linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_trans.h"
  18#include "xfs_log.h"
  19#include "xfs_log_priv.h"
  20#include "xfs_log_recover.h"
  21#include "xfs_inode_item.h"
  22#include "xfs_extfree_item.h"
  23#include "xfs_trans_priv.h"
  24#include "xfs_alloc.h"
  25#include "xfs_ialloc.h"
  26#include "xfs_quota.h"
  27#include "xfs_trace.h"
  28#include "xfs_icache.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_error.h"
  31#include "xfs_dir2.h"
  32#include "xfs_rmap_item.h"
  33#include "xfs_buf_item.h"
  34#include "xfs_refcount_item.h"
  35#include "xfs_bmap_item.h"
  36
  37#define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
  38
  39STATIC int
  40xlog_find_zeroed(
  41        struct xlog     *,
  42        xfs_daddr_t     *);
  43STATIC int
  44xlog_clear_stale_blocks(
  45        struct xlog     *,
  46        xfs_lsn_t);
  47#if defined(DEBUG)
  48STATIC void
  49xlog_recover_check_summary(
  50        struct xlog *);
  51#else
  52#define xlog_recover_check_summary(log)
  53#endif
  54STATIC int
  55xlog_do_recovery_pass(
  56        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
  57
  58/*
  59 * This structure is used during recovery to record the buf log items which
  60 * have been canceled and should not be replayed.
  61 */
  62struct xfs_buf_cancel {
  63        xfs_daddr_t             bc_blkno;
  64        uint                    bc_len;
  65        int                     bc_refcount;
  66        struct list_head        bc_list;
  67};
  68
  69/*
  70 * Sector aligned buffer routines for buffer create/read/write/access
  71 */
  72
  73/*
  74 * Verify the log-relative block number and length in basic blocks are valid for
  75 * an operation involving the given XFS log buffer. Returns true if the fields
  76 * are valid, false otherwise.
  77 */
  78static inline bool
  79xlog_verify_bno(
  80        struct xlog     *log,
  81        xfs_daddr_t     blk_no,
  82        int             bbcount)
  83{
  84        if (blk_no < 0 || blk_no >= log->l_logBBsize)
  85                return false;
  86        if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
  87                return false;
  88        return true;
  89}
  90
  91/*
  92 * Allocate a buffer to hold log data.  The buffer needs to be able to map to
  93 * a range of nbblks basic blocks at any valid offset within the log.
  94 */
  95static char *
  96xlog_alloc_buffer(
  97        struct xlog     *log,
  98        int             nbblks)
  99{
 100        int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
 101
 102        /*
 103         * Pass log block 0 since we don't have an addr yet, buffer will be
 104         * verified on read.
 105         */
 106        if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
 107                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 108                        nbblks);
 109                return NULL;
 110        }
 111
 112        /*
 113         * We do log I/O in units of log sectors (a power-of-2 multiple of the
 114         * basic block size), so we round up the requested size to accommodate
 115         * the basic blocks required for complete log sectors.
 116         *
 117         * In addition, the buffer may be used for a non-sector-aligned block
 118         * offset, in which case an I/O of the requested size could extend
 119         * beyond the end of the buffer.  If the requested size is only 1 basic
 120         * block it will never straddle a sector boundary, so this won't be an
 121         * issue.  Nor will this be a problem if the log I/O is done in basic
 122         * blocks (sector size 1).  But otherwise we extend the buffer by one
 123         * extra log sector to ensure there's space to accommodate this
 124         * possibility.
 125         */
 126        if (nbblks > 1 && log->l_sectBBsize > 1)
 127                nbblks += log->l_sectBBsize;
 128        nbblks = round_up(nbblks, log->l_sectBBsize);
 129        return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
 130}
 131
 132/*
 133 * Return the address of the start of the given block number's data
 134 * in a log buffer.  The buffer covers a log sector-aligned region.
 135 */
 136static inline unsigned int
 137xlog_align(
 138        struct xlog     *log,
 139        xfs_daddr_t     blk_no)
 140{
 141        return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
 142}
 143
 144static int
 145xlog_do_io(
 146        struct xlog             *log,
 147        xfs_daddr_t             blk_no,
 148        unsigned int            nbblks,
 149        char                    *data,
 150        unsigned int            op)
 151{
 152        int                     error;
 153
 154        if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
 155                xfs_warn(log->l_mp,
 156                         "Invalid log block/length (0x%llx, 0x%x) for buffer",
 157                         blk_no, nbblks);
 158                return -EFSCORRUPTED;
 159        }
 160
 161        blk_no = round_down(blk_no, log->l_sectBBsize);
 162        nbblks = round_up(nbblks, log->l_sectBBsize);
 163        ASSERT(nbblks > 0);
 164
 165        error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
 166                        BBTOB(nbblks), data, op);
 167        if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
 168                xfs_alert(log->l_mp,
 169                          "log recovery %s I/O error at daddr 0x%llx len %d error %d",
 170                          op == REQ_OP_WRITE ? "write" : "read",
 171                          blk_no, nbblks, error);
 172        }
 173        return error;
 174}
 175
 176STATIC int
 177xlog_bread_noalign(
 178        struct xlog     *log,
 179        xfs_daddr_t     blk_no,
 180        int             nbblks,
 181        char            *data)
 182{
 183        return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
 184}
 185
 186STATIC int
 187xlog_bread(
 188        struct xlog     *log,
 189        xfs_daddr_t     blk_no,
 190        int             nbblks,
 191        char            *data,
 192        char            **offset)
 193{
 194        int             error;
 195
 196        error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
 197        if (!error)
 198                *offset = data + xlog_align(log, blk_no);
 199        return error;
 200}
 201
 202STATIC int
 203xlog_bwrite(
 204        struct xlog     *log,
 205        xfs_daddr_t     blk_no,
 206        int             nbblks,
 207        char            *data)
 208{
 209        return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
 210}
 211
 212#ifdef DEBUG
 213/*
 214 * dump debug superblock and log record information
 215 */
 216STATIC void
 217xlog_header_check_dump(
 218        xfs_mount_t             *mp,
 219        xlog_rec_header_t       *head)
 220{
 221        xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 222                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 223        xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 224                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 225}
 226#else
 227#define xlog_header_check_dump(mp, head)
 228#endif
 229
 230/*
 231 * check log record header for recovery
 232 */
 233STATIC int
 234xlog_header_check_recover(
 235        xfs_mount_t             *mp,
 236        xlog_rec_header_t       *head)
 237{
 238        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 239
 240        /*
 241         * IRIX doesn't write the h_fmt field and leaves it zeroed
 242         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 243         * a dirty log created in IRIX.
 244         */
 245        if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 246                xfs_warn(mp,
 247        "dirty log written in incompatible format - can't recover");
 248                xlog_header_check_dump(mp, head);
 249                return -EFSCORRUPTED;
 250        }
 251        if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
 252                                           &head->h_fs_uuid))) {
 253                xfs_warn(mp,
 254        "dirty log entry has mismatched uuid - can't recover");
 255                xlog_header_check_dump(mp, head);
 256                return -EFSCORRUPTED;
 257        }
 258        return 0;
 259}
 260
 261/*
 262 * read the head block of the log and check the header
 263 */
 264STATIC int
 265xlog_header_check_mount(
 266        xfs_mount_t             *mp,
 267        xlog_rec_header_t       *head)
 268{
 269        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 270
 271        if (uuid_is_null(&head->h_fs_uuid)) {
 272                /*
 273                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 274                 * h_fs_uuid is null, we assume this log was last mounted
 275                 * by IRIX and continue.
 276                 */
 277                xfs_warn(mp, "null uuid in log - IRIX style log");
 278        } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
 279                                                  &head->h_fs_uuid))) {
 280                xfs_warn(mp, "log has mismatched uuid - can't recover");
 281                xlog_header_check_dump(mp, head);
 282                return -EFSCORRUPTED;
 283        }
 284        return 0;
 285}
 286
 287STATIC void
 288xlog_recover_iodone(
 289        struct xfs_buf  *bp)
 290{
 291        if (bp->b_error) {
 292                /*
 293                 * We're not going to bother about retrying
 294                 * this during recovery. One strike!
 295                 */
 296                if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
 297                        xfs_buf_ioerror_alert(bp, __this_address);
 298                        xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
 299                }
 300        }
 301
 302        /*
 303         * On v5 supers, a bli could be attached to update the metadata LSN.
 304         * Clean it up.
 305         */
 306        if (bp->b_log_item)
 307                xfs_buf_item_relse(bp);
 308        ASSERT(bp->b_log_item == NULL);
 309
 310        bp->b_iodone = NULL;
 311        xfs_buf_ioend(bp);
 312}
 313
 314/*
 315 * This routine finds (to an approximation) the first block in the physical
 316 * log which contains the given cycle.  It uses a binary search algorithm.
 317 * Note that the algorithm can not be perfect because the disk will not
 318 * necessarily be perfect.
 319 */
 320STATIC int
 321xlog_find_cycle_start(
 322        struct xlog     *log,
 323        char            *buffer,
 324        xfs_daddr_t     first_blk,
 325        xfs_daddr_t     *last_blk,
 326        uint            cycle)
 327{
 328        char            *offset;
 329        xfs_daddr_t     mid_blk;
 330        xfs_daddr_t     end_blk;
 331        uint            mid_cycle;
 332        int             error;
 333
 334        end_blk = *last_blk;
 335        mid_blk = BLK_AVG(first_blk, end_blk);
 336        while (mid_blk != first_blk && mid_blk != end_blk) {
 337                error = xlog_bread(log, mid_blk, 1, buffer, &offset);
 338                if (error)
 339                        return error;
 340                mid_cycle = xlog_get_cycle(offset);
 341                if (mid_cycle == cycle)
 342                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 343                else
 344                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 345                mid_blk = BLK_AVG(first_blk, end_blk);
 346        }
 347        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 348               (mid_blk == end_blk && mid_blk-1 == first_blk));
 349
 350        *last_blk = end_blk;
 351
 352        return 0;
 353}
 354
 355/*
 356 * Check that a range of blocks does not contain stop_on_cycle_no.
 357 * Fill in *new_blk with the block offset where such a block is
 358 * found, or with -1 (an invalid block number) if there is no such
 359 * block in the range.  The scan needs to occur from front to back
 360 * and the pointer into the region must be updated since a later
 361 * routine will need to perform another test.
 362 */
 363STATIC int
 364xlog_find_verify_cycle(
 365        struct xlog     *log,
 366        xfs_daddr_t     start_blk,
 367        int             nbblks,
 368        uint            stop_on_cycle_no,
 369        xfs_daddr_t     *new_blk)
 370{
 371        xfs_daddr_t     i, j;
 372        uint            cycle;
 373        char            *buffer;
 374        xfs_daddr_t     bufblks;
 375        char            *buf = NULL;
 376        int             error = 0;
 377
 378        /*
 379         * Greedily allocate a buffer big enough to handle the full
 380         * range of basic blocks we'll be examining.  If that fails,
 381         * try a smaller size.  We need to be able to read at least
 382         * a log sector, or we're out of luck.
 383         */
 384        bufblks = 1 << ffs(nbblks);
 385        while (bufblks > log->l_logBBsize)
 386                bufblks >>= 1;
 387        while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
 388                bufblks >>= 1;
 389                if (bufblks < log->l_sectBBsize)
 390                        return -ENOMEM;
 391        }
 392
 393        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 394                int     bcount;
 395
 396                bcount = min(bufblks, (start_blk + nbblks - i));
 397
 398                error = xlog_bread(log, i, bcount, buffer, &buf);
 399                if (error)
 400                        goto out;
 401
 402                for (j = 0; j < bcount; j++) {
 403                        cycle = xlog_get_cycle(buf);
 404                        if (cycle == stop_on_cycle_no) {
 405                                *new_blk = i+j;
 406                                goto out;
 407                        }
 408
 409                        buf += BBSIZE;
 410                }
 411        }
 412
 413        *new_blk = -1;
 414
 415out:
 416        kmem_free(buffer);
 417        return error;
 418}
 419
 420/*
 421 * Potentially backup over partial log record write.
 422 *
 423 * In the typical case, last_blk is the number of the block directly after
 424 * a good log record.  Therefore, we subtract one to get the block number
 425 * of the last block in the given buffer.  extra_bblks contains the number
 426 * of blocks we would have read on a previous read.  This happens when the
 427 * last log record is split over the end of the physical log.
 428 *
 429 * extra_bblks is the number of blocks potentially verified on a previous
 430 * call to this routine.
 431 */
 432STATIC int
 433xlog_find_verify_log_record(
 434        struct xlog             *log,
 435        xfs_daddr_t             start_blk,
 436        xfs_daddr_t             *last_blk,
 437        int                     extra_bblks)
 438{
 439        xfs_daddr_t             i;
 440        char                    *buffer;
 441        char                    *offset = NULL;
 442        xlog_rec_header_t       *head = NULL;
 443        int                     error = 0;
 444        int                     smallmem = 0;
 445        int                     num_blks = *last_blk - start_blk;
 446        int                     xhdrs;
 447
 448        ASSERT(start_blk != 0 || *last_blk != start_blk);
 449
 450        buffer = xlog_alloc_buffer(log, num_blks);
 451        if (!buffer) {
 452                buffer = xlog_alloc_buffer(log, 1);
 453                if (!buffer)
 454                        return -ENOMEM;
 455                smallmem = 1;
 456        } else {
 457                error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
 458                if (error)
 459                        goto out;
 460                offset += ((num_blks - 1) << BBSHIFT);
 461        }
 462
 463        for (i = (*last_blk) - 1; i >= 0; i--) {
 464                if (i < start_blk) {
 465                        /* valid log record not found */
 466                        xfs_warn(log->l_mp,
 467                "Log inconsistent (didn't find previous header)");
 468                        ASSERT(0);
 469                        error = -EFSCORRUPTED;
 470                        goto out;
 471                }
 472
 473                if (smallmem) {
 474                        error = xlog_bread(log, i, 1, buffer, &offset);
 475                        if (error)
 476                                goto out;
 477                }
 478
 479                head = (xlog_rec_header_t *)offset;
 480
 481                if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 482                        break;
 483
 484                if (!smallmem)
 485                        offset -= BBSIZE;
 486        }
 487
 488        /*
 489         * We hit the beginning of the physical log & still no header.  Return
 490         * to caller.  If caller can handle a return of -1, then this routine
 491         * will be called again for the end of the physical log.
 492         */
 493        if (i == -1) {
 494                error = 1;
 495                goto out;
 496        }
 497
 498        /*
 499         * We have the final block of the good log (the first block
 500         * of the log record _before_ the head. So we check the uuid.
 501         */
 502        if ((error = xlog_header_check_mount(log->l_mp, head)))
 503                goto out;
 504
 505        /*
 506         * We may have found a log record header before we expected one.
 507         * last_blk will be the 1st block # with a given cycle #.  We may end
 508         * up reading an entire log record.  In this case, we don't want to
 509         * reset last_blk.  Only when last_blk points in the middle of a log
 510         * record do we update last_blk.
 511         */
 512        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 513                uint    h_size = be32_to_cpu(head->h_size);
 514
 515                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 516                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 517                        xhdrs++;
 518        } else {
 519                xhdrs = 1;
 520        }
 521
 522        if (*last_blk - i + extra_bblks !=
 523            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 524                *last_blk = i;
 525
 526out:
 527        kmem_free(buffer);
 528        return error;
 529}
 530
 531/*
 532 * Head is defined to be the point of the log where the next log write
 533 * could go.  This means that incomplete LR writes at the end are
 534 * eliminated when calculating the head.  We aren't guaranteed that previous
 535 * LR have complete transactions.  We only know that a cycle number of
 536 * current cycle number -1 won't be present in the log if we start writing
 537 * from our current block number.
 538 *
 539 * last_blk contains the block number of the first block with a given
 540 * cycle number.
 541 *
 542 * Return: zero if normal, non-zero if error.
 543 */
 544STATIC int
 545xlog_find_head(
 546        struct xlog     *log,
 547        xfs_daddr_t     *return_head_blk)
 548{
 549        char            *buffer;
 550        char            *offset;
 551        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 552        int             num_scan_bblks;
 553        uint            first_half_cycle, last_half_cycle;
 554        uint            stop_on_cycle;
 555        int             error, log_bbnum = log->l_logBBsize;
 556
 557        /* Is the end of the log device zeroed? */
 558        error = xlog_find_zeroed(log, &first_blk);
 559        if (error < 0) {
 560                xfs_warn(log->l_mp, "empty log check failed");
 561                return error;
 562        }
 563        if (error == 1) {
 564                *return_head_blk = first_blk;
 565
 566                /* Is the whole lot zeroed? */
 567                if (!first_blk) {
 568                        /* Linux XFS shouldn't generate totally zeroed logs -
 569                         * mkfs etc write a dummy unmount record to a fresh
 570                         * log so we can store the uuid in there
 571                         */
 572                        xfs_warn(log->l_mp, "totally zeroed log");
 573                }
 574
 575                return 0;
 576        }
 577
 578        first_blk = 0;                  /* get cycle # of 1st block */
 579        buffer = xlog_alloc_buffer(log, 1);
 580        if (!buffer)
 581                return -ENOMEM;
 582
 583        error = xlog_bread(log, 0, 1, buffer, &offset);
 584        if (error)
 585                goto out_free_buffer;
 586
 587        first_half_cycle = xlog_get_cycle(offset);
 588
 589        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 590        error = xlog_bread(log, last_blk, 1, buffer, &offset);
 591        if (error)
 592                goto out_free_buffer;
 593
 594        last_half_cycle = xlog_get_cycle(offset);
 595        ASSERT(last_half_cycle != 0);
 596
 597        /*
 598         * If the 1st half cycle number is equal to the last half cycle number,
 599         * then the entire log is stamped with the same cycle number.  In this
 600         * case, head_blk can't be set to zero (which makes sense).  The below
 601         * math doesn't work out properly with head_blk equal to zero.  Instead,
 602         * we set it to log_bbnum which is an invalid block number, but this
 603         * value makes the math correct.  If head_blk doesn't changed through
 604         * all the tests below, *head_blk is set to zero at the very end rather
 605         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 606         * in a circular file.
 607         */
 608        if (first_half_cycle == last_half_cycle) {
 609                /*
 610                 * In this case we believe that the entire log should have
 611                 * cycle number last_half_cycle.  We need to scan backwards
 612                 * from the end verifying that there are no holes still
 613                 * containing last_half_cycle - 1.  If we find such a hole,
 614                 * then the start of that hole will be the new head.  The
 615                 * simple case looks like
 616                 *        x | x ... | x - 1 | x
 617                 * Another case that fits this picture would be
 618                 *        x | x + 1 | x ... | x
 619                 * In this case the head really is somewhere at the end of the
 620                 * log, as one of the latest writes at the beginning was
 621                 * incomplete.
 622                 * One more case is
 623                 *        x | x + 1 | x ... | x - 1 | x
 624                 * This is really the combination of the above two cases, and
 625                 * the head has to end up at the start of the x-1 hole at the
 626                 * end of the log.
 627                 *
 628                 * In the 256k log case, we will read from the beginning to the
 629                 * end of the log and search for cycle numbers equal to x-1.
 630                 * We don't worry about the x+1 blocks that we encounter,
 631                 * because we know that they cannot be the head since the log
 632                 * started with x.
 633                 */
 634                head_blk = log_bbnum;
 635                stop_on_cycle = last_half_cycle - 1;
 636        } else {
 637                /*
 638                 * In this case we want to find the first block with cycle
 639                 * number matching last_half_cycle.  We expect the log to be
 640                 * some variation on
 641                 *        x + 1 ... | x ... | x
 642                 * The first block with cycle number x (last_half_cycle) will
 643                 * be where the new head belongs.  First we do a binary search
 644                 * for the first occurrence of last_half_cycle.  The binary
 645                 * search may not be totally accurate, so then we scan back
 646                 * from there looking for occurrences of last_half_cycle before
 647                 * us.  If that backwards scan wraps around the beginning of
 648                 * the log, then we look for occurrences of last_half_cycle - 1
 649                 * at the end of the log.  The cases we're looking for look
 650                 * like
 651                 *                               v binary search stopped here
 652                 *        x + 1 ... | x | x + 1 | x ... | x
 653                 *                   ^ but we want to locate this spot
 654                 * or
 655                 *        <---------> less than scan distance
 656                 *        x + 1 ... | x ... | x - 1 | x
 657                 *                           ^ we want to locate this spot
 658                 */
 659                stop_on_cycle = last_half_cycle;
 660                error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
 661                                last_half_cycle);
 662                if (error)
 663                        goto out_free_buffer;
 664        }
 665
 666        /*
 667         * Now validate the answer.  Scan back some number of maximum possible
 668         * blocks and make sure each one has the expected cycle number.  The
 669         * maximum is determined by the total possible amount of buffering
 670         * in the in-core log.  The following number can be made tighter if
 671         * we actually look at the block size of the filesystem.
 672         */
 673        num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
 674        if (head_blk >= num_scan_bblks) {
 675                /*
 676                 * We are guaranteed that the entire check can be performed
 677                 * in one buffer.
 678                 */
 679                start_blk = head_blk - num_scan_bblks;
 680                if ((error = xlog_find_verify_cycle(log,
 681                                                start_blk, num_scan_bblks,
 682                                                stop_on_cycle, &new_blk)))
 683                        goto out_free_buffer;
 684                if (new_blk != -1)
 685                        head_blk = new_blk;
 686        } else {                /* need to read 2 parts of log */
 687                /*
 688                 * We are going to scan backwards in the log in two parts.
 689                 * First we scan the physical end of the log.  In this part
 690                 * of the log, we are looking for blocks with cycle number
 691                 * last_half_cycle - 1.
 692                 * If we find one, then we know that the log starts there, as
 693                 * we've found a hole that didn't get written in going around
 694                 * the end of the physical log.  The simple case for this is
 695                 *        x + 1 ... | x ... | x - 1 | x
 696                 *        <---------> less than scan distance
 697                 * If all of the blocks at the end of the log have cycle number
 698                 * last_half_cycle, then we check the blocks at the start of
 699                 * the log looking for occurrences of last_half_cycle.  If we
 700                 * find one, then our current estimate for the location of the
 701                 * first occurrence of last_half_cycle is wrong and we move
 702                 * back to the hole we've found.  This case looks like
 703                 *        x + 1 ... | x | x + 1 | x ...
 704                 *                               ^ binary search stopped here
 705                 * Another case we need to handle that only occurs in 256k
 706                 * logs is
 707                 *        x + 1 ... | x ... | x+1 | x ...
 708                 *                   ^ binary search stops here
 709                 * In a 256k log, the scan at the end of the log will see the
 710                 * x + 1 blocks.  We need to skip past those since that is
 711                 * certainly not the head of the log.  By searching for
 712                 * last_half_cycle-1 we accomplish that.
 713                 */
 714                ASSERT(head_blk <= INT_MAX &&
 715                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 716                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 717                if ((error = xlog_find_verify_cycle(log, start_blk,
 718                                        num_scan_bblks - (int)head_blk,
 719                                        (stop_on_cycle - 1), &new_blk)))
 720                        goto out_free_buffer;
 721                if (new_blk != -1) {
 722                        head_blk = new_blk;
 723                        goto validate_head;
 724                }
 725
 726                /*
 727                 * Scan beginning of log now.  The last part of the physical
 728                 * log is good.  This scan needs to verify that it doesn't find
 729                 * the last_half_cycle.
 730                 */
 731                start_blk = 0;
 732                ASSERT(head_blk <= INT_MAX);
 733                if ((error = xlog_find_verify_cycle(log,
 734                                        start_blk, (int)head_blk,
 735                                        stop_on_cycle, &new_blk)))
 736                        goto out_free_buffer;
 737                if (new_blk != -1)
 738                        head_blk = new_blk;
 739        }
 740
 741validate_head:
 742        /*
 743         * Now we need to make sure head_blk is not pointing to a block in
 744         * the middle of a log record.
 745         */
 746        num_scan_bblks = XLOG_REC_SHIFT(log);
 747        if (head_blk >= num_scan_bblks) {
 748                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 749
 750                /* start ptr at last block ptr before head_blk */
 751                error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 752                if (error == 1)
 753                        error = -EIO;
 754                if (error)
 755                        goto out_free_buffer;
 756        } else {
 757                start_blk = 0;
 758                ASSERT(head_blk <= INT_MAX);
 759                error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 760                if (error < 0)
 761                        goto out_free_buffer;
 762                if (error == 1) {
 763                        /* We hit the beginning of the log during our search */
 764                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 765                        new_blk = log_bbnum;
 766                        ASSERT(start_blk <= INT_MAX &&
 767                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 768                        ASSERT(head_blk <= INT_MAX);
 769                        error = xlog_find_verify_log_record(log, start_blk,
 770                                                        &new_blk, (int)head_blk);
 771                        if (error == 1)
 772                                error = -EIO;
 773                        if (error)
 774                                goto out_free_buffer;
 775                        if (new_blk != log_bbnum)
 776                                head_blk = new_blk;
 777                } else if (error)
 778                        goto out_free_buffer;
 779        }
 780
 781        kmem_free(buffer);
 782        if (head_blk == log_bbnum)
 783                *return_head_blk = 0;
 784        else
 785                *return_head_blk = head_blk;
 786        /*
 787         * When returning here, we have a good block number.  Bad block
 788         * means that during a previous crash, we didn't have a clean break
 789         * from cycle number N to cycle number N-1.  In this case, we need
 790         * to find the first block with cycle number N-1.
 791         */
 792        return 0;
 793
 794out_free_buffer:
 795        kmem_free(buffer);
 796        if (error)
 797                xfs_warn(log->l_mp, "failed to find log head");
 798        return error;
 799}
 800
 801/*
 802 * Seek backwards in the log for log record headers.
 803 *
 804 * Given a starting log block, walk backwards until we find the provided number
 805 * of records or hit the provided tail block. The return value is the number of
 806 * records encountered or a negative error code. The log block and buffer
 807 * pointer of the last record seen are returned in rblk and rhead respectively.
 808 */
 809STATIC int
 810xlog_rseek_logrec_hdr(
 811        struct xlog             *log,
 812        xfs_daddr_t             head_blk,
 813        xfs_daddr_t             tail_blk,
 814        int                     count,
 815        char                    *buffer,
 816        xfs_daddr_t             *rblk,
 817        struct xlog_rec_header  **rhead,
 818        bool                    *wrapped)
 819{
 820        int                     i;
 821        int                     error;
 822        int                     found = 0;
 823        char                    *offset = NULL;
 824        xfs_daddr_t             end_blk;
 825
 826        *wrapped = false;
 827
 828        /*
 829         * Walk backwards from the head block until we hit the tail or the first
 830         * block in the log.
 831         */
 832        end_blk = head_blk > tail_blk ? tail_blk : 0;
 833        for (i = (int) head_blk - 1; i >= end_blk; i--) {
 834                error = xlog_bread(log, i, 1, buffer, &offset);
 835                if (error)
 836                        goto out_error;
 837
 838                if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 839                        *rblk = i;
 840                        *rhead = (struct xlog_rec_header *) offset;
 841                        if (++found == count)
 842                                break;
 843                }
 844        }
 845
 846        /*
 847         * If we haven't hit the tail block or the log record header count,
 848         * start looking again from the end of the physical log. Note that
 849         * callers can pass head == tail if the tail is not yet known.
 850         */
 851        if (tail_blk >= head_blk && found != count) {
 852                for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
 853                        error = xlog_bread(log, i, 1, buffer, &offset);
 854                        if (error)
 855                                goto out_error;
 856
 857                        if (*(__be32 *)offset ==
 858                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 859                                *wrapped = true;
 860                                *rblk = i;
 861                                *rhead = (struct xlog_rec_header *) offset;
 862                                if (++found == count)
 863                                        break;
 864                        }
 865                }
 866        }
 867
 868        return found;
 869
 870out_error:
 871        return error;
 872}
 873
 874/*
 875 * Seek forward in the log for log record headers.
 876 *
 877 * Given head and tail blocks, walk forward from the tail block until we find
 878 * the provided number of records or hit the head block. The return value is the
 879 * number of records encountered or a negative error code. The log block and
 880 * buffer pointer of the last record seen are returned in rblk and rhead
 881 * respectively.
 882 */
 883STATIC int
 884xlog_seek_logrec_hdr(
 885        struct xlog             *log,
 886        xfs_daddr_t             head_blk,
 887        xfs_daddr_t             tail_blk,
 888        int                     count,
 889        char                    *buffer,
 890        xfs_daddr_t             *rblk,
 891        struct xlog_rec_header  **rhead,
 892        bool                    *wrapped)
 893{
 894        int                     i;
 895        int                     error;
 896        int                     found = 0;
 897        char                    *offset = NULL;
 898        xfs_daddr_t             end_blk;
 899
 900        *wrapped = false;
 901
 902        /*
 903         * Walk forward from the tail block until we hit the head or the last
 904         * block in the log.
 905         */
 906        end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
 907        for (i = (int) tail_blk; i <= end_blk; i++) {
 908                error = xlog_bread(log, i, 1, buffer, &offset);
 909                if (error)
 910                        goto out_error;
 911
 912                if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 913                        *rblk = i;
 914                        *rhead = (struct xlog_rec_header *) offset;
 915                        if (++found == count)
 916                                break;
 917                }
 918        }
 919
 920        /*
 921         * If we haven't hit the head block or the log record header count,
 922         * start looking again from the start of the physical log.
 923         */
 924        if (tail_blk > head_blk && found != count) {
 925                for (i = 0; i < (int) head_blk; i++) {
 926                        error = xlog_bread(log, i, 1, buffer, &offset);
 927                        if (error)
 928                                goto out_error;
 929
 930                        if (*(__be32 *)offset ==
 931                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 932                                *wrapped = true;
 933                                *rblk = i;
 934                                *rhead = (struct xlog_rec_header *) offset;
 935                                if (++found == count)
 936                                        break;
 937                        }
 938                }
 939        }
 940
 941        return found;
 942
 943out_error:
 944        return error;
 945}
 946
 947/*
 948 * Calculate distance from head to tail (i.e., unused space in the log).
 949 */
 950static inline int
 951xlog_tail_distance(
 952        struct xlog     *log,
 953        xfs_daddr_t     head_blk,
 954        xfs_daddr_t     tail_blk)
 955{
 956        if (head_blk < tail_blk)
 957                return tail_blk - head_blk;
 958
 959        return tail_blk + (log->l_logBBsize - head_blk);
 960}
 961
 962/*
 963 * Verify the log tail. This is particularly important when torn or incomplete
 964 * writes have been detected near the front of the log and the head has been
 965 * walked back accordingly.
 966 *
 967 * We also have to handle the case where the tail was pinned and the head
 968 * blocked behind the tail right before a crash. If the tail had been pushed
 969 * immediately prior to the crash and the subsequent checkpoint was only
 970 * partially written, it's possible it overwrote the last referenced tail in the
 971 * log with garbage. This is not a coherency problem because the tail must have
 972 * been pushed before it can be overwritten, but appears as log corruption to
 973 * recovery because we have no way to know the tail was updated if the
 974 * subsequent checkpoint didn't write successfully.
 975 *
 976 * Therefore, CRC check the log from tail to head. If a failure occurs and the
 977 * offending record is within max iclog bufs from the head, walk the tail
 978 * forward and retry until a valid tail is found or corruption is detected out
 979 * of the range of a possible overwrite.
 980 */
 981STATIC int
 982xlog_verify_tail(
 983        struct xlog             *log,
 984        xfs_daddr_t             head_blk,
 985        xfs_daddr_t             *tail_blk,
 986        int                     hsize)
 987{
 988        struct xlog_rec_header  *thead;
 989        char                    *buffer;
 990        xfs_daddr_t             first_bad;
 991        int                     error = 0;
 992        bool                    wrapped;
 993        xfs_daddr_t             tmp_tail;
 994        xfs_daddr_t             orig_tail = *tail_blk;
 995
 996        buffer = xlog_alloc_buffer(log, 1);
 997        if (!buffer)
 998                return -ENOMEM;
 999
1000        /*
1001         * Make sure the tail points to a record (returns positive count on
1002         * success).
1003         */
1004        error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
1005                        &tmp_tail, &thead, &wrapped);
1006        if (error < 0)
1007                goto out;
1008        if (*tail_blk != tmp_tail)
1009                *tail_blk = tmp_tail;
1010
1011        /*
1012         * Run a CRC check from the tail to the head. We can't just check
1013         * MAX_ICLOGS records past the tail because the tail may point to stale
1014         * blocks cleared during the search for the head/tail. These blocks are
1015         * overwritten with zero-length records and thus record count is not a
1016         * reliable indicator of the iclog state before a crash.
1017         */
1018        first_bad = 0;
1019        error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1020                                      XLOG_RECOVER_CRCPASS, &first_bad);
1021        while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1022                int     tail_distance;
1023
1024                /*
1025                 * Is corruption within range of the head? If so, retry from
1026                 * the next record. Otherwise return an error.
1027                 */
1028                tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1029                if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1030                        break;
1031
1032                /* skip to the next record; returns positive count on success */
1033                error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
1034                                buffer, &tmp_tail, &thead, &wrapped);
1035                if (error < 0)
1036                        goto out;
1037
1038                *tail_blk = tmp_tail;
1039                first_bad = 0;
1040                error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1041                                              XLOG_RECOVER_CRCPASS, &first_bad);
1042        }
1043
1044        if (!error && *tail_blk != orig_tail)
1045                xfs_warn(log->l_mp,
1046                "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1047                         orig_tail, *tail_blk);
1048out:
1049        kmem_free(buffer);
1050        return error;
1051}
1052
1053/*
1054 * Detect and trim torn writes from the head of the log.
1055 *
1056 * Storage without sector atomicity guarantees can result in torn writes in the
1057 * log in the event of a crash. Our only means to detect this scenario is via
1058 * CRC verification. While we can't always be certain that CRC verification
1059 * failure is due to a torn write vs. an unrelated corruption, we do know that
1060 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1061 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1062 * the log and treat failures in this range as torn writes as a matter of
1063 * policy. In the event of CRC failure, the head is walked back to the last good
1064 * record in the log and the tail is updated from that record and verified.
1065 */
1066STATIC int
1067xlog_verify_head(
1068        struct xlog             *log,
1069        xfs_daddr_t             *head_blk,      /* in/out: unverified head */
1070        xfs_daddr_t             *tail_blk,      /* out: tail block */
1071        char                    *buffer,
1072        xfs_daddr_t             *rhead_blk,     /* start blk of last record */
1073        struct xlog_rec_header  **rhead,        /* ptr to last record */
1074        bool                    *wrapped)       /* last rec. wraps phys. log */
1075{
1076        struct xlog_rec_header  *tmp_rhead;
1077        char                    *tmp_buffer;
1078        xfs_daddr_t             first_bad;
1079        xfs_daddr_t             tmp_rhead_blk;
1080        int                     found;
1081        int                     error;
1082        bool                    tmp_wrapped;
1083
1084        /*
1085         * Check the head of the log for torn writes. Search backwards from the
1086         * head until we hit the tail or the maximum number of log record I/Os
1087         * that could have been in flight at one time. Use a temporary buffer so
1088         * we don't trash the rhead/buffer pointers from the caller.
1089         */
1090        tmp_buffer = xlog_alloc_buffer(log, 1);
1091        if (!tmp_buffer)
1092                return -ENOMEM;
1093        error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1094                                      XLOG_MAX_ICLOGS, tmp_buffer,
1095                                      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1096        kmem_free(tmp_buffer);
1097        if (error < 0)
1098                return error;
1099
1100        /*
1101         * Now run a CRC verification pass over the records starting at the
1102         * block found above to the current head. If a CRC failure occurs, the
1103         * log block of the first bad record is saved in first_bad.
1104         */
1105        error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1106                                      XLOG_RECOVER_CRCPASS, &first_bad);
1107        if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1108                /*
1109                 * We've hit a potential torn write. Reset the error and warn
1110                 * about it.
1111                 */
1112                error = 0;
1113                xfs_warn(log->l_mp,
1114"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1115                         first_bad, *head_blk);
1116
1117                /*
1118                 * Get the header block and buffer pointer for the last good
1119                 * record before the bad record.
1120                 *
1121                 * Note that xlog_find_tail() clears the blocks at the new head
1122                 * (i.e., the records with invalid CRC) if the cycle number
1123                 * matches the the current cycle.
1124                 */
1125                found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1126                                buffer, rhead_blk, rhead, wrapped);
1127                if (found < 0)
1128                        return found;
1129                if (found == 0)         /* XXX: right thing to do here? */
1130                        return -EIO;
1131
1132                /*
1133                 * Reset the head block to the starting block of the first bad
1134                 * log record and set the tail block based on the last good
1135                 * record.
1136                 *
1137                 * Bail out if the updated head/tail match as this indicates
1138                 * possible corruption outside of the acceptable
1139                 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1140                 */
1141                *head_blk = first_bad;
1142                *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1143                if (*head_blk == *tail_blk) {
1144                        ASSERT(0);
1145                        return 0;
1146                }
1147        }
1148        if (error)
1149                return error;
1150
1151        return xlog_verify_tail(log, *head_blk, tail_blk,
1152                                be32_to_cpu((*rhead)->h_size));
1153}
1154
1155/*
1156 * We need to make sure we handle log wrapping properly, so we can't use the
1157 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1158 * log.
1159 *
1160 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1161 * operation here and cast it back to a 64 bit daddr on return.
1162 */
1163static inline xfs_daddr_t
1164xlog_wrap_logbno(
1165        struct xlog             *log,
1166        xfs_daddr_t             bno)
1167{
1168        int                     mod;
1169
1170        div_s64_rem(bno, log->l_logBBsize, &mod);
1171        return mod;
1172}
1173
1174/*
1175 * Check whether the head of the log points to an unmount record. In other
1176 * words, determine whether the log is clean. If so, update the in-core state
1177 * appropriately.
1178 */
1179static int
1180xlog_check_unmount_rec(
1181        struct xlog             *log,
1182        xfs_daddr_t             *head_blk,
1183        xfs_daddr_t             *tail_blk,
1184        struct xlog_rec_header  *rhead,
1185        xfs_daddr_t             rhead_blk,
1186        char                    *buffer,
1187        bool                    *clean)
1188{
1189        struct xlog_op_header   *op_head;
1190        xfs_daddr_t             umount_data_blk;
1191        xfs_daddr_t             after_umount_blk;
1192        int                     hblks;
1193        int                     error;
1194        char                    *offset;
1195
1196        *clean = false;
1197
1198        /*
1199         * Look for unmount record. If we find it, then we know there was a
1200         * clean unmount. Since 'i' could be the last block in the physical
1201         * log, we convert to a log block before comparing to the head_blk.
1202         *
1203         * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1204         * below. We won't want to clear the unmount record if there is one, so
1205         * we pass the lsn of the unmount record rather than the block after it.
1206         */
1207        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1208                int     h_size = be32_to_cpu(rhead->h_size);
1209                int     h_version = be32_to_cpu(rhead->h_version);
1210
1211                if ((h_version & XLOG_VERSION_2) &&
1212                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1213                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1214                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
1215                                hblks++;
1216                } else {
1217                        hblks = 1;
1218                }
1219        } else {
1220                hblks = 1;
1221        }
1222
1223        after_umount_blk = xlog_wrap_logbno(log,
1224                        rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1225
1226        if (*head_blk == after_umount_blk &&
1227            be32_to_cpu(rhead->h_num_logops) == 1) {
1228                umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1229                error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1230                if (error)
1231                        return error;
1232
1233                op_head = (struct xlog_op_header *)offset;
1234                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1235                        /*
1236                         * Set tail and last sync so that newly written log
1237                         * records will point recovery to after the current
1238                         * unmount record.
1239                         */
1240                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
1241                                        log->l_curr_cycle, after_umount_blk);
1242                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1243                                        log->l_curr_cycle, after_umount_blk);
1244                        *tail_blk = after_umount_blk;
1245
1246                        *clean = true;
1247                }
1248        }
1249
1250        return 0;
1251}
1252
1253static void
1254xlog_set_state(
1255        struct xlog             *log,
1256        xfs_daddr_t             head_blk,
1257        struct xlog_rec_header  *rhead,
1258        xfs_daddr_t             rhead_blk,
1259        bool                    bump_cycle)
1260{
1261        /*
1262         * Reset log values according to the state of the log when we
1263         * crashed.  In the case where head_blk == 0, we bump curr_cycle
1264         * one because the next write starts a new cycle rather than
1265         * continuing the cycle of the last good log record.  At this
1266         * point we have guaranteed that all partial log records have been
1267         * accounted for.  Therefore, we know that the last good log record
1268         * written was complete and ended exactly on the end boundary
1269         * of the physical log.
1270         */
1271        log->l_prev_block = rhead_blk;
1272        log->l_curr_block = (int)head_blk;
1273        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1274        if (bump_cycle)
1275                log->l_curr_cycle++;
1276        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1277        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1278        xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1279                                        BBTOB(log->l_curr_block));
1280        xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1281                                        BBTOB(log->l_curr_block));
1282}
1283
1284/*
1285 * Find the sync block number or the tail of the log.
1286 *
1287 * This will be the block number of the last record to have its
1288 * associated buffers synced to disk.  Every log record header has
1289 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1290 * to get a sync block number.  The only concern is to figure out which
1291 * log record header to believe.
1292 *
1293 * The following algorithm uses the log record header with the largest
1294 * lsn.  The entire log record does not need to be valid.  We only care
1295 * that the header is valid.
1296 *
1297 * We could speed up search by using current head_blk buffer, but it is not
1298 * available.
1299 */
1300STATIC int
1301xlog_find_tail(
1302        struct xlog             *log,
1303        xfs_daddr_t             *head_blk,
1304        xfs_daddr_t             *tail_blk)
1305{
1306        xlog_rec_header_t       *rhead;
1307        char                    *offset = NULL;
1308        char                    *buffer;
1309        int                     error;
1310        xfs_daddr_t             rhead_blk;
1311        xfs_lsn_t               tail_lsn;
1312        bool                    wrapped = false;
1313        bool                    clean = false;
1314
1315        /*
1316         * Find previous log record
1317         */
1318        if ((error = xlog_find_head(log, head_blk)))
1319                return error;
1320        ASSERT(*head_blk < INT_MAX);
1321
1322        buffer = xlog_alloc_buffer(log, 1);
1323        if (!buffer)
1324                return -ENOMEM;
1325        if (*head_blk == 0) {                           /* special case */
1326                error = xlog_bread(log, 0, 1, buffer, &offset);
1327                if (error)
1328                        goto done;
1329
1330                if (xlog_get_cycle(offset) == 0) {
1331                        *tail_blk = 0;
1332                        /* leave all other log inited values alone */
1333                        goto done;
1334                }
1335        }
1336
1337        /*
1338         * Search backwards through the log looking for the log record header
1339         * block. This wraps all the way back around to the head so something is
1340         * seriously wrong if we can't find it.
1341         */
1342        error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1343                                      &rhead_blk, &rhead, &wrapped);
1344        if (error < 0)
1345                goto done;
1346        if (!error) {
1347                xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1348                error = -EFSCORRUPTED;
1349                goto done;
1350        }
1351        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1352
1353        /*
1354         * Set the log state based on the current head record.
1355         */
1356        xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1357        tail_lsn = atomic64_read(&log->l_tail_lsn);
1358
1359        /*
1360         * Look for an unmount record at the head of the log. This sets the log
1361         * state to determine whether recovery is necessary.
1362         */
1363        error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1364                                       rhead_blk, buffer, &clean);
1365        if (error)
1366                goto done;
1367
1368        /*
1369         * Verify the log head if the log is not clean (e.g., we have anything
1370         * but an unmount record at the head). This uses CRC verification to
1371         * detect and trim torn writes. If discovered, CRC failures are
1372         * considered torn writes and the log head is trimmed accordingly.
1373         *
1374         * Note that we can only run CRC verification when the log is dirty
1375         * because there's no guarantee that the log data behind an unmount
1376         * record is compatible with the current architecture.
1377         */
1378        if (!clean) {
1379                xfs_daddr_t     orig_head = *head_blk;
1380
1381                error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1382                                         &rhead_blk, &rhead, &wrapped);
1383                if (error)
1384                        goto done;
1385
1386                /* update in-core state again if the head changed */
1387                if (*head_blk != orig_head) {
1388                        xlog_set_state(log, *head_blk, rhead, rhead_blk,
1389                                       wrapped);
1390                        tail_lsn = atomic64_read(&log->l_tail_lsn);
1391                        error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1392                                                       rhead, rhead_blk, buffer,
1393                                                       &clean);
1394                        if (error)
1395                                goto done;
1396                }
1397        }
1398
1399        /*
1400         * Note that the unmount was clean. If the unmount was not clean, we
1401         * need to know this to rebuild the superblock counters from the perag
1402         * headers if we have a filesystem using non-persistent counters.
1403         */
1404        if (clean)
1405                log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1406
1407        /*
1408         * Make sure that there are no blocks in front of the head
1409         * with the same cycle number as the head.  This can happen
1410         * because we allow multiple outstanding log writes concurrently,
1411         * and the later writes might make it out before earlier ones.
1412         *
1413         * We use the lsn from before modifying it so that we'll never
1414         * overwrite the unmount record after a clean unmount.
1415         *
1416         * Do this only if we are going to recover the filesystem
1417         *
1418         * NOTE: This used to say "if (!readonly)"
1419         * However on Linux, we can & do recover a read-only filesystem.
1420         * We only skip recovery if NORECOVERY is specified on mount,
1421         * in which case we would not be here.
1422         *
1423         * But... if the -device- itself is readonly, just skip this.
1424         * We can't recover this device anyway, so it won't matter.
1425         */
1426        if (!xfs_readonly_buftarg(log->l_targ))
1427                error = xlog_clear_stale_blocks(log, tail_lsn);
1428
1429done:
1430        kmem_free(buffer);
1431
1432        if (error)
1433                xfs_warn(log->l_mp, "failed to locate log tail");
1434        return error;
1435}
1436
1437/*
1438 * Is the log zeroed at all?
1439 *
1440 * The last binary search should be changed to perform an X block read
1441 * once X becomes small enough.  You can then search linearly through
1442 * the X blocks.  This will cut down on the number of reads we need to do.
1443 *
1444 * If the log is partially zeroed, this routine will pass back the blkno
1445 * of the first block with cycle number 0.  It won't have a complete LR
1446 * preceding it.
1447 *
1448 * Return:
1449 *      0  => the log is completely written to
1450 *      1 => use *blk_no as the first block of the log
1451 *      <0 => error has occurred
1452 */
1453STATIC int
1454xlog_find_zeroed(
1455        struct xlog     *log,
1456        xfs_daddr_t     *blk_no)
1457{
1458        char            *buffer;
1459        char            *offset;
1460        uint            first_cycle, last_cycle;
1461        xfs_daddr_t     new_blk, last_blk, start_blk;
1462        xfs_daddr_t     num_scan_bblks;
1463        int             error, log_bbnum = log->l_logBBsize;
1464
1465        *blk_no = 0;
1466
1467        /* check totally zeroed log */
1468        buffer = xlog_alloc_buffer(log, 1);
1469        if (!buffer)
1470                return -ENOMEM;
1471        error = xlog_bread(log, 0, 1, buffer, &offset);
1472        if (error)
1473                goto out_free_buffer;
1474
1475        first_cycle = xlog_get_cycle(offset);
1476        if (first_cycle == 0) {         /* completely zeroed log */
1477                *blk_no = 0;
1478                kmem_free(buffer);
1479                return 1;
1480        }
1481
1482        /* check partially zeroed log */
1483        error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1484        if (error)
1485                goto out_free_buffer;
1486
1487        last_cycle = xlog_get_cycle(offset);
1488        if (last_cycle != 0) {          /* log completely written to */
1489                kmem_free(buffer);
1490                return 0;
1491        }
1492
1493        /* we have a partially zeroed log */
1494        last_blk = log_bbnum-1;
1495        error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1496        if (error)
1497                goto out_free_buffer;
1498
1499        /*
1500         * Validate the answer.  Because there is no way to guarantee that
1501         * the entire log is made up of log records which are the same size,
1502         * we scan over the defined maximum blocks.  At this point, the maximum
1503         * is not chosen to mean anything special.   XXXmiken
1504         */
1505        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1506        ASSERT(num_scan_bblks <= INT_MAX);
1507
1508        if (last_blk < num_scan_bblks)
1509                num_scan_bblks = last_blk;
1510        start_blk = last_blk - num_scan_bblks;
1511
1512        /*
1513         * We search for any instances of cycle number 0 that occur before
1514         * our current estimate of the head.  What we're trying to detect is
1515         *        1 ... | 0 | 1 | 0...
1516         *                       ^ binary search ends here
1517         */
1518        if ((error = xlog_find_verify_cycle(log, start_blk,
1519                                         (int)num_scan_bblks, 0, &new_blk)))
1520                goto out_free_buffer;
1521        if (new_blk != -1)
1522                last_blk = new_blk;
1523
1524        /*
1525         * Potentially backup over partial log record write.  We don't need
1526         * to search the end of the log because we know it is zero.
1527         */
1528        error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1529        if (error == 1)
1530                error = -EIO;
1531        if (error)
1532                goto out_free_buffer;
1533
1534        *blk_no = last_blk;
1535out_free_buffer:
1536        kmem_free(buffer);
1537        if (error)
1538                return error;
1539        return 1;
1540}
1541
1542/*
1543 * These are simple subroutines used by xlog_clear_stale_blocks() below
1544 * to initialize a buffer full of empty log record headers and write
1545 * them into the log.
1546 */
1547STATIC void
1548xlog_add_record(
1549        struct xlog             *log,
1550        char                    *buf,
1551        int                     cycle,
1552        int                     block,
1553        int                     tail_cycle,
1554        int                     tail_block)
1555{
1556        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1557
1558        memset(buf, 0, BBSIZE);
1559        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1560        recp->h_cycle = cpu_to_be32(cycle);
1561        recp->h_version = cpu_to_be32(
1562                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1563        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1564        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1565        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1566        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1567}
1568
1569STATIC int
1570xlog_write_log_records(
1571        struct xlog     *log,
1572        int             cycle,
1573        int             start_block,
1574        int             blocks,
1575        int             tail_cycle,
1576        int             tail_block)
1577{
1578        char            *offset;
1579        char            *buffer;
1580        int             balign, ealign;
1581        int             sectbb = log->l_sectBBsize;
1582        int             end_block = start_block + blocks;
1583        int             bufblks;
1584        int             error = 0;
1585        int             i, j = 0;
1586
1587        /*
1588         * Greedily allocate a buffer big enough to handle the full
1589         * range of basic blocks to be written.  If that fails, try
1590         * a smaller size.  We need to be able to write at least a
1591         * log sector, or we're out of luck.
1592         */
1593        bufblks = 1 << ffs(blocks);
1594        while (bufblks > log->l_logBBsize)
1595                bufblks >>= 1;
1596        while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1597                bufblks >>= 1;
1598                if (bufblks < sectbb)
1599                        return -ENOMEM;
1600        }
1601
1602        /* We may need to do a read at the start to fill in part of
1603         * the buffer in the starting sector not covered by the first
1604         * write below.
1605         */
1606        balign = round_down(start_block, sectbb);
1607        if (balign != start_block) {
1608                error = xlog_bread_noalign(log, start_block, 1, buffer);
1609                if (error)
1610                        goto out_free_buffer;
1611
1612                j = start_block - balign;
1613        }
1614
1615        for (i = start_block; i < end_block; i += bufblks) {
1616                int             bcount, endcount;
1617
1618                bcount = min(bufblks, end_block - start_block);
1619                endcount = bcount - j;
1620
1621                /* We may need to do a read at the end to fill in part of
1622                 * the buffer in the final sector not covered by the write.
1623                 * If this is the same sector as the above read, skip it.
1624                 */
1625                ealign = round_down(end_block, sectbb);
1626                if (j == 0 && (start_block + endcount > ealign)) {
1627                        error = xlog_bread_noalign(log, ealign, sectbb,
1628                                        buffer + BBTOB(ealign - start_block));
1629                        if (error)
1630                                break;
1631
1632                }
1633
1634                offset = buffer + xlog_align(log, start_block);
1635                for (; j < endcount; j++) {
1636                        xlog_add_record(log, offset, cycle, i+j,
1637                                        tail_cycle, tail_block);
1638                        offset += BBSIZE;
1639                }
1640                error = xlog_bwrite(log, start_block, endcount, buffer);
1641                if (error)
1642                        break;
1643                start_block += endcount;
1644                j = 0;
1645        }
1646
1647out_free_buffer:
1648        kmem_free(buffer);
1649        return error;
1650}
1651
1652/*
1653 * This routine is called to blow away any incomplete log writes out
1654 * in front of the log head.  We do this so that we won't become confused
1655 * if we come up, write only a little bit more, and then crash again.
1656 * If we leave the partial log records out there, this situation could
1657 * cause us to think those partial writes are valid blocks since they
1658 * have the current cycle number.  We get rid of them by overwriting them
1659 * with empty log records with the old cycle number rather than the
1660 * current one.
1661 *
1662 * The tail lsn is passed in rather than taken from
1663 * the log so that we will not write over the unmount record after a
1664 * clean unmount in a 512 block log.  Doing so would leave the log without
1665 * any valid log records in it until a new one was written.  If we crashed
1666 * during that time we would not be able to recover.
1667 */
1668STATIC int
1669xlog_clear_stale_blocks(
1670        struct xlog     *log,
1671        xfs_lsn_t       tail_lsn)
1672{
1673        int             tail_cycle, head_cycle;
1674        int             tail_block, head_block;
1675        int             tail_distance, max_distance;
1676        int             distance;
1677        int             error;
1678
1679        tail_cycle = CYCLE_LSN(tail_lsn);
1680        tail_block = BLOCK_LSN(tail_lsn);
1681        head_cycle = log->l_curr_cycle;
1682        head_block = log->l_curr_block;
1683
1684        /*
1685         * Figure out the distance between the new head of the log
1686         * and the tail.  We want to write over any blocks beyond the
1687         * head that we may have written just before the crash, but
1688         * we don't want to overwrite the tail of the log.
1689         */
1690        if (head_cycle == tail_cycle) {
1691                /*
1692                 * The tail is behind the head in the physical log,
1693                 * so the distance from the head to the tail is the
1694                 * distance from the head to the end of the log plus
1695                 * the distance from the beginning of the log to the
1696                 * tail.
1697                 */
1698                if (XFS_IS_CORRUPT(log->l_mp,
1699                                   head_block < tail_block ||
1700                                   head_block >= log->l_logBBsize))
1701                        return -EFSCORRUPTED;
1702                tail_distance = tail_block + (log->l_logBBsize - head_block);
1703        } else {
1704                /*
1705                 * The head is behind the tail in the physical log,
1706                 * so the distance from the head to the tail is just
1707                 * the tail block minus the head block.
1708                 */
1709                if (XFS_IS_CORRUPT(log->l_mp,
1710                                   head_block >= tail_block ||
1711                                   head_cycle != tail_cycle + 1))
1712                        return -EFSCORRUPTED;
1713                tail_distance = tail_block - head_block;
1714        }
1715
1716        /*
1717         * If the head is right up against the tail, we can't clear
1718         * anything.
1719         */
1720        if (tail_distance <= 0) {
1721                ASSERT(tail_distance == 0);
1722                return 0;
1723        }
1724
1725        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1726        /*
1727         * Take the smaller of the maximum amount of outstanding I/O
1728         * we could have and the distance to the tail to clear out.
1729         * We take the smaller so that we don't overwrite the tail and
1730         * we don't waste all day writing from the head to the tail
1731         * for no reason.
1732         */
1733        max_distance = min(max_distance, tail_distance);
1734
1735        if ((head_block + max_distance) <= log->l_logBBsize) {
1736                /*
1737                 * We can stomp all the blocks we need to without
1738                 * wrapping around the end of the log.  Just do it
1739                 * in a single write.  Use the cycle number of the
1740                 * current cycle minus one so that the log will look like:
1741                 *     n ... | n - 1 ...
1742                 */
1743                error = xlog_write_log_records(log, (head_cycle - 1),
1744                                head_block, max_distance, tail_cycle,
1745                                tail_block);
1746                if (error)
1747                        return error;
1748        } else {
1749                /*
1750                 * We need to wrap around the end of the physical log in
1751                 * order to clear all the blocks.  Do it in two separate
1752                 * I/Os.  The first write should be from the head to the
1753                 * end of the physical log, and it should use the current
1754                 * cycle number minus one just like above.
1755                 */
1756                distance = log->l_logBBsize - head_block;
1757                error = xlog_write_log_records(log, (head_cycle - 1),
1758                                head_block, distance, tail_cycle,
1759                                tail_block);
1760
1761                if (error)
1762                        return error;
1763
1764                /*
1765                 * Now write the blocks at the start of the physical log.
1766                 * This writes the remainder of the blocks we want to clear.
1767                 * It uses the current cycle number since we're now on the
1768                 * same cycle as the head so that we get:
1769                 *    n ... n ... | n - 1 ...
1770                 *    ^^^^^ blocks we're writing
1771                 */
1772                distance = max_distance - (log->l_logBBsize - head_block);
1773                error = xlog_write_log_records(log, head_cycle, 0, distance,
1774                                tail_cycle, tail_block);
1775                if (error)
1776                        return error;
1777        }
1778
1779        return 0;
1780}
1781
1782/******************************************************************************
1783 *
1784 *              Log recover routines
1785 *
1786 ******************************************************************************
1787 */
1788
1789/*
1790 * Sort the log items in the transaction.
1791 *
1792 * The ordering constraints are defined by the inode allocation and unlink
1793 * behaviour. The rules are:
1794 *
1795 *      1. Every item is only logged once in a given transaction. Hence it
1796 *         represents the last logged state of the item. Hence ordering is
1797 *         dependent on the order in which operations need to be performed so
1798 *         required initial conditions are always met.
1799 *
1800 *      2. Cancelled buffers are recorded in pass 1 in a separate table and
1801 *         there's nothing to replay from them so we can simply cull them
1802 *         from the transaction. However, we can't do that until after we've
1803 *         replayed all the other items because they may be dependent on the
1804 *         cancelled buffer and replaying the cancelled buffer can remove it
1805 *         form the cancelled buffer table. Hence they have tobe done last.
1806 *
1807 *      3. Inode allocation buffers must be replayed before inode items that
1808 *         read the buffer and replay changes into it. For filesystems using the
1809 *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1810 *         treated the same as inode allocation buffers as they create and
1811 *         initialise the buffers directly.
1812 *
1813 *      4. Inode unlink buffers must be replayed after inode items are replayed.
1814 *         This ensures that inodes are completely flushed to the inode buffer
1815 *         in a "free" state before we remove the unlinked inode list pointer.
1816 *
1817 * Hence the ordering needs to be inode allocation buffers first, inode items
1818 * second, inode unlink buffers third and cancelled buffers last.
1819 *
1820 * But there's a problem with that - we can't tell an inode allocation buffer
1821 * apart from a regular buffer, so we can't separate them. We can, however,
1822 * tell an inode unlink buffer from the others, and so we can separate them out
1823 * from all the other buffers and move them to last.
1824 *
1825 * Hence, 4 lists, in order from head to tail:
1826 *      - buffer_list for all buffers except cancelled/inode unlink buffers
1827 *      - item_list for all non-buffer items
1828 *      - inode_buffer_list for inode unlink buffers
1829 *      - cancel_list for the cancelled buffers
1830 *
1831 * Note that we add objects to the tail of the lists so that first-to-last
1832 * ordering is preserved within the lists. Adding objects to the head of the
1833 * list means when we traverse from the head we walk them in last-to-first
1834 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1835 * but for all other items there may be specific ordering that we need to
1836 * preserve.
1837 */
1838STATIC int
1839xlog_recover_reorder_trans(
1840        struct xlog             *log,
1841        struct xlog_recover     *trans,
1842        int                     pass)
1843{
1844        xlog_recover_item_t     *item, *n;
1845        int                     error = 0;
1846        LIST_HEAD(sort_list);
1847        LIST_HEAD(cancel_list);
1848        LIST_HEAD(buffer_list);
1849        LIST_HEAD(inode_buffer_list);
1850        LIST_HEAD(inode_list);
1851
1852        list_splice_init(&trans->r_itemq, &sort_list);
1853        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1854                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1855
1856                switch (ITEM_TYPE(item)) {
1857                case XFS_LI_ICREATE:
1858                        list_move_tail(&item->ri_list, &buffer_list);
1859                        break;
1860                case XFS_LI_BUF:
1861                        if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1862                                trace_xfs_log_recover_item_reorder_head(log,
1863                                                        trans, item, pass);
1864                                list_move(&item->ri_list, &cancel_list);
1865                                break;
1866                        }
1867                        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1868                                list_move(&item->ri_list, &inode_buffer_list);
1869                                break;
1870                        }
1871                        list_move_tail(&item->ri_list, &buffer_list);
1872                        break;
1873                case XFS_LI_INODE:
1874                case XFS_LI_DQUOT:
1875                case XFS_LI_QUOTAOFF:
1876                case XFS_LI_EFD:
1877                case XFS_LI_EFI:
1878                case XFS_LI_RUI:
1879                case XFS_LI_RUD:
1880                case XFS_LI_CUI:
1881                case XFS_LI_CUD:
1882                case XFS_LI_BUI:
1883                case XFS_LI_BUD:
1884                        trace_xfs_log_recover_item_reorder_tail(log,
1885                                                        trans, item, pass);
1886                        list_move_tail(&item->ri_list, &inode_list);
1887                        break;
1888                default:
1889                        xfs_warn(log->l_mp,
1890                                "%s: unrecognized type of log operation",
1891                                __func__);
1892                        ASSERT(0);
1893                        /*
1894                         * return the remaining items back to the transaction
1895                         * item list so they can be freed in caller.
1896                         */
1897                        if (!list_empty(&sort_list))
1898                                list_splice_init(&sort_list, &trans->r_itemq);
1899                        error = -EIO;
1900                        goto out;
1901                }
1902        }
1903out:
1904        ASSERT(list_empty(&sort_list));
1905        if (!list_empty(&buffer_list))
1906                list_splice(&buffer_list, &trans->r_itemq);
1907        if (!list_empty(&inode_list))
1908                list_splice_tail(&inode_list, &trans->r_itemq);
1909        if (!list_empty(&inode_buffer_list))
1910                list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1911        if (!list_empty(&cancel_list))
1912                list_splice_tail(&cancel_list, &trans->r_itemq);
1913        return error;
1914}
1915
1916/*
1917 * Build up the table of buf cancel records so that we don't replay
1918 * cancelled data in the second pass.  For buffer records that are
1919 * not cancel records, there is nothing to do here so we just return.
1920 *
1921 * If we get a cancel record which is already in the table, this indicates
1922 * that the buffer was cancelled multiple times.  In order to ensure
1923 * that during pass 2 we keep the record in the table until we reach its
1924 * last occurrence in the log, we keep a reference count in the cancel
1925 * record in the table to tell us how many times we expect to see this
1926 * record during the second pass.
1927 */
1928STATIC int
1929xlog_recover_buffer_pass1(
1930        struct xlog                     *log,
1931        struct xlog_recover_item        *item)
1932{
1933        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1934        struct list_head        *bucket;
1935        struct xfs_buf_cancel   *bcp;
1936
1937        if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
1938                xfs_err(log->l_mp, "bad buffer log item size (%d)",
1939                                item->ri_buf[0].i_len);
1940                return -EFSCORRUPTED;
1941        }
1942
1943        /*
1944         * If this isn't a cancel buffer item, then just return.
1945         */
1946        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1947                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1948                return 0;
1949        }
1950
1951        /*
1952         * Insert an xfs_buf_cancel record into the hash table of them.
1953         * If there is already an identical record, bump its reference count.
1954         */
1955        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1956        list_for_each_entry(bcp, bucket, bc_list) {
1957                if (bcp->bc_blkno == buf_f->blf_blkno &&
1958                    bcp->bc_len == buf_f->blf_len) {
1959                        bcp->bc_refcount++;
1960                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1961                        return 0;
1962                }
1963        }
1964
1965        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
1966        bcp->bc_blkno = buf_f->blf_blkno;
1967        bcp->bc_len = buf_f->blf_len;
1968        bcp->bc_refcount = 1;
1969        list_add_tail(&bcp->bc_list, bucket);
1970
1971        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1972        return 0;
1973}
1974
1975/*
1976 * Check to see whether the buffer being recovered has a corresponding
1977 * entry in the buffer cancel record table. If it is, return the cancel
1978 * buffer structure to the caller.
1979 */
1980STATIC struct xfs_buf_cancel *
1981xlog_peek_buffer_cancelled(
1982        struct xlog             *log,
1983        xfs_daddr_t             blkno,
1984        uint                    len,
1985        unsigned short                  flags)
1986{
1987        struct list_head        *bucket;
1988        struct xfs_buf_cancel   *bcp;
1989
1990        if (!log->l_buf_cancel_table) {
1991                /* empty table means no cancelled buffers in the log */
1992                ASSERT(!(flags & XFS_BLF_CANCEL));
1993                return NULL;
1994        }
1995
1996        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1997        list_for_each_entry(bcp, bucket, bc_list) {
1998                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1999                        return bcp;
2000        }
2001
2002        /*
2003         * We didn't find a corresponding entry in the table, so return 0 so
2004         * that the buffer is NOT cancelled.
2005         */
2006        ASSERT(!(flags & XFS_BLF_CANCEL));
2007        return NULL;
2008}
2009
2010/*
2011 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2012 * otherwise return 0.  If the buffer is actually a buffer cancel item
2013 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2014 * table and remove it from the table if this is the last reference.
2015 *
2016 * We remove the cancel record from the table when we encounter its last
2017 * occurrence in the log so that if the same buffer is re-used again after its
2018 * last cancellation we actually replay the changes made at that point.
2019 */
2020STATIC int
2021xlog_check_buffer_cancelled(
2022        struct xlog             *log,
2023        xfs_daddr_t             blkno,
2024        uint                    len,
2025        unsigned short                  flags)
2026{
2027        struct xfs_buf_cancel   *bcp;
2028
2029        bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2030        if (!bcp)
2031                return 0;
2032
2033        /*
2034         * We've go a match, so return 1 so that the recovery of this buffer
2035         * is cancelled.  If this buffer is actually a buffer cancel log
2036         * item, then decrement the refcount on the one in the table and
2037         * remove it if this is the last reference.
2038         */
2039        if (flags & XFS_BLF_CANCEL) {
2040                if (--bcp->bc_refcount == 0) {
2041                        list_del(&bcp->bc_list);
2042                        kmem_free(bcp);
2043                }
2044        }
2045        return 1;
2046}
2047
2048/*
2049 * Perform recovery for a buffer full of inodes.  In these buffers, the only
2050 * data which should be recovered is that which corresponds to the
2051 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2052 * data for the inodes is always logged through the inodes themselves rather
2053 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2054 *
2055 * The only time when buffers full of inodes are fully recovered is when the
2056 * buffer is full of newly allocated inodes.  In this case the buffer will
2057 * not be marked as an inode buffer and so will be sent to
2058 * xlog_recover_do_reg_buffer() below during recovery.
2059 */
2060STATIC int
2061xlog_recover_do_inode_buffer(
2062        struct xfs_mount        *mp,
2063        xlog_recover_item_t     *item,
2064        struct xfs_buf          *bp,
2065        xfs_buf_log_format_t    *buf_f)
2066{
2067        int                     i;
2068        int                     item_index = 0;
2069        int                     bit = 0;
2070        int                     nbits = 0;
2071        int                     reg_buf_offset = 0;
2072        int                     reg_buf_bytes = 0;
2073        int                     next_unlinked_offset;
2074        int                     inodes_per_buf;
2075        xfs_agino_t             *logged_nextp;
2076        xfs_agino_t             *buffer_nextp;
2077
2078        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2079
2080        /*
2081         * Post recovery validation only works properly on CRC enabled
2082         * filesystems.
2083         */
2084        if (xfs_sb_version_hascrc(&mp->m_sb))
2085                bp->b_ops = &xfs_inode_buf_ops;
2086
2087        inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
2088        for (i = 0; i < inodes_per_buf; i++) {
2089                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2090                        offsetof(xfs_dinode_t, di_next_unlinked);
2091
2092                while (next_unlinked_offset >=
2093                       (reg_buf_offset + reg_buf_bytes)) {
2094                        /*
2095                         * The next di_next_unlinked field is beyond
2096                         * the current logged region.  Find the next
2097                         * logged region that contains or is beyond
2098                         * the current di_next_unlinked field.
2099                         */
2100                        bit += nbits;
2101                        bit = xfs_next_bit(buf_f->blf_data_map,
2102                                           buf_f->blf_map_size, bit);
2103
2104                        /*
2105                         * If there are no more logged regions in the
2106                         * buffer, then we're done.
2107                         */
2108                        if (bit == -1)
2109                                return 0;
2110
2111                        nbits = xfs_contig_bits(buf_f->blf_data_map,
2112                                                buf_f->blf_map_size, bit);
2113                        ASSERT(nbits > 0);
2114                        reg_buf_offset = bit << XFS_BLF_SHIFT;
2115                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2116                        item_index++;
2117                }
2118
2119                /*
2120                 * If the current logged region starts after the current
2121                 * di_next_unlinked field, then move on to the next
2122                 * di_next_unlinked field.
2123                 */
2124                if (next_unlinked_offset < reg_buf_offset)
2125                        continue;
2126
2127                ASSERT(item->ri_buf[item_index].i_addr != NULL);
2128                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2129                ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
2130
2131                /*
2132                 * The current logged region contains a copy of the
2133                 * current di_next_unlinked field.  Extract its value
2134                 * and copy it to the buffer copy.
2135                 */
2136                logged_nextp = item->ri_buf[item_index].i_addr +
2137                                next_unlinked_offset - reg_buf_offset;
2138                if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
2139                        xfs_alert(mp,
2140                "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2141                "Trying to replay bad (0) inode di_next_unlinked field.",
2142                                item, bp);
2143                        return -EFSCORRUPTED;
2144                }
2145
2146                buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2147                *buffer_nextp = *logged_nextp;
2148
2149                /*
2150                 * If necessary, recalculate the CRC in the on-disk inode. We
2151                 * have to leave the inode in a consistent state for whoever
2152                 * reads it next....
2153                 */
2154                xfs_dinode_calc_crc(mp,
2155                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2156
2157        }
2158
2159        return 0;
2160}
2161
2162/*
2163 * V5 filesystems know the age of the buffer on disk being recovered. We can
2164 * have newer objects on disk than we are replaying, and so for these cases we
2165 * don't want to replay the current change as that will make the buffer contents
2166 * temporarily invalid on disk.
2167 *
2168 * The magic number might not match the buffer type we are going to recover
2169 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2170 * extract the LSN of the existing object in the buffer based on it's current
2171 * magic number.  If we don't recognise the magic number in the buffer, then
2172 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2173 * so can recover the buffer.
2174 *
2175 * Note: we cannot rely solely on magic number matches to determine that the
2176 * buffer has a valid LSN - we also need to verify that it belongs to this
2177 * filesystem, so we need to extract the object's LSN and compare it to that
2178 * which we read from the superblock. If the UUIDs don't match, then we've got a
2179 * stale metadata block from an old filesystem instance that we need to recover
2180 * over the top of.
2181 */
2182static xfs_lsn_t
2183xlog_recover_get_buf_lsn(
2184        struct xfs_mount        *mp,
2185        struct xfs_buf          *bp)
2186{
2187        uint32_t                magic32;
2188        uint16_t                magic16;
2189        uint16_t                magicda;
2190        void                    *blk = bp->b_addr;
2191        uuid_t                  *uuid;
2192        xfs_lsn_t               lsn = -1;
2193
2194        /* v4 filesystems always recover immediately */
2195        if (!xfs_sb_version_hascrc(&mp->m_sb))
2196                goto recover_immediately;
2197
2198        magic32 = be32_to_cpu(*(__be32 *)blk);
2199        switch (magic32) {
2200        case XFS_ABTB_CRC_MAGIC:
2201        case XFS_ABTC_CRC_MAGIC:
2202        case XFS_ABTB_MAGIC:
2203        case XFS_ABTC_MAGIC:
2204        case XFS_RMAP_CRC_MAGIC:
2205        case XFS_REFC_CRC_MAGIC:
2206        case XFS_IBT_CRC_MAGIC:
2207        case XFS_IBT_MAGIC: {
2208                struct xfs_btree_block *btb = blk;
2209
2210                lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2211                uuid = &btb->bb_u.s.bb_uuid;
2212                break;
2213        }
2214        case XFS_BMAP_CRC_MAGIC:
2215        case XFS_BMAP_MAGIC: {
2216                struct xfs_btree_block *btb = blk;
2217
2218                lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2219                uuid = &btb->bb_u.l.bb_uuid;
2220                break;
2221        }
2222        case XFS_AGF_MAGIC:
2223                lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2224                uuid = &((struct xfs_agf *)blk)->agf_uuid;
2225                break;
2226        case XFS_AGFL_MAGIC:
2227                lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2228                uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2229                break;
2230        case XFS_AGI_MAGIC:
2231                lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2232                uuid = &((struct xfs_agi *)blk)->agi_uuid;
2233                break;
2234        case XFS_SYMLINK_MAGIC:
2235                lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2236                uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2237                break;
2238        case XFS_DIR3_BLOCK_MAGIC:
2239        case XFS_DIR3_DATA_MAGIC:
2240        case XFS_DIR3_FREE_MAGIC:
2241                lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2242                uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2243                break;
2244        case XFS_ATTR3_RMT_MAGIC:
2245                /*
2246                 * Remote attr blocks are written synchronously, rather than
2247                 * being logged. That means they do not contain a valid LSN
2248                 * (i.e. transactionally ordered) in them, and hence any time we
2249                 * see a buffer to replay over the top of a remote attribute
2250                 * block we should simply do so.
2251                 */
2252                goto recover_immediately;
2253        case XFS_SB_MAGIC:
2254                /*
2255                 * superblock uuids are magic. We may or may not have a
2256                 * sb_meta_uuid on disk, but it will be set in the in-core
2257                 * superblock. We set the uuid pointer for verification
2258                 * according to the superblock feature mask to ensure we check
2259                 * the relevant UUID in the superblock.
2260                 */
2261                lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2262                if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2263                        uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2264                else
2265                        uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2266                break;
2267        default:
2268                break;
2269        }
2270
2271        if (lsn != (xfs_lsn_t)-1) {
2272                if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2273                        goto recover_immediately;
2274                return lsn;
2275        }
2276
2277        magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2278        switch (magicda) {
2279        case XFS_DIR3_LEAF1_MAGIC:
2280        case XFS_DIR3_LEAFN_MAGIC:
2281        case XFS_DA3_NODE_MAGIC:
2282                lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2283                uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2284                break;
2285        default:
2286                break;
2287        }
2288
2289        if (lsn != (xfs_lsn_t)-1) {
2290                if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2291                        goto recover_immediately;
2292                return lsn;
2293        }
2294
2295        /*
2296         * We do individual object checks on dquot and inode buffers as they
2297         * have their own individual LSN records. Also, we could have a stale
2298         * buffer here, so we have to at least recognise these buffer types.
2299         *
2300         * A notd complexity here is inode unlinked list processing - it logs
2301         * the inode directly in the buffer, but we don't know which inodes have
2302         * been modified, and there is no global buffer LSN. Hence we need to
2303         * recover all inode buffer types immediately. This problem will be
2304         * fixed by logical logging of the unlinked list modifications.
2305         */
2306        magic16 = be16_to_cpu(*(__be16 *)blk);
2307        switch (magic16) {
2308        case XFS_DQUOT_MAGIC:
2309        case XFS_DINODE_MAGIC:
2310                goto recover_immediately;
2311        default:
2312                break;
2313        }
2314
2315        /* unknown buffer contents, recover immediately */
2316
2317recover_immediately:
2318        return (xfs_lsn_t)-1;
2319
2320}
2321
2322/*
2323 * Validate the recovered buffer is of the correct type and attach the
2324 * appropriate buffer operations to them for writeback. Magic numbers are in a
2325 * few places:
2326 *      the first 16 bits of the buffer (inode buffer, dquot buffer),
2327 *      the first 32 bits of the buffer (most blocks),
2328 *      inside a struct xfs_da_blkinfo at the start of the buffer.
2329 */
2330static void
2331xlog_recover_validate_buf_type(
2332        struct xfs_mount        *mp,
2333        struct xfs_buf          *bp,
2334        xfs_buf_log_format_t    *buf_f,
2335        xfs_lsn_t               current_lsn)
2336{
2337        struct xfs_da_blkinfo   *info = bp->b_addr;
2338        uint32_t                magic32;
2339        uint16_t                magic16;
2340        uint16_t                magicda;
2341        char                    *warnmsg = NULL;
2342
2343        /*
2344         * We can only do post recovery validation on items on CRC enabled
2345         * fielsystems as we need to know when the buffer was written to be able
2346         * to determine if we should have replayed the item. If we replay old
2347         * metadata over a newer buffer, then it will enter a temporarily
2348         * inconsistent state resulting in verification failures. Hence for now
2349         * just avoid the verification stage for non-crc filesystems
2350         */
2351        if (!xfs_sb_version_hascrc(&mp->m_sb))
2352                return;
2353
2354        magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2355        magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2356        magicda = be16_to_cpu(info->magic);
2357        switch (xfs_blft_from_flags(buf_f)) {
2358        case XFS_BLFT_BTREE_BUF:
2359                switch (magic32) {
2360                case XFS_ABTB_CRC_MAGIC:
2361                case XFS_ABTB_MAGIC:
2362                        bp->b_ops = &xfs_bnobt_buf_ops;
2363                        break;
2364                case XFS_ABTC_CRC_MAGIC:
2365                case XFS_ABTC_MAGIC:
2366                        bp->b_ops = &xfs_cntbt_buf_ops;
2367                        break;
2368                case XFS_IBT_CRC_MAGIC:
2369                case XFS_IBT_MAGIC:
2370                        bp->b_ops = &xfs_inobt_buf_ops;
2371                        break;
2372                case XFS_FIBT_CRC_MAGIC:
2373                case XFS_FIBT_MAGIC:
2374                        bp->b_ops = &xfs_finobt_buf_ops;
2375                        break;
2376                case XFS_BMAP_CRC_MAGIC:
2377                case XFS_BMAP_MAGIC:
2378                        bp->b_ops = &xfs_bmbt_buf_ops;
2379                        break;
2380                case XFS_RMAP_CRC_MAGIC:
2381                        bp->b_ops = &xfs_rmapbt_buf_ops;
2382                        break;
2383                case XFS_REFC_CRC_MAGIC:
2384                        bp->b_ops = &xfs_refcountbt_buf_ops;
2385                        break;
2386                default:
2387                        warnmsg = "Bad btree block magic!";
2388                        break;
2389                }
2390                break;
2391        case XFS_BLFT_AGF_BUF:
2392                if (magic32 != XFS_AGF_MAGIC) {
2393                        warnmsg = "Bad AGF block magic!";
2394                        break;
2395                }
2396                bp->b_ops = &xfs_agf_buf_ops;
2397                break;
2398        case XFS_BLFT_AGFL_BUF:
2399                if (magic32 != XFS_AGFL_MAGIC) {
2400                        warnmsg = "Bad AGFL block magic!";
2401                        break;
2402                }
2403                bp->b_ops = &xfs_agfl_buf_ops;
2404                break;
2405        case XFS_BLFT_AGI_BUF:
2406                if (magic32 != XFS_AGI_MAGIC) {
2407                        warnmsg = "Bad AGI block magic!";
2408                        break;
2409                }
2410                bp->b_ops = &xfs_agi_buf_ops;
2411                break;
2412        case XFS_BLFT_UDQUOT_BUF:
2413        case XFS_BLFT_PDQUOT_BUF:
2414        case XFS_BLFT_GDQUOT_BUF:
2415#ifdef CONFIG_XFS_QUOTA
2416                if (magic16 != XFS_DQUOT_MAGIC) {
2417                        warnmsg = "Bad DQUOT block magic!";
2418                        break;
2419                }
2420                bp->b_ops = &xfs_dquot_buf_ops;
2421#else
2422                xfs_alert(mp,
2423        "Trying to recover dquots without QUOTA support built in!");
2424                ASSERT(0);
2425#endif
2426                break;
2427        case XFS_BLFT_DINO_BUF:
2428                if (magic16 != XFS_DINODE_MAGIC) {
2429                        warnmsg = "Bad INODE block magic!";
2430                        break;
2431                }
2432                bp->b_ops = &xfs_inode_buf_ops;
2433                break;
2434        case XFS_BLFT_SYMLINK_BUF:
2435                if (magic32 != XFS_SYMLINK_MAGIC) {
2436                        warnmsg = "Bad symlink block magic!";
2437                        break;
2438                }
2439                bp->b_ops = &xfs_symlink_buf_ops;
2440                break;
2441        case XFS_BLFT_DIR_BLOCK_BUF:
2442                if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2443                    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2444                        warnmsg = "Bad dir block magic!";
2445                        break;
2446                }
2447                bp->b_ops = &xfs_dir3_block_buf_ops;
2448                break;
2449        case XFS_BLFT_DIR_DATA_BUF:
2450                if (magic32 != XFS_DIR2_DATA_MAGIC &&
2451                    magic32 != XFS_DIR3_DATA_MAGIC) {
2452                        warnmsg = "Bad dir data magic!";
2453                        break;
2454                }
2455                bp->b_ops = &xfs_dir3_data_buf_ops;
2456                break;
2457        case XFS_BLFT_DIR_FREE_BUF:
2458                if (magic32 != XFS_DIR2_FREE_MAGIC &&
2459                    magic32 != XFS_DIR3_FREE_MAGIC) {
2460                        warnmsg = "Bad dir3 free magic!";
2461                        break;
2462                }
2463                bp->b_ops = &xfs_dir3_free_buf_ops;
2464                break;
2465        case XFS_BLFT_DIR_LEAF1_BUF:
2466                if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2467                    magicda != XFS_DIR3_LEAF1_MAGIC) {
2468                        warnmsg = "Bad dir leaf1 magic!";
2469                        break;
2470                }
2471                bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2472                break;
2473        case XFS_BLFT_DIR_LEAFN_BUF:
2474                if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2475                    magicda != XFS_DIR3_LEAFN_MAGIC) {
2476                        warnmsg = "Bad dir leafn magic!";
2477                        break;
2478                }
2479                bp->b_ops = &xfs_dir3_leafn_buf_ops;
2480                break;
2481        case XFS_BLFT_DA_NODE_BUF:
2482                if (magicda != XFS_DA_NODE_MAGIC &&
2483                    magicda != XFS_DA3_NODE_MAGIC) {
2484                        warnmsg = "Bad da node magic!";
2485                        break;
2486                }
2487                bp->b_ops = &xfs_da3_node_buf_ops;
2488                break;
2489        case XFS_BLFT_ATTR_LEAF_BUF:
2490                if (magicda != XFS_ATTR_LEAF_MAGIC &&
2491                    magicda != XFS_ATTR3_LEAF_MAGIC) {
2492                        warnmsg = "Bad attr leaf magic!";
2493                        break;
2494                }
2495                bp->b_ops = &xfs_attr3_leaf_buf_ops;
2496                break;
2497        case XFS_BLFT_ATTR_RMT_BUF:
2498                if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2499                        warnmsg = "Bad attr remote magic!";
2500                        break;
2501                }
2502                bp->b_ops = &xfs_attr3_rmt_buf_ops;
2503                break;
2504        case XFS_BLFT_SB_BUF:
2505                if (magic32 != XFS_SB_MAGIC) {
2506                        warnmsg = "Bad SB block magic!";
2507                        break;
2508                }
2509                bp->b_ops = &xfs_sb_buf_ops;
2510                break;
2511#ifdef CONFIG_XFS_RT
2512        case XFS_BLFT_RTBITMAP_BUF:
2513        case XFS_BLFT_RTSUMMARY_BUF:
2514                /* no magic numbers for verification of RT buffers */
2515                bp->b_ops = &xfs_rtbuf_ops;
2516                break;
2517#endif /* CONFIG_XFS_RT */
2518        default:
2519                xfs_warn(mp, "Unknown buffer type %d!",
2520                         xfs_blft_from_flags(buf_f));
2521                break;
2522        }
2523
2524        /*
2525         * Nothing else to do in the case of a NULL current LSN as this means
2526         * the buffer is more recent than the change in the log and will be
2527         * skipped.
2528         */
2529        if (current_lsn == NULLCOMMITLSN)
2530                return;
2531
2532        if (warnmsg) {
2533                xfs_warn(mp, warnmsg);
2534                ASSERT(0);
2535        }
2536
2537        /*
2538         * We must update the metadata LSN of the buffer as it is written out to
2539         * ensure that older transactions never replay over this one and corrupt
2540         * the buffer. This can occur if log recovery is interrupted at some
2541         * point after the current transaction completes, at which point a
2542         * subsequent mount starts recovery from the beginning.
2543         *
2544         * Write verifiers update the metadata LSN from log items attached to
2545         * the buffer. Therefore, initialize a bli purely to carry the LSN to
2546         * the verifier. We'll clean it up in our ->iodone() callback.
2547         */
2548        if (bp->b_ops) {
2549                struct xfs_buf_log_item *bip;
2550
2551                ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2552                bp->b_iodone = xlog_recover_iodone;
2553                xfs_buf_item_init(bp, mp);
2554                bip = bp->b_log_item;
2555                bip->bli_item.li_lsn = current_lsn;
2556        }
2557}
2558
2559/*
2560 * Perform a 'normal' buffer recovery.  Each logged region of the
2561 * buffer should be copied over the corresponding region in the
2562 * given buffer.  The bitmap in the buf log format structure indicates
2563 * where to place the logged data.
2564 */
2565STATIC void
2566xlog_recover_do_reg_buffer(
2567        struct xfs_mount        *mp,
2568        xlog_recover_item_t     *item,
2569        struct xfs_buf          *bp,
2570        xfs_buf_log_format_t    *buf_f,
2571        xfs_lsn_t               current_lsn)
2572{
2573        int                     i;
2574        int                     bit;
2575        int                     nbits;
2576        xfs_failaddr_t          fa;
2577        const size_t            size_disk_dquot = sizeof(struct xfs_disk_dquot);
2578
2579        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2580
2581        bit = 0;
2582        i = 1;  /* 0 is the buf format structure */
2583        while (1) {
2584                bit = xfs_next_bit(buf_f->blf_data_map,
2585                                   buf_f->blf_map_size, bit);
2586                if (bit == -1)
2587                        break;
2588                nbits = xfs_contig_bits(buf_f->blf_data_map,
2589                                        buf_f->blf_map_size, bit);
2590                ASSERT(nbits > 0);
2591                ASSERT(item->ri_buf[i].i_addr != NULL);
2592                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2593                ASSERT(BBTOB(bp->b_length) >=
2594                       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2595
2596                /*
2597                 * The dirty regions logged in the buffer, even though
2598                 * contiguous, may span multiple chunks. This is because the
2599                 * dirty region may span a physical page boundary in a buffer
2600                 * and hence be split into two separate vectors for writing into
2601                 * the log. Hence we need to trim nbits back to the length of
2602                 * the current region being copied out of the log.
2603                 */
2604                if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2605                        nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2606
2607                /*
2608                 * Do a sanity check if this is a dquot buffer. Just checking
2609                 * the first dquot in the buffer should do. XXXThis is
2610                 * probably a good thing to do for other buf types also.
2611                 */
2612                fa = NULL;
2613                if (buf_f->blf_flags &
2614                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2615                        if (item->ri_buf[i].i_addr == NULL) {
2616                                xfs_alert(mp,
2617                                        "XFS: NULL dquot in %s.", __func__);
2618                                goto next;
2619                        }
2620                        if (item->ri_buf[i].i_len < size_disk_dquot) {
2621                                xfs_alert(mp,
2622                                        "XFS: dquot too small (%d) in %s.",
2623                                        item->ri_buf[i].i_len, __func__);
2624                                goto next;
2625                        }
2626                        fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2627                                               -1, 0);
2628                        if (fa) {
2629                                xfs_alert(mp,
2630        "dquot corrupt at %pS trying to replay into block 0x%llx",
2631                                        fa, bp->b_bn);
2632                                goto next;
2633                        }
2634                }
2635
2636                memcpy(xfs_buf_offset(bp,
2637                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
2638                        item->ri_buf[i].i_addr,         /* source */
2639                        nbits<<XFS_BLF_SHIFT);          /* length */
2640 next:
2641                i++;
2642                bit += nbits;
2643        }
2644
2645        /* Shouldn't be any more regions */
2646        ASSERT(i == item->ri_total);
2647
2648        xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2649}
2650
2651/*
2652 * Perform a dquot buffer recovery.
2653 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2654 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2655 * Else, treat it as a regular buffer and do recovery.
2656 *
2657 * Return false if the buffer was tossed and true if we recovered the buffer to
2658 * indicate to the caller if the buffer needs writing.
2659 */
2660STATIC bool
2661xlog_recover_do_dquot_buffer(
2662        struct xfs_mount                *mp,
2663        struct xlog                     *log,
2664        struct xlog_recover_item        *item,
2665        struct xfs_buf                  *bp,
2666        struct xfs_buf_log_format       *buf_f)
2667{
2668        uint                    type;
2669
2670        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2671
2672        /*
2673         * Filesystems are required to send in quota flags at mount time.
2674         */
2675        if (!mp->m_qflags)
2676                return false;
2677
2678        type = 0;
2679        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2680                type |= XFS_DQ_USER;
2681        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2682                type |= XFS_DQ_PROJ;
2683        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2684                type |= XFS_DQ_GROUP;
2685        /*
2686         * This type of quotas was turned off, so ignore this buffer
2687         */
2688        if (log->l_quotaoffs_flag & type)
2689                return false;
2690
2691        xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2692        return true;
2693}
2694
2695/*
2696 * This routine replays a modification made to a buffer at runtime.
2697 * There are actually two types of buffer, regular and inode, which
2698 * are handled differently.  Inode buffers are handled differently
2699 * in that we only recover a specific set of data from them, namely
2700 * the inode di_next_unlinked fields.  This is because all other inode
2701 * data is actually logged via inode records and any data we replay
2702 * here which overlaps that may be stale.
2703 *
2704 * When meta-data buffers are freed at run time we log a buffer item
2705 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2706 * of the buffer in the log should not be replayed at recovery time.
2707 * This is so that if the blocks covered by the buffer are reused for
2708 * file data before we crash we don't end up replaying old, freed
2709 * meta-data into a user's file.
2710 *
2711 * To handle the cancellation of buffer log items, we make two passes
2712 * over the log during recovery.  During the first we build a table of
2713 * those buffers which have been cancelled, and during the second we
2714 * only replay those buffers which do not have corresponding cancel
2715 * records in the table.  See xlog_recover_buffer_pass[1,2] above
2716 * for more details on the implementation of the table of cancel records.
2717 */
2718STATIC int
2719xlog_recover_buffer_pass2(
2720        struct xlog                     *log,
2721        struct list_head                *buffer_list,
2722        struct xlog_recover_item        *item,
2723        xfs_lsn_t                       current_lsn)
2724{
2725        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2726        xfs_mount_t             *mp = log->l_mp;
2727        xfs_buf_t               *bp;
2728        int                     error;
2729        uint                    buf_flags;
2730        xfs_lsn_t               lsn;
2731
2732        /*
2733         * In this pass we only want to recover all the buffers which have
2734         * not been cancelled and are not cancellation buffers themselves.
2735         */
2736        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2737                        buf_f->blf_len, buf_f->blf_flags)) {
2738                trace_xfs_log_recover_buf_cancel(log, buf_f);
2739                return 0;
2740        }
2741
2742        trace_xfs_log_recover_buf_recover(log, buf_f);
2743
2744        buf_flags = 0;
2745        if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2746                buf_flags |= XBF_UNMAPPED;
2747
2748        error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2749                          buf_flags, &bp, NULL);
2750        if (error)
2751                return error;
2752
2753        /*
2754         * Recover the buffer only if we get an LSN from it and it's less than
2755         * the lsn of the transaction we are replaying.
2756         *
2757         * Note that we have to be extremely careful of readahead here.
2758         * Readahead does not attach verfiers to the buffers so if we don't
2759         * actually do any replay after readahead because of the LSN we found
2760         * in the buffer if more recent than that current transaction then we
2761         * need to attach the verifier directly. Failure to do so can lead to
2762         * future recovery actions (e.g. EFI and unlinked list recovery) can
2763         * operate on the buffers and they won't get the verifier attached. This
2764         * can lead to blocks on disk having the correct content but a stale
2765         * CRC.
2766         *
2767         * It is safe to assume these clean buffers are currently up to date.
2768         * If the buffer is dirtied by a later transaction being replayed, then
2769         * the verifier will be reset to match whatever recover turns that
2770         * buffer into.
2771         */
2772        lsn = xlog_recover_get_buf_lsn(mp, bp);
2773        if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2774                trace_xfs_log_recover_buf_skip(log, buf_f);
2775                xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2776                goto out_release;
2777        }
2778
2779        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2780                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2781                if (error)
2782                        goto out_release;
2783        } else if (buf_f->blf_flags &
2784                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2785                bool    dirty;
2786
2787                dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2788                if (!dirty)
2789                        goto out_release;
2790        } else {
2791                xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2792        }
2793
2794        /*
2795         * Perform delayed write on the buffer.  Asynchronous writes will be
2796         * slower when taking into account all the buffers to be flushed.
2797         *
2798         * Also make sure that only inode buffers with good sizes stay in
2799         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2800         * or inode_cluster_size bytes, whichever is bigger.  The inode
2801         * buffers in the log can be a different size if the log was generated
2802         * by an older kernel using unclustered inode buffers or a newer kernel
2803         * running with a different inode cluster size.  Regardless, if the
2804         * the inode buffer size isn't max(blocksize, inode_cluster_size)
2805         * for *our* value of inode_cluster_size, then we need to keep
2806         * the buffer out of the buffer cache so that the buffer won't
2807         * overlap with future reads of those inodes.
2808         */
2809        if (XFS_DINODE_MAGIC ==
2810            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2811            (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
2812                xfs_buf_stale(bp);
2813                error = xfs_bwrite(bp);
2814        } else {
2815                ASSERT(bp->b_mount == mp);
2816                bp->b_iodone = xlog_recover_iodone;
2817                xfs_buf_delwri_queue(bp, buffer_list);
2818        }
2819
2820out_release:
2821        xfs_buf_relse(bp);
2822        return error;
2823}
2824
2825/*
2826 * Inode fork owner changes
2827 *
2828 * If we have been told that we have to reparent the inode fork, it's because an
2829 * extent swap operation on a CRC enabled filesystem has been done and we are
2830 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2831 * owners of it.
2832 *
2833 * The complexity here is that we don't have an inode context to work with, so
2834 * after we've replayed the inode we need to instantiate one.  This is where the
2835 * fun begins.
2836 *
2837 * We are in the middle of log recovery, so we can't run transactions. That
2838 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2839 * that will result in the corresponding iput() running the inode through
2840 * xfs_inactive(). If we've just replayed an inode core that changes the link
2841 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2842 * transactions (bad!).
2843 *
2844 * So, to avoid this, we instantiate an inode directly from the inode core we've
2845 * just recovered. We have the buffer still locked, and all we really need to
2846 * instantiate is the inode core and the forks being modified. We can do this
2847 * manually, then run the inode btree owner change, and then tear down the
2848 * xfs_inode without having to run any transactions at all.
2849 *
2850 * Also, because we don't have a transaction context available here but need to
2851 * gather all the buffers we modify for writeback so we pass the buffer_list
2852 * instead for the operation to use.
2853 */
2854
2855STATIC int
2856xfs_recover_inode_owner_change(
2857        struct xfs_mount        *mp,
2858        struct xfs_dinode       *dip,
2859        struct xfs_inode_log_format *in_f,
2860        struct list_head        *buffer_list)
2861{
2862        struct xfs_inode        *ip;
2863        int                     error;
2864
2865        ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2866
2867        ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2868        if (!ip)
2869                return -ENOMEM;
2870
2871        /* instantiate the inode */
2872        xfs_inode_from_disk(ip, dip);
2873        ASSERT(ip->i_d.di_version >= 3);
2874
2875        error = xfs_iformat_fork(ip, dip);
2876        if (error)
2877                goto out_free_ip;
2878
2879        if (!xfs_inode_verify_forks(ip)) {
2880                error = -EFSCORRUPTED;
2881                goto out_free_ip;
2882        }
2883
2884        if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2885                ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2886                error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2887                                              ip->i_ino, buffer_list);
2888                if (error)
2889                        goto out_free_ip;
2890        }
2891
2892        if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2893                ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2894                error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2895                                              ip->i_ino, buffer_list);
2896                if (error)
2897                        goto out_free_ip;
2898        }
2899
2900out_free_ip:
2901        xfs_inode_free(ip);
2902        return error;
2903}
2904
2905STATIC int
2906xlog_recover_inode_pass2(
2907        struct xlog                     *log,
2908        struct list_head                *buffer_list,
2909        struct xlog_recover_item        *item,
2910        xfs_lsn_t                       current_lsn)
2911{
2912        struct xfs_inode_log_format     *in_f;
2913        xfs_mount_t             *mp = log->l_mp;
2914        xfs_buf_t               *bp;
2915        xfs_dinode_t            *dip;
2916        int                     len;
2917        char                    *src;
2918        char                    *dest;
2919        int                     error;
2920        int                     attr_index;
2921        uint                    fields;
2922        struct xfs_log_dinode   *ldip;
2923        uint                    isize;
2924        int                     need_free = 0;
2925
2926        if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
2927                in_f = item->ri_buf[0].i_addr;
2928        } else {
2929                in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0);
2930                need_free = 1;
2931                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2932                if (error)
2933                        goto error;
2934        }
2935
2936        /*
2937         * Inode buffers can be freed, look out for it,
2938         * and do not replay the inode.
2939         */
2940        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2941                                        in_f->ilf_len, 0)) {
2942                error = 0;
2943                trace_xfs_log_recover_inode_cancel(log, in_f);
2944                goto error;
2945        }
2946        trace_xfs_log_recover_inode_recover(log, in_f);
2947
2948        error = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2949                        0, &bp, &xfs_inode_buf_ops);
2950        if (error)
2951                goto error;
2952        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2953        dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2954
2955        /*
2956         * Make sure the place we're flushing out to really looks
2957         * like an inode!
2958         */
2959        if (XFS_IS_CORRUPT(mp, !xfs_verify_magic16(bp, dip->di_magic))) {
2960                xfs_alert(mp,
2961        "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
2962                        __func__, dip, bp, in_f->ilf_ino);
2963                error = -EFSCORRUPTED;
2964                goto out_release;
2965        }
2966        ldip = item->ri_buf[1].i_addr;
2967        if (XFS_IS_CORRUPT(mp, ldip->di_magic != XFS_DINODE_MAGIC)) {
2968                xfs_alert(mp,
2969                        "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
2970                        __func__, item, in_f->ilf_ino);
2971                error = -EFSCORRUPTED;
2972                goto out_release;
2973        }
2974
2975        /*
2976         * If the inode has an LSN in it, recover the inode only if it's less
2977         * than the lsn of the transaction we are replaying. Note: we still
2978         * need to replay an owner change even though the inode is more recent
2979         * than the transaction as there is no guarantee that all the btree
2980         * blocks are more recent than this transaction, too.
2981         */
2982        if (dip->di_version >= 3) {
2983                xfs_lsn_t       lsn = be64_to_cpu(dip->di_lsn);
2984
2985                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2986                        trace_xfs_log_recover_inode_skip(log, in_f);
2987                        error = 0;
2988                        goto out_owner_change;
2989                }
2990        }
2991
2992        /*
2993         * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2994         * are transactional and if ordering is necessary we can determine that
2995         * more accurately by the LSN field in the V3 inode core. Don't trust
2996         * the inode versions we might be changing them here - use the
2997         * superblock flag to determine whether we need to look at di_flushiter
2998         * to skip replay when the on disk inode is newer than the log one
2999         */
3000        if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3001            ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3002                /*
3003                 * Deal with the wrap case, DI_MAX_FLUSH is less
3004                 * than smaller numbers
3005                 */
3006                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3007                    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3008                        /* do nothing */
3009                } else {
3010                        trace_xfs_log_recover_inode_skip(log, in_f);
3011                        error = 0;
3012                        goto out_release;
3013                }
3014        }
3015
3016        /* Take the opportunity to reset the flush iteration count */
3017        ldip->di_flushiter = 0;
3018
3019        if (unlikely(S_ISREG(ldip->di_mode))) {
3020                if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3021                    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3022                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3023                                         XFS_ERRLEVEL_LOW, mp, ldip,
3024                                         sizeof(*ldip));
3025                        xfs_alert(mp,
3026                "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3027                "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3028                                __func__, item, dip, bp, in_f->ilf_ino);
3029                        error = -EFSCORRUPTED;
3030                        goto out_release;
3031                }
3032        } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3033                if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3034                    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3035                    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3036                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3037                                             XFS_ERRLEVEL_LOW, mp, ldip,
3038                                             sizeof(*ldip));
3039                        xfs_alert(mp,
3040                "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3041                "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3042                                __func__, item, dip, bp, in_f->ilf_ino);
3043                        error = -EFSCORRUPTED;
3044                        goto out_release;
3045                }
3046        }
3047        if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3048                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3049                                     XFS_ERRLEVEL_LOW, mp, ldip,
3050                                     sizeof(*ldip));
3051                xfs_alert(mp,
3052        "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3053        "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3054                        __func__, item, dip, bp, in_f->ilf_ino,
3055                        ldip->di_nextents + ldip->di_anextents,
3056                        ldip->di_nblocks);
3057                error = -EFSCORRUPTED;
3058                goto out_release;
3059        }
3060        if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3061                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3062                                     XFS_ERRLEVEL_LOW, mp, ldip,
3063                                     sizeof(*ldip));
3064                xfs_alert(mp,
3065        "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3066        "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3067                        item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3068                error = -EFSCORRUPTED;
3069                goto out_release;
3070        }
3071        isize = xfs_log_dinode_size(ldip->di_version);
3072        if (unlikely(item->ri_buf[1].i_len > isize)) {
3073                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3074                                     XFS_ERRLEVEL_LOW, mp, ldip,
3075                                     sizeof(*ldip));
3076                xfs_alert(mp,
3077                        "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3078                        __func__, item->ri_buf[1].i_len, item);
3079                error = -EFSCORRUPTED;
3080                goto out_release;
3081        }
3082
3083        /* recover the log dinode inode into the on disk inode */
3084        xfs_log_dinode_to_disk(ldip, dip);
3085
3086        fields = in_f->ilf_fields;
3087        if (fields & XFS_ILOG_DEV)
3088                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3089
3090        if (in_f->ilf_size == 2)
3091                goto out_owner_change;
3092        len = item->ri_buf[2].i_len;
3093        src = item->ri_buf[2].i_addr;
3094        ASSERT(in_f->ilf_size <= 4);
3095        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3096        ASSERT(!(fields & XFS_ILOG_DFORK) ||
3097               (len == in_f->ilf_dsize));
3098
3099        switch (fields & XFS_ILOG_DFORK) {
3100        case XFS_ILOG_DDATA:
3101        case XFS_ILOG_DEXT:
3102                memcpy(XFS_DFORK_DPTR(dip), src, len);
3103                break;
3104
3105        case XFS_ILOG_DBROOT:
3106                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3107                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3108                                 XFS_DFORK_DSIZE(dip, mp));
3109                break;
3110
3111        default:
3112                /*
3113                 * There are no data fork flags set.
3114                 */
3115                ASSERT((fields & XFS_ILOG_DFORK) == 0);
3116                break;
3117        }
3118
3119        /*
3120         * If we logged any attribute data, recover it.  There may or
3121         * may not have been any other non-core data logged in this
3122         * transaction.
3123         */
3124        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3125                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3126                        attr_index = 3;
3127                } else {
3128                        attr_index = 2;
3129                }
3130                len = item->ri_buf[attr_index].i_len;
3131                src = item->ri_buf[attr_index].i_addr;
3132                ASSERT(len == in_f->ilf_asize);
3133
3134                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3135                case XFS_ILOG_ADATA:
3136                case XFS_ILOG_AEXT:
3137                        dest = XFS_DFORK_APTR(dip);
3138                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3139                        memcpy(dest, src, len);
3140                        break;
3141
3142                case XFS_ILOG_ABROOT:
3143                        dest = XFS_DFORK_APTR(dip);
3144                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3145                                         len, (xfs_bmdr_block_t*)dest,
3146                                         XFS_DFORK_ASIZE(dip, mp));
3147                        break;
3148
3149                default:
3150                        xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3151                        ASSERT(0);
3152                        error = -EFSCORRUPTED;
3153                        goto out_release;
3154                }
3155        }
3156
3157out_owner_change:
3158        /* Recover the swapext owner change unless inode has been deleted */
3159        if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3160            (dip->di_mode != 0))
3161                error = xfs_recover_inode_owner_change(mp, dip, in_f,
3162                                                       buffer_list);
3163        /* re-generate the checksum. */
3164        xfs_dinode_calc_crc(log->l_mp, dip);
3165
3166        ASSERT(bp->b_mount == mp);
3167        bp->b_iodone = xlog_recover_iodone;
3168        xfs_buf_delwri_queue(bp, buffer_list);
3169
3170out_release:
3171        xfs_buf_relse(bp);
3172error:
3173        if (need_free)
3174                kmem_free(in_f);
3175        return error;
3176}
3177
3178/*
3179 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3180 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3181 * of that type.
3182 */
3183STATIC int
3184xlog_recover_quotaoff_pass1(
3185        struct xlog                     *log,
3186        struct xlog_recover_item        *item)
3187{
3188        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
3189        ASSERT(qoff_f);
3190
3191        /*
3192         * The logitem format's flag tells us if this was user quotaoff,
3193         * group/project quotaoff or both.
3194         */
3195        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3196                log->l_quotaoffs_flag |= XFS_DQ_USER;
3197        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3198                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3199        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3200                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3201
3202        return 0;
3203}
3204
3205/*
3206 * Recover a dquot record
3207 */
3208STATIC int
3209xlog_recover_dquot_pass2(
3210        struct xlog                     *log,
3211        struct list_head                *buffer_list,
3212        struct xlog_recover_item        *item,
3213        xfs_lsn_t                       current_lsn)
3214{
3215        xfs_mount_t             *mp = log->l_mp;
3216        xfs_buf_t               *bp;
3217        struct xfs_disk_dquot   *ddq, *recddq;
3218        xfs_failaddr_t          fa;
3219        int                     error;
3220        xfs_dq_logformat_t      *dq_f;
3221        uint                    type;
3222
3223
3224        /*
3225         * Filesystems are required to send in quota flags at mount time.
3226         */
3227        if (mp->m_qflags == 0)
3228                return 0;
3229
3230        recddq = item->ri_buf[1].i_addr;
3231        if (recddq == NULL) {
3232                xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3233                return -EFSCORRUPTED;
3234        }
3235        if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) {
3236                xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3237                        item->ri_buf[1].i_len, __func__);
3238                return -EFSCORRUPTED;
3239        }
3240
3241        /*
3242         * This type of quotas was turned off, so ignore this record.
3243         */
3244        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3245        ASSERT(type);
3246        if (log->l_quotaoffs_flag & type)
3247                return 0;
3248
3249        /*
3250         * At this point we know that quota was _not_ turned off.
3251         * Since the mount flags are not indicating to us otherwise, this
3252         * must mean that quota is on, and the dquot needs to be replayed.
3253         * Remember that we may not have fully recovered the superblock yet,
3254         * so we can't do the usual trick of looking at the SB quota bits.
3255         *
3256         * The other possibility, of course, is that the quota subsystem was
3257         * removed since the last mount - ENOSYS.
3258         */
3259        dq_f = item->ri_buf[0].i_addr;
3260        ASSERT(dq_f);
3261        fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3262        if (fa) {
3263                xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3264                                dq_f->qlf_id, fa);
3265                return -EFSCORRUPTED;
3266        }
3267        ASSERT(dq_f->qlf_len == 1);
3268
3269        /*
3270         * At this point we are assuming that the dquots have been allocated
3271         * and hence the buffer has valid dquots stamped in it. It should,
3272         * therefore, pass verifier validation. If the dquot is bad, then the
3273         * we'll return an error here, so we don't need to specifically check
3274         * the dquot in the buffer after the verifier has run.
3275         */
3276        error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3277                                   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3278                                   &xfs_dquot_buf_ops);
3279        if (error)
3280                return error;
3281
3282        ASSERT(bp);
3283        ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3284
3285        /*
3286         * If the dquot has an LSN in it, recover the dquot only if it's less
3287         * than the lsn of the transaction we are replaying.
3288         */
3289        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3290                struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3291                xfs_lsn_t       lsn = be64_to_cpu(dqb->dd_lsn);
3292
3293                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3294                        goto out_release;
3295                }
3296        }
3297
3298        memcpy(ddq, recddq, item->ri_buf[1].i_len);
3299        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3300                xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3301                                 XFS_DQUOT_CRC_OFF);
3302        }
3303
3304        ASSERT(dq_f->qlf_size == 2);
3305        ASSERT(bp->b_mount == mp);
3306        bp->b_iodone = xlog_recover_iodone;
3307        xfs_buf_delwri_queue(bp, buffer_list);
3308
3309out_release:
3310        xfs_buf_relse(bp);
3311        return 0;
3312}
3313
3314/*
3315 * This routine is called to create an in-core extent free intent
3316 * item from the efi format structure which was logged on disk.
3317 * It allocates an in-core efi, copies the extents from the format
3318 * structure into it, and adds the efi to the AIL with the given
3319 * LSN.
3320 */
3321STATIC int
3322xlog_recover_efi_pass2(
3323        struct xlog                     *log,
3324        struct xlog_recover_item        *item,
3325        xfs_lsn_t                       lsn)
3326{
3327        int                             error;
3328        struct xfs_mount                *mp = log->l_mp;
3329        struct xfs_efi_log_item         *efip;
3330        struct xfs_efi_log_format       *efi_formatp;
3331
3332        efi_formatp = item->ri_buf[0].i_addr;
3333
3334        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3335        error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3336        if (error) {
3337                xfs_efi_item_free(efip);
3338                return error;
3339        }
3340        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3341
3342        spin_lock(&log->l_ailp->ail_lock);
3343        /*
3344         * The EFI has two references. One for the EFD and one for EFI to ensure
3345         * it makes it into the AIL. Insert the EFI into the AIL directly and
3346         * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3347         * AIL lock.
3348         */
3349        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3350        xfs_efi_release(efip);
3351        return 0;
3352}
3353
3354
3355/*
3356 * This routine is called when an EFD format structure is found in a committed
3357 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3358 * was still in the log. To do this it searches the AIL for the EFI with an id
3359 * equal to that in the EFD format structure. If we find it we drop the EFD
3360 * reference, which removes the EFI from the AIL and frees it.
3361 */
3362STATIC int
3363xlog_recover_efd_pass2(
3364        struct xlog                     *log,
3365        struct xlog_recover_item        *item)
3366{
3367        xfs_efd_log_format_t    *efd_formatp;
3368        xfs_efi_log_item_t      *efip = NULL;
3369        struct xfs_log_item     *lip;
3370        uint64_t                efi_id;
3371        struct xfs_ail_cursor   cur;
3372        struct xfs_ail          *ailp = log->l_ailp;
3373
3374        efd_formatp = item->ri_buf[0].i_addr;
3375        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3376                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3377               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3378                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3379        efi_id = efd_formatp->efd_efi_id;
3380
3381        /*
3382         * Search for the EFI with the id in the EFD format structure in the
3383         * AIL.
3384         */
3385        spin_lock(&ailp->ail_lock);
3386        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3387        while (lip != NULL) {
3388                if (lip->li_type == XFS_LI_EFI) {
3389                        efip = (xfs_efi_log_item_t *)lip;
3390                        if (efip->efi_format.efi_id == efi_id) {
3391                                /*
3392                                 * Drop the EFD reference to the EFI. This
3393                                 * removes the EFI from the AIL and frees it.
3394                                 */
3395                                spin_unlock(&ailp->ail_lock);
3396                                xfs_efi_release(efip);
3397                                spin_lock(&ailp->ail_lock);
3398                                break;
3399                        }
3400                }
3401                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3402        }
3403
3404        xfs_trans_ail_cursor_done(&cur);
3405        spin_unlock(&ailp->ail_lock);
3406
3407        return 0;
3408}
3409
3410/*
3411 * This routine is called to create an in-core extent rmap update
3412 * item from the rui format structure which was logged on disk.
3413 * It allocates an in-core rui, copies the extents from the format
3414 * structure into it, and adds the rui to the AIL with the given
3415 * LSN.
3416 */
3417STATIC int
3418xlog_recover_rui_pass2(
3419        struct xlog                     *log,
3420        struct xlog_recover_item        *item,
3421        xfs_lsn_t                       lsn)
3422{
3423        int                             error;
3424        struct xfs_mount                *mp = log->l_mp;
3425        struct xfs_rui_log_item         *ruip;
3426        struct xfs_rui_log_format       *rui_formatp;
3427
3428        rui_formatp = item->ri_buf[0].i_addr;
3429
3430        ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3431        error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3432        if (error) {
3433                xfs_rui_item_free(ruip);
3434                return error;
3435        }
3436        atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3437
3438        spin_lock(&log->l_ailp->ail_lock);
3439        /*
3440         * The RUI has two references. One for the RUD and one for RUI to ensure
3441         * it makes it into the AIL. Insert the RUI into the AIL directly and
3442         * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3443         * AIL lock.
3444         */
3445        xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3446        xfs_rui_release(ruip);
3447        return 0;
3448}
3449
3450
3451/*
3452 * This routine is called when an RUD format structure is found in a committed
3453 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3454 * was still in the log. To do this it searches the AIL for the RUI with an id
3455 * equal to that in the RUD format structure. If we find it we drop the RUD
3456 * reference, which removes the RUI from the AIL and frees it.
3457 */
3458STATIC int
3459xlog_recover_rud_pass2(
3460        struct xlog                     *log,
3461        struct xlog_recover_item        *item)
3462{
3463        struct xfs_rud_log_format       *rud_formatp;
3464        struct xfs_rui_log_item         *ruip = NULL;
3465        struct xfs_log_item             *lip;
3466        uint64_t                        rui_id;
3467        struct xfs_ail_cursor           cur;
3468        struct xfs_ail                  *ailp = log->l_ailp;
3469
3470        rud_formatp = item->ri_buf[0].i_addr;
3471        ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3472        rui_id = rud_formatp->rud_rui_id;
3473
3474        /*
3475         * Search for the RUI with the id in the RUD format structure in the
3476         * AIL.
3477         */
3478        spin_lock(&ailp->ail_lock);
3479        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3480        while (lip != NULL) {
3481                if (lip->li_type == XFS_LI_RUI) {
3482                        ruip = (struct xfs_rui_log_item *)lip;
3483                        if (ruip->rui_format.rui_id == rui_id) {
3484                                /*
3485                                 * Drop the RUD reference to the RUI. This
3486                                 * removes the RUI from the AIL and frees it.
3487                                 */
3488                                spin_unlock(&ailp->ail_lock);
3489                                xfs_rui_release(ruip);
3490                                spin_lock(&ailp->ail_lock);
3491                                break;
3492                        }
3493                }
3494                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3495        }
3496
3497        xfs_trans_ail_cursor_done(&cur);
3498        spin_unlock(&ailp->ail_lock);
3499
3500        return 0;
3501}
3502
3503/*
3504 * Copy an CUI format buffer from the given buf, and into the destination
3505 * CUI format structure.  The CUI/CUD items were designed not to need any
3506 * special alignment handling.
3507 */
3508static int
3509xfs_cui_copy_format(
3510        struct xfs_log_iovec            *buf,
3511        struct xfs_cui_log_format       *dst_cui_fmt)
3512{
3513        struct xfs_cui_log_format       *src_cui_fmt;
3514        uint                            len;
3515
3516        src_cui_fmt = buf->i_addr;
3517        len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3518
3519        if (buf->i_len == len) {
3520                memcpy(dst_cui_fmt, src_cui_fmt, len);
3521                return 0;
3522        }
3523        XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
3524        return -EFSCORRUPTED;
3525}
3526
3527/*
3528 * This routine is called to create an in-core extent refcount update
3529 * item from the cui format structure which was logged on disk.
3530 * It allocates an in-core cui, copies the extents from the format
3531 * structure into it, and adds the cui to the AIL with the given
3532 * LSN.
3533 */
3534STATIC int
3535xlog_recover_cui_pass2(
3536        struct xlog                     *log,
3537        struct xlog_recover_item        *item,
3538        xfs_lsn_t                       lsn)
3539{
3540        int                             error;
3541        struct xfs_mount                *mp = log->l_mp;
3542        struct xfs_cui_log_item         *cuip;
3543        struct xfs_cui_log_format       *cui_formatp;
3544
3545        cui_formatp = item->ri_buf[0].i_addr;
3546
3547        cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3548        error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3549        if (error) {
3550                xfs_cui_item_free(cuip);
3551                return error;
3552        }
3553        atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3554
3555        spin_lock(&log->l_ailp->ail_lock);
3556        /*
3557         * The CUI has two references. One for the CUD and one for CUI to ensure
3558         * it makes it into the AIL. Insert the CUI into the AIL directly and
3559         * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3560         * AIL lock.
3561         */
3562        xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3563        xfs_cui_release(cuip);
3564        return 0;
3565}
3566
3567
3568/*
3569 * This routine is called when an CUD format structure is found in a committed
3570 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3571 * was still in the log. To do this it searches the AIL for the CUI with an id
3572 * equal to that in the CUD format structure. If we find it we drop the CUD
3573 * reference, which removes the CUI from the AIL and frees it.
3574 */
3575STATIC int
3576xlog_recover_cud_pass2(
3577        struct xlog                     *log,
3578        struct xlog_recover_item        *item)
3579{
3580        struct xfs_cud_log_format       *cud_formatp;
3581        struct xfs_cui_log_item         *cuip = NULL;
3582        struct xfs_log_item             *lip;
3583        uint64_t                        cui_id;
3584        struct xfs_ail_cursor           cur;
3585        struct xfs_ail                  *ailp = log->l_ailp;
3586
3587        cud_formatp = item->ri_buf[0].i_addr;
3588        if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
3589                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3590                return -EFSCORRUPTED;
3591        }
3592        cui_id = cud_formatp->cud_cui_id;
3593
3594        /*
3595         * Search for the CUI with the id in the CUD format structure in the
3596         * AIL.
3597         */
3598        spin_lock(&ailp->ail_lock);
3599        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3600        while (lip != NULL) {
3601                if (lip->li_type == XFS_LI_CUI) {
3602                        cuip = (struct xfs_cui_log_item *)lip;
3603                        if (cuip->cui_format.cui_id == cui_id) {
3604                                /*
3605                                 * Drop the CUD reference to the CUI. This
3606                                 * removes the CUI from the AIL and frees it.
3607                                 */
3608                                spin_unlock(&ailp->ail_lock);
3609                                xfs_cui_release(cuip);
3610                                spin_lock(&ailp->ail_lock);
3611                                break;
3612                        }
3613                }
3614                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3615        }
3616
3617        xfs_trans_ail_cursor_done(&cur);
3618        spin_unlock(&ailp->ail_lock);
3619
3620        return 0;
3621}
3622
3623/*
3624 * Copy an BUI format buffer from the given buf, and into the destination
3625 * BUI format structure.  The BUI/BUD items were designed not to need any
3626 * special alignment handling.
3627 */
3628static int
3629xfs_bui_copy_format(
3630        struct xfs_log_iovec            *buf,
3631        struct xfs_bui_log_format       *dst_bui_fmt)
3632{
3633        struct xfs_bui_log_format       *src_bui_fmt;
3634        uint                            len;
3635
3636        src_bui_fmt = buf->i_addr;
3637        len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3638
3639        if (buf->i_len == len) {
3640                memcpy(dst_bui_fmt, src_bui_fmt, len);
3641                return 0;
3642        }
3643        XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
3644        return -EFSCORRUPTED;
3645}
3646
3647/*
3648 * This routine is called to create an in-core extent bmap update
3649 * item from the bui format structure which was logged on disk.
3650 * It allocates an in-core bui, copies the extents from the format
3651 * structure into it, and adds the bui to the AIL with the given
3652 * LSN.
3653 */
3654STATIC int
3655xlog_recover_bui_pass2(
3656        struct xlog                     *log,
3657        struct xlog_recover_item        *item,
3658        xfs_lsn_t                       lsn)
3659{
3660        int                             error;
3661        struct xfs_mount                *mp = log->l_mp;
3662        struct xfs_bui_log_item         *buip;
3663        struct xfs_bui_log_format       *bui_formatp;
3664
3665        bui_formatp = item->ri_buf[0].i_addr;
3666
3667        if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) {
3668                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3669                return -EFSCORRUPTED;
3670        }
3671        buip = xfs_bui_init(mp);
3672        error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3673        if (error) {
3674                xfs_bui_item_free(buip);
3675                return error;
3676        }
3677        atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3678
3679        spin_lock(&log->l_ailp->ail_lock);
3680        /*
3681         * The RUI has two references. One for the RUD and one for RUI to ensure
3682         * it makes it into the AIL. Insert the RUI into the AIL directly and
3683         * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3684         * AIL lock.
3685         */
3686        xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3687        xfs_bui_release(buip);
3688        return 0;
3689}
3690
3691
3692/*
3693 * This routine is called when an BUD format structure is found in a committed
3694 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3695 * was still in the log. To do this it searches the AIL for the BUI with an id
3696 * equal to that in the BUD format structure. If we find it we drop the BUD
3697 * reference, which removes the BUI from the AIL and frees it.
3698 */
3699STATIC int
3700xlog_recover_bud_pass2(
3701        struct xlog                     *log,
3702        struct xlog_recover_item        *item)
3703{
3704        struct xfs_bud_log_format       *bud_formatp;
3705        struct xfs_bui_log_item         *buip = NULL;
3706        struct xfs_log_item             *lip;
3707        uint64_t                        bui_id;
3708        struct xfs_ail_cursor           cur;
3709        struct xfs_ail                  *ailp = log->l_ailp;
3710
3711        bud_formatp = item->ri_buf[0].i_addr;
3712        if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) {
3713                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3714                return -EFSCORRUPTED;
3715        }
3716        bui_id = bud_formatp->bud_bui_id;
3717
3718        /*
3719         * Search for the BUI with the id in the BUD format structure in the
3720         * AIL.
3721         */
3722        spin_lock(&ailp->ail_lock);
3723        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3724        while (lip != NULL) {
3725                if (lip->li_type == XFS_LI_BUI) {
3726                        buip = (struct xfs_bui_log_item *)lip;
3727                        if (buip->bui_format.bui_id == bui_id) {
3728                                /*
3729                                 * Drop the BUD reference to the BUI. This
3730                                 * removes the BUI from the AIL and frees it.
3731                                 */
3732                                spin_unlock(&ailp->ail_lock);
3733                                xfs_bui_release(buip);
3734                                spin_lock(&ailp->ail_lock);
3735                                break;
3736                        }
3737                }
3738                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3739        }
3740
3741        xfs_trans_ail_cursor_done(&cur);
3742        spin_unlock(&ailp->ail_lock);
3743
3744        return 0;
3745}
3746
3747/*
3748 * This routine is called when an inode create format structure is found in a
3749 * committed transaction in the log.  It's purpose is to initialise the inodes
3750 * being allocated on disk. This requires us to get inode cluster buffers that
3751 * match the range to be initialised, stamped with inode templates and written
3752 * by delayed write so that subsequent modifications will hit the cached buffer
3753 * and only need writing out at the end of recovery.
3754 */
3755STATIC int
3756xlog_recover_do_icreate_pass2(
3757        struct xlog             *log,
3758        struct list_head        *buffer_list,
3759        xlog_recover_item_t     *item)
3760{
3761        struct xfs_mount        *mp = log->l_mp;
3762        struct xfs_icreate_log  *icl;
3763        struct xfs_ino_geometry *igeo = M_IGEO(mp);
3764        xfs_agnumber_t          agno;
3765        xfs_agblock_t           agbno;
3766        unsigned int            count;
3767        unsigned int            isize;
3768        xfs_agblock_t           length;
3769        int                     bb_per_cluster;
3770        int                     cancel_count;
3771        int                     nbufs;
3772        int                     i;
3773
3774        icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3775        if (icl->icl_type != XFS_LI_ICREATE) {
3776                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3777                return -EINVAL;
3778        }
3779
3780        if (icl->icl_size != 1) {
3781                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3782                return -EINVAL;
3783        }
3784
3785        agno = be32_to_cpu(icl->icl_ag);
3786        if (agno >= mp->m_sb.sb_agcount) {
3787                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3788                return -EINVAL;
3789        }
3790        agbno = be32_to_cpu(icl->icl_agbno);
3791        if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3792                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3793                return -EINVAL;
3794        }
3795        isize = be32_to_cpu(icl->icl_isize);
3796        if (isize != mp->m_sb.sb_inodesize) {
3797                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3798                return -EINVAL;
3799        }
3800        count = be32_to_cpu(icl->icl_count);
3801        if (!count) {
3802                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3803                return -EINVAL;
3804        }
3805        length = be32_to_cpu(icl->icl_length);
3806        if (!length || length >= mp->m_sb.sb_agblocks) {
3807                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3808                return -EINVAL;
3809        }
3810
3811        /*
3812         * The inode chunk is either full or sparse and we only support
3813         * m_ino_geo.ialloc_min_blks sized sparse allocations at this time.
3814         */
3815        if (length != igeo->ialloc_blks &&
3816            length != igeo->ialloc_min_blks) {
3817                xfs_warn(log->l_mp,
3818                         "%s: unsupported chunk length", __FUNCTION__);
3819                return -EINVAL;
3820        }
3821
3822        /* verify inode count is consistent with extent length */
3823        if ((count >> mp->m_sb.sb_inopblog) != length) {
3824                xfs_warn(log->l_mp,
3825                         "%s: inconsistent inode count and chunk length",
3826                         __FUNCTION__);
3827                return -EINVAL;
3828        }
3829
3830        /*
3831         * The icreate transaction can cover multiple cluster buffers and these
3832         * buffers could have been freed and reused. Check the individual
3833         * buffers for cancellation so we don't overwrite anything written after
3834         * a cancellation.
3835         */
3836        bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
3837        nbufs = length / igeo->blocks_per_cluster;
3838        for (i = 0, cancel_count = 0; i < nbufs; i++) {
3839                xfs_daddr_t     daddr;
3840
3841                daddr = XFS_AGB_TO_DADDR(mp, agno,
3842                                agbno + i * igeo->blocks_per_cluster);
3843                if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3844                        cancel_count++;
3845        }
3846
3847        /*
3848         * We currently only use icreate for a single allocation at a time. This
3849         * means we should expect either all or none of the buffers to be
3850         * cancelled. Be conservative and skip replay if at least one buffer is
3851         * cancelled, but warn the user that something is awry if the buffers
3852         * are not consistent.
3853         *
3854         * XXX: This must be refined to only skip cancelled clusters once we use
3855         * icreate for multiple chunk allocations.
3856         */
3857        ASSERT(!cancel_count || cancel_count == nbufs);
3858        if (cancel_count) {
3859                if (cancel_count != nbufs)
3860                        xfs_warn(mp,
3861        "WARNING: partial inode chunk cancellation, skipped icreate.");
3862                trace_xfs_log_recover_icreate_cancel(log, icl);
3863                return 0;
3864        }
3865
3866        trace_xfs_log_recover_icreate_recover(log, icl);
3867        return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3868                                     length, be32_to_cpu(icl->icl_gen));
3869}
3870
3871STATIC void
3872xlog_recover_buffer_ra_pass2(
3873        struct xlog                     *log,
3874        struct xlog_recover_item        *item)
3875{
3876        struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
3877        struct xfs_mount                *mp = log->l_mp;
3878
3879        if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3880                        buf_f->blf_len, buf_f->blf_flags)) {
3881                return;
3882        }
3883
3884        xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3885                                buf_f->blf_len, NULL);
3886}
3887
3888STATIC void
3889xlog_recover_inode_ra_pass2(
3890        struct xlog                     *log,
3891        struct xlog_recover_item        *item)
3892{
3893        struct xfs_inode_log_format     ilf_buf;
3894        struct xfs_inode_log_format     *ilfp;
3895        struct xfs_mount                *mp = log->l_mp;
3896        int                     error;
3897
3898        if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3899                ilfp = item->ri_buf[0].i_addr;
3900        } else {
3901                ilfp = &ilf_buf;
3902                memset(ilfp, 0, sizeof(*ilfp));
3903                error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3904                if (error)
3905                        return;
3906        }
3907
3908        if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3909                return;
3910
3911        xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3912                                ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3913}
3914
3915STATIC void
3916xlog_recover_dquot_ra_pass2(
3917        struct xlog                     *log,
3918        struct xlog_recover_item        *item)
3919{
3920        struct xfs_mount        *mp = log->l_mp;
3921        struct xfs_disk_dquot   *recddq;
3922        struct xfs_dq_logformat *dq_f;
3923        uint                    type;
3924        int                     len;
3925
3926
3927        if (mp->m_qflags == 0)
3928                return;
3929
3930        recddq = item->ri_buf[1].i_addr;
3931        if (recddq == NULL)
3932                return;
3933        if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3934                return;
3935
3936        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3937        ASSERT(type);
3938        if (log->l_quotaoffs_flag & type)
3939                return;
3940
3941        dq_f = item->ri_buf[0].i_addr;
3942        ASSERT(dq_f);
3943        ASSERT(dq_f->qlf_len == 1);
3944
3945        len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3946        if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3947                return;
3948
3949        xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3950                          &xfs_dquot_buf_ra_ops);
3951}
3952
3953STATIC void
3954xlog_recover_ra_pass2(
3955        struct xlog                     *log,
3956        struct xlog_recover_item        *item)
3957{
3958        switch (ITEM_TYPE(item)) {
3959        case XFS_LI_BUF:
3960                xlog_recover_buffer_ra_pass2(log, item);
3961                break;
3962        case XFS_LI_INODE:
3963                xlog_recover_inode_ra_pass2(log, item);
3964                break;
3965        case XFS_LI_DQUOT:
3966                xlog_recover_dquot_ra_pass2(log, item);
3967                break;
3968        case XFS_LI_EFI:
3969        case XFS_LI_EFD:
3970        case XFS_LI_QUOTAOFF:
3971        case XFS_LI_RUI:
3972        case XFS_LI_RUD:
3973        case XFS_LI_CUI:
3974        case XFS_LI_CUD:
3975        case XFS_LI_BUI:
3976        case XFS_LI_BUD:
3977        default:
3978                break;
3979        }
3980}
3981
3982STATIC int
3983xlog_recover_commit_pass1(
3984        struct xlog                     *log,
3985        struct xlog_recover             *trans,
3986        struct xlog_recover_item        *item)
3987{
3988        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3989
3990        switch (ITEM_TYPE(item)) {
3991        case XFS_LI_BUF:
3992                return xlog_recover_buffer_pass1(log, item);
3993        case XFS_LI_QUOTAOFF:
3994                return xlog_recover_quotaoff_pass1(log, item);
3995        case XFS_LI_INODE:
3996        case XFS_LI_EFI:
3997        case XFS_LI_EFD:
3998        case XFS_LI_DQUOT:
3999        case XFS_LI_ICREATE:
4000        case XFS_LI_RUI:
4001        case XFS_LI_RUD:
4002        case XFS_LI_CUI:
4003        case XFS_LI_CUD:
4004        case XFS_LI_BUI:
4005        case XFS_LI_BUD:
4006                /* nothing to do in pass 1 */
4007                return 0;
4008        default:
4009                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4010                        __func__, ITEM_TYPE(item));
4011                ASSERT(0);
4012                return -EFSCORRUPTED;
4013        }
4014}
4015
4016STATIC int
4017xlog_recover_commit_pass2(
4018        struct xlog                     *log,
4019        struct xlog_recover             *trans,
4020        struct list_head                *buffer_list,
4021        struct xlog_recover_item        *item)
4022{
4023        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4024
4025        switch (ITEM_TYPE(item)) {
4026        case XFS_LI_BUF:
4027                return xlog_recover_buffer_pass2(log, buffer_list, item,
4028                                                 trans->r_lsn);
4029        case XFS_LI_INODE:
4030                return xlog_recover_inode_pass2(log, buffer_list, item,
4031                                                 trans->r_lsn);
4032        case XFS_LI_EFI:
4033                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4034        case XFS_LI_EFD:
4035                return xlog_recover_efd_pass2(log, item);
4036        case XFS_LI_RUI:
4037                return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4038        case XFS_LI_RUD:
4039                return xlog_recover_rud_pass2(log, item);
4040        case XFS_LI_CUI:
4041                return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4042        case XFS_LI_CUD:
4043                return xlog_recover_cud_pass2(log, item);
4044        case XFS_LI_BUI:
4045                return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4046        case XFS_LI_BUD:
4047                return xlog_recover_bud_pass2(log, item);
4048        case XFS_LI_DQUOT:
4049                return xlog_recover_dquot_pass2(log, buffer_list, item,
4050                                                trans->r_lsn);
4051        case XFS_LI_ICREATE:
4052                return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4053        case XFS_LI_QUOTAOFF:
4054                /* nothing to do in pass2 */
4055                return 0;
4056        default:
4057                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4058                        __func__, ITEM_TYPE(item));
4059                ASSERT(0);
4060                return -EFSCORRUPTED;
4061        }
4062}
4063
4064STATIC int
4065xlog_recover_items_pass2(
4066        struct xlog                     *log,
4067        struct xlog_recover             *trans,
4068        struct list_head                *buffer_list,
4069        struct list_head                *item_list)
4070{
4071        struct xlog_recover_item        *item;
4072        int                             error = 0;
4073
4074        list_for_each_entry(item, item_list, ri_list) {
4075                error = xlog_recover_commit_pass2(log, trans,
4076                                          buffer_list, item);
4077                if (error)
4078                        return error;
4079        }
4080
4081        return error;
4082}
4083
4084/*
4085 * Perform the transaction.
4086 *
4087 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4088 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4089 */
4090STATIC int
4091xlog_recover_commit_trans(
4092        struct xlog             *log,
4093        struct xlog_recover     *trans,
4094        int                     pass,
4095        struct list_head        *buffer_list)
4096{
4097        int                             error = 0;
4098        int                             items_queued = 0;
4099        struct xlog_recover_item        *item;
4100        struct xlog_recover_item        *next;
4101        LIST_HEAD                       (ra_list);
4102        LIST_HEAD                       (done_list);
4103
4104        #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4105
4106        hlist_del_init(&trans->r_list);
4107
4108        error = xlog_recover_reorder_trans(log, trans, pass);
4109        if (error)
4110                return error;
4111
4112        list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4113                switch (pass) {
4114                case XLOG_RECOVER_PASS1:
4115                        error = xlog_recover_commit_pass1(log, trans, item);
4116                        break;
4117                case XLOG_RECOVER_PASS2:
4118                        xlog_recover_ra_pass2(log, item);
4119                        list_move_tail(&item->ri_list, &ra_list);
4120                        items_queued++;
4121                        if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4122                                error = xlog_recover_items_pass2(log, trans,
4123                                                buffer_list, &ra_list);
4124                                list_splice_tail_init(&ra_list, &done_list);
4125                                items_queued = 0;
4126                        }
4127
4128                        break;
4129                default:
4130                        ASSERT(0);
4131                }
4132
4133                if (error)
4134                        goto out;
4135        }
4136
4137out:
4138        if (!list_empty(&ra_list)) {
4139                if (!error)
4140                        error = xlog_recover_items_pass2(log, trans,
4141                                        buffer_list, &ra_list);
4142                list_splice_tail_init(&ra_list, &done_list);
4143        }
4144
4145        if (!list_empty(&done_list))
4146                list_splice_init(&done_list, &trans->r_itemq);
4147
4148        return error;
4149}
4150
4151STATIC void
4152xlog_recover_add_item(
4153        struct list_head        *head)
4154{
4155        xlog_recover_item_t     *item;
4156
4157        item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
4158        INIT_LIST_HEAD(&item->ri_list);
4159        list_add_tail(&item->ri_list, head);
4160}
4161
4162STATIC int
4163xlog_recover_add_to_cont_trans(
4164        struct xlog             *log,
4165        struct xlog_recover     *trans,
4166        char                    *dp,
4167        int                     len)
4168{
4169        xlog_recover_item_t     *item;
4170        char                    *ptr, *old_ptr;
4171        int                     old_len;
4172
4173        /*
4174         * If the transaction is empty, the header was split across this and the
4175         * previous record. Copy the rest of the header.
4176         */
4177        if (list_empty(&trans->r_itemq)) {
4178                ASSERT(len <= sizeof(struct xfs_trans_header));
4179                if (len > sizeof(struct xfs_trans_header)) {
4180                        xfs_warn(log->l_mp, "%s: bad header length", __func__);
4181                        return -EFSCORRUPTED;
4182                }
4183
4184                xlog_recover_add_item(&trans->r_itemq);
4185                ptr = (char *)&trans->r_theader +
4186                                sizeof(struct xfs_trans_header) - len;
4187                memcpy(ptr, dp, len);
4188                return 0;
4189        }
4190
4191        /* take the tail entry */
4192        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4193
4194        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4195        old_len = item->ri_buf[item->ri_cnt-1].i_len;
4196
4197        ptr = kmem_realloc(old_ptr, len + old_len, 0);
4198        memcpy(&ptr[old_len], dp, len);
4199        item->ri_buf[item->ri_cnt-1].i_len += len;
4200        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4201        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4202        return 0;
4203}
4204
4205/*
4206 * The next region to add is the start of a new region.  It could be
4207 * a whole region or it could be the first part of a new region.  Because
4208 * of this, the assumption here is that the type and size fields of all
4209 * format structures fit into the first 32 bits of the structure.
4210 *
4211 * This works because all regions must be 32 bit aligned.  Therefore, we
4212 * either have both fields or we have neither field.  In the case we have
4213 * neither field, the data part of the region is zero length.  We only have
4214 * a log_op_header and can throw away the header since a new one will appear
4215 * later.  If we have at least 4 bytes, then we can determine how many regions
4216 * will appear in the current log item.
4217 */
4218STATIC int
4219xlog_recover_add_to_trans(
4220        struct xlog             *log,
4221        struct xlog_recover     *trans,
4222        char                    *dp,
4223        int                     len)
4224{
4225        struct xfs_inode_log_format     *in_f;                  /* any will do */
4226        xlog_recover_item_t     *item;
4227        char                    *ptr;
4228
4229        if (!len)
4230                return 0;
4231        if (list_empty(&trans->r_itemq)) {
4232                /* we need to catch log corruptions here */
4233                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4234                        xfs_warn(log->l_mp, "%s: bad header magic number",
4235                                __func__);
4236                        ASSERT(0);
4237                        return -EFSCORRUPTED;
4238                }
4239
4240                if (len > sizeof(struct xfs_trans_header)) {
4241                        xfs_warn(log->l_mp, "%s: bad header length", __func__);
4242                        ASSERT(0);
4243                        return -EFSCORRUPTED;
4244                }
4245
4246                /*
4247                 * The transaction header can be arbitrarily split across op
4248                 * records. If we don't have the whole thing here, copy what we
4249                 * do have and handle the rest in the next record.
4250                 */
4251                if (len == sizeof(struct xfs_trans_header))
4252                        xlog_recover_add_item(&trans->r_itemq);
4253                memcpy(&trans->r_theader, dp, len);
4254                return 0;
4255        }
4256
4257        ptr = kmem_alloc(len, 0);
4258        memcpy(ptr, dp, len);
4259        in_f = (struct xfs_inode_log_format *)ptr;
4260
4261        /* take the tail entry */
4262        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4263        if (item->ri_total != 0 &&
4264             item->ri_total == item->ri_cnt) {
4265                /* tail item is in use, get a new one */
4266                xlog_recover_add_item(&trans->r_itemq);
4267                item = list_entry(trans->r_itemq.prev,
4268                                        xlog_recover_item_t, ri_list);
4269        }
4270
4271        if (item->ri_total == 0) {              /* first region to be added */
4272                if (in_f->ilf_size == 0 ||
4273                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4274                        xfs_warn(log->l_mp,
4275                "bad number of regions (%d) in inode log format",
4276                                  in_f->ilf_size);
4277                        ASSERT(0);
4278                        kmem_free(ptr);
4279                        return -EFSCORRUPTED;
4280                }
4281
4282                item->ri_total = in_f->ilf_size;
4283                item->ri_buf =
4284                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4285                                    0);
4286        }
4287
4288        if (item->ri_total <= item->ri_cnt) {
4289                xfs_warn(log->l_mp,
4290        "log item region count (%d) overflowed size (%d)",
4291                                item->ri_cnt, item->ri_total);
4292                ASSERT(0);
4293                kmem_free(ptr);
4294                return -EFSCORRUPTED;
4295        }
4296
4297        /* Description region is ri_buf[0] */
4298        item->ri_buf[item->ri_cnt].i_addr = ptr;
4299        item->ri_buf[item->ri_cnt].i_len  = len;
4300        item->ri_cnt++;
4301        trace_xfs_log_recover_item_add(log, trans, item, 0);
4302        return 0;
4303}
4304
4305/*
4306 * Free up any resources allocated by the transaction
4307 *
4308 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4309 */
4310STATIC void
4311xlog_recover_free_trans(
4312        struct xlog_recover     *trans)
4313{
4314        xlog_recover_item_t     *item, *n;
4315        int                     i;
4316
4317        hlist_del_init(&trans->r_list);
4318
4319        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4320                /* Free the regions in the item. */
4321                list_del(&item->ri_list);
4322                for (i = 0; i < item->ri_cnt; i++)
4323                        kmem_free(item->ri_buf[i].i_addr);
4324                /* Free the item itself */
4325                kmem_free(item->ri_buf);
4326                kmem_free(item);
4327        }
4328        /* Free the transaction recover structure */
4329        kmem_free(trans);
4330}
4331
4332/*
4333 * On error or completion, trans is freed.
4334 */
4335STATIC int
4336xlog_recovery_process_trans(
4337        struct xlog             *log,
4338        struct xlog_recover     *trans,
4339        char                    *dp,
4340        unsigned int            len,
4341        unsigned int            flags,
4342        int                     pass,
4343        struct list_head        *buffer_list)
4344{
4345        int                     error = 0;
4346        bool                    freeit = false;
4347
4348        /* mask off ophdr transaction container flags */
4349        flags &= ~XLOG_END_TRANS;
4350        if (flags & XLOG_WAS_CONT_TRANS)
4351                flags &= ~XLOG_CONTINUE_TRANS;
4352
4353        /*
4354         * Callees must not free the trans structure. We'll decide if we need to
4355         * free it or not based on the operation being done and it's result.
4356         */
4357        switch (flags) {
4358        /* expected flag values */
4359        case 0:
4360        case XLOG_CONTINUE_TRANS:
4361                error = xlog_recover_add_to_trans(log, trans, dp, len);
4362                break;
4363        case XLOG_WAS_CONT_TRANS:
4364                error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4365                break;
4366        case XLOG_COMMIT_TRANS:
4367                error = xlog_recover_commit_trans(log, trans, pass,
4368                                                  buffer_list);
4369                /* success or fail, we are now done with this transaction. */
4370                freeit = true;
4371                break;
4372
4373        /* unexpected flag values */
4374        case XLOG_UNMOUNT_TRANS:
4375                /* just skip trans */
4376                xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4377                freeit = true;
4378                break;
4379        case XLOG_START_TRANS:
4380        default:
4381                xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4382                ASSERT(0);
4383                error = -EFSCORRUPTED;
4384                break;
4385        }
4386        if (error || freeit)
4387                xlog_recover_free_trans(trans);
4388        return error;
4389}
4390
4391/*
4392 * Lookup the transaction recovery structure associated with the ID in the
4393 * current ophdr. If the transaction doesn't exist and the start flag is set in
4394 * the ophdr, then allocate a new transaction for future ID matches to find.
4395 * Either way, return what we found during the lookup - an existing transaction
4396 * or nothing.
4397 */
4398STATIC struct xlog_recover *
4399xlog_recover_ophdr_to_trans(
4400        struct hlist_head       rhash[],
4401        struct xlog_rec_header  *rhead,
4402        struct xlog_op_header   *ohead)
4403{
4404        struct xlog_recover     *trans;
4405        xlog_tid_t              tid;
4406        struct hlist_head       *rhp;
4407
4408        tid = be32_to_cpu(ohead->oh_tid);
4409        rhp = &rhash[XLOG_RHASH(tid)];
4410        hlist_for_each_entry(trans, rhp, r_list) {
4411                if (trans->r_log_tid == tid)
4412                        return trans;
4413        }
4414
4415        /*
4416         * skip over non-start transaction headers - we could be
4417         * processing slack space before the next transaction starts
4418         */
4419        if (!(ohead->oh_flags & XLOG_START_TRANS))
4420                return NULL;
4421
4422        ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4423
4424        /*
4425         * This is a new transaction so allocate a new recovery container to
4426         * hold the recovery ops that will follow.
4427         */
4428        trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
4429        trans->r_log_tid = tid;
4430        trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4431        INIT_LIST_HEAD(&trans->r_itemq);
4432        INIT_HLIST_NODE(&trans->r_list);
4433        hlist_add_head(&trans->r_list, rhp);
4434
4435        /*
4436         * Nothing more to do for this ophdr. Items to be added to this new
4437         * transaction will be in subsequent ophdr containers.
4438         */
4439        return NULL;
4440}
4441
4442STATIC int
4443xlog_recover_process_ophdr(
4444        struct xlog             *log,
4445        struct hlist_head       rhash[],
4446        struct xlog_rec_header  *rhead,
4447        struct xlog_op_header   *ohead,
4448        char                    *dp,
4449        char                    *end,
4450        int                     pass,
4451        struct list_head        *buffer_list)
4452{
4453        struct xlog_recover     *trans;
4454        unsigned int            len;
4455        int                     error;
4456
4457        /* Do we understand who wrote this op? */
4458        if (ohead->oh_clientid != XFS_TRANSACTION &&
4459            ohead->oh_clientid != XFS_LOG) {
4460                xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4461                        __func__, ohead->oh_clientid);
4462                ASSERT(0);
4463                return -EFSCORRUPTED;
4464        }
4465
4466        /*
4467         * Check the ophdr contains all the data it is supposed to contain.
4468         */
4469        len = be32_to_cpu(ohead->oh_len);
4470        if (dp + len > end) {
4471                xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4472                WARN_ON(1);
4473                return -EFSCORRUPTED;
4474        }
4475
4476        trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4477        if (!trans) {
4478                /* nothing to do, so skip over this ophdr */
4479                return 0;
4480        }
4481
4482        /*
4483         * The recovered buffer queue is drained only once we know that all
4484         * recovery items for the current LSN have been processed. This is
4485         * required because:
4486         *
4487         * - Buffer write submission updates the metadata LSN of the buffer.
4488         * - Log recovery skips items with a metadata LSN >= the current LSN of
4489         *   the recovery item.
4490         * - Separate recovery items against the same metadata buffer can share
4491         *   a current LSN. I.e., consider that the LSN of a recovery item is
4492         *   defined as the starting LSN of the first record in which its
4493         *   transaction appears, that a record can hold multiple transactions,
4494         *   and/or that a transaction can span multiple records.
4495         *
4496         * In other words, we are allowed to submit a buffer from log recovery
4497         * once per current LSN. Otherwise, we may incorrectly skip recovery
4498         * items and cause corruption.
4499         *
4500         * We don't know up front whether buffers are updated multiple times per
4501         * LSN. Therefore, track the current LSN of each commit log record as it
4502         * is processed and drain the queue when it changes. Use commit records
4503         * because they are ordered correctly by the logging code.
4504         */
4505        if (log->l_recovery_lsn != trans->r_lsn &&
4506            ohead->oh_flags & XLOG_COMMIT_TRANS) {
4507                error = xfs_buf_delwri_submit(buffer_list);
4508                if (error)
4509                        return error;
4510                log->l_recovery_lsn = trans->r_lsn;
4511        }
4512
4513        return xlog_recovery_process_trans(log, trans, dp, len,
4514                                           ohead->oh_flags, pass, buffer_list);
4515}
4516
4517/*
4518 * There are two valid states of the r_state field.  0 indicates that the
4519 * transaction structure is in a normal state.  We have either seen the
4520 * start of the transaction or the last operation we added was not a partial
4521 * operation.  If the last operation we added to the transaction was a
4522 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4523 *
4524 * NOTE: skip LRs with 0 data length.
4525 */
4526STATIC int
4527xlog_recover_process_data(
4528        struct xlog             *log,
4529        struct hlist_head       rhash[],
4530        struct xlog_rec_header  *rhead,
4531        char                    *dp,
4532        int                     pass,
4533        struct list_head        *buffer_list)
4534{
4535        struct xlog_op_header   *ohead;
4536        char                    *end;
4537        int                     num_logops;
4538        int                     error;
4539
4540        end = dp + be32_to_cpu(rhead->h_len);
4541        num_logops = be32_to_cpu(rhead->h_num_logops);
4542
4543        /* check the log format matches our own - else we can't recover */
4544        if (xlog_header_check_recover(log->l_mp, rhead))
4545                return -EIO;
4546
4547        trace_xfs_log_recover_record(log, rhead, pass);
4548        while ((dp < end) && num_logops) {
4549
4550                ohead = (struct xlog_op_header *)dp;
4551                dp += sizeof(*ohead);
4552                ASSERT(dp <= end);
4553
4554                /* errors will abort recovery */
4555                error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4556                                                   dp, end, pass, buffer_list);
4557                if (error)
4558                        return error;
4559
4560                dp += be32_to_cpu(ohead->oh_len);
4561                num_logops--;
4562        }
4563        return 0;
4564}
4565
4566/* Recover the EFI if necessary. */
4567STATIC int
4568xlog_recover_process_efi(
4569        struct xfs_mount                *mp,
4570        struct xfs_ail                  *ailp,
4571        struct xfs_log_item             *lip)
4572{
4573        struct xfs_efi_log_item         *efip;
4574        int                             error;
4575
4576        /*
4577         * Skip EFIs that we've already processed.
4578         */
4579        efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4580        if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4581                return 0;
4582
4583        spin_unlock(&ailp->ail_lock);
4584        error = xfs_efi_recover(mp, efip);
4585        spin_lock(&ailp->ail_lock);
4586
4587        return error;
4588}
4589
4590/* Release the EFI since we're cancelling everything. */
4591STATIC void
4592xlog_recover_cancel_efi(
4593        struct xfs_mount                *mp,
4594        struct xfs_ail                  *ailp,
4595        struct xfs_log_item             *lip)
4596{
4597        struct xfs_efi_log_item         *efip;
4598
4599        efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4600
4601        spin_unlock(&ailp->ail_lock);
4602        xfs_efi_release(efip);
4603        spin_lock(&ailp->ail_lock);
4604}
4605
4606/* Recover the RUI if necessary. */
4607STATIC int
4608xlog_recover_process_rui(
4609        struct xfs_mount                *mp,
4610        struct xfs_ail                  *ailp,
4611        struct xfs_log_item             *lip)
4612{
4613        struct xfs_rui_log_item         *ruip;
4614        int                             error;
4615
4616        /*
4617         * Skip RUIs that we've already processed.
4618         */
4619        ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4620        if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4621                return 0;
4622
4623        spin_unlock(&ailp->ail_lock);
4624        error = xfs_rui_recover(mp, ruip);
4625        spin_lock(&ailp->ail_lock);
4626
4627        return error;
4628}
4629
4630/* Release the RUI since we're cancelling everything. */
4631STATIC void
4632xlog_recover_cancel_rui(
4633        struct xfs_mount                *mp,
4634        struct xfs_ail                  *ailp,
4635        struct xfs_log_item             *lip)
4636{
4637        struct xfs_rui_log_item         *ruip;
4638
4639        ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4640
4641        spin_unlock(&ailp->ail_lock);
4642        xfs_rui_release(ruip);
4643        spin_lock(&ailp->ail_lock);
4644}
4645
4646/* Recover the CUI if necessary. */
4647STATIC int
4648xlog_recover_process_cui(
4649        struct xfs_trans                *parent_tp,
4650        struct xfs_ail                  *ailp,
4651        struct xfs_log_item             *lip)
4652{
4653        struct xfs_cui_log_item         *cuip;
4654        int                             error;
4655
4656        /*
4657         * Skip CUIs that we've already processed.
4658         */
4659        cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4660        if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4661                return 0;
4662
4663        spin_unlock(&ailp->ail_lock);
4664        error = xfs_cui_recover(parent_tp, cuip);
4665        spin_lock(&ailp->ail_lock);
4666
4667        return error;
4668}
4669
4670/* Release the CUI since we're cancelling everything. */
4671STATIC void
4672xlog_recover_cancel_cui(
4673        struct xfs_mount                *mp,
4674        struct xfs_ail                  *ailp,
4675        struct xfs_log_item             *lip)
4676{
4677        struct xfs_cui_log_item         *cuip;
4678
4679        cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4680
4681        spin_unlock(&ailp->ail_lock);
4682        xfs_cui_release(cuip);
4683        spin_lock(&ailp->ail_lock);
4684}
4685
4686/* Recover the BUI if necessary. */
4687STATIC int
4688xlog_recover_process_bui(
4689        struct xfs_trans                *parent_tp,
4690        struct xfs_ail                  *ailp,
4691        struct xfs_log_item             *lip)
4692{
4693        struct xfs_bui_log_item         *buip;
4694        int                             error;
4695
4696        /*
4697         * Skip BUIs that we've already processed.
4698         */
4699        buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4700        if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4701                return 0;
4702
4703        spin_unlock(&ailp->ail_lock);
4704        error = xfs_bui_recover(parent_tp, buip);
4705        spin_lock(&ailp->ail_lock);
4706
4707        return error;
4708}
4709
4710/* Release the BUI since we're cancelling everything. */
4711STATIC void
4712xlog_recover_cancel_bui(
4713        struct xfs_mount                *mp,
4714        struct xfs_ail                  *ailp,
4715        struct xfs_log_item             *lip)
4716{
4717        struct xfs_bui_log_item         *buip;
4718
4719        buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4720
4721        spin_unlock(&ailp->ail_lock);
4722        xfs_bui_release(buip);
4723        spin_lock(&ailp->ail_lock);
4724}
4725
4726/* Is this log item a deferred action intent? */
4727static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4728{
4729        switch (lip->li_type) {
4730        case XFS_LI_EFI:
4731        case XFS_LI_RUI:
4732        case XFS_LI_CUI:
4733        case XFS_LI_BUI:
4734                return true;
4735        default:
4736                return false;
4737        }
4738}
4739
4740/* Take all the collected deferred ops and finish them in order. */
4741static int
4742xlog_finish_defer_ops(
4743        struct xfs_trans        *parent_tp)
4744{
4745        struct xfs_mount        *mp = parent_tp->t_mountp;
4746        struct xfs_trans        *tp;
4747        int64_t                 freeblks;
4748        uint                    resblks;
4749        int                     error;
4750
4751        /*
4752         * We're finishing the defer_ops that accumulated as a result of
4753         * recovering unfinished intent items during log recovery.  We
4754         * reserve an itruncate transaction because it is the largest
4755         * permanent transaction type.  Since we're the only user of the fs
4756         * right now, take 93% (15/16) of the available free blocks.  Use
4757         * weird math to avoid a 64-bit division.
4758         */
4759        freeblks = percpu_counter_sum(&mp->m_fdblocks);
4760        if (freeblks <= 0)
4761                return -ENOSPC;
4762        resblks = min_t(int64_t, UINT_MAX, freeblks);
4763        resblks = (resblks * 15) >> 4;
4764        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4765                        0, XFS_TRANS_RESERVE, &tp);
4766        if (error)
4767                return error;
4768        /* transfer all collected dfops to this transaction */
4769        xfs_defer_move(tp, parent_tp);
4770
4771        return xfs_trans_commit(tp);
4772}
4773
4774/*
4775 * When this is called, all of the log intent items which did not have
4776 * corresponding log done items should be in the AIL.  What we do now
4777 * is update the data structures associated with each one.
4778 *
4779 * Since we process the log intent items in normal transactions, they
4780 * will be removed at some point after the commit.  This prevents us
4781 * from just walking down the list processing each one.  We'll use a
4782 * flag in the intent item to skip those that we've already processed
4783 * and use the AIL iteration mechanism's generation count to try to
4784 * speed this up at least a bit.
4785 *
4786 * When we start, we know that the intents are the only things in the
4787 * AIL.  As we process them, however, other items are added to the
4788 * AIL.
4789 */
4790STATIC int
4791xlog_recover_process_intents(
4792        struct xlog             *log)
4793{
4794        struct xfs_trans        *parent_tp;
4795        struct xfs_ail_cursor   cur;
4796        struct xfs_log_item     *lip;
4797        struct xfs_ail          *ailp;
4798        int                     error;
4799#if defined(DEBUG) || defined(XFS_WARN)
4800        xfs_lsn_t               last_lsn;
4801#endif
4802
4803        /*
4804         * The intent recovery handlers commit transactions to complete recovery
4805         * for individual intents, but any new deferred operations that are
4806         * queued during that process are held off until the very end. The
4807         * purpose of this transaction is to serve as a container for deferred
4808         * operations. Each intent recovery handler must transfer dfops here
4809         * before its local transaction commits, and we'll finish the entire
4810         * list below.
4811         */
4812        error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4813        if (error)
4814                return error;
4815
4816        ailp = log->l_ailp;
4817        spin_lock(&ailp->ail_lock);
4818        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4819#if defined(DEBUG) || defined(XFS_WARN)
4820        last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4821#endif
4822        while (lip != NULL) {
4823                /*
4824                 * We're done when we see something other than an intent.
4825                 * There should be no intents left in the AIL now.
4826                 */
4827                if (!xlog_item_is_intent(lip)) {
4828#ifdef DEBUG
4829                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4830                                ASSERT(!xlog_item_is_intent(lip));
4831#endif
4832                        break;
4833                }
4834
4835                /*
4836                 * We should never see a redo item with a LSN higher than
4837                 * the last transaction we found in the log at the start
4838                 * of recovery.
4839                 */
4840                ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4841
4842                /*
4843                 * NOTE: If your intent processing routine can create more
4844                 * deferred ops, you /must/ attach them to the dfops in this
4845                 * routine or else those subsequent intents will get
4846                 * replayed in the wrong order!
4847                 */
4848                switch (lip->li_type) {
4849                case XFS_LI_EFI:
4850                        error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4851                        break;
4852                case XFS_LI_RUI:
4853                        error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4854                        break;
4855                case XFS_LI_CUI:
4856                        error = xlog_recover_process_cui(parent_tp, ailp, lip);
4857                        break;
4858                case XFS_LI_BUI:
4859                        error = xlog_recover_process_bui(parent_tp, ailp, lip);
4860                        break;
4861                }
4862                if (error)
4863                        goto out;
4864                lip = xfs_trans_ail_cursor_next(ailp, &cur);
4865        }
4866out:
4867        xfs_trans_ail_cursor_done(&cur);
4868        spin_unlock(&ailp->ail_lock);
4869        if (!error)
4870                error = xlog_finish_defer_ops(parent_tp);
4871        xfs_trans_cancel(parent_tp);
4872
4873        return error;
4874}
4875
4876/*
4877 * A cancel occurs when the mount has failed and we're bailing out.
4878 * Release all pending log intent items so they don't pin the AIL.
4879 */
4880STATIC void
4881xlog_recover_cancel_intents(
4882        struct xlog             *log)
4883{
4884        struct xfs_log_item     *lip;
4885        struct xfs_ail_cursor   cur;
4886        struct xfs_ail          *ailp;
4887
4888        ailp = log->l_ailp;
4889        spin_lock(&ailp->ail_lock);
4890        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4891        while (lip != NULL) {
4892                /*
4893                 * We're done when we see something other than an intent.
4894                 * There should be no intents left in the AIL now.
4895                 */
4896                if (!xlog_item_is_intent(lip)) {
4897#ifdef DEBUG
4898                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4899                                ASSERT(!xlog_item_is_intent(lip));
4900#endif
4901                        break;
4902                }
4903
4904                switch (lip->li_type) {
4905                case XFS_LI_EFI:
4906                        xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4907                        break;
4908                case XFS_LI_RUI:
4909                        xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4910                        break;
4911                case XFS_LI_CUI:
4912                        xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4913                        break;
4914                case XFS_LI_BUI:
4915                        xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4916                        break;
4917                }
4918
4919                lip = xfs_trans_ail_cursor_next(ailp, &cur);
4920        }
4921
4922        xfs_trans_ail_cursor_done(&cur);
4923        spin_unlock(&ailp->ail_lock);
4924}
4925
4926/*
4927 * This routine performs a transaction to null out a bad inode pointer
4928 * in an agi unlinked inode hash bucket.
4929 */
4930STATIC void
4931xlog_recover_clear_agi_bucket(
4932        xfs_mount_t     *mp,
4933        xfs_agnumber_t  agno,
4934        int             bucket)
4935{
4936        xfs_trans_t     *tp;
4937        xfs_agi_t       *agi;
4938        xfs_buf_t       *agibp;
4939        int             offset;
4940        int             error;
4941
4942        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4943        if (error)
4944                goto out_error;
4945
4946        error = xfs_read_agi(mp, tp, agno, &agibp);
4947        if (error)
4948                goto out_abort;
4949
4950        agi = XFS_BUF_TO_AGI(agibp);
4951        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4952        offset = offsetof(xfs_agi_t, agi_unlinked) +
4953                 (sizeof(xfs_agino_t) * bucket);
4954        xfs_trans_log_buf(tp, agibp, offset,
4955                          (offset + sizeof(xfs_agino_t) - 1));
4956
4957        error = xfs_trans_commit(tp);
4958        if (error)
4959                goto out_error;
4960        return;
4961
4962out_abort:
4963        xfs_trans_cancel(tp);
4964out_error:
4965        xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4966        return;
4967}
4968
4969STATIC xfs_agino_t
4970xlog_recover_process_one_iunlink(
4971        struct xfs_mount                *mp,
4972        xfs_agnumber_t                  agno,
4973        xfs_agino_t                     agino,
4974        int                             bucket)
4975{
4976        struct xfs_buf                  *ibp;
4977        struct xfs_dinode               *dip;
4978        struct xfs_inode                *ip;
4979        xfs_ino_t                       ino;
4980        int                             error;
4981
4982        ino = XFS_AGINO_TO_INO(mp, agno, agino);
4983        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4984        if (error)
4985                goto fail;
4986
4987        /*
4988         * Get the on disk inode to find the next inode in the bucket.
4989         */
4990        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4991        if (error)
4992                goto fail_iput;
4993
4994        xfs_iflags_clear(ip, XFS_IRECOVERY);
4995        ASSERT(VFS_I(ip)->i_nlink == 0);
4996        ASSERT(VFS_I(ip)->i_mode != 0);
4997
4998        /* setup for the next pass */
4999        agino = be32_to_cpu(dip->di_next_unlinked);
5000        xfs_buf_relse(ibp);
5001
5002        /*
5003         * Prevent any DMAPI event from being sent when the reference on
5004         * the inode is dropped.
5005         */
5006        ip->i_d.di_dmevmask = 0;
5007
5008        xfs_irele(ip);
5009        return agino;
5010
5011 fail_iput:
5012        xfs_irele(ip);
5013 fail:
5014        /*
5015         * We can't read in the inode this bucket points to, or this inode
5016         * is messed up.  Just ditch this bucket of inodes.  We will lose
5017         * some inodes and space, but at least we won't hang.
5018         *
5019         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5020         * clear the inode pointer in the bucket.
5021         */
5022        xlog_recover_clear_agi_bucket(mp, agno, bucket);
5023        return NULLAGINO;
5024}
5025
5026/*
5027 * Recover AGI unlinked lists
5028 *
5029 * This is called during recovery to process any inodes which we unlinked but
5030 * not freed when the system crashed.  These inodes will be on the lists in the
5031 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
5032 * any inodes found on the lists. Each inode is removed from the lists when it
5033 * has been fully truncated and is freed. The freeing of the inode and its
5034 * removal from the list must be atomic.
5035 *
5036 * If everything we touch in the agi processing loop is already in memory, this
5037 * loop can hold the cpu for a long time. It runs without lock contention,
5038 * memory allocation contention, the need wait for IO, etc, and so will run
5039 * until we either run out of inodes to process, run low on memory or we run out
5040 * of log space.
5041 *
5042 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
5043 * and can prevent other filesytem work (such as CIL pushes) from running. This
5044 * can lead to deadlocks if the recovery process runs out of log reservation
5045 * space. Hence we need to yield the CPU when there is other kernel work
5046 * scheduled on this CPU to ensure other scheduled work can run without undue
5047 * latency.
5048 */
5049STATIC void
5050xlog_recover_process_iunlinks(
5051        struct xlog     *log)
5052{
5053        xfs_mount_t     *mp;
5054        xfs_agnumber_t  agno;
5055        xfs_agi_t       *agi;
5056        xfs_buf_t       *agibp;
5057        xfs_agino_t     agino;
5058        int             bucket;
5059        int             error;
5060
5061        mp = log->l_mp;
5062
5063        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5064                /*
5065                 * Find the agi for this ag.
5066                 */
5067                error = xfs_read_agi(mp, NULL, agno, &agibp);
5068                if (error) {
5069                        /*
5070                         * AGI is b0rked. Don't process it.
5071                         *
5072                         * We should probably mark the filesystem as corrupt
5073                         * after we've recovered all the ag's we can....
5074                         */
5075                        continue;
5076                }
5077                /*
5078                 * Unlock the buffer so that it can be acquired in the normal
5079                 * course of the transaction to truncate and free each inode.
5080                 * Because we are not racing with anyone else here for the AGI
5081                 * buffer, we don't even need to hold it locked to read the
5082                 * initial unlinked bucket entries out of the buffer. We keep
5083                 * buffer reference though, so that it stays pinned in memory
5084                 * while we need the buffer.
5085                 */
5086                agi = XFS_BUF_TO_AGI(agibp);
5087                xfs_buf_unlock(agibp);
5088
5089                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5090                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5091                        while (agino != NULLAGINO) {
5092                                agino = xlog_recover_process_one_iunlink(mp,
5093                                                        agno, agino, bucket);
5094                                cond_resched();
5095                        }
5096                }
5097                xfs_buf_rele(agibp);
5098        }
5099}
5100
5101STATIC void
5102xlog_unpack_data(
5103        struct xlog_rec_header  *rhead,
5104        char                    *dp,
5105        struct xlog             *log)
5106{
5107        int                     i, j, k;
5108
5109        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5110                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5111                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5112                dp += BBSIZE;
5113        }
5114
5115        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5116                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5117                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5118                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5119                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5120                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5121                        dp += BBSIZE;
5122                }
5123        }
5124}
5125
5126/*
5127 * CRC check, unpack and process a log record.
5128 */
5129STATIC int
5130xlog_recover_process(
5131        struct xlog             *log,
5132        struct hlist_head       rhash[],
5133        struct xlog_rec_header  *rhead,
5134        char                    *dp,
5135        int                     pass,
5136        struct list_head        *buffer_list)
5137{
5138        __le32                  old_crc = rhead->h_crc;
5139        __le32                  crc;
5140
5141        crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5142
5143        /*
5144         * Nothing else to do if this is a CRC verification pass. Just return
5145         * if this a record with a non-zero crc. Unfortunately, mkfs always
5146         * sets old_crc to 0 so we must consider this valid even on v5 supers.
5147         * Otherwise, return EFSBADCRC on failure so the callers up the stack
5148         * know precisely what failed.
5149         */
5150        if (pass == XLOG_RECOVER_CRCPASS) {
5151                if (old_crc && crc != old_crc)
5152                        return -EFSBADCRC;
5153                return 0;
5154        }
5155
5156        /*
5157         * We're in the normal recovery path. Issue a warning if and only if the
5158         * CRC in the header is non-zero. This is an advisory warning and the
5159         * zero CRC check prevents warnings from being emitted when upgrading
5160         * the kernel from one that does not add CRCs by default.
5161         */
5162        if (crc != old_crc) {
5163                if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5164                        xfs_alert(log->l_mp,
5165                "log record CRC mismatch: found 0x%x, expected 0x%x.",
5166                                        le32_to_cpu(old_crc),
5167                                        le32_to_cpu(crc));
5168                        xfs_hex_dump(dp, 32);
5169                }
5170
5171                /*
5172                 * If the filesystem is CRC enabled, this mismatch becomes a
5173                 * fatal log corruption failure.
5174                 */
5175                if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5176                        XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
5177                        return -EFSCORRUPTED;
5178                }
5179        }
5180
5181        xlog_unpack_data(rhead, dp, log);
5182
5183        return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5184                                         buffer_list);
5185}
5186
5187STATIC int
5188xlog_valid_rec_header(
5189        struct xlog             *log,
5190        struct xlog_rec_header  *rhead,
5191        xfs_daddr_t             blkno)
5192{
5193        int                     hlen;
5194
5195        if (XFS_IS_CORRUPT(log->l_mp,
5196                           rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
5197                return -EFSCORRUPTED;
5198        if (XFS_IS_CORRUPT(log->l_mp,
5199                           (!rhead->h_version ||
5200                           (be32_to_cpu(rhead->h_version) &
5201                            (~XLOG_VERSION_OKBITS))))) {
5202                xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5203                        __func__, be32_to_cpu(rhead->h_version));
5204                return -EFSCORRUPTED;
5205        }
5206
5207        /* LR body must have data or it wouldn't have been written */
5208        hlen = be32_to_cpu(rhead->h_len);
5209        if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > INT_MAX))
5210                return -EFSCORRUPTED;
5211        if (XFS_IS_CORRUPT(log->l_mp,
5212                           blkno > log->l_logBBsize || blkno > INT_MAX))
5213                return -EFSCORRUPTED;
5214        return 0;
5215}
5216
5217/*
5218 * Read the log from tail to head and process the log records found.
5219 * Handle the two cases where the tail and head are in the same cycle
5220 * and where the active portion of the log wraps around the end of
5221 * the physical log separately.  The pass parameter is passed through
5222 * to the routines called to process the data and is not looked at
5223 * here.
5224 */
5225STATIC int
5226xlog_do_recovery_pass(
5227        struct xlog             *log,
5228        xfs_daddr_t             head_blk,
5229        xfs_daddr_t             tail_blk,
5230        int                     pass,
5231        xfs_daddr_t             *first_bad)     /* out: first bad log rec */
5232{
5233        xlog_rec_header_t       *rhead;
5234        xfs_daddr_t             blk_no, rblk_no;
5235        xfs_daddr_t             rhead_blk;
5236        char                    *offset;
5237        char                    *hbp, *dbp;
5238        int                     error = 0, h_size, h_len;
5239        int                     error2 = 0;
5240        int                     bblks, split_bblks;
5241        int                     hblks, split_hblks, wrapped_hblks;
5242        int                     i;
5243        struct hlist_head       rhash[XLOG_RHASH_SIZE];
5244        LIST_HEAD               (buffer_list);
5245
5246        ASSERT(head_blk != tail_blk);
5247        blk_no = rhead_blk = tail_blk;
5248
5249        for (i = 0; i < XLOG_RHASH_SIZE; i++)
5250                INIT_HLIST_HEAD(&rhash[i]);
5251
5252        /*
5253         * Read the header of the tail block and get the iclog buffer size from
5254         * h_size.  Use this to tell how many sectors make up the log header.
5255         */
5256        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5257                /*
5258                 * When using variable length iclogs, read first sector of
5259                 * iclog header and extract the header size from it.  Get a
5260                 * new hbp that is the correct size.
5261                 */
5262                hbp = xlog_alloc_buffer(log, 1);
5263                if (!hbp)
5264                        return -ENOMEM;
5265
5266                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5267                if (error)
5268                        goto bread_err1;
5269
5270                rhead = (xlog_rec_header_t *)offset;
5271                error = xlog_valid_rec_header(log, rhead, tail_blk);
5272                if (error)
5273                        goto bread_err1;
5274
5275                /*
5276                 * xfsprogs has a bug where record length is based on lsunit but
5277                 * h_size (iclog size) is hardcoded to 32k. Now that we
5278                 * unconditionally CRC verify the unmount record, this means the
5279                 * log buffer can be too small for the record and cause an
5280                 * overrun.
5281                 *
5282                 * Detect this condition here. Use lsunit for the buffer size as
5283                 * long as this looks like the mkfs case. Otherwise, return an
5284                 * error to avoid a buffer overrun.
5285                 */
5286                h_size = be32_to_cpu(rhead->h_size);
5287                h_len = be32_to_cpu(rhead->h_len);
5288                if (h_len > h_size) {
5289                        if (h_len <= log->l_mp->m_logbsize &&
5290                            be32_to_cpu(rhead->h_num_logops) == 1) {
5291                                xfs_warn(log->l_mp,
5292                "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5293                                         h_size, log->l_mp->m_logbsize);
5294                                h_size = log->l_mp->m_logbsize;
5295                        } else {
5296                                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW,
5297                                                log->l_mp);
5298                                error = -EFSCORRUPTED;
5299                                goto bread_err1;
5300                        }
5301                }
5302
5303                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5304                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5305                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5306                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
5307                                hblks++;
5308                        kmem_free(hbp);
5309                        hbp = xlog_alloc_buffer(log, hblks);
5310                } else {
5311                        hblks = 1;
5312                }
5313        } else {
5314                ASSERT(log->l_sectBBsize == 1);
5315                hblks = 1;
5316                hbp = xlog_alloc_buffer(log, 1);
5317                h_size = XLOG_BIG_RECORD_BSIZE;
5318        }
5319
5320        if (!hbp)
5321                return -ENOMEM;
5322        dbp = xlog_alloc_buffer(log, BTOBB(h_size));
5323        if (!dbp) {
5324                kmem_free(hbp);
5325                return -ENOMEM;
5326        }
5327
5328        memset(rhash, 0, sizeof(rhash));
5329        if (tail_blk > head_blk) {
5330                /*
5331                 * Perform recovery around the end of the physical log.
5332                 * When the head is not on the same cycle number as the tail,
5333                 * we can't do a sequential recovery.
5334                 */
5335                while (blk_no < log->l_logBBsize) {
5336                        /*
5337                         * Check for header wrapping around physical end-of-log
5338                         */
5339                        offset = hbp;
5340                        split_hblks = 0;
5341                        wrapped_hblks = 0;
5342                        if (blk_no + hblks <= log->l_logBBsize) {
5343                                /* Read header in one read */
5344                                error = xlog_bread(log, blk_no, hblks, hbp,
5345                                                   &offset);
5346                                if (error)
5347                                        goto bread_err2;
5348                        } else {
5349                                /* This LR is split across physical log end */
5350                                if (blk_no != log->l_logBBsize) {
5351                                        /* some data before physical log end */
5352                                        ASSERT(blk_no <= INT_MAX);
5353                                        split_hblks = log->l_logBBsize - (int)blk_no;
5354                                        ASSERT(split_hblks > 0);
5355                                        error = xlog_bread(log, blk_no,
5356                                                           split_hblks, hbp,
5357                                                           &offset);
5358                                        if (error)
5359                                                goto bread_err2;
5360                                }
5361
5362                                /*
5363                                 * Note: this black magic still works with
5364                                 * large sector sizes (non-512) only because:
5365                                 * - we increased the buffer size originally
5366                                 *   by 1 sector giving us enough extra space
5367                                 *   for the second read;
5368                                 * - the log start is guaranteed to be sector
5369                                 *   aligned;
5370                                 * - we read the log end (LR header start)
5371                                 *   _first_, then the log start (LR header end)
5372                                 *   - order is important.
5373                                 */
5374                                wrapped_hblks = hblks - split_hblks;
5375                                error = xlog_bread_noalign(log, 0,
5376                                                wrapped_hblks,
5377                                                offset + BBTOB(split_hblks));
5378                                if (error)
5379                                        goto bread_err2;
5380                        }
5381                        rhead = (xlog_rec_header_t *)offset;
5382                        error = xlog_valid_rec_header(log, rhead,
5383                                                split_hblks ? blk_no : 0);
5384                        if (error)
5385                                goto bread_err2;
5386
5387                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5388                        blk_no += hblks;
5389
5390                        /*
5391                         * Read the log record data in multiple reads if it
5392                         * wraps around the end of the log. Note that if the
5393                         * header already wrapped, blk_no could point past the
5394                         * end of the log. The record data is contiguous in
5395                         * that case.
5396                         */
5397                        if (blk_no + bblks <= log->l_logBBsize ||
5398                            blk_no >= log->l_logBBsize) {
5399                                rblk_no = xlog_wrap_logbno(log, blk_no);
5400                                error = xlog_bread(log, rblk_no, bblks, dbp,
5401                                                   &offset);
5402                                if (error)
5403                                        goto bread_err2;
5404                        } else {
5405                                /* This log record is split across the
5406                                 * physical end of log */
5407                                offset = dbp;
5408                                split_bblks = 0;
5409                                if (blk_no != log->l_logBBsize) {
5410                                        /* some data is before the physical
5411                                         * end of log */
5412                                        ASSERT(!wrapped_hblks);
5413                                        ASSERT(blk_no <= INT_MAX);
5414                                        split_bblks =
5415                                                log->l_logBBsize - (int)blk_no;
5416                                        ASSERT(split_bblks > 0);
5417                                        error = xlog_bread(log, blk_no,
5418                                                        split_bblks, dbp,
5419                                                        &offset);
5420                                        if (error)
5421                                                goto bread_err2;
5422                                }
5423
5424                                /*
5425                                 * Note: this black magic still works with
5426                                 * large sector sizes (non-512) only because:
5427                                 * - we increased the buffer size originally
5428                                 *   by 1 sector giving us enough extra space
5429                                 *   for the second read;
5430                                 * - the log start is guaranteed to be sector
5431                                 *   aligned;
5432                                 * - we read the log end (LR header start)
5433                                 *   _first_, then the log start (LR header end)
5434                                 *   - order is important.
5435                                 */
5436                                error = xlog_bread_noalign(log, 0,
5437                                                bblks - split_bblks,
5438                                                offset + BBTOB(split_bblks));
5439                                if (error)
5440                                        goto bread_err2;
5441                        }
5442
5443                        error = xlog_recover_process(log, rhash, rhead, offset,
5444                                                     pass, &buffer_list);
5445                        if (error)
5446                                goto bread_err2;
5447
5448                        blk_no += bblks;
5449                        rhead_blk = blk_no;
5450                }
5451
5452                ASSERT(blk_no >= log->l_logBBsize);
5453                blk_no -= log->l_logBBsize;
5454                rhead_blk = blk_no;
5455        }
5456
5457        /* read first part of physical log */
5458        while (blk_no < head_blk) {
5459                error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5460                if (error)
5461                        goto bread_err2;
5462
5463                rhead = (xlog_rec_header_t *)offset;
5464                error = xlog_valid_rec_header(log, rhead, blk_no);
5465                if (error)
5466                        goto bread_err2;
5467
5468                /* blocks in data section */
5469                bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5470                error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5471                                   &offset);
5472                if (error)
5473                        goto bread_err2;
5474
5475                error = xlog_recover_process(log, rhash, rhead, offset, pass,
5476                                             &buffer_list);
5477                if (error)
5478                        goto bread_err2;
5479
5480                blk_no += bblks + hblks;
5481                rhead_blk = blk_no;
5482        }
5483
5484 bread_err2:
5485        kmem_free(dbp);
5486 bread_err1:
5487        kmem_free(hbp);
5488
5489        /*
5490         * Submit buffers that have been added from the last record processed,
5491         * regardless of error status.
5492         */
5493        if (!list_empty(&buffer_list))
5494                error2 = xfs_buf_delwri_submit(&buffer_list);
5495
5496        if (error && first_bad)
5497                *first_bad = rhead_blk;
5498
5499        /*
5500         * Transactions are freed at commit time but transactions without commit
5501         * records on disk are never committed. Free any that may be left in the
5502         * hash table.
5503         */
5504        for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5505                struct hlist_node       *tmp;
5506                struct xlog_recover     *trans;
5507
5508                hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5509                        xlog_recover_free_trans(trans);
5510        }
5511
5512        return error ? error : error2;
5513}
5514
5515/*
5516 * Do the recovery of the log.  We actually do this in two phases.
5517 * The two passes are necessary in order to implement the function
5518 * of cancelling a record written into the log.  The first pass
5519 * determines those things which have been cancelled, and the
5520 * second pass replays log items normally except for those which
5521 * have been cancelled.  The handling of the replay and cancellations
5522 * takes place in the log item type specific routines.
5523 *
5524 * The table of items which have cancel records in the log is allocated
5525 * and freed at this level, since only here do we know when all of
5526 * the log recovery has been completed.
5527 */
5528STATIC int
5529xlog_do_log_recovery(
5530        struct xlog     *log,
5531        xfs_daddr_t     head_blk,
5532        xfs_daddr_t     tail_blk)
5533{
5534        int             error, i;
5535
5536        ASSERT(head_blk != tail_blk);
5537
5538        /*
5539         * First do a pass to find all of the cancelled buf log items.
5540         * Store them in the buf_cancel_table for use in the second pass.
5541         */
5542        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5543                                                 sizeof(struct list_head),
5544                                                 0);
5545        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5546                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5547
5548        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5549                                      XLOG_RECOVER_PASS1, NULL);
5550        if (error != 0) {
5551                kmem_free(log->l_buf_cancel_table);
5552                log->l_buf_cancel_table = NULL;
5553                return error;
5554        }
5555        /*
5556         * Then do a second pass to actually recover the items in the log.
5557         * When it is complete free the table of buf cancel items.
5558         */
5559        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5560                                      XLOG_RECOVER_PASS2, NULL);
5561#ifdef DEBUG
5562        if (!error) {
5563                int     i;
5564
5565                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5566                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5567        }
5568#endif  /* DEBUG */
5569
5570        kmem_free(log->l_buf_cancel_table);
5571        log->l_buf_cancel_table = NULL;
5572
5573        return error;
5574}
5575
5576/*
5577 * Do the actual recovery
5578 */
5579STATIC int
5580xlog_do_recover(
5581        struct xlog     *log,
5582        xfs_daddr_t     head_blk,
5583        xfs_daddr_t     tail_blk)
5584{
5585        struct xfs_mount *mp = log->l_mp;
5586        int             error;
5587        xfs_buf_t       *bp;
5588        xfs_sb_t        *sbp;
5589
5590        trace_xfs_log_recover(log, head_blk, tail_blk);
5591
5592        /*
5593         * First replay the images in the log.
5594         */
5595        error = xlog_do_log_recovery(log, head_blk, tail_blk);
5596        if (error)
5597                return error;
5598
5599        /*
5600         * If IO errors happened during recovery, bail out.
5601         */
5602        if (XFS_FORCED_SHUTDOWN(mp)) {
5603                return -EIO;
5604        }
5605
5606        /*
5607         * We now update the tail_lsn since much of the recovery has completed
5608         * and there may be space available to use.  If there were no extent
5609         * or iunlinks, we can free up the entire log and set the tail_lsn to
5610         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5611         * lsn of the last known good LR on disk.  If there are extent frees
5612         * or iunlinks they will have some entries in the AIL; so we look at
5613         * the AIL to determine how to set the tail_lsn.
5614         */
5615        xlog_assign_tail_lsn(mp);
5616
5617        /*
5618         * Now that we've finished replaying all buffer and inode
5619         * updates, re-read in the superblock and reverify it.
5620         */
5621        bp = xfs_getsb(mp);
5622        bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5623        ASSERT(!(bp->b_flags & XBF_WRITE));
5624        bp->b_flags |= XBF_READ;
5625        bp->b_ops = &xfs_sb_buf_ops;
5626
5627        error = xfs_buf_submit(bp);
5628        if (error) {
5629                if (!XFS_FORCED_SHUTDOWN(mp)) {
5630                        xfs_buf_ioerror_alert(bp, __this_address);
5631                        ASSERT(0);
5632                }
5633                xfs_buf_relse(bp);
5634                return error;
5635        }
5636
5637        /* Convert superblock from on-disk format */
5638        sbp = &mp->m_sb;
5639        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5640        xfs_buf_relse(bp);
5641
5642        /* re-initialise in-core superblock and geometry structures */
5643        xfs_reinit_percpu_counters(mp);
5644        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5645        if (error) {
5646                xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5647                return error;
5648        }
5649        mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5650
5651        xlog_recover_check_summary(log);
5652
5653        /* Normal transactions can now occur */
5654        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5655        return 0;
5656}
5657
5658/*
5659 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5660 *
5661 * Return error or zero.
5662 */
5663int
5664xlog_recover(
5665        struct xlog     *log)
5666{
5667        xfs_daddr_t     head_blk, tail_blk;
5668        int             error;
5669
5670        /* find the tail of the log */
5671        error = xlog_find_tail(log, &head_blk, &tail_blk);
5672        if (error)
5673                return error;
5674
5675        /*
5676         * The superblock was read before the log was available and thus the LSN
5677         * could not be verified. Check the superblock LSN against the current
5678         * LSN now that it's known.
5679         */
5680        if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5681            !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5682                return -EINVAL;
5683
5684        if (tail_blk != head_blk) {
5685                /* There used to be a comment here:
5686                 *
5687                 * disallow recovery on read-only mounts.  note -- mount
5688                 * checks for ENOSPC and turns it into an intelligent
5689                 * error message.
5690                 * ...but this is no longer true.  Now, unless you specify
5691                 * NORECOVERY (in which case this function would never be
5692                 * called), we just go ahead and recover.  We do this all
5693                 * under the vfs layer, so we can get away with it unless
5694                 * the device itself is read-only, in which case we fail.
5695                 */
5696                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5697                        return error;
5698                }
5699
5700                /*
5701                 * Version 5 superblock log feature mask validation. We know the
5702                 * log is dirty so check if there are any unknown log features
5703                 * in what we need to recover. If there are unknown features
5704                 * (e.g. unsupported transactions, then simply reject the
5705                 * attempt at recovery before touching anything.
5706                 */
5707                if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5708                    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5709                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5710                        xfs_warn(log->l_mp,
5711"Superblock has unknown incompatible log features (0x%x) enabled.",
5712                                (log->l_mp->m_sb.sb_features_log_incompat &
5713                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5714                        xfs_warn(log->l_mp,
5715"The log can not be fully and/or safely recovered by this kernel.");
5716                        xfs_warn(log->l_mp,
5717"Please recover the log on a kernel that supports the unknown features.");
5718                        return -EINVAL;
5719                }
5720
5721                /*
5722                 * Delay log recovery if the debug hook is set. This is debug
5723                 * instrumention to coordinate simulation of I/O failures with
5724                 * log recovery.
5725                 */
5726                if (xfs_globals.log_recovery_delay) {
5727                        xfs_notice(log->l_mp,
5728                                "Delaying log recovery for %d seconds.",
5729                                xfs_globals.log_recovery_delay);
5730                        msleep(xfs_globals.log_recovery_delay * 1000);
5731                }
5732
5733                xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5734                                log->l_mp->m_logname ? log->l_mp->m_logname
5735                                                     : "internal");
5736
5737                error = xlog_do_recover(log, head_blk, tail_blk);
5738                log->l_flags |= XLOG_RECOVERY_NEEDED;
5739        }
5740        return error;
5741}
5742
5743/*
5744 * In the first part of recovery we replay inodes and buffers and build
5745 * up the list of extent free items which need to be processed.  Here
5746 * we process the extent free items and clean up the on disk unlinked
5747 * inode lists.  This is separated from the first part of recovery so
5748 * that the root and real-time bitmap inodes can be read in from disk in
5749 * between the two stages.  This is necessary so that we can free space
5750 * in the real-time portion of the file system.
5751 */
5752int
5753xlog_recover_finish(
5754        struct xlog     *log)
5755{
5756        /*
5757         * Now we're ready to do the transactions needed for the
5758         * rest of recovery.  Start with completing all the extent
5759         * free intent records and then process the unlinked inode
5760         * lists.  At this point, we essentially run in normal mode
5761         * except that we're still performing recovery actions
5762         * rather than accepting new requests.
5763         */
5764        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5765                int     error;
5766                error = xlog_recover_process_intents(log);
5767                if (error) {
5768                        xfs_alert(log->l_mp, "Failed to recover intents");
5769                        return error;
5770                }
5771
5772                /*
5773                 * Sync the log to get all the intents out of the AIL.
5774                 * This isn't absolutely necessary, but it helps in
5775                 * case the unlink transactions would have problems
5776                 * pushing the intents out of the way.
5777                 */
5778                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5779
5780                xlog_recover_process_iunlinks(log);
5781
5782                xlog_recover_check_summary(log);
5783
5784                xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5785                                log->l_mp->m_logname ? log->l_mp->m_logname
5786                                                     : "internal");
5787                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5788        } else {
5789                xfs_info(log->l_mp, "Ending clean mount");
5790        }
5791        return 0;
5792}
5793
5794void
5795xlog_recover_cancel(
5796        struct xlog     *log)
5797{
5798        if (log->l_flags & XLOG_RECOVERY_NEEDED)
5799                xlog_recover_cancel_intents(log);
5800}
5801
5802#if defined(DEBUG)
5803/*
5804 * Read all of the agf and agi counters and check that they
5805 * are consistent with the superblock counters.
5806 */
5807STATIC void
5808xlog_recover_check_summary(
5809        struct xlog     *log)
5810{
5811        xfs_mount_t     *mp;
5812        xfs_agf_t       *agfp;
5813        xfs_buf_t       *agfbp;
5814        xfs_buf_t       *agibp;
5815        xfs_agnumber_t  agno;
5816        uint64_t        freeblks;
5817        uint64_t        itotal;
5818        uint64_t        ifree;
5819        int             error;
5820
5821        mp = log->l_mp;
5822
5823        freeblks = 0LL;
5824        itotal = 0LL;
5825        ifree = 0LL;
5826        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5827                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5828                if (error) {
5829                        xfs_alert(mp, "%s agf read failed agno %d error %d",
5830                                                __func__, agno, error);
5831                } else {
5832                        agfp = XFS_BUF_TO_AGF(agfbp);
5833                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
5834                                    be32_to_cpu(agfp->agf_flcount);
5835                        xfs_buf_relse(agfbp);
5836                }
5837
5838                error = xfs_read_agi(mp, NULL, agno, &agibp);
5839                if (error) {
5840                        xfs_alert(mp, "%s agi read failed agno %d error %d",
5841                                                __func__, agno, error);
5842                } else {
5843                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
5844
5845                        itotal += be32_to_cpu(agi->agi_count);
5846                        ifree += be32_to_cpu(agi->agi_freecount);
5847                        xfs_buf_relse(agibp);
5848                }
5849        }
5850}
5851#endif /* DEBUG */
5852