synchronously log the superblock instead to ensure the
1381                 * superblock is immediately unpinned and can be written back.
1382                 */
1383                xfs_sync_sb(mp, true);
1384        } else
1385                xfs_log_force(mp, 0);
1386
1387        /* start pushing all the metadata that is currently dirty */
1388        xfs_ail_push_all(mp->m_ail);
1389
1390        /* queue us up again */
1391        xfs_log_work_queue(mp);
1392}
1393
1394/*
1395 * This routine initializes some of the log structure for a given mount point.
1396 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1397 * some other stuff may be filled in too.
1398 */
1399STATIC struct xlog *
1400xlog_alloc_log(
1401        struct xfs_mount        *mp,
1402        struct xfs_buftarg      *log_target,
1403        xfs_daddr_t             blk_offset,
1404        int                     num_bblks)
1405{
1406        struct xlog             *log;
1407        xlog_rec_header_t       *head;
1408        xlog_in_core_t          **iclogp;
1409        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1410        int                     i;
1411        int                     error = -ENOMEM;
1412        uint                    log2_size = 0;
1413
1414        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1415        if (!log) {
1416                xfs_warn(mp, "Log allocation failed: No memory!");
1417                goto out;
1418        }
1419
1420        log->l_mp          = mp;
1421        log->l_targ        = log_target;
1422        log->l_logsize     = BBTOB(num_bblks);
1423        log->l_logBBstart  = blk_offset;
1424        log->l_logBBsize   = num_bblks;
1425        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1426        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1427        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1428
1429        log->l_prev_block  = -1;
1430        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1431        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1432        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1433        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1434
1435        xlog_grant_head_init(&log->l_reserve_head);
1436        xlog_grant_head_init(&log->l_write_head);
1437
1438        error = -EFSCORRUPTED;
1439        if (xfs_sb_version_hassector(&mp->m_sb)) {
1440                log2_size = mp->m_sb.sb_logsectlog;
1441                if (log2_size < BBSHIFT) {
1442                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1443                                log2_size, BBSHIFT);
1444                        goto out_free_log;
1445                }
1446
1447                log2_size -= BBSHIFT;
1448                if (log2_size > mp->m_sectbb_log) {
1449                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1450                                log2_size, mp->m_sectbb_log);
1451                        goto out_free_log;
1452                }
1453
1454                /* for larger sector sizes, must have v2 or external log */
1455                if (log2_size && log->l_logBBstart > 0 &&
1456                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1457                        xfs_warn(mp,
1458                "log sector size (0x%x) invalid for configuration.",
1459                                log2_size);
1460                        goto out_free_log;
1461                }
1462        }
1463        log->l_sectBBsize = 1 << log2_size;
1464
1465        xlog_get_iclog_buffer_size(mp, log);
1466
1467        spin_lock_init(&log->l_icloglock);
1468        init_waitqueue_head(&log->l_flush_wait);
1469
1470        iclogp = &log->l_iclog;
1471        /*
1472         * The amount of memory to allocate for the iclog structure is
1473         * rather funky due to the way the structure is defined.  It is
1474         * done this way so that we can use different sizes for machines
1475         * with different amounts of memory.  See the definition of
1476         * xlog_in_core_t in xfs_log_priv.h for details.
1477         */
1478        ASSERT(log->l_iclog_size >= 4096);
1479        for (i = 0; i < log->l_iclog_bufs; i++) {
1480                int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1481                size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1482                                sizeof(struct bio_vec);
1483
1484                iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1485                if (!iclog)
1486                        goto out_free_iclog;
1487
1488                *iclogp = iclog;
1489                iclog->ic_prev = prev_iclog;
1490                prev_iclog = iclog;
1491
1492                iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1493                                                KM_MAYFAIL | KM_ZERO);
1494                if (!iclog->ic_data)
1495                        goto out_free_iclog;
1496#ifdef DEBUG
1497                log->l_iclog_bak[i] = &iclog->ic_header;
1498#endif
1499                head = &iclog->ic_header;
1500                memset(head, 0, sizeof(xlog_rec_header_t));
1501                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1502                head->h_version = cpu_to_be32(
1503                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1504                head->h_size = cpu_to_be32(log->l_iclog_size);
1505                /* new fields */
1506                head->h_fmt = cpu_to_be32(XLOG_FMT);
1507                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1508
1509                iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1510                iclog->ic_state = XLOG_STATE_ACTIVE;
1511                iclog->ic_log = log;
1512                atomic_set(&iclog->ic_refcnt, 0);
1513                spin_lock_init(&iclog->ic_callback_lock);
1514                INIT_LIST_HEAD(&iclog->ic_callbacks);
1515                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1516
1517                init_waitqueue_head(&iclog->ic_force_wait);
1518                init_waitqueue_head(&iclog->ic_write_wait);
1519                INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1520                sema_init(&iclog->ic_sema, 1);
1521
1522                iclogp = &iclog->ic_next;
1523        }
1524        *iclogp = log->l_iclog;                 /* complete ring */
1525        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1526
1527        log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1528                        WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1529                        mp->m_super->s_id);
1530        if (!log->l_ioend_workqueue)
1531                goto out_free_iclog;
1532
1533        error = xlog_cil_init(log);
1534        if (error)
1535                goto out_destroy_workqueue;
1536        return log;
1537
1538out_destroy_workqueue:
1539        destroy_workqueue(log->l_ioend_workqueue);
1540out_free_iclog:
1541        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1542                prev_iclog = iclog->ic_next;
1543                kmem_free(iclog->ic_data);
1544                kmem_free(iclog);
1545                if (prev_iclog == log->l_iclog)
1546                        break;
1547        }
1548out_free_log:
1549        kmem_free(log);
1550out:
1551        return ERR_PTR(error);
1552}       /* xlog_alloc_log */
1553
1554
1555/*
1556 * Write out the commit record of a transaction associated with the given
1557 * ticket.  Return the lsn of the commit record.
1558 */
1559STATIC int
1560xlog_commit_record(
1561        struct xlog             *log,
1562        struct xlog_ticket      *ticket,
1563        struct xlog_in_core     **iclog,
1564        xfs_lsn_t               *commitlsnp)
1565{
1566        struct xfs_mount *mp = log->l_mp;
1567        int     error;
1568        struct xfs_log_iovec reg = {
1569                .i_addr = NULL,
1570                .i_len = 0,
1571                .i_type = XLOG_REG_TYPE_COMMIT,
1572        };
1573        struct xfs_log_vec vec = {
1574                .lv_niovecs = 1,
1575                .lv_iovecp = &reg,
1576        };
1577
1578        ASSERT_ALWAYS(iclog);
1579        error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1580                                        XLOG_COMMIT_TRANS);
1581        if (error)
1582                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1583        return error;
1584}
1585
1586/*
1587 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1588 * log space.  This code pushes on the lsn which would supposedly free up
1589 * the 25% which we want to leave free.  We may need to adopt a policy which
1590 * pushes on an lsn which is further along in the log once we reach the high
1591 * water mark.  In this manner, we would be creating a low water mark.
1592 */
1593STATIC void
1594xlog_grant_push_ail(
1595        struct xlog     *log,
1596        int             need_bytes)
1597{
1598        xfs_lsn_t       threshold_lsn = 0;
1599        xfs_lsn_t       last_sync_lsn;
1600        int             free_blocks;
1601        int             free_bytes;
1602        int             threshold_block;
1603        int             threshold_cycle;
1604        int             free_threshold;
1605
1606        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1607
1608        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1609        free_blocks = BTOBBT(free_bytes);
1610
1611        /*
1612         * Set the threshold for the minimum number of free blocks in the
1613         * log to the maximum of what the caller needs, one quarter of the
1614         * log, and 256 blocks.
1615         */
1616        free_threshold = BTOBB(need_bytes);
1617        free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1618        free_threshold = max(free_threshold, 256);
1619        if (free_blocks >= free_threshold)
1620                return;
1621
1622        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1623                                                &threshold_block);
1624        threshold_block += free_threshold;
1625        if (threshold_block >= log->l_logBBsize) {
1626                threshold_block -= log->l_logBBsize;
1627                threshold_cycle += 1;
1628        }
1629        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1630                                        threshold_block);
1631        /*
1632         * Don't pass in an lsn greater than the lsn of the last
1633         * log record known to be on disk. Use a snapshot of the last sync lsn
1634         * so that it doesn't change between the compare and the set.
1635         */
1636        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1637        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1638                threshold_lsn = last_sync_lsn;
1639
1640        /*
1641         * Get the transaction layer to kick the dirty buffers out to
1642         * disk asynchronously. No point in trying to do this if
1643         * the filesystem is shutting down.
1644         */
1645        if (!XLOG_FORCED_SHUTDOWN(log))
1646                xfs_ail_push(log->l_ailp, threshold_lsn);
1647}
1648
1649/*
1650 * Stamp cycle number in every block
1651 */
1652STATIC void
1653xlog_pack_data(
1654        struct xlog             *log,
1655        struct xlog_in_core     *iclog,
1656        int                     roundoff)
1657{
1658        int                     i, j, k;
1659        int                     size = iclog->ic_offset + roundoff;
1660        __be32                  cycle_lsn;
1661        char                    *dp;
1662
1663        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1664
1665        dp = iclog->ic_datap;
1666        for (i = 0; i < BTOBB(size); i++) {
1667                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1668                        break;
1669                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1670                *(__be32 *)dp = cycle_lsn;
1671                dp += BBSIZE;
1672        }
1673
1674        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1675                xlog_in_core_2_t *xhdr = iclog->ic_data;
1676
1677                for ( ; i < BTOBB(size); i++) {
1678                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1679                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1680                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1681                        *(__be32 *)dp = cycle_lsn;
1682                        dp += BBSIZE;
1683                }
1684
1685                for (i = 1; i < log->l_iclog_heads; i++)
1686                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1687        }
1688}
1689
1690/*
1691 * Calculate the checksum for a log buffer.
1692 *
1693 * This is a little more complicated than it should be because the various
1694 * headers and the actual data are non-contiguous.
1695 */
1696__le32
1697xlog_cksum(
1698        struct xlog             *log,
1699        struct xlog_rec_header  *rhead,
1700        char                    *dp,
1701        int                     size)
1702{
1703        uint32_t                crc;
1704
1705        /* first generate the crc for the record header ... */
1706        crc = xfs_start_cksum_update((char *)rhead,
1707                              sizeof(struct xlog_rec_header),
1708                              offsetof(struct xlog_rec_header, h_crc));
1709
1710        /* ... then for additional cycle data for v2 logs ... */
1711        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1712                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1713                int             i;
1714                int             xheads;
1715
1716                xheads = size / XLOG_HEADER_CYCLE_SIZE;
1717                if (size % XLOG_HEADER_CYCLE_SIZE)
1718                        xheads++;
1719
1720                for (i = 1; i < xheads; i++) {
1721                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1722                                     sizeof(struct xlog_rec_ext_header));
1723                }
1724        }
1725
1726        /* ... and finally for the payload */
1727        crc = crc32c(crc, dp, size);
1728
1729        return xfs_end_cksum(crc);
1730}
1731
1732static void
1733xlog_bio_end_io(
1734        struct bio              *bio)
1735{
1736        struct xlog_in_core     *iclog = bio->bi_private;
1737
1738        queue_work(iclog->ic_log->l_ioend_workqueue,
1739                   &iclog->ic_end_io_work);
1740}
1741
1742static void
1743xlog_map_iclog_data(
1744        struct bio              *bio,
1745        void                    *data,
1746        size_t                  count)
1747{
1748        do {
1749                struct page     *page = kmem_to_page(data);
1750                unsigned int    off = offset_in_page(data);
1751                size_t          len = min_t(size_t, count, PAGE_SIZE - off);
1752
1753                WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1754
1755                data += len;
1756                count -= len;
1757        } while (count);
1758}
1759
1760STATIC void
1761xlog_write_iclog(
1762        struct xlog             *log,
1763        struct xlog_in_core     *iclog,
1764        uint64_t                bno,
1765        unsigned int            count,
1766        bool                    need_flush)
1767{
1768        ASSERT(bno < log->l_logBBsize);
1769
1770        /*
1771         * We lock the iclogbufs here so that we can serialise against I/O
1772         * completion during unmount.  We might be processing a shutdown
1773         * triggered during unmount, and that can occur asynchronously to the
1774         * unmount thread, and hence we need to ensure that completes before
1775         * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1776         * across the log IO to archieve that.
1777         */
1778        down(&iclog->ic_sema);
1779        if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1780                /*
1781                 * It would seem logical to return EIO here, but we rely on
1782                 * the log state machine to propagate I/O errors instead of
1783                 * doing it here.  We kick of the state machine and unlock
1784                 * the buffer manually, the code needs to be kept in sync
1785                 * with the I/O completion path.
1786                 */
1787                xlog_state_done_syncing(iclog, true);
1788                up(&iclog->ic_sema);
1789                return;
1790        }
1791
1792        bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1793        bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1794        iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1795        iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1796        iclog->ic_bio.bi_private = iclog;
1797        iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1798        if (need_flush)
1799                iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1800
1801        xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count);
1802        if (is_vmalloc_addr(iclog->ic_data))
1803                flush_kernel_vmap_range(iclog->ic_data, count);
1804
1805        /*
1806         * If this log buffer would straddle the end of the log we will have
1807         * to split it up into two bios, so that we can continue at the start.
1808         */
1809        if (bno + BTOBB(count) > log->l_logBBsize) {
1810                struct bio *split;
1811
1812                split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1813                                  GFP_NOIO, &fs_bio_set);
1814                bio_chain(split, &iclog->ic_bio);
1815                submit_bio(split);
1816
1817                /* restart at logical offset zero for the remainder */
1818                iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1819        }
1820
1821        submit_bio(&iclog->ic_bio);
1822}
1823
1824/*
1825 * We need to bump cycle number for the part of the iclog that is
1826 * written to the start of the log. Watch out for the header magic
1827 * number case, though.
1828 */
1829static void
1830xlog_split_iclog(
1831        struct xlog             *log,
1832        void                    *data,
1833        uint64_t                bno,
1834        unsigned int            count)
1835{
1836        unsigned int            split_offset = BBTOB(log->l_logBBsize - bno);
1837        unsigned int            i;
1838
1839        for (i = split_offset; i < count; i += BBSIZE) {
1840                uint32_t cycle = get_unaligned_be32(data + i);
1841
1842                if (++cycle == XLOG_HEADER_MAGIC_NUM)
1843                        cycle++;
1844                put_unaligned_be32(cycle, data + i);
1845        }
1846}
1847
1848static int
1849xlog_calc_iclog_size(
1850        struct xlog             *log,
1851        struct xlog_in_core     *iclog,
1852        uint32_t                *roundoff)
1853{
1854        uint32_t                count_init, count;
1855        bool                    use_lsunit;
1856
1857        use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1858                        log->l_mp->m_sb.sb_logsunit > 1;
1859
1860        /* Add for LR header */
1861        count_init = log->l_iclog_hsize + iclog->ic_offset;
1862
1863        /* Round out the log write size */
1864        if (use_lsunit) {
1865                /* we have a v2 stripe unit to use */
1866                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1867        } else {
1868                count = BBTOB(BTOBB(count_init));
1869        }
1870
1871        ASSERT(count >= count_init);
1872        *roundoff = count - count_init;
1873
1874        if (use_lsunit)
1875                ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1876        else
1877                ASSERT(*roundoff < BBTOB(1));
1878        return count;
1879}
1880
1881/*
1882 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1883 * fashion.  Previously, we should have moved the current iclog
1884 * ptr in the log to point to the next available iclog.  This allows further
1885 * write to continue while this code syncs out an iclog ready to go.
1886 * Before an in-core log can be written out, the data section must be scanned
1887 * to save away the 1st word of each BBSIZE block into the header.  We replace
1888 * it with the current cycle count.  Each BBSIZE block is tagged with the
1889 * cycle count because there in an implicit assumption that drives will
1890 * guarantee that entire 512 byte blocks get written at once.  In other words,
1891 * we can't have part of a 512 byte block written and part not written.  By
1892 * tagging each block, we will know which blocks are valid when recovering
1893 * after an unclean shutdown.
1894 *
1895 * This routine is single threaded on the iclog.  No other thread can be in
1896 * this routine with the same iclog.  Changing contents of iclog can there-
1897 * fore be done without grabbing the state machine lock.  Updating the global
1898 * log will require grabbing the lock though.
1899 *
1900 * The entire log manager uses a logical block numbering scheme.  Only
1901 * xlog_write_iclog knows about the fact that the log may not start with
1902 * block zero on a given device.
1903 */
1904STATIC void
1905xlog_sync(
1906        struct xlog             *log,
1907        struct xlog_in_core     *iclog)
1908{
1909        unsigned int            count;          /* byte count of bwrite */
1910        unsigned int            roundoff;       /* roundoff to BB or stripe */
1911        uint64_t                bno;
1912        unsigned int            size;
1913        bool                    need_flush = true, split = false;
1914
1915        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1916
1917        count = xlog_calc_iclog_size(log, iclog, &roundoff);
1918
1919        /* move grant heads by roundoff in sync */
1920        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1921        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1922
1923        /* put cycle number in every block */
1924        xlog_pack_data(log, iclog, roundoff); 
1925
1926        /* real byte length */
1927        size = iclog->ic_offset;
1928        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1929                size += roundoff;
1930        iclog->ic_header.h_len = cpu_to_be32(size);
1931
1932        XFS_STATS_INC(log->l_mp, xs_log_writes);
1933        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1934
1935        bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1936
1937        /* Do we need to split this write into 2 parts? */
1938        if (bno + BTOBB(count) > log->l_logBBsize) {
1939                xlog_split_iclog(log, &iclog->ic_header, bno, count);
1940                split = true;
1941        }
1942
1943        /* calculcate the checksum */
1944        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1945                                            iclog->ic_datap, size);
1946        /*
1947         * Intentionally corrupt the log record CRC based on the error injection
1948         * frequency, if defined. This facilitates testing log recovery in the
1949         * event of torn writes. Hence, set the IOABORT state to abort the log
1950         * write on I/O completion and shutdown the fs. The subsequent mount
1951         * detects the bad CRC and attempts to recover.
1952         */
1953#ifdef DEBUG
1954        if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1955                iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1956                iclog->ic_fail_crc = true;
1957                xfs_warn(log->l_mp,
1958        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1959                         be64_to_cpu(iclog->ic_header.h_lsn));
1960        }
1961#endif
1962
1963        /*
1964         * Flush the data device before flushing the log to make sure all meta
1965         * data written back from the AIL actually made it to disk before
1966         * stamping the new log tail LSN into the log buffer.  For an external
1967         * log we need to issue the flush explicitly, and unfortunately
1968         * synchronously here; for an internal log we can simply use the block
1969         * layer state machine for preflushes.
1970         */
1971        if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1972                xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1973                need_flush = false;
1974        }
1975
1976        xlog_verify_iclog(log, iclog, count);
1977        xlog_write_iclog(log, iclog, bno, count, need_flush);
1978}
1979
1980/*
1981 * Deallocate a log structure
1982 */
1983STATIC void
1984xlog_dealloc_log(
1985        struct xlog     *log)
1986{
1987        xlog_in_core_t  *iclog, *next_iclog;
1988        int             i;
1989
1990        xlog_cil_destroy(log);
1991
1992        /*
1993         * Cycle all the iclogbuf locks to make sure all log IO completion
1994         * is done before we tear down these buffers.
1995         */
1996        iclog = log->l_iclog;
1997        for (i = 0; i < log->l_iclog_bufs; i++) {
1998                down(&iclog->ic_sema);
1999                up(&iclog->ic_sema);
2000                iclog = iclog->ic_next;
2001        }
2002
2003        iclog = log->l_iclog;
2004        for (i = 0; i < log->l_iclog_bufs; i++) {
2005                next_iclog = iclog->ic_next;
2006                kmem_free(iclog->ic_data);
2007                kmem_free(iclog);
2008                iclog = next_iclog;
2009        }
2010
2011        log->l_mp->m_log = NULL;
2012        destroy_workqueue(log->l_ioend_workqueue);
2013        kmem_free(log);
2014}       /* xlog_dealloc_log */
2015
2016/*
2017 * Update counters atomically now that memcpy is done.
2018 */
2019static inline void
2020xlog_state_finish_copy(
2021        struct xlog             *log,
2022        struct xlog_in_core     *iclog,
2023        int                     record_cnt,
2024        int                     copy_bytes)
2025{
2026        lockdep_assert_held(&log->l_icloglock);
2027
2028        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2029        iclog->ic_offset += copy_bytes;
2030}
2031
2032/*
2033 * print out info relating to regions written which consume
2034 * the reservation
2035 */
2036void
2037xlog_print_tic_res(
2038        struct xfs_mount        *mp,
2039        struct xlog_ticket      *ticket)
2040{
2041        uint i;
2042        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2043
2044        /* match with XLOG_REG_TYPE_* in xfs_log.h */
2045#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2046        static char *res_type_str[] = {
2047            REG_TYPE_STR(BFORMAT, "bformat"),
2048            REG_TYPE_STR(BCHUNK, "bchunk"),
2049            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2050            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2051            REG_TYPE_STR(IFORMAT, "iformat"),
2052            REG_TYPE_STR(ICORE, "icore"),
2053            REG_TYPE_STR(IEXT, "iext"),
2054            REG_TYPE_STR(IBROOT, "ibroot"),
2055            REG_TYPE_STR(ILOCAL, "ilocal"),
2056            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2057            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2058            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2059            REG_TYPE_STR(QFORMAT, "qformat"),
2060            REG_TYPE_STR(DQUOT, "dquot"),
2061            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2062            REG_TYPE_STR(LRHEADER, "LR header"),
2063            REG_TYPE_STR(UNMOUNT, "unmount"),
2064            REG_TYPE_STR(COMMIT, "commit"),
2065            REG_TYPE_STR(TRANSHDR, "trans header"),
2066            REG_TYPE_STR(ICREATE, "inode create"),
2067            REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2068            REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2069            REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2070            REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2071            REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2072            REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2073        };
2074        BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2075#undef REG_TYPE_STR
2076
2077        xfs_warn(mp, "ticket reservation summary:");
2078        xfs_warn(mp, "  unit res    = %d bytes",
2079                 ticket->t_unit_res);
2080        xfs_warn(mp, "  current res = %d bytes",
2081                 ticket->t_curr_res);
2082        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2083                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2084        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2085                 ticket->t_res_num_ophdrs, ophdr_spc);
2086        xfs_warn(mp, "  ophdr + reg = %u bytes",
2087                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2088        xfs_warn(mp, "  num regions = %u",
2089                 ticket->t_res_num);
2090
2091        for (i = 0; i < ticket->t_res_num; i++) {
2092                uint r_type = ticket->t_res_arr[i].r_type;
2093                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2094                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2095                            "bad-rtype" : res_type_str[r_type]),
2096                            ticket->t_res_arr[i].r_len);
2097        }
2098}
2099
2100/*
2101 * Print a summary of the transaction.
2102 */
2103void
2104xlog_print_trans(
2105        struct xfs_trans        *tp)
2106{
2107        struct xfs_mount        *mp = tp->t_mountp;
2108        struct xfs_log_item     *lip;
2109
2110        /* dump core transaction and ticket info */
2111        xfs_warn(mp, "transaction summary:");
2112        xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2113        xfs_warn(mp, "  log count = %d", tp->t_log_count);
2114        xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2115
2116        xlog_print_tic_res(mp, tp->t_ticket);
2117
2118        /* dump each log item */
2119        list_for_each_entry(lip, &tp->t_items, li_trans) {
2120                struct xfs_log_vec      *lv = lip->li_lv;
2121                struct xfs_log_iovec    *vec;
2122                int                     i;
2123
2124                xfs_warn(mp, "log item: ");
2125                xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2126                xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2127                if (!lv)
2128                        continue;
2129                xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2130                xfs_warn(mp, "  size    = %d", lv->lv_size);
2131                xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2132                xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2133
2134                /* dump each iovec for the log item */
2135                vec = lv->lv_iovecp;
2136                for (i = 0; i < lv->lv_niovecs; i++) {
2137                        int dumplen = min(vec->i_len, 32);
2138
2139                        xfs_warn(mp, "  iovec[%d]", i);
2140                        xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2141                        xfs_warn(mp, "    len   = %d", vec->i_len);
2142                        xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2143                        xfs_hex_dump(vec->i_addr, dumplen);
2144
2145                        vec++;
2146                }
2147        }
2148}
2149
2150/*
2151 * Calculate the potential space needed by the log vector.  Each region gets
2152 * its own xlog_op_header_t and may need to be double word aligned.
2153 */
2154static int
2155xlog_write_calc_vec_length(
2156        struct xlog_ticket      *ticket,
2157        struct xfs_log_vec      *log_vector)
2158{
2159        struct xfs_log_vec      *lv;
2160        int                     headers = 0;
2161        int                     len = 0;
2162        int                     i;
2163
2164        /* acct for start rec of xact */
2165        if (ticket->t_flags & XLOG_TIC_INITED)
2166                headers++;
2167
2168        for (lv = log_vector; lv; lv = lv->lv_next) {
2169                /* we don't write ordered log vectors */
2170                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2171                        continue;
2172
2173                headers += lv->lv_niovecs;
2174
2175                for (i = 0; i < lv->lv_niovecs; i++) {
2176                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2177
2178                        len += vecp->i_len;
2179                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2180                }
2181        }
2182
2183        ticket->t_res_num_ophdrs += headers;
2184        len += headers * sizeof(struct xlog_op_header);
2185
2186        return len;
2187}
2188
2189/*
2190 * If first write for transaction, insert start record  We can't be trying to
2191 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2192 */
2193static int
2194xlog_write_start_rec(
2195        struct xlog_op_header   *ophdr,
2196        struct xlog_ticket      *ticket)
2197{
2198        if (!(ticket->t_flags & XLOG_TIC_INITED))
2199                return 0;
2200
2201        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2202        ophdr->oh_clientid = ticket->t_clientid;
2203        ophdr->oh_len = 0;
2204        ophdr->oh_flags = XLOG_START_TRANS;
2205        ophdr->oh_res2 = 0;
2206
2207        ticket->t_flags &= ~XLOG_TIC_INITED;
2208
2209        return sizeof(struct xlog_op_header);
2210}
2211
2212static xlog_op_header_t *
2213xlog_write_setup_ophdr(
2214        struct xlog             *log,
2215        struct xlog_op_header   *ophdr,
2216        struct xlog_ticket      *ticket,
2217        uint                    flags)
2218{
2219        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2220        ophdr->oh_clientid = ticket->t_clientid;
2221        ophdr->oh_res2 = 0;
2222
2223        /* are we copying a commit or unmount record? */
2224        ophdr->oh_flags = flags;
2225
2226        /*
2227         * We've seen logs corrupted with bad transaction client ids.  This
2228         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2229         * and shut down the filesystem.
2230         */
2231        switch (ophdr->oh_clientid)  {
2232        case XFS_TRANSACTION:
2233        case XFS_VOLUME:
2234        case XFS_LOG:
2235                break;
2236        default:
2237                xfs_warn(log->l_mp,
2238                        "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2239                        ophdr->oh_clientid, ticket);
2240                return NULL;
2241        }
2242
2243        return ophdr;
2244}
2245
2246/*
2247 * Set up the parameters of the region copy into the log. This has
2248 * to handle region write split across multiple log buffers - this
2249 * state is kept external to this function so that this code can
2250 * be written in an obvious, self documenting manner.
2251 */
2252static int
2253xlog_write_setup_copy(
2254        struct xlog_ticket      *ticket,
2255        struct xlog_op_header   *ophdr,
2256        int                     space_available,
2257        int                     space_required,
2258        int                     *copy_off,
2259        int                     *copy_len,
2260        int                     *last_was_partial_copy,
2261        int                     *bytes_consumed)
2262{
2263        int                     still_to_copy;
2264
2265        still_to_copy = space_required - *bytes_consumed;
2266        *copy_off = *bytes_consumed;
2267
2268        if (still_to_copy <= space_available) {
2269                /* write of region completes here */
2270                *copy_len = still_to_copy;
2271                ophdr->oh_len = cpu_to_be32(*copy_len);
2272                if (*last_was_partial_copy)
2273                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2274                *last_was_partial_copy = 0;
2275                *bytes_consumed = 0;
2276                return 0;
2277        }
2278
2279        /* partial write of region, needs extra log op header reservation */
2280        *copy_len = space_available;
2281        ophdr->oh_len = cpu_to_be32(*copy_len);
2282        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2283        if (*last_was_partial_copy)
2284                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2285        *bytes_consumed += *copy_len;
2286        (*last_was_partial_copy)++;
2287
2288        /* account for new log op header */
2289        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2290        ticket->t_res_num_ophdrs++;
2291
2292        return sizeof(struct xlog_op_header);
2293}
2294
2295static int
2296xlog_write_copy_finish(
2297        struct xlog             *log,
2298        struct xlog_in_core     *iclog,
2299        uint                    flags,
2300        int                     *record_cnt,
2301        int                     *data_cnt,
2302        int                     *partial_copy,
2303        int                     *partial_copy_len,
2304        int                     log_offset,
2305        struct xlog_in_core     **commit_iclog)
2306{
2307        int                     error;
2308
2309        if (*partial_copy) {
2310                /*
2311                 * This iclog has already been marked WANT_SYNC by
2312                 * xlog_state_get_iclog_space.
2313                 */
2314                spin_lock(&log->l_icloglock);
2315                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2316                *record_cnt = 0;
2317                *data_cnt = 0;
2318                goto release_iclog;
2319        }
2320
2321        *partial_copy = 0;
2322        *partial_copy_len = 0;
2323
2324        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2325                /* no more space in this iclog - push it. */
2326                spin_lock(&log->l_icloglock);
2327                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2328                *record_cnt = 0;
2329                *data_cnt = 0;
2330
2331                xlog_state_want_sync(log, iclog);
2332                if (!commit_iclog)
2333                        goto release_iclog;
2334                spin_unlock(&log->l_icloglock);
2335                ASSERT(flags & XLOG_COMMIT_TRANS);
2336                *commit_iclog = iclog;
2337        }
2338
2339        return 0;
2340
2341release_iclog:
2342        error = xlog_state_release_iclog(log, iclog);
2343        spin_unlock(&log->l_icloglock);
2344        return error;
2345}
2346
2347/*
2348 * Write some region out to in-core log
2349 *
2350 * This will be called when writing externally provided regions or when
2351 * writing out a commit record for a given transaction.
2352 *
2353 * General algorithm:
2354 *      1. Find total length of this write.  This may include adding to the
2355 *              lengths passed in.
2356 *      2. Check whether we violate the tickets reservation.
2357 *      3. While writing to this iclog
2358 *          A. Reserve as much space in this iclog as can get
2359 *          B. If this is first write, save away start lsn
2360 *          C. While writing this region:
2361 *              1. If first write of transaction, write start record
2362 *              2. Write log operation header (header per region)
2363 *              3. Find out if we can fit entire region into this iclog
2364 *              4. Potentially, verify destination memcpy ptr
2365 *              5. Memcpy (partial) region
2366 *              6. If partial copy, release iclog; otherwise, continue
2367 *                      copying more regions into current iclog
2368 *      4. Mark want sync bit (in simulation mode)
2369 *      5. Release iclog for potential flush to on-disk log.
2370 *
2371 * ERRORS:
2372 * 1.   Panic if reservation is overrun.  This should never happen since
2373 *      reservation amounts are generated internal to the filesystem.
2374 * NOTES:
2375 * 1. Tickets are single threaded data structures.
2376 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2377 *      syncing routine.  When a single log_write region needs to span
2378 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2379 *      on all log operation writes which don't contain the end of the
2380 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2381 *      operation which contains the end of the continued log_write region.
2382 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2383 *      we don't really know exactly how much space will be used.  As a result,
2384 *      we don't update ic_offset until the end when we know exactly how many
2385 *      bytes have been written out.
2386 */
2387int
2388xlog_write(
2389        struct xlog             *log,
2390        struct xfs_log_vec      *log_vector,
2391        struct xlog_ticket      *ticket,
2392        xfs_lsn_t               *start_lsn,
2393        struct xlog_in_core     **commit_iclog,
2394        uint                    flags)
2395{
2396        struct xlog_in_core     *iclog = NULL;
2397        struct xfs_log_iovec    *vecp;
2398        struct xfs_log_vec      *lv;
2399        int                     len;
2400        int                     index;
2401        int                     partial_copy = 0;
2402        int                     partial_copy_len = 0;
2403        int                     contwr = 0;
2404        int                     record_cnt = 0;
2405        int                     data_cnt = 0;
2406        int                     error = 0;
2407
2408        *start_lsn = 0;
2409
2410        len = xlog_write_calc_vec_length(ticket, log_vector);
2411
2412        /*
2413         * Region headers and bytes are already accounted for.
2414         * We only need to take into account start records and
2415         * split regions in this function.
2416         */
2417        if (ticket->t_flags & XLOG_TIC_INITED)
2418                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2419
2420        /*
2421         * Commit record headers need to be accounted for. These
2422         * come in as separate writes so are easy to detect.
2423         */
2424        if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2425                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2426
2427        if (ticket->t_curr_res < 0) {
2428                xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2429                     "ctx ticket reservation ran out. Need to up reservation");
2430                xlog_print_tic_res(log->l_mp, ticket);
2431                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2432        }
2433
2434        index = 0;
2435        lv = log_vector;
2436        vecp = lv->lv_iovecp;
2437        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2438                void            *ptr;
2439                int             log_offset;
2440
2441                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2442                                                   &contwr, &log_offset);
2443                if (error)
2444                        return error;
2445
2446                ASSERT(log_offset <= iclog->ic_size - 1);
2447                ptr = iclog->ic_datap + log_offset;
2448
2449                /* start_lsn is the first lsn written to. That's all we need. */
2450                if (!*start_lsn)
2451                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2452
2453                /*
2454                 * This loop writes out as many regions as can fit in the amount
2455                 * of space which was allocated by xlog_state_get_iclog_space().
2456                 */
2457                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2458                        struct xfs_log_iovec    *reg;
2459                        struct xlog_op_header   *ophdr;
2460                        int                     start_rec_copy;
2461                        int                     copy_len;
2462                        int                     copy_off;
2463                        bool                    ordered = false;
2464
2465                        /* ordered log vectors have no regions to write */
2466                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2467                                ASSERT(lv->lv_niovecs == 0);
2468                                ordered = true;
2469                                goto next_lv;
2470                        }
2471
2472                        reg = &vecp[index];
2473                        ASSERT(reg->i_len % sizeof(int32_t) == 0);
2474                        ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2475
2476                        start_rec_copy = xlog_write_start_rec(ptr, ticket);
2477                        if (start_rec_copy) {
2478                                record_cnt++;
2479                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2480                                                   start_rec_copy);
2481                        }
2482
2483                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2484                        if (!ophdr)
2485                                return -EIO;
2486
2487                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488                                           sizeof(struct xlog_op_header));
2489
2490                        len += xlog_write_setup_copy(ticket, ophdr,
2491                                                     iclog->ic_size-log_offset,
2492                                                     reg->i_len,
2493                                                     &copy_off, &copy_len,
2494                                                     &partial_copy,
2495                                                     &partial_copy_len);
2496                        xlog_verify_dest_ptr(log, ptr);
2497
2498                        /*
2499                         * Copy region.
2500                         *
2501                         * Unmount records just log an opheader, so can have
2502                         * empty payloads with no data region to copy. Hence we
2503                         * only copy the payload if the vector says it has data
2504                         * to copy.
2505                         */
2506                        ASSERT(copy_len >= 0);
2507                        if (copy_len > 0) {
2508                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2509                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2510                                                   copy_len);
2511                        }
2512                        copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2513                        record_cnt++;
2514                        data_cnt += contwr ? copy_len : 0;
2515
2516                        error = xlog_write_copy_finish(log, iclog, flags,
2517                                                       &record_cnt, &data_cnt,
2518                                                       &partial_copy,
2519                                                       &partial_copy_len,
2520                                                       log_offset,
2521                                                       commit_iclog);
2522                        if (error)
2523                                return error;
2524
2525                        /*
2526                         * if we had a partial copy, we need to get more iclog
2527                         * space but we don't want to increment the region
2528                         * index because there is still more is this region to
2529                         * write.
2530                         *
2531                         * If we completed writing this region, and we flushed
2532                         * the iclog (indicated by resetting of the record
2533                         * count), then we also need to get more log space. If
2534                         * this was the last record, though, we are done and
2535                         * can just return.
2536                         */
2537                        if (partial_copy)
2538                                break;
2539
2540                        if (++index == lv->lv_niovecs) {
2541next_lv:
2542                                lv = lv->lv_next;
2543                                index = 0;
2544                                if (lv)
2545                                        vecp = lv->lv_iovecp;
2546                        }
2547                        if (record_cnt == 0 && !ordered) {
2548                                if (!lv)
2549                                        return 0;
2550                                break;
2551                        }
2552                }
2553        }
2554
2555        ASSERT(len == 0);
2556
2557        spin_lock(&log->l_icloglock);
2558        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2559        if (commit_iclog) {
2560                ASSERT(flags & XLOG_COMMIT_TRANS);
2561                *commit_iclog = iclog;
2562        } else {
2563                error = xlog_state_release_iclog(log, iclog);
2564        }
2565        spin_unlock(&log->l_icloglock);
2566
2567        return error;
2568}
2569
2570
2571/*****************************************************************************
2572 *
2573 *              State Machine functions
2574 *
2575 *****************************************************************************
2576 */
2577
2578/*
2579 * An iclog has just finished IO completion processing, so we need to update
2580 * the iclog state and propagate that up into the overall log state. Hence we
2581 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2582 * starting from the head, and then wake up any threads that are waiting for the
2583 * iclog to be marked clean.
2584 *
2585 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2586 * doesn't become ACTIVE beyond one that is SYNCING.  This is also required to
2587 * maintain the notion that we use a ordered wait queue to hold off would be
2588 * writers to the log when every iclog is trying to sync to disk.
2589 *
2590 * Caller must hold the icloglock before calling us.
2591 *
2592 * State Change: !IOERROR -> DIRTY -> ACTIVE
2593 */
2594STATIC void
2595xlog_state_clean_iclog(
2596        struct xlog             *log,
2597        struct xlog_in_core     *dirty_iclog)
2598{
2599        struct xlog_in_core     *iclog;
2600        int                     changed = 0;
2601
2602        /* Prepare the completed iclog. */
2603        if (dirty_iclog->ic_state != XLOG_STATE_IOERROR)
2604                dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2605
2606        /* Walk all the iclogs to update the ordered active state. */
2607        iclog = log->l_iclog;
2608        do {
2609                if (iclog->ic_state == XLOG_STATE_DIRTY) {
2610                        iclog->ic_state = XLOG_STATE_ACTIVE;
2611                        iclog->ic_offset       = 0;
2612                        ASSERT(list_empty_careful(&iclog->ic_callbacks));
2613                        /*
2614                         * If the number of ops in this iclog indicate it just
2615                         * contains the dummy transaction, we can
2616                         * change state into IDLE (the second time around).
2617                         * Otherwise we should change the state into
2618                         * NEED a dummy.
2619                         * We don't need to cover the dummy.
2620                         */
2621                        if (!changed &&
2622                           (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2623                                        XLOG_COVER_OPS)) {
2624                                changed = 1;
2625                        } else {
2626                                /*
2627                                 * We have two dirty iclogs so start over
2628                                 * This could also be num of ops indicates
2629                                 * this is not the dummy going out.
2630                                 */
2631                                changed = 2;
2632                        }
2633                        iclog->ic_header.h_num_logops = 0;
2634                        memset(iclog->ic_header.h_cycle_data, 0,
2635                              sizeof(iclog->ic_header.h_cycle_data));
2636                        iclog->ic_header.h_lsn = 0;
2637                } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2638                        /* do nothing */;
2639                else
2640                        break;  /* stop cleaning */
2641                iclog = iclog->ic_next;
2642        } while (iclog != log->l_iclog);
2643
2644
2645        /*
2646         * Wake up threads waiting in xfs_log_force() for the dirty iclog
2647         * to be cleaned.
2648         */
2649        wake_up_all(&dirty_iclog->ic_force_wait);
2650
2651        /*
2652         * Change state for the dummy log recording.
2653         * We usually go to NEED. But we go to NEED2 if the changed indicates
2654         * we are done writing the dummy record.
2655         * If we are done with the second dummy recored (DONE2), then
2656         * we go to IDLE.
2657         */
2658        if (changed) {
2659                switch (log->l_covered_state) {
2660                case XLOG_STATE_COVER_IDLE:
2661                case XLOG_STATE_COVER_NEED:
2662                case XLOG_STATE_COVER_NEED2:
2663                        log->l_covered_state = XLOG_STATE_COVER_NEED;
2664                        break;
2665
2666                case XLOG_STATE_COVER_DONE:
2667                        if (changed == 1)
2668                                log->l_covered_state = XLOG_STATE_COVER_NEED2;
2669                        else
2670                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2671                        break;
2672
2673                case XLOG_STATE_COVER_DONE2:
2674                        if (changed == 1)
2675                                log->l_covered_state = XLOG_STATE_COVER_IDLE;
2676                        else
2677                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2678                        break;
2679
2680                default:
2681                        ASSERT(0);
2682                }
2683        }
2684}
2685
2686STATIC xfs_lsn_t
2687xlog_get_lowest_lsn(
2688        struct xlog             *log)
2689{
2690        struct xlog_in_core     *iclog = log->l_iclog;
2691        xfs_lsn_t               lowest_lsn = 0, lsn;
2692
2693        do {
2694                if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2695                    iclog->ic_state == XLOG_STATE_DIRTY)
2696                        continue;
2697
2698                lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2699                if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2700                        lowest_lsn = lsn;
2701        } while ((iclog = iclog->ic_next) != log->l_iclog);
2702
2703        return lowest_lsn;
2704}
2705
2706/*
2707 * Completion of a iclog IO does not imply that a transaction has completed, as
2708 * transactions can be large enough to span many iclogs. We cannot change the
2709 * tail of the log half way through a transaction as this may be the only
2710 * transaction in the log and moving the tail to point to the middle of it
2711 * will prevent recovery from finding the start of the transaction. Hence we
2712 * should only update the last_sync_lsn if this iclog contains transaction
2713 * completion callbacks on it.
2714 *
2715 * We have to do this before we drop the icloglock to ensure we are the only one
2716 * that can update it.
2717 *
2718 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2719 * the reservation grant head pushing. This is due to the fact that the push
2720 * target is bound by the current last_sync_lsn value. Hence if we have a large
2721 * amount of log space bound up in this committing transaction then the
2722 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2723 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2724 * should push the AIL to ensure the push target (and hence the grant head) is
2725 * no longer bound by the old log head location and can move forwards and make
2726 * progress again.
2727 */
2728static void
2729xlog_state_set_callback(
2730        struct xlog             *log,
2731        struct xlog_in_core     *iclog,
2732        xfs_lsn_t               header_lsn)
2733{
2734        iclog->ic_state = XLOG_STATE_CALLBACK;
2735
2736        ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2737                           header_lsn) <= 0);
2738
2739        if (list_empty_careful(&iclog->ic_callbacks))
2740                return;
2741
2742        atomic64_set(&log->l_last_sync_lsn, header_lsn);
2743        xlog_grant_push_ail(log, 0);
2744}
2745
2746/*
2747 * Return true if we need to stop processing, false to continue to the next
2748 * iclog. The caller will need to run callbacks if the iclog is returned in the
2749 * XLOG_STATE_CALLBACK state.
2750 */
2751static bool
2752xlog_state_iodone_process_iclog(
2753        struct xlog             *log,
2754        struct xlog_in_core     *iclog,
2755        bool                    *ioerror)
2756{
2757        xfs_lsn_t               lowest_lsn;
2758        xfs_lsn_t               header_lsn;
2759
2760        switch (iclog->ic_state) {
2761        case XLOG_STATE_ACTIVE:
2762        case XLOG_STATE_DIRTY:
2763                /*
2764                 * Skip all iclogs in the ACTIVE & DIRTY states:
2765                 */
2766                return false;
2767        case XLOG_STATE_IOERROR:
2768                /*
2769                 * Between marking a filesystem SHUTDOWN and stopping the log,
2770                 * we do flush all iclogs to disk (if there wasn't a log I/O
2771                 * error). So, we do want things to go smoothly in case of just
2772                 * a SHUTDOWN w/o a LOG_IO_ERROR.
2773                 */
2774                *ioerror = true;
2775                return false;
2776        case XLOG_STATE_DONE_SYNC:
2777                /*
2778                 * Now that we have an iclog that is in the DONE_SYNC state, do
2779                 * one more check here to see if we have chased our tail around.
2780                 * If this is not the lowest lsn iclog, then we will leave it
2781                 * for another completion to process.
2782                 */
2783                header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2784                lowest_lsn = xlog_get_lowest_lsn(log);
2785                if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2786                        return false;
2787                xlog_state_set_callback(log, iclog, header_lsn);
2788                return false;
2789        default:
2790                /*
2791                 * Can only perform callbacks in order.  Since this iclog is not
2792                 * in the DONE_SYNC state, we skip the rest and just try to
2793                 * clean up.
2794                 */
2795                return true;
2796        }
2797}
2798
2799/*
2800 * Keep processing entries in the iclog callback list until we come around and
2801 * it is empty.  We need to atomically see that the list is empty and change the
2802 * state to DIRTY so that we don't miss any more callbacks being added.
2803 *
2804 * This function is called with the icloglock held and returns with it held. We
2805 * drop it while running callbacks, however, as holding it over thousands of
2806 * callbacks is unnecessary and causes excessive contention if we do.
2807 */
2808static void
2809xlog_state_do_iclog_callbacks(
2810        struct xlog             *log,
2811        struct xlog_in_core     *iclog,
2812        bool                    aborted)
2813                __releases(&log->l_icloglock)
2814                __acquires(&log->l_icloglock)
2815{
2816        spin_unlock(&log->l_icloglock);
2817        spin_lock(&iclog->ic_callback_lock);
2818        while (!list_empty(&iclog->ic_callbacks)) {
2819                LIST_HEAD(tmp);
2820
2821                list_splice_init(&iclog->ic_callbacks, &tmp);
2822
2823                spin_unlock(&iclog->ic_callback_lock);
2824                xlog_cil_process_committed(&tmp, aborted);
2825                spin_lock(&iclog->ic_callback_lock);
2826        }
2827
2828        /*
2829         * Pick up the icloglock while still holding the callback lock so we
2830         * serialise against anyone trying to add more callbacks to this iclog
2831         * now we've finished processing.
2832         */
2833        spin_lock(&log->l_icloglock);
2834        spin_unlock(&iclog->ic_callback_lock);
2835}
2836
2837STATIC void
2838xlog_state_do_callback(
2839        struct xlog             *log,
2840        bool                    aborted)
2841{
2842        struct xlog_in_core     *iclog;
2843        struct xlog_in_core     *first_iclog;
2844        bool                    cycled_icloglock;
2845        bool                    ioerror;
2846        int                     flushcnt = 0;
2847        int                     repeats = 0;
2848
2849        spin_lock(&log->l_icloglock);
2850        do {
2851                /*
2852                 * Scan all iclogs starting with the one pointed to by the
2853                 * log.  Reset this starting point each time the log is
2854                 * unlocked (during callbacks).
2855                 *
2856                 * Keep looping through iclogs until one full pass is made
2857                 * without running any callbacks.
2858                 */
2859                first_iclog = log->l_iclog;
2860                iclog = log->l_iclog;
2861                cycled_icloglock = false;
2862                ioerror = false;
2863                repeats++;
2864
2865                do {
2866                        if (xlog_state_iodone_process_iclog(log, iclog,
2867                                                        &ioerror))
2868                                break;
2869
2870                        if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2871                            iclog->ic_state != XLOG_STATE_IOERROR) {
2872                                iclog = iclog->ic_next;
2873                                continue;
2874                        }
2875
2876                        /*
2877                         * Running callbacks will drop the icloglock which means
2878                         * we'll have to run at least one more complete loop.
2879                         */
2880                        cycled_icloglock = true;
2881                        xlog_state_do_iclog_callbacks(log, iclog, aborted);
2882
2883                        xlog_state_clean_iclog(log, iclog);
2884                        iclog = iclog->ic_next;
2885                } while (first_iclog != iclog);
2886
2887                if (repeats > 5000) {
2888                        flushcnt += repeats;
2889                        repeats = 0;
2890                        xfs_warn(log->l_mp,
2891                                "%s: possible infinite loop (%d iterations)",
2892                                __func__, flushcnt);
2893                }
2894        } while (!ioerror && cycled_icloglock);
2895
2896        if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2897            log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2898                wake_up_all(&log->l_flush_wait);
2899
2900        spin_unlock(&log->l_icloglock);
2901}
2902
2903
2904/*
2905 * Finish transitioning this iclog to the dirty state.
2906 *
2907 * Make sure that we completely execute this routine only when this is
2908 * the last call to the iclog.  There is a good chance that iclog flushes,
2909 * when we reach the end of the physical log, get turned into 2 separate
2910 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2911 * routine.  By using the reference count bwritecnt, we guarantee that only
2912 * the second completion goes through.
2913 *
2914 * Callbacks could take time, so they are done outside the scope of the
2915 * global state machine log lock.
2916 */
2917STATIC void
2918xlog_state_done_syncing(
2919        struct xlog_in_core     *iclog,
2920        bool                    aborted)
2921{
2922        struct xlog             *log = iclog->ic_log;
2923
2924        spin_lock(&log->l_icloglock);
2925
2926        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2927
2928        /*
2929         * If we got an error, either on the first buffer, or in the case of
2930         * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2931         * and none should ever be attempted to be written to disk
2932         * again.
2933         */
2934        if (iclog->ic_state == XLOG_STATE_SYNCING)
2935                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2936        else
2937                ASSERT(iclog->ic_state == XLOG_STATE_IOERROR);
2938
2939        /*
2940         * Someone could be sleeping prior to writing out the next
2941         * iclog buffer, we wake them all, one will get to do the
2942         * I/O, the others get to wait for the result.
2943         */
2944        wake_up_all(&iclog->ic_write_wait);
2945        spin_unlock(&log->l_icloglock);
2946        xlog_state_do_callback(log, aborted);   /* also cleans log */
2947}       /* xlog_state_done_syncing */
2948
2949
2950/*
2951 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2952 * sleep.  We wait on the flush queue on the head iclog as that should be
2953 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2954 * we will wait here and all new writes will sleep until a sync completes.
2955 *
2956 * The in-core logs are used in a circular fashion. They are not used
2957 * out-of-order even when an iclog past the head is free.
2958 *
2959 * return:
2960 *      * log_offset where xlog_write() can start writing into the in-core
2961 *              log's data space.
2962 *      * in-core log pointer to which xlog_write() should write.
2963 *      * boolean indicating this is a continued write to an in-core log.
2964 *              If this is the last write, then the in-core log's offset field
2965 *              needs to be incremented, depending on the amount of data which
2966 *              is copied.
2967 */
2968STATIC int
2969xlog_state_get_iclog_space(
2970        struct xlog             *log,
2971        int                     len,
2972        struct xlog_in_core     **iclogp,
2973        struct xlog_ticket      *ticket,
2974        int                     *continued_write,
2975        int                     *logoffsetp)
2976{
2977        int               log_offset;
2978        xlog_rec_header_t *head;
2979        xlog_in_core_t    *iclog;
2980
2981restart:
2982        spin_lock(&log->l_icloglock);
2983        if (XLOG_FORCED_SHUTDOWN(log)) {
2984                spin_unlock(&log->l_icloglock);
2985                return -EIO;
2986        }
2987
2988        iclog = log->l_iclog;
2989        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2990                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2991
2992                /* Wait for log writes to have flushed */
2993                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2994                goto restart;
2995        }
2996
2997        head = &iclog->ic_header;
2998
2999        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
3000        log_offset = iclog->ic_offset;
3001
3002        /* On the 1st write to an iclog, figure out lsn.  This works
3003         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3004         * committing to.  If the offset is set, that's how many blocks
3005         * must be written.
3006         */
3007        if (log_offset == 0) {
3008                ticket->t_curr_res -= log->l_iclog_hsize;
3009                xlog_tic_add_region(ticket,
3010                                    log->l_iclog_hsize,
3011                                    XLOG_REG_TYPE_LRHEADER);
3012                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3013                head->h_lsn = cpu_to_be64(
3014                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3015                ASSERT(log->l_curr_block >= 0);
3016        }
3017
3018        /* If there is enough room to write everything, then do it.  Otherwise,
3019         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3020         * bit is on, so this will get flushed out.  Don't update ic_offset
3021         * until you know exactly how many bytes get copied.  Therefore, wait
3022         * until later to update ic_offset.
3023         *
3024         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3025         * can fit into remaining data section.
3026         */
3027        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3028                int             error = 0;
3029
3030                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3031
3032                /*
3033                 * If we are the only one writing to this iclog, sync it to
3034                 * disk.  We need to do an atomic compare and decrement here to
3035                 * avoid racing with concurrent atomic_dec_and_lock() calls in
3036                 * xlog_state_release_iclog() when there is more than one
3037                 * reference to the iclog.
3038                 */
3039                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3040                        error = xlog_state_release_iclog(log, iclog);
3041                spin_unlock(&log->l_icloglock);
3042                if (error)
3043                        return error;
3044                goto restart;
3045        }
3046
3047        /* Do we have enough room to write the full amount in the remainder
3048         * of this iclog?  Or must we continue a write on the next iclog and
3049         * mark this iclog as completely taken?  In the case where we switch
3050         * iclogs (to mark it taken), this particular iclog will release/sync
3051         * to disk in xlog_write().
3052         */
3053        if (len <= iclog->ic_size - iclog->ic_offset) {
3054                *continued_write = 0;
3055                iclog->ic_offset += len;
3056        } else {
3057                *continued_write = 1;
3058                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3059        }
3060        *iclogp = iclog;
3061
3062        ASSERT(iclog->ic_offset <= iclog->ic_size);
3063        spin_unlock(&log->l_icloglock);
3064
3065        *logoffsetp = log_offset;
3066        return 0;
3067}       /* xlog_state_get_iclog_space */
3068
3069/* The first cnt-1 times through here we don't need to
3070 * move the grant write head because the permanent
3071 * reservation has reserved cnt times the unit amount.
3072 * Release part of current permanent unit reservation and
3073 * reset current reservation to be one units worth.  Also
3074 * move grant reservation head forward.
3075 */
3076STATIC void
3077xlog_regrant_reserve_log_space(
3078        struct xlog             *log,
3079        struct xlog_ticket      *ticket)
3080{
3081        trace_xfs_log_regrant_reserve_enter(log, ticket);
3082
3083        if (ticket->t_cnt > 0)
3084                ticket->t_cnt--;
3085
3086        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3087                                        ticket->t_curr_res);
3088        xlog_grant_sub_space(log, &log->l_write_head.grant,
3089                                        ticket->t_curr_res);
3090        ticket->t_curr_res = ticket->t_unit_res;
3091        xlog_tic_reset_res(ticket);
3092
3093        trace_xfs_log_regrant_reserve_sub(log, ticket);
3094
3095        /* just return if we still have some of the pre-reserved space */
3096        if (ticket->t_cnt > 0)
3097                return;
3098
3099        xlog_grant_add_space(log, &log->l_reserve_head.grant,
3100                                        ticket->t_unit_res);
3101
3102        trace_xfs_log_regrant_reserve_exit(log, ticket);
3103
3104        ticket->t_curr_res = ticket->t_unit_res;
3105        xlog_tic_reset_res(ticket);
3106}       /* xlog_regrant_reserve_log_space */
3107
3108
3109/*
3110 * Give back the space left from a reservation.
3111 *
3112 * All the information we need to make a correct determination of space left
3113 * is present.  For non-permanent reservations, things are quite easy.  The
3114 * count should have been decremented to zero.  We only need to deal with the
3115 * space remaining in the current reservation part of the ticket.  If the
3116 * ticket contains a permanent reservation, there may be left over space which
3117 * needs to be released.  A count of N means that N-1 refills of the current
3118 * reservation can be done before we need to ask for more space.  The first
3119 * one goes to fill up the first current reservation.  Once we run out of
3120 * space, the count will stay at zero and the only space remaining will be
3121 * in the current reservation field.
3122 */
3123STATIC void
3124xlog_ungrant_log_space(
3125        struct xlog             *log,
3126        struct xlog_ticket      *ticket)
3127{
3128        int     bytes;
3129
3130        if (ticket->t_cnt > 0)
3131                ticket->t_cnt--;
3132
3133        trace_xfs_log_ungrant_enter(log, ticket);
3134        trace_xfs_log_ungrant_sub(log, ticket);
3135
3136        /*
3137         * If this is a permanent reservation ticket, we may be able to free
3138         * up more space based on the remaining count.
3139         */
3140        bytes = ticket->t_curr_res;
3141        if (ticket->t_cnt > 0) {
3142                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3143                bytes += ticket->t_unit_res*ticket->t_cnt;
3144        }
3145
3146        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3147        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3148
3149        trace_xfs_log_ungrant_exit(log, ticket);
3150
3151        xfs_log_space_wake(log->l_mp);
3152}
3153
3154/*
3155 * This routine will mark the current iclog in the ring as WANT_SYNC
3156 * and move the current iclog pointer to the next iclog in the ring.
3157 * When this routine is called from xlog_state_get_iclog_space(), the
3158 * exact size of the iclog has not yet been determined.  All we know is
3159 * that every data block.  We have run out of space in this log record.
3160 */
3161STATIC void
3162xlog_state_switch_iclogs(
3163        struct xlog             *log,
3164        struct xlog_in_core     *iclog,
3165        int                     eventual_size)
3166{
3167        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3168        if (!eventual_size)
3169                eventual_size = iclog->ic_offset;
3170        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3171        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3172        log->l_prev_block = log->l_curr_block;
3173        log->l_prev_cycle = log->l_curr_cycle;
3174
3175        /* roll log?: ic_offset changed later */
3176        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3177
3178        /* Round up to next log-sunit */
3179        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3180            log->l_mp->m_sb.sb_logsunit > 1) {
3181                uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3182                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3183        }
3184
3185        if (log->l_curr_block >= log->l_logBBsize) {
3186                /*
3187                 * Rewind the current block before the cycle is bumped to make
3188                 * sure that the combined LSN never transiently moves forward
3189                 * when the log wraps to the next cycle. This is to support the
3190                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3191                 * other cases should acquire l_icloglock.
3192                 */
3193                log->l_curr_block -= log->l_logBBsize;
3194                ASSERT(log->l_curr_block >= 0);
3195                smp_wmb();
3196                log->l_curr_cycle++;
3197                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3198                        log->l_curr_cycle++;
3199        }
3200        ASSERT(iclog == log->l_iclog);
3201        log->l_iclog = iclog->ic_next;
3202}       /* xlog_state_switch_iclogs */
3203
3204/*
3205 * Write out all data in the in-core log as of this exact moment in time.
3206 *
3207 * Data may be written to the in-core log during this call.  However,
3208 * we don't guarantee this data will be written out.  A change from past
3209 * implementation means this routine will *not* write out zero length LRs.
3210 *
3211 * Basically, we try and perform an intelligent scan of the in-core logs.
3212 * If we determine there is no flushable data, we just return.  There is no
3213 * flushable data if:
3214 *
3215 *      1. the current iclog is active and has no data; the previous iclog
3216 *              is in the active or dirty state.
3217 *      2. the current iclog is drity, and the previous iclog is in the
3218 *              active or dirty state.
3219 *
3220 * We may sleep if:
3221 *
3222 *      1. the current iclog is not in the active nor dirty state.
3223 *      2. the current iclog dirty, and the previous iclog is not in the
3224 *              active nor dirty state.
3225 *      3. the current iclog is active, and there is another thread writing
3226 *              to this particular iclog.
3227 *      4. a) the current iclog is active and has no other writers
3228 *         b) when we return from flushing out this iclog, it is still
3229 *              not in the active nor dirty state.
3230 */
3231int
3232xfs_log_force(
3233        struct xfs_mount        *mp,
3234        uint                    flags)
3235{
3236        struct xlog             *log = mp->m_log;
3237        struct xlog_in_core     *iclog;
3238        xfs_lsn_t               lsn;
3239
3240        XFS_STATS_INC(mp, xs_log_force);
3241        trace_xfs_log_force(mp, 0, _RET_IP_);
3242
3243        xlog_cil_force(log);
3244
3245        spin_lock(&log->l_icloglock);
3246        iclog = log->l_iclog;
3247        if (iclog->ic_state == XLOG_STATE_IOERROR)
3248                goto out_error;
3249
3250        if (iclog->ic_state == XLOG_STATE_DIRTY ||
3251            (iclog->ic_state == XLOG_STATE_ACTIVE &&
3252             atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3253                /*
3254                 * If the head is dirty or (active and empty), then we need to
3255                 * look at the previous iclog.
3256                 *
3257                 * If the previous iclog is active or dirty we are done.  There
3258                 * is nothing to sync out. Otherwise, we attach ourselves to the
3259                 * previous iclog and go to sleep.
3260                 */
3261                iclog = iclog->ic_prev;
3262                if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3263                    iclog->ic_state == XLOG_STATE_DIRTY)
3264                        goto out_unlock;
3265        } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3266                if (atomic_read(&iclog->ic_refcnt) == 0) {
3267                        /*
3268                         * We are the only one with access to this iclog.
3269                         *
3270                         * Flush it out now.  There should be a roundoff of zero
3271                         * to show that someone has already taken care of the
3272                         * roundoff from the previous sync.
3273                         */
3274                        atomic_inc(&iclog->ic_refcnt);
3275                        lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3276                        xlog_state_switch_iclogs(log, iclog, 0);
3277                        if (xlog_state_release_iclog(log, iclog))
3278                                goto out_error;
3279
3280                        if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3281                            iclog->ic_state == XLOG_STATE_DIRTY)
3282                                goto out_unlock;
3283                } else {
3284                        /*
3285                         * Someone else is writing to this iclog.
3286                         *
3287                         * Use its call to flush out the data.  However, the
3288                         * other thread may not force out this LR, so we mark
3289                         * it WANT_SYNC.
3290                         */
3291                        xlog_state_switch_iclogs(log, iclog, 0);
3292                }
3293        } else {
3294                /*
3295                 * If the head iclog is not active nor dirty, we just attach
3296                 * ourselves to the head and go to sleep if necessary.
3297                 */
3298                ;
3299        }
3300
3301        if (!(flags & XFS_LOG_SYNC))
3302                goto out_unlock;
3303
3304        if (iclog->ic_state == XLOG_STATE_IOERROR)
3305                goto out_error;
3306        XFS_STATS_INC(mp, xs_log_force_sleep);
3307        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3308        if (iclog->ic_state == XLOG_STATE_IOERROR)
3309                return -EIO;
3310        return 0;
3311
3312out_unlock:
3313        spin_unlock(&log->l_icloglock);
3314        return 0;
3315out_error:
3316        spin_unlock(&log->l_icloglock);
3317        return -EIO;
3318}
3319
3320static int
3321__xfs_log_force_lsn(
3322        struct xfs_mount        *mp,
3323        xfs_lsn_t               lsn,
3324        uint                    flags,
3325        int                     *log_flushed,
3326        bool                    already_slept)
3327{
3328        struct xlog             *log = mp->m_log;
3329        struct xlog_in_core     *iclog;
3330
3331        spin_lock(&log->l_icloglock);
3332        iclog = log->l_iclog;
3333        if (iclog->ic_state == XLOG_STATE_IOERROR)
3334                goto out_error;
3335
3336        while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3337                iclog = iclog->ic_next;
3338                if (iclog == log->l_iclog)
3339                        goto out_unlock;
3340        }
3341
3342        if (iclog->ic_state == XLOG_STATE_DIRTY)
3343                goto out_unlock;
3344
3345        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3346                /*
3347                 * We sleep here if we haven't already slept (e.g. this is the
3348                 * first time we've looked at the correct iclog buf) and the
3349                 * buffer before us is going to be sync'ed.  The reason for this
3350                 * is that if we are doing sync transactions here, by waiting
3351                 * for the previous I/O to complete, we can allow a few more
3352                 * transactions into this iclog before we close it down.
3353                 *
3354                 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3355                 * refcnt so we can release the log (which drops the ref count).
3356                 * The state switch keeps new transaction commits from using
3357                 * this buffer.  When the current commits finish writing into
3358                 * the buffer, the refcount will drop to zero and the buffer
3359                 * will go out then.
3360                 */
3361                if (!already_slept &&
3362                    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3363                     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3364                        XFS_STATS_INC(mp, xs_log_force_sleep);
3365
3366                        xlog_wait(&iclog->ic_prev->ic_write_wait,
3367                                        &log->l_icloglock);
3368                        return -EAGAIN;
3369                }
3370                atomic_inc(&iclog->ic_refcnt);
3371                xlog_state_switch_iclogs(log, iclog, 0);
3372                if (xlog_state_release_iclog(log, iclog))
3373                        goto out_error;
3374                if (log_flushed)
3375                        *log_flushed = 1;
3376        }
3377
3378        if (!(flags & XFS_LOG_SYNC) ||
3379            (iclog->ic_state == XLOG_STATE_ACTIVE ||
3380             iclog->ic_state == XLOG_STATE_DIRTY))
3381                goto out_unlock;
3382
3383        if (iclog->ic_state == XLOG_STATE_IOERROR)
3384                goto out_error;
3385
3386        XFS_STATS_INC(mp, xs_log_force_sleep);
3387        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3388        if (iclog->ic_state == XLOG_STATE_IOERROR)
3389                return -EIO;
3390        return 0;
3391
3392out_unlock:
3393        spin_unlock(&log->l_icloglock);
3394        return 0;
3395out_error:
3396        spin_unlock(&log->l_icloglock);
3397        return -EIO;
3398}
3399
3400/*
3401 * Force the in-core log to disk for a specific LSN.
3402 *
3403 * Find in-core log with lsn.
3404 *      If it is in the DIRTY state, just return.
3405 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3406 *              state and go to sleep or return.
3407 *      If it is in any other state, go to sleep or return.
3408 *
3409 * Synchronous forces are implemented with a wait queue.  All callers trying
3410 * to force a given lsn to disk must wait on the queue attached to the
3411 * specific in-core log.  When given in-core log finally completes its write
3412 * to disk, that thread will wake up all threads waiting on the queue.
3413 */
3414int
3415xfs_log_force_lsn(
3416        struct xfs_mount        *mp,
3417        xfs_lsn_t               lsn,
3418        uint                    flags,
3419        int                     *log_flushed)
3420{
3421        int                     ret;
3422        ASSERT(lsn != 0);
3423
3424        XFS_STATS_INC(mp, xs_log_force);
3425        trace_xfs_log_force(mp, lsn, _RET_IP_);
3426
3427        lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3428        if (lsn == NULLCOMMITLSN)
3429                return 0;
3430
3431        ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3432        if (ret == -EAGAIN)
3433                ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3434        return ret;
3435}
3436
3437/*
3438 * Called when we want to mark the current iclog as being ready to sync to
3439 * disk.
3440 */
3441STATIC void
3442xlog_state_want_sync(
3443        struct xlog             *log,
3444        struct xlog_in_core     *iclog)
3445{
3446        assert_spin_locked(&log->l_icloglock);
3447
3448        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3449                xlog_state_switch_iclogs(log, iclog, 0);
3450        } else {
3451                ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
3452                       iclog->ic_state == XLOG_STATE_IOERROR);
3453        }
3454}
3455
3456
3457/*****************************************************************************
3458 *
3459 *              TICKET functions
3460 *
3461 *****************************************************************************
3462 */
3463
3464/*
3465 * Free a used ticket when its refcount falls to zero.
3466 */
3467void
3468xfs_log_ticket_put(
3469        xlog_ticket_t   *ticket)
3470{
3471        ASSERT(atomic_read(&ticket->t_ref) > 0);
3472        if (atomic_dec_and_test(&ticket->t_ref))
3473                kmem_cache_free(xfs_log_ticket_zone, ticket);
3474}
3475
3476xlog_ticket_t *
3477xfs_log_ticket_get(
3478        xlog_ticket_t   *ticket)
3479{
3480        ASSERT(atomic_read(&ticket->t_ref) > 0);
3481        atomic_inc(&ticket->t_ref);
3482        return ticket;
3483}
3484
3485/*
3486 * Figure out the total log space unit (in bytes) that would be
3487 * required for a log ticket.
3488 */
3489int
3490xfs_log_calc_unit_res(
3491        struct xfs_mount        *mp,
3492        int                     unit_bytes)
3493{
3494        struct xlog             *log = mp->m_log;
3495        int                     iclog_space;
3496        uint                    num_headers;
3497
3498        /*
3499         * Permanent reservations have up to 'cnt'-1 active log operations
3500         * in the log.  A unit in this case is the amount of space for one
3501         * of these log operations.  Normal reservations have a cnt of 1
3502         * and their unit amount is the total amount of space required.
3503         *
3504         * The following lines of code account for non-transaction data
3505         * which occupy space in the on-disk log.
3506         *
3507         * Normal form of a transaction is:
3508         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3509         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3510         *
3511         * We need to account for all the leadup data and trailer data
3512         * around the transaction data.
3513         * And then we need to account for the worst case in terms of using
3514         * more space.
3515         * The worst case will happen if:
3516         * - the placement of the transaction happens to be such that the
3517         *   roundoff is at its maximum
3518         * - the transaction data is synced before the commit record is synced
3519         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3520         *   Therefore the commit record is in its own Log Record.
3521         *   This can happen as the commit record is called with its
3522         *   own region to xlog_write().
3523         *   This then means that in the worst case, roundoff can happen for
3524         *   the commit-rec as well.
3525         *   The commit-rec is smaller than padding in this scenario and so it is
3526         *   not added separately.
3527         */
3528
3529        /* for trans header */
3530        unit_bytes += sizeof(xlog_op_header_t);
3531        unit_bytes += sizeof(xfs_trans_header_t);
3532
3533        /* for start-rec */
3534        unit_bytes += sizeof(xlog_op_header_t);
3535
3536        /*
3537         * for LR headers - the space for data in an iclog is the size minus
3538         * the space used for the headers. If we use the iclog size, then we
3539         * undercalculate the number of headers required.
3540         *
3541         * Furthermore - the addition of op headers for split-recs might
3542         * increase the space required enough to require more log and op
3543         * headers, so take that into account too.
3544         *
3545         * IMPORTANT: This reservation makes the assumption that if this
3546         * transaction is the first in an iclog and hence has the LR headers
3547         * accounted to it, then the remaining space in the iclog is
3548         * exclusively for this transaction.  i.e. if the transaction is larger
3549         * than the iclog, it will be the only thing in that iclog.
3550         * Fundamentally, this means we must pass the entire log vector to
3551         * xlog_write to guarantee this.
3552         */
3553        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3554        num_headers = howmany(unit_bytes, iclog_space);
3555
3556        /* for split-recs - ophdrs added when data split over LRs */
3557        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3558
3559        /* add extra header reservations if we overrun */
3560        while (!num_headers ||
3561               howmany(unit_bytes, iclog_space) > num_headers) {
3562                unit_bytes += sizeof(xlog_op_header_t);
3563                num_headers++;
3564        }
3565        unit_bytes += log->l_iclog_hsize * num_headers;
3566
3567        /* for commit-rec LR header - note: padding will subsume the ophdr */
3568        unit_bytes += log->l_iclog_hsize;
3569
3570        /* for roundoff padding for transaction data and one for commit record */
3571        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3572                /* log su roundoff */
3573                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3574        } else {
3575                /* BB roundoff */
3576                unit_bytes += 2 * BBSIZE;
3577        }
3578
3579        return unit_bytes;
3580}
3581
3582/*
3583 * Allocate and initialise a new log ticket.
3584 */
3585struct xlog_ticket *
3586xlog_ticket_alloc(
3587        struct xlog             *log,
3588        int                     unit_bytes,
3589        int                     cnt,
3590        char                    client,
3591        bool                    permanent,
3592        xfs_km_flags_t          alloc_flags)
3593{
3594        struct xlog_ticket      *tic;
3595        int                     unit_res;
3596
3597        tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3598        if (!tic)
3599                return NULL;
3600
3601        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3602
3603        atomic_set(&tic->t_ref, 1);
3604        tic->t_task             = current;
3605        INIT_LIST_HEAD(&tic->t_queue);
3606        tic->t_unit_res         = unit_res;
3607        tic->t_curr_res         = unit_res;
3608        tic->t_cnt              = cnt;
3609        tic->t_ocnt             = cnt;
3610        tic->t_tid              = prandom_u32();
3611        tic->t_clientid         = client;
3612        tic->t_flags            = XLOG_TIC_INITED;
3613        if (permanent)
3614                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3615
3616        xlog_tic_reset_res(tic);
3617
3618        return tic;
3619}
3620
3621
3622/******************************************************************************
3623 *
3624 *              Log debug routines
3625 *
3626 ******************************************************************************
3627 */
3628#if defined(DEBUG)
3629/*
3630 * Make sure that the destination ptr is within the valid data region of
3631 * one of the iclogs.  This uses backup pointers stored in a different
3632 * part of the log in case we trash the log structure.
3633 */
3634STATIC void
3635xlog_verify_dest_ptr(
3636        struct xlog     *log,
3637        void            *ptr)
3638{
3639        int i;
3640        int good_ptr = 0;
3641
3642        for (i = 0; i < log->l_iclog_bufs; i++) {
3643                if (ptr >= log->l_iclog_bak[i] &&
3644                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3645                        good_ptr++;
3646        }
3647
3648        if (!good_ptr)
3649                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3650}
3651
3652/*
3653 * Check to make sure the grant write head didn't just over lap the tail.  If
3654 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3655 * the cycles differ by exactly one and check the byte count.
3656 *
3657 * This check is run unlocked, so can give false positives. Rather than assert
3658 * on failures, use a warn-once flag and a panic tag to allow the admin to
3659 * determine if they want to panic the machine when such an error occurs. For
3660 * debug kernels this will have the same effect as using an assert but, unlinke
3661 * an assert, it can be turned off at runtime.
3662 */
3663STATIC void
3664xlog_verify_grant_tail(
3665        struct xlog     *log)
3666{
3667        int             tail_cycle, tail_blocks;
3668        int             cycle, space;
3669
3670        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3671        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3672        if (tail_cycle != cycle) {
3673                if (cycle - 1 != tail_cycle &&
3674                    !(log->l_flags & XLOG_TAIL_WARN)) {
3675                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3676                                "%s: cycle - 1 != tail_cycle", __func__);
3677                        log->l_flags |= XLOG_TAIL_WARN;
3678                }
3679
3680                if (space > BBTOB(tail_blocks) &&
3681                    !(log->l_flags & XLOG_TAIL_WARN)) {
3682                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3683                                "%s: space > BBTOB(tail_blocks)", __func__);
3684                        log->l_flags |= XLOG_TAIL_WARN;
3685                }
3686        }
3687}
3688
3689/* check if it will fit */
3690STATIC void
3691xlog_verify_tail_lsn(
3692        struct xlog             *log,
3693        struct xlog_in_core     *iclog,
3694        xfs_lsn_t               tail_lsn)
3695{
3696    int blocks;
3697
3698    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3699        blocks =
3700            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3701        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3702                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3703    } else {
3704        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3705
3706        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3707                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3708
3709        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3710        if (blocks < BTOBB(iclog->ic_offset) + 1)
3711                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3712    }
3713}       /* xlog_verify_tail_lsn */
3714
3715/*
3716 * Perform a number of checks on the iclog before writing to disk.
3717 *
3718 * 1. Make sure the iclogs are still circular
3719 * 2. Make sure we have a good magic number
3720 * 3. Make sure we don't have magic numbers in the data
3721 * 4. Check fields of each log operation header for:
3722 *      A. Valid client identifier
3723 *      B. tid ptr value falls in valid ptr space (user space code)
3724 *      C. Length in log record header is correct according to the
3725 *              individual operation headers within record.
3726 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3727 *      log, check the preceding blocks of the physical log to make sure all
3728 *      the cycle numbers agree with the current cycle number.
3729 */
3730STATIC void
3731xlog_verify_iclog(
3732        struct xlog             *log,
3733        struct xlog_in_core     *iclog,
3734        int                     count)
3735{
3736        xlog_op_header_t        *ophead;
3737        xlog_in_core_t          *icptr;
3738        xlog_in_core_2_t        *xhdr;
3739        void                    *base_ptr, *ptr, *p;
3740        ptrdiff_t               field_offset;
3741        uint8_t                 clientid;
3742        int                     len, i, j, k, op_len;
3743        int                     idx;
3744
3745        /* check validity of iclog pointers */
3746        spin_lock(&log->l_icloglock);
3747        icptr = log->l_iclog;
3748        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3749                ASSERT(icptr);
3750
3751        if (icptr != log->l_iclog)
3752                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3753        spin_unlock(&log->l_icloglock);
3754
3755        /* check log magic numbers */
3756        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3757                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3758
3759        base_ptr = ptr = &iclog->ic_header;
3760        p = &iclog->ic_header;
3761        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3762                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3763                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3764                                __func__);
3765        }
3766
3767        /* check fields */
3768        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3769        base_ptr = ptr = iclog->ic_datap;
3770        ophead = ptr;
3771        xhdr = iclog->ic_data;
3772        for (i = 0; i < len; i++) {
3773                ophead = ptr;
3774
3775                /* clientid is only 1 byte */
3776                p = &ophead->oh_clientid;
3777                field_offset = p - base_ptr;
3778                if (field_offset & 0x1ff) {
3779                        clientid = ophead->oh_clientid;
3780                } else {
3781                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3782                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3783                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3784                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3785                                clientid = xlog_get_client_id(
3786                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3787                        } else {
3788                                clientid = xlog_get_client_id(
3789                                        iclog->ic_header.h_cycle_data[idx]);
3790                        }
3791                }
3792                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3793                        xfs_warn(log->l_mp,
3794                                "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3795                                __func__, clientid, ophead,
3796                                (unsigned long)field_offset);
3797
3798                /* check length */
3799                p = &ophead->oh_len;
3800                field_offset = p - base_ptr;
3801                if (field_offset & 0x1ff) {
3802                        op_len = be32_to_cpu(ophead->oh_len);
3803                } else {
3804                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3805                                    (uintptr_t)iclog->ic_datap);
3806                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3807                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3808                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3809                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3810                        } else {
3811                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3812                        }
3813                }
3814                ptr += sizeof(xlog_op_header_t) + op_len;
3815        }
3816}       /* xlog_verify_iclog */
3817#endif
3818
3819/*
3820 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3821 */
3822STATIC int
3823xlog_state_ioerror(
3824        struct xlog     *log)
3825{
3826        xlog_in_core_t  *iclog, *ic;
3827
3828        iclog = log->l_iclog;
3829        if (iclog->ic_state != XLOG_STATE_IOERROR) {
3830                /*
3831                 * Mark all the incore logs IOERROR.
3832                 * From now on, no log flushes will result.
3833                 */
3834                ic = iclog;
3835                do {
3836                        ic->ic_state = XLOG_STATE_IOERROR;
3837                        ic = ic->ic_next;
3838                } while (ic != iclog);
3839                return 0;
3840        }
3841        /*
3842         * Return non-zero, if state transition has already happened.
3843         */
3844        return 1;
3845}
3846
3847/*
3848 * This is called from xfs_force_shutdown, when we're forcibly
3849 * shutting down the filesystem, typically because of an IO error.
3850 * Our main objectives here are to make sure that:
3851 *      a. if !logerror, flush the logs to disk. Anything modified
3852 *         after this is ignored.
3853 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3854 *         parties to find out, 'atomically'.
3855 *      c. those who're sleeping on log reservations, pinned objects and
3856 *          other resources get woken up, and be told the bad news.
3857 *      d. nothing new gets queued up after (b) and (c) are done.
3858 *
3859 * Note: for the !logerror case we need to flush the regions held in memory out
3860 * to disk first. This needs to be done before the log is marked as shutdown,
3861 * otherwise the iclog writes will fail.
3862 */
3863int
3864xfs_log_force_umount(
3865        struct xfs_mount        *mp,
3866        int                     logerror)
3867{
3868        struct xlog     *log;
3869        int             retval;
3870
3871        log = mp->m_log;
3872
3873        /*
3874         * If this happens during log recovery, don't worry about
3875         * locking; the log isn't open for business yet.
3876         */
3877        if (!log ||
3878            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3879                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3880                if (mp->m_sb_bp)
3881                        mp->m_sb_bp->b_flags |= XBF_DONE;
3882                return 0;
3883        }
3884
3885        /*
3886         * Somebody could've already done the hard work for us.
3887         * No need to get locks for this.
3888         */
3889        if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3890                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3891                return 1;
3892        }
3893
3894        /*
3895         * Flush all the completed transactions to disk before marking the log
3896         * being shut down. We need to do it in this order to ensure that
3897         * completed operations are safely on disk before we shut down, and that
3898         * we don't have to issue any buffer IO after the shutdown flags are set
3899         * to guarantee this.
3900         */
3901        if (!logerror)
3902                xfs_log_force(mp, XFS_LOG_SYNC);
3903
3904        /*
3905         * mark the filesystem and the as in a shutdown state and wake
3906         * everybody up to tell them the bad news.
3907         */
3908        spin_lock(&log->l_icloglock);
3909        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3910        if (mp->m_sb_bp)
3911                mp->m_sb_bp->b_flags |= XBF_DONE;
3912
3913        /*
3914         * Mark the log and the iclogs with IO error flags to prevent any
3915         * further log IO from being issued or completed.
3916         */
3917        log->l_flags |= XLOG_IO_ERROR;
3918        retval = xlog_state_ioerror(log);
3919        spin_unlock(&log->l_icloglock);
3920
3921        /*
3922         * We don't want anybody waiting for log reservations after this. That
3923         * means we have to wake up everybody queued up on reserveq as well as
3924         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3925         * we don't enqueue anything once the SHUTDOWN flag is set, and this
3926         * action is protected by the grant locks.
3927         */
3928        xlog_grant_head_wake_all(&log->l_reserve_head);
3929        xlog_grant_head_wake_all(&log->l_write_head);
3930
3931        /*
3932         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3933         * as if the log writes were completed. The abort handling in the log
3934         * item committed callback functions will do this again under lock to
3935         * avoid races.
3936         */
3937        spin_lock(&log->l_cilp->xc_push_lock);
3938        wake_up_all(&log->l_cilp->xc_commit_wait);
3939        spin_unlock(&log->l_cilp->xc_push_lock);
3940        xlog_state_do_callback(log, true);
3941
3942        /* return non-zero if log IOERROR transition had already happened */
3943        return retval;
3944}
3945
3946STATIC int
3947xlog_iclogs_empty(
3948        struct xlog     *log)
3949{
3950        xlog_in_core_t  *iclog;
3951
3952        iclog = log->l_iclog;
3953        do {
3954                /* endianness does not matter here, zero is zero in
3955                 * any language.
3956                 */
3957                if (iclog->ic_header.h_num_logops)
3958                        return 0;
3959                iclog = iclog->ic_next;
3960        } while (iclog != log->l_iclog);
3961        return 1;
3962}
3963
3964/*
3965 * Verify that an LSN stamped into a piece of metadata is valid. This is
3966 * intended for use in read verifiers on v5 superblocks.
3967 */
3968bool
3969xfs_log_check_lsn(
3970        struct xfs_mount        *mp,
3971        xfs_lsn_t               lsn)
3972{
3973        struct xlog             *log = mp->m_log;
3974        bool                    valid;
3975
3976        /*
3977         * norecovery mode skips mount-time log processing and unconditionally
3978         * resets the in-core LSN. We can't validate in this mode, but
3979         * modifications are not allowed anyways so just return true.
3980         */
3981        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3982                return true;
3983
3984        /*
3985         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3986         * handled by recovery and thus safe to ignore here.
3987         */
3988        if (lsn == NULLCOMMITLSN)
3989                return true;
3990
3991        valid = xlog_valid_lsn(mp->m_log, lsn);
3992
3993        /* warn the user about what's gone wrong before verifier failure */
3994        if (!valid) {
3995                spin_lock(&log->l_icloglock);
3996                xfs_warn(mp,
3997"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3998"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3999                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4000                         log->l_curr_cycle, log->l_curr_block);
4001                spin_unlock(&log->l_icloglock);
4002        }
4003
4004        return valid;
4005}
4006
4007bool
4008xfs_log_in_recovery(
4009        struct xfs_mount        *mp)
4010{
4011        struct xlog             *log = mp->m_log;
4012
4013        return log->l_flags & XLOG_ACTIVE_RECOVERY;
4014}
4015