linux/include/linux/cgroup-defs.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * linux/cgroup-defs.h - basic definitions for cgroup
   4 *
   5 * This file provides basic type and interface.  Include this file directly
   6 * only if necessary to avoid cyclic dependencies.
   7 */
   8#ifndef _LINUX_CGROUP_DEFS_H
   9#define _LINUX_CGROUP_DEFS_H
  10
  11#include <linux/limits.h>
  12#include <linux/list.h>
  13#include <linux/idr.h>
  14#include <linux/wait.h>
  15#include <linux/mutex.h>
  16#include <linux/rcupdate.h>
  17#include <linux/refcount.h>
  18#include <linux/percpu-refcount.h>
  19#include <linux/percpu-rwsem.h>
  20#include <linux/u64_stats_sync.h>
  21#include <linux/workqueue.h>
  22#include <linux/bpf-cgroup.h>
  23#include <linux/psi_types.h>
  24
  25#ifdef CONFIG_CGROUPS
  26
  27struct cgroup;
  28struct cgroup_root;
  29struct cgroup_subsys;
  30struct cgroup_taskset;
  31struct kernfs_node;
  32struct kernfs_ops;
  33struct kernfs_open_file;
  34struct seq_file;
  35struct poll_table_struct;
  36
  37#define MAX_CGROUP_TYPE_NAMELEN 32
  38#define MAX_CGROUP_ROOT_NAMELEN 64
  39#define MAX_CFTYPE_NAME         64
  40
  41/* define the enumeration of all cgroup subsystems */
  42#define SUBSYS(_x) _x ## _cgrp_id,
  43enum cgroup_subsys_id {
  44#include <linux/cgroup_subsys.h>
  45        CGROUP_SUBSYS_COUNT,
  46};
  47#undef SUBSYS
  48
  49/* bits in struct cgroup_subsys_state flags field */
  50enum {
  51        CSS_NO_REF      = (1 << 0), /* no reference counting for this css */
  52        CSS_ONLINE      = (1 << 1), /* between ->css_online() and ->css_offline() */
  53        CSS_RELEASED    = (1 << 2), /* refcnt reached zero, released */
  54        CSS_VISIBLE     = (1 << 3), /* css is visible to userland */
  55        CSS_DYING       = (1 << 4), /* css is dying */
  56};
  57
  58/* bits in struct cgroup flags field */
  59enum {
  60        /* Control Group requires release notifications to userspace */
  61        CGRP_NOTIFY_ON_RELEASE,
  62        /*
  63         * Clone the parent's configuration when creating a new child
  64         * cpuset cgroup.  For historical reasons, this option can be
  65         * specified at mount time and thus is implemented here.
  66         */
  67        CGRP_CPUSET_CLONE_CHILDREN,
  68
  69        /* Control group has to be frozen. */
  70        CGRP_FREEZE,
  71
  72        /* Cgroup is frozen. */
  73        CGRP_FROZEN,
  74};
  75
  76/* cgroup_root->flags */
  77enum {
  78        CGRP_ROOT_NOPREFIX      = (1 << 1), /* mounted subsystems have no named prefix */
  79        CGRP_ROOT_XATTR         = (1 << 2), /* supports extended attributes */
  80
  81        /*
  82         * Consider namespaces as delegation boundaries.  If this flag is
  83         * set, controller specific interface files in a namespace root
  84         * aren't writeable from inside the namespace.
  85         */
  86        CGRP_ROOT_NS_DELEGATE   = (1 << 3),
  87
  88        /*
  89         * Enable cpuset controller in v1 cgroup to use v2 behavior.
  90         */
  91        CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
  92
  93        /*
  94         * Enable legacy local memory.events.
  95         */
  96        CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
  97};
  98
  99/* cftype->flags */
 100enum {
 101        CFTYPE_ONLY_ON_ROOT     = (1 << 0),     /* only create on root cgrp */
 102        CFTYPE_NOT_ON_ROOT      = (1 << 1),     /* don't create on root cgrp */
 103        CFTYPE_NS_DELEGATABLE   = (1 << 2),     /* writeable beyond delegation boundaries */
 104
 105        CFTYPE_NO_PREFIX        = (1 << 3),     /* (DON'T USE FOR NEW FILES) no subsys prefix */
 106        CFTYPE_WORLD_WRITABLE   = (1 << 4),     /* (DON'T USE FOR NEW FILES) S_IWUGO */
 107        CFTYPE_DEBUG            = (1 << 5),     /* create when cgroup_debug */
 108
 109        /* internal flags, do not use outside cgroup core proper */
 110        __CFTYPE_ONLY_ON_DFL    = (1 << 16),    /* only on default hierarchy */
 111        __CFTYPE_NOT_ON_DFL     = (1 << 17),    /* not on default hierarchy */
 112};
 113
 114/*
 115 * cgroup_file is the handle for a file instance created in a cgroup which
 116 * is used, for example, to generate file changed notifications.  This can
 117 * be obtained by setting cftype->file_offset.
 118 */
 119struct cgroup_file {
 120        /* do not access any fields from outside cgroup core */
 121        struct kernfs_node *kn;
 122        unsigned long notified_at;
 123        struct timer_list notify_timer;
 124};
 125
 126/*
 127 * Per-subsystem/per-cgroup state maintained by the system.  This is the
 128 * fundamental structural building block that controllers deal with.
 129 *
 130 * Fields marked with "PI:" are public and immutable and may be accessed
 131 * directly without synchronization.
 132 */
 133struct cgroup_subsys_state {
 134        /* PI: the cgroup that this css is attached to */
 135        struct cgroup *cgroup;
 136
 137        /* PI: the cgroup subsystem that this css is attached to */
 138        struct cgroup_subsys *ss;
 139
 140        /* reference count - access via css_[try]get() and css_put() */
 141        struct percpu_ref refcnt;
 142
 143        /* siblings list anchored at the parent's ->children */
 144        struct list_head sibling;
 145        struct list_head children;
 146
 147        /* flush target list anchored at cgrp->rstat_css_list */
 148        struct list_head rstat_css_node;
 149
 150        /*
 151         * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
 152         * matching css can be looked up using css_from_id().
 153         */
 154        int id;
 155
 156        unsigned int flags;
 157
 158        /*
 159         * Monotonically increasing unique serial number which defines a
 160         * uniform order among all csses.  It's guaranteed that all
 161         * ->children lists are in the ascending order of ->serial_nr and
 162         * used to allow interrupting and resuming iterations.
 163         */
 164        u64 serial_nr;
 165
 166        /*
 167         * Incremented by online self and children.  Used to guarantee that
 168         * parents are not offlined before their children.
 169         */
 170        atomic_t online_cnt;
 171
 172        /* percpu_ref killing and RCU release */
 173        struct work_struct destroy_work;
 174        struct rcu_work destroy_rwork;
 175
 176        /*
 177         * PI: the parent css.  Placed here for cache proximity to following
 178         * fields of the containing structure.
 179         */
 180        struct cgroup_subsys_state *parent;
 181};
 182
 183/*
 184 * A css_set is a structure holding pointers to a set of
 185 * cgroup_subsys_state objects. This saves space in the task struct
 186 * object and speeds up fork()/exit(), since a single inc/dec and a
 187 * list_add()/del() can bump the reference count on the entire cgroup
 188 * set for a task.
 189 */
 190struct css_set {
 191        /*
 192         * Set of subsystem states, one for each subsystem. This array is
 193         * immutable after creation apart from the init_css_set during
 194         * subsystem registration (at boot time).
 195         */
 196        struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
 197
 198        /* reference count */
 199        refcount_t refcount;
 200
 201        /*
 202         * For a domain cgroup, the following points to self.  If threaded,
 203         * to the matching cset of the nearest domain ancestor.  The
 204         * dom_cset provides access to the domain cgroup and its csses to
 205         * which domain level resource consumptions should be charged.
 206         */
 207        struct css_set *dom_cset;
 208
 209        /* the default cgroup associated with this css_set */
 210        struct cgroup *dfl_cgrp;
 211
 212        /* internal task count, protected by css_set_lock */
 213        int nr_tasks;
 214
 215        /*
 216         * Lists running through all tasks using this cgroup group.
 217         * mg_tasks lists tasks which belong to this cset but are in the
 218         * process of being migrated out or in.  Protected by
 219         * css_set_rwsem, but, during migration, once tasks are moved to
 220         * mg_tasks, it can be read safely while holding cgroup_mutex.
 221         */
 222        struct list_head tasks;
 223        struct list_head mg_tasks;
 224        struct list_head dying_tasks;
 225
 226        /* all css_task_iters currently walking this cset */
 227        struct list_head task_iters;
 228
 229        /*
 230         * On the default hierarhcy, ->subsys[ssid] may point to a css
 231         * attached to an ancestor instead of the cgroup this css_set is
 232         * associated with.  The following node is anchored at
 233         * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
 234         * iterate through all css's attached to a given cgroup.
 235         */
 236        struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
 237
 238        /* all threaded csets whose ->dom_cset points to this cset */
 239        struct list_head threaded_csets;
 240        struct list_head threaded_csets_node;
 241
 242        /*
 243         * List running through all cgroup groups in the same hash
 244         * slot. Protected by css_set_lock
 245         */
 246        struct hlist_node hlist;
 247
 248        /*
 249         * List of cgrp_cset_links pointing at cgroups referenced from this
 250         * css_set.  Protected by css_set_lock.
 251         */
 252        struct list_head cgrp_links;
 253
 254        /*
 255         * List of csets participating in the on-going migration either as
 256         * source or destination.  Protected by cgroup_mutex.
 257         */
 258        struct list_head mg_preload_node;
 259        struct list_head mg_node;
 260
 261        /*
 262         * If this cset is acting as the source of migration the following
 263         * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
 264         * respectively the source and destination cgroups of the on-going
 265         * migration.  mg_dst_cset is the destination cset the target tasks
 266         * on this cset should be migrated to.  Protected by cgroup_mutex.
 267         */
 268        struct cgroup *mg_src_cgrp;
 269        struct cgroup *mg_dst_cgrp;
 270        struct css_set *mg_dst_cset;
 271
 272        /* dead and being drained, ignore for migration */
 273        bool dead;
 274
 275        /* For RCU-protected deletion */
 276        struct rcu_head rcu_head;
 277};
 278
 279struct cgroup_base_stat {
 280        struct task_cputime cputime;
 281};
 282
 283/*
 284 * rstat - cgroup scalable recursive statistics.  Accounting is done
 285 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
 286 * hierarchy on reads.
 287 *
 288 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
 289 * linked into the updated tree.  On the following read, propagation only
 290 * considers and consumes the updated tree.  This makes reading O(the
 291 * number of descendants which have been active since last read) instead of
 292 * O(the total number of descendants).
 293 *
 294 * This is important because there can be a lot of (draining) cgroups which
 295 * aren't active and stat may be read frequently.  The combination can
 296 * become very expensive.  By propagating selectively, increasing reading
 297 * frequency decreases the cost of each read.
 298 *
 299 * This struct hosts both the fields which implement the above -
 300 * updated_children and updated_next - and the fields which track basic
 301 * resource statistics on top of it - bsync, bstat and last_bstat.
 302 */
 303struct cgroup_rstat_cpu {
 304        /*
 305         * ->bsync protects ->bstat.  These are the only fields which get
 306         * updated in the hot path.
 307         */
 308        struct u64_stats_sync bsync;
 309        struct cgroup_base_stat bstat;
 310
 311        /*
 312         * Snapshots at the last reading.  These are used to calculate the
 313         * deltas to propagate to the global counters.
 314         */
 315        struct cgroup_base_stat last_bstat;
 316
 317        /*
 318         * Child cgroups with stat updates on this cpu since the last read
 319         * are linked on the parent's ->updated_children through
 320         * ->updated_next.
 321         *
 322         * In addition to being more compact, singly-linked list pointing
 323         * to the cgroup makes it unnecessary for each per-cpu struct to
 324         * point back to the associated cgroup.
 325         *
 326         * Protected by per-cpu cgroup_rstat_cpu_lock.
 327         */
 328        struct cgroup *updated_children;        /* terminated by self cgroup */
 329        struct cgroup *updated_next;            /* NULL iff not on the list */
 330};
 331
 332struct cgroup_freezer_state {
 333        /* Should the cgroup and its descendants be frozen. */
 334        bool freeze;
 335
 336        /* Should the cgroup actually be frozen? */
 337        int e_freeze;
 338
 339        /* Fields below are protected by css_set_lock */
 340
 341        /* Number of frozen descendant cgroups */
 342        int nr_frozen_descendants;
 343
 344        /*
 345         * Number of tasks, which are counted as frozen:
 346         * frozen, SIGSTOPped, and PTRACEd.
 347         */
 348        int nr_frozen_tasks;
 349};
 350
 351struct cgroup {
 352        /* self css with NULL ->ss, points back to this cgroup */
 353        struct cgroup_subsys_state self;
 354
 355        unsigned long flags;            /* "unsigned long" so bitops work */
 356
 357        /*
 358         * The depth this cgroup is at.  The root is at depth zero and each
 359         * step down the hierarchy increments the level.  This along with
 360         * ancestor_ids[] can determine whether a given cgroup is a
 361         * descendant of another without traversing the hierarchy.
 362         */
 363        int level;
 364
 365        /* Maximum allowed descent tree depth */
 366        int max_depth;
 367
 368        /*
 369         * Keep track of total numbers of visible and dying descent cgroups.
 370         * Dying cgroups are cgroups which were deleted by a user,
 371         * but are still existing because someone else is holding a reference.
 372         * max_descendants is a maximum allowed number of descent cgroups.
 373         *
 374         * nr_descendants and nr_dying_descendants are protected
 375         * by cgroup_mutex and css_set_lock. It's fine to read them holding
 376         * any of cgroup_mutex and css_set_lock; for writing both locks
 377         * should be held.
 378         */
 379        int nr_descendants;
 380        int nr_dying_descendants;
 381        int max_descendants;
 382
 383        /*
 384         * Each non-empty css_set associated with this cgroup contributes
 385         * one to nr_populated_csets.  The counter is zero iff this cgroup
 386         * doesn't have any tasks.
 387         *
 388         * All children which have non-zero nr_populated_csets and/or
 389         * nr_populated_children of their own contribute one to either
 390         * nr_populated_domain_children or nr_populated_threaded_children
 391         * depending on their type.  Each counter is zero iff all cgroups
 392         * of the type in the subtree proper don't have any tasks.
 393         */
 394        int nr_populated_csets;
 395        int nr_populated_domain_children;
 396        int nr_populated_threaded_children;
 397
 398        int nr_threaded_children;       /* # of live threaded child cgroups */
 399
 400        struct kernfs_node *kn;         /* cgroup kernfs entry */
 401        struct cgroup_file procs_file;  /* handle for "cgroup.procs" */
 402        struct cgroup_file events_file; /* handle for "cgroup.events" */
 403
 404        /*
 405         * The bitmask of subsystems enabled on the child cgroups.
 406         * ->subtree_control is the one configured through
 407         * "cgroup.subtree_control" while ->child_ss_mask is the effective
 408         * one which may have more subsystems enabled.  Controller knobs
 409         * are made available iff it's enabled in ->subtree_control.
 410         */
 411        u16 subtree_control;
 412        u16 subtree_ss_mask;
 413        u16 old_subtree_control;
 414        u16 old_subtree_ss_mask;
 415
 416        /* Private pointers for each registered subsystem */
 417        struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
 418
 419        struct cgroup_root *root;
 420
 421        /*
 422         * List of cgrp_cset_links pointing at css_sets with tasks in this
 423         * cgroup.  Protected by css_set_lock.
 424         */
 425        struct list_head cset_links;
 426
 427        /*
 428         * On the default hierarchy, a css_set for a cgroup with some
 429         * susbsys disabled will point to css's which are associated with
 430         * the closest ancestor which has the subsys enabled.  The
 431         * following lists all css_sets which point to this cgroup's css
 432         * for the given subsystem.
 433         */
 434        struct list_head e_csets[CGROUP_SUBSYS_COUNT];
 435
 436        /*
 437         * If !threaded, self.  If threaded, it points to the nearest
 438         * domain ancestor.  Inside a threaded subtree, cgroups are exempt
 439         * from process granularity and no-internal-task constraint.
 440         * Domain level resource consumptions which aren't tied to a
 441         * specific task are charged to the dom_cgrp.
 442         */
 443        struct cgroup *dom_cgrp;
 444        struct cgroup *old_dom_cgrp;            /* used while enabling threaded */
 445
 446        /* per-cpu recursive resource statistics */
 447        struct cgroup_rstat_cpu __percpu *rstat_cpu;
 448        struct list_head rstat_css_list;
 449
 450        /* cgroup basic resource statistics */
 451        struct cgroup_base_stat last_bstat;
 452        struct cgroup_base_stat bstat;
 453        struct prev_cputime prev_cputime;       /* for printing out cputime */
 454
 455        /*
 456         * list of pidlists, up to two for each namespace (one for procs, one
 457         * for tasks); created on demand.
 458         */
 459        struct list_head pidlists;
 460        struct mutex pidlist_mutex;
 461
 462        /* used to wait for offlining of csses */
 463        wait_queue_head_t offline_waitq;
 464
 465        /* used to schedule release agent */
 466        struct work_struct release_agent_work;
 467
 468        /* used to track pressure stalls */
 469        struct psi_group psi;
 470
 471        /* used to store eBPF programs */
 472        struct cgroup_bpf bpf;
 473
 474        /* If there is block congestion on this cgroup. */
 475        atomic_t congestion_count;
 476
 477        /* Used to store internal freezer state */
 478        struct cgroup_freezer_state freezer;
 479
 480        /* ids of the ancestors at each level including self */
 481        u64 ancestor_ids[];
 482};
 483
 484/*
 485 * A cgroup_root represents the root of a cgroup hierarchy, and may be
 486 * associated with a kernfs_root to form an active hierarchy.  This is
 487 * internal to cgroup core.  Don't access directly from controllers.
 488 */
 489struct cgroup_root {
 490        struct kernfs_root *kf_root;
 491
 492        /* The bitmask of subsystems attached to this hierarchy */
 493        unsigned int subsys_mask;
 494
 495        /* Unique id for this hierarchy. */
 496        int hierarchy_id;
 497
 498        /* The root cgroup.  Root is destroyed on its release. */
 499        struct cgroup cgrp;
 500
 501        /* for cgrp->ancestor_ids[0] */
 502        u64 cgrp_ancestor_id_storage;
 503
 504        /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
 505        atomic_t nr_cgrps;
 506
 507        /* A list running through the active hierarchies */
 508        struct list_head root_list;
 509
 510        /* Hierarchy-specific flags */
 511        unsigned int flags;
 512
 513        /* The path to use for release notifications. */
 514        char release_agent_path[PATH_MAX];
 515
 516        /* The name for this hierarchy - may be empty */
 517        char name[MAX_CGROUP_ROOT_NAMELEN];
 518};
 519
 520/*
 521 * struct cftype: handler definitions for cgroup control files
 522 *
 523 * When reading/writing to a file:
 524 *      - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
 525 *      - the 'cftype' of the file is file->f_path.dentry->d_fsdata
 526 */
 527struct cftype {
 528        /*
 529         * By convention, the name should begin with the name of the
 530         * subsystem, followed by a period.  Zero length string indicates
 531         * end of cftype array.
 532         */
 533        char name[MAX_CFTYPE_NAME];
 534        unsigned long private;
 535
 536        /*
 537         * The maximum length of string, excluding trailing nul, that can
 538         * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
 539         */
 540        size_t max_write_len;
 541
 542        /* CFTYPE_* flags */
 543        unsigned int flags;
 544
 545        /*
 546         * If non-zero, should contain the offset from the start of css to
 547         * a struct cgroup_file field.  cgroup will record the handle of
 548         * the created file into it.  The recorded handle can be used as
 549         * long as the containing css remains accessible.
 550         */
 551        unsigned int file_offset;
 552
 553        /*
 554         * Fields used for internal bookkeeping.  Initialized automatically
 555         * during registration.
 556         */
 557        struct cgroup_subsys *ss;       /* NULL for cgroup core files */
 558        struct list_head node;          /* anchored at ss->cfts */
 559        struct kernfs_ops *kf_ops;
 560
 561        int (*open)(struct kernfs_open_file *of);
 562        void (*release)(struct kernfs_open_file *of);
 563
 564        /*
 565         * read_u64() is a shortcut for the common case of returning a
 566         * single integer. Use it in place of read()
 567         */
 568        u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
 569        /*
 570         * read_s64() is a signed version of read_u64()
 571         */
 572        s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
 573
 574        /* generic seq_file read interface */
 575        int (*seq_show)(struct seq_file *sf, void *v);
 576
 577        /* optional ops, implement all or none */
 578        void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
 579        void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
 580        void (*seq_stop)(struct seq_file *sf, void *v);
 581
 582        /*
 583         * write_u64() is a shortcut for the common case of accepting
 584         * a single integer (as parsed by simple_strtoull) from
 585         * userspace. Use in place of write(); return 0 or error.
 586         */
 587        int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
 588                         u64 val);
 589        /*
 590         * write_s64() is a signed version of write_u64()
 591         */
 592        int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
 593                         s64 val);
 594
 595        /*
 596         * write() is the generic write callback which maps directly to
 597         * kernfs write operation and overrides all other operations.
 598         * Maximum write size is determined by ->max_write_len.  Use
 599         * of_css/cft() to access the associated css and cft.
 600         */
 601        ssize_t (*write)(struct kernfs_open_file *of,
 602                         char *buf, size_t nbytes, loff_t off);
 603
 604        __poll_t (*poll)(struct kernfs_open_file *of,
 605                         struct poll_table_struct *pt);
 606
 607#ifdef CONFIG_DEBUG_LOCK_ALLOC
 608        struct lock_class_key   lockdep_key;
 609#endif
 610};
 611
 612/*
 613 * Control Group subsystem type.
 614 * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
 615 */
 616struct cgroup_subsys {
 617        struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
 618        int (*css_online)(struct cgroup_subsys_state *css);
 619        void (*css_offline)(struct cgroup_subsys_state *css);
 620        void (*css_released)(struct cgroup_subsys_state *css);
 621        void (*css_free)(struct cgroup_subsys_state *css);
 622        void (*css_reset)(struct cgroup_subsys_state *css);
 623        void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
 624        int (*css_extra_stat_show)(struct seq_file *seq,
 625                                   struct cgroup_subsys_state *css);
 626
 627        int (*can_attach)(struct cgroup_taskset *tset);
 628        void (*cancel_attach)(struct cgroup_taskset *tset);
 629        void (*attach)(struct cgroup_taskset *tset);
 630        void (*post_attach)(void);
 631        int (*can_fork)(struct task_struct *task);
 632        void (*cancel_fork)(struct task_struct *task);
 633        void (*fork)(struct task_struct *task);
 634        void (*exit)(struct task_struct *task);
 635        void (*release)(struct task_struct *task);
 636        void (*bind)(struct cgroup_subsys_state *root_css);
 637
 638        bool early_init:1;
 639
 640        /*
 641         * If %true, the controller, on the default hierarchy, doesn't show
 642         * up in "cgroup.controllers" or "cgroup.subtree_control", is
 643         * implicitly enabled on all cgroups on the default hierarchy, and
 644         * bypasses the "no internal process" constraint.  This is for
 645         * utility type controllers which is transparent to userland.
 646         *
 647         * An implicit controller can be stolen from the default hierarchy
 648         * anytime and thus must be okay with offline csses from previous
 649         * hierarchies coexisting with csses for the current one.
 650         */
 651        bool implicit_on_dfl:1;
 652
 653        /*
 654         * If %true, the controller, supports threaded mode on the default
 655         * hierarchy.  In a threaded subtree, both process granularity and
 656         * no-internal-process constraint are ignored and a threaded
 657         * controllers should be able to handle that.
 658         *
 659         * Note that as an implicit controller is automatically enabled on
 660         * all cgroups on the default hierarchy, it should also be
 661         * threaded.  implicit && !threaded is not supported.
 662         */
 663        bool threaded:1;
 664
 665        /*
 666         * If %false, this subsystem is properly hierarchical -
 667         * configuration, resource accounting and restriction on a parent
 668         * cgroup cover those of its children.  If %true, hierarchy support
 669         * is broken in some ways - some subsystems ignore hierarchy
 670         * completely while others are only implemented half-way.
 671         *
 672         * It's now disallowed to create nested cgroups if the subsystem is
 673         * broken and cgroup core will emit a warning message on such
 674         * cases.  Eventually, all subsystems will be made properly
 675         * hierarchical and this will go away.
 676         */
 677        bool broken_hierarchy:1;
 678        bool warned_broken_hierarchy:1;
 679
 680        /* the following two fields are initialized automtically during boot */
 681        int id;
 682        const char *name;
 683
 684        /* optional, initialized automatically during boot if not set */
 685        const char *legacy_name;
 686
 687        /* link to parent, protected by cgroup_lock() */
 688        struct cgroup_root *root;
 689
 690        /* idr for css->id */
 691        struct idr css_idr;
 692
 693        /*
 694         * List of cftypes.  Each entry is the first entry of an array
 695         * terminated by zero length name.
 696         */
 697        struct list_head cfts;
 698
 699        /*
 700         * Base cftypes which are automatically registered.  The two can
 701         * point to the same array.
 702         */
 703        struct cftype *dfl_cftypes;     /* for the default hierarchy */
 704        struct cftype *legacy_cftypes;  /* for the legacy hierarchies */
 705
 706        /*
 707         * A subsystem may depend on other subsystems.  When such subsystem
 708         * is enabled on a cgroup, the depended-upon subsystems are enabled
 709         * together if available.  Subsystems enabled due to dependency are
 710         * not visible to userland until explicitly enabled.  The following
 711         * specifies the mask of subsystems that this one depends on.
 712         */
 713        unsigned int depends_on;
 714};
 715
 716extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
 717
 718/**
 719 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
 720 * @tsk: target task
 721 *
 722 * Allows cgroup operations to synchronize against threadgroup changes
 723 * using a percpu_rw_semaphore.
 724 */
 725static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
 726{
 727        percpu_down_read(&cgroup_threadgroup_rwsem);
 728}
 729
 730/**
 731 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
 732 * @tsk: target task
 733 *
 734 * Counterpart of cgroup_threadcgroup_change_begin().
 735 */
 736static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
 737{
 738        percpu_up_read(&cgroup_threadgroup_rwsem);
 739}
 740
 741#else   /* CONFIG_CGROUPS */
 742
 743#define CGROUP_SUBSYS_COUNT 0
 744
 745static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
 746{
 747        might_sleep();
 748}
 749
 750static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
 751
 752#endif  /* CONFIG_CGROUPS */
 753
 754#ifdef CONFIG_SOCK_CGROUP_DATA
 755
 756/*
 757 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
 758 * per-socket cgroup information except for memcg association.
 759 *
 760 * On legacy hierarchies, net_prio and net_cls controllers directly set
 761 * attributes on each sock which can then be tested by the network layer.
 762 * On the default hierarchy, each sock is associated with the cgroup it was
 763 * created in and the networking layer can match the cgroup directly.
 764 *
 765 * To avoid carrying all three cgroup related fields separately in sock,
 766 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
 767 * On boot, sock_cgroup_data records the cgroup that the sock was created
 768 * in so that cgroup2 matches can be made; however, once either net_prio or
 769 * net_cls starts being used, the area is overriden to carry prioidx and/or
 770 * classid.  The two modes are distinguished by whether the lowest bit is
 771 * set.  Clear bit indicates cgroup pointer while set bit prioidx and
 772 * classid.
 773 *
 774 * While userland may start using net_prio or net_cls at any time, once
 775 * either is used, cgroup2 matching no longer works.  There is no reason to
 776 * mix the two and this is in line with how legacy and v2 compatibility is
 777 * handled.  On mode switch, cgroup references which are already being
 778 * pointed to by socks may be leaked.  While this can be remedied by adding
 779 * synchronization around sock_cgroup_data, given that the number of leaked
 780 * cgroups is bound and highly unlikely to be high, this seems to be the
 781 * better trade-off.
 782 */
 783struct sock_cgroup_data {
 784        union {
 785#ifdef __LITTLE_ENDIAN
 786                struct {
 787                        u8      is_data;
 788                        u8      padding;
 789                        u16     prioidx;
 790                        u32     classid;
 791                } __packed;
 792#else
 793                struct {
 794                        u32     classid;
 795                        u16     prioidx;
 796                        u8      padding;
 797                        u8      is_data;
 798                } __packed;
 799#endif
 800                u64             val;
 801        };
 802};
 803
 804/*
 805 * There's a theoretical window where the following accessors race with
 806 * updaters and return part of the previous pointer as the prioidx or
 807 * classid.  Such races are short-lived and the result isn't critical.
 808 */
 809static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
 810{
 811        /* fallback to 1 which is always the ID of the root cgroup */
 812        return (skcd->is_data & 1) ? skcd->prioidx : 1;
 813}
 814
 815static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
 816{
 817        /* fallback to 0 which is the unconfigured default classid */
 818        return (skcd->is_data & 1) ? skcd->classid : 0;
 819}
 820
 821/*
 822 * If invoked concurrently, the updaters may clobber each other.  The
 823 * caller is responsible for synchronization.
 824 */
 825static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
 826                                           u16 prioidx)
 827{
 828        struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
 829
 830        if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
 831                return;
 832
 833        if (!(skcd_buf.is_data & 1)) {
 834                skcd_buf.val = 0;
 835                skcd_buf.is_data = 1;
 836        }
 837
 838        skcd_buf.prioidx = prioidx;
 839        WRITE_ONCE(skcd->val, skcd_buf.val);    /* see sock_cgroup_ptr() */
 840}
 841
 842static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
 843                                           u32 classid)
 844{
 845        struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
 846
 847        if (sock_cgroup_classid(&skcd_buf) == classid)
 848                return;
 849
 850        if (!(skcd_buf.is_data & 1)) {
 851                skcd_buf.val = 0;
 852                skcd_buf.is_data = 1;
 853        }
 854
 855        skcd_buf.classid = classid;
 856        WRITE_ONCE(skcd->val, skcd_buf.val);    /* see sock_cgroup_ptr() */
 857}
 858
 859#else   /* CONFIG_SOCK_CGROUP_DATA */
 860
 861struct sock_cgroup_data {
 862};
 863
 864#endif  /* CONFIG_SOCK_CGROUP_DATA */
 865
 866#endif  /* _LINUX_CGROUP_DEFS_H */
 867