linux/kernel/bpf/btf.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <uapi/linux/btf.h>
   5#include <uapi/linux/bpf.h>
   6#include <uapi/linux/bpf_perf_event.h>
   7#include <uapi/linux/types.h>
   8#include <linux/seq_file.h>
   9#include <linux/compiler.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/slab.h>
  13#include <linux/anon_inodes.h>
  14#include <linux/file.h>
  15#include <linux/uaccess.h>
  16#include <linux/kernel.h>
  17#include <linux/idr.h>
  18#include <linux/sort.h>
  19#include <linux/bpf_verifier.h>
  20#include <linux/btf.h>
  21#include <linux/skmsg.h>
  22#include <linux/perf_event.h>
  23#include <net/sock.h>
  24
  25/* BTF (BPF Type Format) is the meta data format which describes
  26 * the data types of BPF program/map.  Hence, it basically focus
  27 * on the C programming language which the modern BPF is primary
  28 * using.
  29 *
  30 * ELF Section:
  31 * ~~~~~~~~~~~
  32 * The BTF data is stored under the ".BTF" ELF section
  33 *
  34 * struct btf_type:
  35 * ~~~~~~~~~~~~~~~
  36 * Each 'struct btf_type' object describes a C data type.
  37 * Depending on the type it is describing, a 'struct btf_type'
  38 * object may be followed by more data.  F.e.
  39 * To describe an array, 'struct btf_type' is followed by
  40 * 'struct btf_array'.
  41 *
  42 * 'struct btf_type' and any extra data following it are
  43 * 4 bytes aligned.
  44 *
  45 * Type section:
  46 * ~~~~~~~~~~~~~
  47 * The BTF type section contains a list of 'struct btf_type' objects.
  48 * Each one describes a C type.  Recall from the above section
  49 * that a 'struct btf_type' object could be immediately followed by extra
  50 * data in order to desribe some particular C types.
  51 *
  52 * type_id:
  53 * ~~~~~~~
  54 * Each btf_type object is identified by a type_id.  The type_id
  55 * is implicitly implied by the location of the btf_type object in
  56 * the BTF type section.  The first one has type_id 1.  The second
  57 * one has type_id 2...etc.  Hence, an earlier btf_type has
  58 * a smaller type_id.
  59 *
  60 * A btf_type object may refer to another btf_type object by using
  61 * type_id (i.e. the "type" in the "struct btf_type").
  62 *
  63 * NOTE that we cannot assume any reference-order.
  64 * A btf_type object can refer to an earlier btf_type object
  65 * but it can also refer to a later btf_type object.
  66 *
  67 * For example, to describe "const void *".  A btf_type
  68 * object describing "const" may refer to another btf_type
  69 * object describing "void *".  This type-reference is done
  70 * by specifying type_id:
  71 *
  72 * [1] CONST (anon) type_id=2
  73 * [2] PTR (anon) type_id=0
  74 *
  75 * The above is the btf_verifier debug log:
  76 *   - Each line started with "[?]" is a btf_type object
  77 *   - [?] is the type_id of the btf_type object.
  78 *   - CONST/PTR is the BTF_KIND_XXX
  79 *   - "(anon)" is the name of the type.  It just
  80 *     happens that CONST and PTR has no name.
  81 *   - type_id=XXX is the 'u32 type' in btf_type
  82 *
  83 * NOTE: "void" has type_id 0
  84 *
  85 * String section:
  86 * ~~~~~~~~~~~~~~
  87 * The BTF string section contains the names used by the type section.
  88 * Each string is referred by an "offset" from the beginning of the
  89 * string section.
  90 *
  91 * Each string is '\0' terminated.
  92 *
  93 * The first character in the string section must be '\0'
  94 * which is used to mean 'anonymous'. Some btf_type may not
  95 * have a name.
  96 */
  97
  98/* BTF verification:
  99 *
 100 * To verify BTF data, two passes are needed.
 101 *
 102 * Pass #1
 103 * ~~~~~~~
 104 * The first pass is to collect all btf_type objects to
 105 * an array: "btf->types".
 106 *
 107 * Depending on the C type that a btf_type is describing,
 108 * a btf_type may be followed by extra data.  We don't know
 109 * how many btf_type is there, and more importantly we don't
 110 * know where each btf_type is located in the type section.
 111 *
 112 * Without knowing the location of each type_id, most verifications
 113 * cannot be done.  e.g. an earlier btf_type may refer to a later
 114 * btf_type (recall the "const void *" above), so we cannot
 115 * check this type-reference in the first pass.
 116 *
 117 * In the first pass, it still does some verifications (e.g.
 118 * checking the name is a valid offset to the string section).
 119 *
 120 * Pass #2
 121 * ~~~~~~~
 122 * The main focus is to resolve a btf_type that is referring
 123 * to another type.
 124 *
 125 * We have to ensure the referring type:
 126 * 1) does exist in the BTF (i.e. in btf->types[])
 127 * 2) does not cause a loop:
 128 *      struct A {
 129 *              struct B b;
 130 *      };
 131 *
 132 *      struct B {
 133 *              struct A a;
 134 *      };
 135 *
 136 * btf_type_needs_resolve() decides if a btf_type needs
 137 * to be resolved.
 138 *
 139 * The needs_resolve type implements the "resolve()" ops which
 140 * essentially does a DFS and detects backedge.
 141 *
 142 * During resolve (or DFS), different C types have different
 143 * "RESOLVED" conditions.
 144 *
 145 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
 146 * members because a member is always referring to another
 147 * type.  A struct's member can be treated as "RESOLVED" if
 148 * it is referring to a BTF_KIND_PTR.  Otherwise, the
 149 * following valid C struct would be rejected:
 150 *
 151 *      struct A {
 152 *              int m;
 153 *              struct A *a;
 154 *      };
 155 *
 156 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
 157 * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
 158 * detect a pointer loop, e.g.:
 159 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
 160 *                        ^                                         |
 161 *                        +-----------------------------------------+
 162 *
 163 */
 164
 165#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
 166#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
 167#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
 168#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
 169#define BITS_ROUNDUP_BYTES(bits) \
 170        (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
 171
 172#define BTF_INFO_MASK 0x8f00ffff
 173#define BTF_INT_MASK 0x0fffffff
 174#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
 175#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
 176
 177/* 16MB for 64k structs and each has 16 members and
 178 * a few MB spaces for the string section.
 179 * The hard limit is S32_MAX.
 180 */
 181#define BTF_MAX_SIZE (16 * 1024 * 1024)
 182
 183#define for_each_member_from(i, from, struct_type, member)              \
 184        for (i = from, member = btf_type_member(struct_type) + from;    \
 185             i < btf_type_vlen(struct_type);                            \
 186             i++, member++)
 187
 188#define for_each_vsi(i, struct_type, member)                    \
 189        for (i = 0, member = btf_type_var_secinfo(struct_type); \
 190             i < btf_type_vlen(struct_type);                    \
 191             i++, member++)
 192
 193#define for_each_vsi_from(i, from, struct_type, member)                         \
 194        for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
 195             i < btf_type_vlen(struct_type);                                    \
 196             i++, member++)
 197
 198DEFINE_IDR(btf_idr);
 199DEFINE_SPINLOCK(btf_idr_lock);
 200
 201struct btf {
 202        void *data;
 203        struct btf_type **types;
 204        u32 *resolved_ids;
 205        u32 *resolved_sizes;
 206        const char *strings;
 207        void *nohdr_data;
 208        struct btf_header hdr;
 209        u32 nr_types;
 210        u32 types_size;
 211        u32 data_size;
 212        refcount_t refcnt;
 213        u32 id;
 214        struct rcu_head rcu;
 215};
 216
 217enum verifier_phase {
 218        CHECK_META,
 219        CHECK_TYPE,
 220};
 221
 222struct resolve_vertex {
 223        const struct btf_type *t;
 224        u32 type_id;
 225        u16 next_member;
 226};
 227
 228enum visit_state {
 229        NOT_VISITED,
 230        VISITED,
 231        RESOLVED,
 232};
 233
 234enum resolve_mode {
 235        RESOLVE_TBD,    /* To Be Determined */
 236        RESOLVE_PTR,    /* Resolving for Pointer */
 237        RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
 238                                         * or array
 239                                         */
 240};
 241
 242#define MAX_RESOLVE_DEPTH 32
 243
 244struct btf_sec_info {
 245        u32 off;
 246        u32 len;
 247};
 248
 249struct btf_verifier_env {
 250        struct btf *btf;
 251        u8 *visit_states;
 252        struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
 253        struct bpf_verifier_log log;
 254        u32 log_type_id;
 255        u32 top_stack;
 256        enum verifier_phase phase;
 257        enum resolve_mode resolve_mode;
 258};
 259
 260static const char * const btf_kind_str[NR_BTF_KINDS] = {
 261        [BTF_KIND_UNKN]         = "UNKNOWN",
 262        [BTF_KIND_INT]          = "INT",
 263        [BTF_KIND_PTR]          = "PTR",
 264        [BTF_KIND_ARRAY]        = "ARRAY",
 265        [BTF_KIND_STRUCT]       = "STRUCT",
 266        [BTF_KIND_UNION]        = "UNION",
 267        [BTF_KIND_ENUM]         = "ENUM",
 268        [BTF_KIND_FWD]          = "FWD",
 269        [BTF_KIND_TYPEDEF]      = "TYPEDEF",
 270        [BTF_KIND_VOLATILE]     = "VOLATILE",
 271        [BTF_KIND_CONST]        = "CONST",
 272        [BTF_KIND_RESTRICT]     = "RESTRICT",
 273        [BTF_KIND_FUNC]         = "FUNC",
 274        [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
 275        [BTF_KIND_VAR]          = "VAR",
 276        [BTF_KIND_DATASEC]      = "DATASEC",
 277};
 278
 279static const char *btf_type_str(const struct btf_type *t)
 280{
 281        return btf_kind_str[BTF_INFO_KIND(t->info)];
 282}
 283
 284struct btf_kind_operations {
 285        s32 (*check_meta)(struct btf_verifier_env *env,
 286                          const struct btf_type *t,
 287                          u32 meta_left);
 288        int (*resolve)(struct btf_verifier_env *env,
 289                       const struct resolve_vertex *v);
 290        int (*check_member)(struct btf_verifier_env *env,
 291                            const struct btf_type *struct_type,
 292                            const struct btf_member *member,
 293                            const struct btf_type *member_type);
 294        int (*check_kflag_member)(struct btf_verifier_env *env,
 295                                  const struct btf_type *struct_type,
 296                                  const struct btf_member *member,
 297                                  const struct btf_type *member_type);
 298        void (*log_details)(struct btf_verifier_env *env,
 299                            const struct btf_type *t);
 300        void (*seq_show)(const struct btf *btf, const struct btf_type *t,
 301                         u32 type_id, void *data, u8 bits_offsets,
 302                         struct seq_file *m);
 303};
 304
 305static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
 306static struct btf_type btf_void;
 307
 308static int btf_resolve(struct btf_verifier_env *env,
 309                       const struct btf_type *t, u32 type_id);
 310
 311static bool btf_type_is_modifier(const struct btf_type *t)
 312{
 313        /* Some of them is not strictly a C modifier
 314         * but they are grouped into the same bucket
 315         * for BTF concern:
 316         *   A type (t) that refers to another
 317         *   type through t->type AND its size cannot
 318         *   be determined without following the t->type.
 319         *
 320         * ptr does not fall into this bucket
 321         * because its size is always sizeof(void *).
 322         */
 323        switch (BTF_INFO_KIND(t->info)) {
 324        case BTF_KIND_TYPEDEF:
 325        case BTF_KIND_VOLATILE:
 326        case BTF_KIND_CONST:
 327        case BTF_KIND_RESTRICT:
 328                return true;
 329        }
 330
 331        return false;
 332}
 333
 334bool btf_type_is_void(const struct btf_type *t)
 335{
 336        return t == &btf_void;
 337}
 338
 339static bool btf_type_is_fwd(const struct btf_type *t)
 340{
 341        return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
 342}
 343
 344static bool btf_type_nosize(const struct btf_type *t)
 345{
 346        return btf_type_is_void(t) || btf_type_is_fwd(t) ||
 347               btf_type_is_func(t) || btf_type_is_func_proto(t);
 348}
 349
 350static bool btf_type_nosize_or_null(const struct btf_type *t)
 351{
 352        return !t || btf_type_nosize(t);
 353}
 354
 355/* union is only a special case of struct:
 356 * all its offsetof(member) == 0
 357 */
 358static bool btf_type_is_struct(const struct btf_type *t)
 359{
 360        u8 kind = BTF_INFO_KIND(t->info);
 361
 362        return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
 363}
 364
 365static bool __btf_type_is_struct(const struct btf_type *t)
 366{
 367        return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
 368}
 369
 370static bool btf_type_is_array(const struct btf_type *t)
 371{
 372        return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
 373}
 374
 375static bool btf_type_is_var(const struct btf_type *t)
 376{
 377        return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
 378}
 379
 380static bool btf_type_is_datasec(const struct btf_type *t)
 381{
 382        return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
 383}
 384
 385s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
 386{
 387        const struct btf_type *t;
 388        const char *tname;
 389        u32 i;
 390
 391        for (i = 1; i <= btf->nr_types; i++) {
 392                t = btf->types[i];
 393                if (BTF_INFO_KIND(t->info) != kind)
 394                        continue;
 395
 396                tname = btf_name_by_offset(btf, t->name_off);
 397                if (!strcmp(tname, name))
 398                        return i;
 399        }
 400
 401        return -ENOENT;
 402}
 403
 404const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
 405                                               u32 id, u32 *res_id)
 406{
 407        const struct btf_type *t = btf_type_by_id(btf, id);
 408
 409        while (btf_type_is_modifier(t)) {
 410                id = t->type;
 411                t = btf_type_by_id(btf, t->type);
 412        }
 413
 414        if (res_id)
 415                *res_id = id;
 416
 417        return t;
 418}
 419
 420const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
 421                                            u32 id, u32 *res_id)
 422{
 423        const struct btf_type *t;
 424
 425        t = btf_type_skip_modifiers(btf, id, NULL);
 426        if (!btf_type_is_ptr(t))
 427                return NULL;
 428
 429        return btf_type_skip_modifiers(btf, t->type, res_id);
 430}
 431
 432const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
 433                                                 u32 id, u32 *res_id)
 434{
 435        const struct btf_type *ptype;
 436
 437        ptype = btf_type_resolve_ptr(btf, id, res_id);
 438        if (ptype && btf_type_is_func_proto(ptype))
 439                return ptype;
 440
 441        return NULL;
 442}
 443
 444/* Types that act only as a source, not sink or intermediate
 445 * type when resolving.
 446 */
 447static bool btf_type_is_resolve_source_only(const struct btf_type *t)
 448{
 449        return btf_type_is_var(t) ||
 450               btf_type_is_datasec(t);
 451}
 452
 453/* What types need to be resolved?
 454 *
 455 * btf_type_is_modifier() is an obvious one.
 456 *
 457 * btf_type_is_struct() because its member refers to
 458 * another type (through member->type).
 459 *
 460 * btf_type_is_var() because the variable refers to
 461 * another type. btf_type_is_datasec() holds multiple
 462 * btf_type_is_var() types that need resolving.
 463 *
 464 * btf_type_is_array() because its element (array->type)
 465 * refers to another type.  Array can be thought of a
 466 * special case of struct while array just has the same
 467 * member-type repeated by array->nelems of times.
 468 */
 469static bool btf_type_needs_resolve(const struct btf_type *t)
 470{
 471        return btf_type_is_modifier(t) ||
 472               btf_type_is_ptr(t) ||
 473               btf_type_is_struct(t) ||
 474               btf_type_is_array(t) ||
 475               btf_type_is_var(t) ||
 476               btf_type_is_datasec(t);
 477}
 478
 479/* t->size can be used */
 480static bool btf_type_has_size(const struct btf_type *t)
 481{
 482        switch (BTF_INFO_KIND(t->info)) {
 483        case BTF_KIND_INT:
 484        case BTF_KIND_STRUCT:
 485        case BTF_KIND_UNION:
 486        case BTF_KIND_ENUM:
 487        case BTF_KIND_DATASEC:
 488                return true;
 489        }
 490
 491        return false;
 492}
 493
 494static const char *btf_int_encoding_str(u8 encoding)
 495{
 496        if (encoding == 0)
 497                return "(none)";
 498        else if (encoding == BTF_INT_SIGNED)
 499                return "SIGNED";
 500        else if (encoding == BTF_INT_CHAR)
 501                return "CHAR";
 502        else if (encoding == BTF_INT_BOOL)
 503                return "BOOL";
 504        else
 505                return "UNKN";
 506}
 507
 508static u32 btf_type_int(const struct btf_type *t)
 509{
 510        return *(u32 *)(t + 1);
 511}
 512
 513static const struct btf_array *btf_type_array(const struct btf_type *t)
 514{
 515        return (const struct btf_array *)(t + 1);
 516}
 517
 518static const struct btf_enum *btf_type_enum(const struct btf_type *t)
 519{
 520        return (const struct btf_enum *)(t + 1);
 521}
 522
 523static const struct btf_var *btf_type_var(const struct btf_type *t)
 524{
 525        return (const struct btf_var *)(t + 1);
 526}
 527
 528static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
 529{
 530        return (const struct btf_var_secinfo *)(t + 1);
 531}
 532
 533static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
 534{
 535        return kind_ops[BTF_INFO_KIND(t->info)];
 536}
 537
 538static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
 539{
 540        return BTF_STR_OFFSET_VALID(offset) &&
 541                offset < btf->hdr.str_len;
 542}
 543
 544static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
 545{
 546        if ((first ? !isalpha(c) :
 547                     !isalnum(c)) &&
 548            c != '_' &&
 549            ((c == '.' && !dot_ok) ||
 550              c != '.'))
 551                return false;
 552        return true;
 553}
 554
 555static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
 556{
 557        /* offset must be valid */
 558        const char *src = &btf->strings[offset];
 559        const char *src_limit;
 560
 561        if (!__btf_name_char_ok(*src, true, dot_ok))
 562                return false;
 563
 564        /* set a limit on identifier length */
 565        src_limit = src + KSYM_NAME_LEN;
 566        src++;
 567        while (*src && src < src_limit) {
 568                if (!__btf_name_char_ok(*src, false, dot_ok))
 569                        return false;
 570                src++;
 571        }
 572
 573        return !*src;
 574}
 575
 576/* Only C-style identifier is permitted. This can be relaxed if
 577 * necessary.
 578 */
 579static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
 580{
 581        return __btf_name_valid(btf, offset, false);
 582}
 583
 584static bool btf_name_valid_section(const struct btf *btf, u32 offset)
 585{
 586        return __btf_name_valid(btf, offset, true);
 587}
 588
 589static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
 590{
 591        if (!offset)
 592                return "(anon)";
 593        else if (offset < btf->hdr.str_len)
 594                return &btf->strings[offset];
 595        else
 596                return "(invalid-name-offset)";
 597}
 598
 599const char *btf_name_by_offset(const struct btf *btf, u32 offset)
 600{
 601        if (offset < btf->hdr.str_len)
 602                return &btf->strings[offset];
 603
 604        return NULL;
 605}
 606
 607const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
 608{
 609        if (type_id > btf->nr_types)
 610                return NULL;
 611
 612        return btf->types[type_id];
 613}
 614
 615/*
 616 * Regular int is not a bit field and it must be either
 617 * u8/u16/u32/u64 or __int128.
 618 */
 619static bool btf_type_int_is_regular(const struct btf_type *t)
 620{
 621        u8 nr_bits, nr_bytes;
 622        u32 int_data;
 623
 624        int_data = btf_type_int(t);
 625        nr_bits = BTF_INT_BITS(int_data);
 626        nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
 627        if (BITS_PER_BYTE_MASKED(nr_bits) ||
 628            BTF_INT_OFFSET(int_data) ||
 629            (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
 630             nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
 631             nr_bytes != (2 * sizeof(u64)))) {
 632                return false;
 633        }
 634
 635        return true;
 636}
 637
 638/*
 639 * Check that given struct member is a regular int with expected
 640 * offset and size.
 641 */
 642bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
 643                           const struct btf_member *m,
 644                           u32 expected_offset, u32 expected_size)
 645{
 646        const struct btf_type *t;
 647        u32 id, int_data;
 648        u8 nr_bits;
 649
 650        id = m->type;
 651        t = btf_type_id_size(btf, &id, NULL);
 652        if (!t || !btf_type_is_int(t))
 653                return false;
 654
 655        int_data = btf_type_int(t);
 656        nr_bits = BTF_INT_BITS(int_data);
 657        if (btf_type_kflag(s)) {
 658                u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
 659                u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
 660
 661                /* if kflag set, int should be a regular int and
 662                 * bit offset should be at byte boundary.
 663                 */
 664                return !bitfield_size &&
 665                       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
 666                       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
 667        }
 668
 669        if (BTF_INT_OFFSET(int_data) ||
 670            BITS_PER_BYTE_MASKED(m->offset) ||
 671            BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
 672            BITS_PER_BYTE_MASKED(nr_bits) ||
 673            BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
 674                return false;
 675
 676        return true;
 677}
 678
 679__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
 680                                              const char *fmt, ...)
 681{
 682        va_list args;
 683
 684        va_start(args, fmt);
 685        bpf_verifier_vlog(log, fmt, args);
 686        va_end(args);
 687}
 688
 689__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
 690                                            const char *fmt, ...)
 691{
 692        struct bpf_verifier_log *log = &env->log;
 693        va_list args;
 694
 695        if (!bpf_verifier_log_needed(log))
 696                return;
 697
 698        va_start(args, fmt);
 699        bpf_verifier_vlog(log, fmt, args);
 700        va_end(args);
 701}
 702
 703__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
 704                                                   const struct btf_type *t,
 705                                                   bool log_details,
 706                                                   const char *fmt, ...)
 707{
 708        struct bpf_verifier_log *log = &env->log;
 709        u8 kind = BTF_INFO_KIND(t->info);
 710        struct btf *btf = env->btf;
 711        va_list args;
 712
 713        if (!bpf_verifier_log_needed(log))
 714                return;
 715
 716        /* btf verifier prints all types it is processing via
 717         * btf_verifier_log_type(..., fmt = NULL).
 718         * Skip those prints for in-kernel BTF verification.
 719         */
 720        if (log->level == BPF_LOG_KERNEL && !fmt)
 721                return;
 722
 723        __btf_verifier_log(log, "[%u] %s %s%s",
 724                           env->log_type_id,
 725                           btf_kind_str[kind],
 726                           __btf_name_by_offset(btf, t->name_off),
 727                           log_details ? " " : "");
 728
 729        if (log_details)
 730                btf_type_ops(t)->log_details(env, t);
 731
 732        if (fmt && *fmt) {
 733                __btf_verifier_log(log, " ");
 734                va_start(args, fmt);
 735                bpf_verifier_vlog(log, fmt, args);
 736                va_end(args);
 737        }
 738
 739        __btf_verifier_log(log, "\n");
 740}
 741
 742#define btf_verifier_log_type(env, t, ...) \
 743        __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
 744#define btf_verifier_log_basic(env, t, ...) \
 745        __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
 746
 747__printf(4, 5)
 748static void btf_verifier_log_member(struct btf_verifier_env *env,
 749                                    const struct btf_type *struct_type,
 750                                    const struct btf_member *member,
 751                                    const char *fmt, ...)
 752{
 753        struct bpf_verifier_log *log = &env->log;
 754        struct btf *btf = env->btf;
 755        va_list args;
 756
 757        if (!bpf_verifier_log_needed(log))
 758                return;
 759
 760        if (log->level == BPF_LOG_KERNEL && !fmt)
 761                return;
 762        /* The CHECK_META phase already did a btf dump.
 763         *
 764         * If member is logged again, it must hit an error in
 765         * parsing this member.  It is useful to print out which
 766         * struct this member belongs to.
 767         */
 768        if (env->phase != CHECK_META)
 769                btf_verifier_log_type(env, struct_type, NULL);
 770
 771        if (btf_type_kflag(struct_type))
 772                __btf_verifier_log(log,
 773                                   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
 774                                   __btf_name_by_offset(btf, member->name_off),
 775                                   member->type,
 776                                   BTF_MEMBER_BITFIELD_SIZE(member->offset),
 777                                   BTF_MEMBER_BIT_OFFSET(member->offset));
 778        else
 779                __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
 780                                   __btf_name_by_offset(btf, member->name_off),
 781                                   member->type, member->offset);
 782
 783        if (fmt && *fmt) {
 784                __btf_verifier_log(log, " ");
 785                va_start(args, fmt);
 786                bpf_verifier_vlog(log, fmt, args);
 787                va_end(args);
 788        }
 789
 790        __btf_verifier_log(log, "\n");
 791}
 792
 793__printf(4, 5)
 794static void btf_verifier_log_vsi(struct btf_verifier_env *env,
 795                                 const struct btf_type *datasec_type,
 796                                 const struct btf_var_secinfo *vsi,
 797                                 const char *fmt, ...)
 798{
 799        struct bpf_verifier_log *log = &env->log;
 800        va_list args;
 801
 802        if (!bpf_verifier_log_needed(log))
 803                return;
 804        if (log->level == BPF_LOG_KERNEL && !fmt)
 805                return;
 806        if (env->phase != CHECK_META)
 807                btf_verifier_log_type(env, datasec_type, NULL);
 808
 809        __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
 810                           vsi->type, vsi->offset, vsi->size);
 811        if (fmt && *fmt) {
 812                __btf_verifier_log(log, " ");
 813                va_start(args, fmt);
 814                bpf_verifier_vlog(log, fmt, args);
 815                va_end(args);
 816        }
 817
 818        __btf_verifier_log(log, "\n");
 819}
 820
 821static void btf_verifier_log_hdr(struct btf_verifier_env *env,
 822                                 u32 btf_data_size)
 823{
 824        struct bpf_verifier_log *log = &env->log;
 825        const struct btf *btf = env->btf;
 826        const struct btf_header *hdr;
 827
 828        if (!bpf_verifier_log_needed(log))
 829                return;
 830
 831        if (log->level == BPF_LOG_KERNEL)
 832                return;
 833        hdr = &btf->hdr;
 834        __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
 835        __btf_verifier_log(log, "version: %u\n", hdr->version);
 836        __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
 837        __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
 838        __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
 839        __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
 840        __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
 841        __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
 842        __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
 843}
 844
 845static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
 846{
 847        struct btf *btf = env->btf;
 848
 849        /* < 2 because +1 for btf_void which is always in btf->types[0].
 850         * btf_void is not accounted in btf->nr_types because btf_void
 851         * does not come from the BTF file.
 852         */
 853        if (btf->types_size - btf->nr_types < 2) {
 854                /* Expand 'types' array */
 855
 856                struct btf_type **new_types;
 857                u32 expand_by, new_size;
 858
 859                if (btf->types_size == BTF_MAX_TYPE) {
 860                        btf_verifier_log(env, "Exceeded max num of types");
 861                        return -E2BIG;
 862                }
 863
 864                expand_by = max_t(u32, btf->types_size >> 2, 16);
 865                new_size = min_t(u32, BTF_MAX_TYPE,
 866                                 btf->types_size + expand_by);
 867
 868                new_types = kvcalloc(new_size, sizeof(*new_types),
 869                                     GFP_KERNEL | __GFP_NOWARN);
 870                if (!new_types)
 871                        return -ENOMEM;
 872
 873                if (btf->nr_types == 0)
 874                        new_types[0] = &btf_void;
 875                else
 876                        memcpy(new_types, btf->types,
 877                               sizeof(*btf->types) * (btf->nr_types + 1));
 878
 879                kvfree(btf->types);
 880                btf->types = new_types;
 881                btf->types_size = new_size;
 882        }
 883
 884        btf->types[++(btf->nr_types)] = t;
 885
 886        return 0;
 887}
 888
 889static int btf_alloc_id(struct btf *btf)
 890{
 891        int id;
 892
 893        idr_preload(GFP_KERNEL);
 894        spin_lock_bh(&btf_idr_lock);
 895        id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
 896        if (id > 0)
 897                btf->id = id;
 898        spin_unlock_bh(&btf_idr_lock);
 899        idr_preload_end();
 900
 901        if (WARN_ON_ONCE(!id))
 902                return -ENOSPC;
 903
 904        return id > 0 ? 0 : id;
 905}
 906
 907static void btf_free_id(struct btf *btf)
 908{
 909        unsigned long flags;
 910
 911        /*
 912         * In map-in-map, calling map_delete_elem() on outer
 913         * map will call bpf_map_put on the inner map.
 914         * It will then eventually call btf_free_id()
 915         * on the inner map.  Some of the map_delete_elem()
 916         * implementation may have irq disabled, so
 917         * we need to use the _irqsave() version instead
 918         * of the _bh() version.
 919         */
 920        spin_lock_irqsave(&btf_idr_lock, flags);
 921        idr_remove(&btf_idr, btf->id);
 922        spin_unlock_irqrestore(&btf_idr_lock, flags);
 923}
 924
 925static void btf_free(struct btf *btf)
 926{
 927        kvfree(btf->types);
 928        kvfree(btf->resolved_sizes);
 929        kvfree(btf->resolved_ids);
 930        kvfree(btf->data);
 931        kfree(btf);
 932}
 933
 934static void btf_free_rcu(struct rcu_head *rcu)
 935{
 936        struct btf *btf = container_of(rcu, struct btf, rcu);
 937
 938        btf_free(btf);
 939}
 940
 941void btf_put(struct btf *btf)
 942{
 943        if (btf && refcount_dec_and_test(&btf->refcnt)) {
 944                btf_free_id(btf);
 945                call_rcu(&btf->rcu, btf_free_rcu);
 946        }
 947}
 948
 949static int env_resolve_init(struct btf_verifier_env *env)
 950{
 951        struct btf *btf = env->btf;
 952        u32 nr_types = btf->nr_types;
 953        u32 *resolved_sizes = NULL;
 954        u32 *resolved_ids = NULL;
 955        u8 *visit_states = NULL;
 956
 957        /* +1 for btf_void */
 958        resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
 959                                  GFP_KERNEL | __GFP_NOWARN);
 960        if (!resolved_sizes)
 961                goto nomem;
 962
 963        resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
 964                                GFP_KERNEL | __GFP_NOWARN);
 965        if (!resolved_ids)
 966                goto nomem;
 967
 968        visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
 969                                GFP_KERNEL | __GFP_NOWARN);
 970        if (!visit_states)
 971                goto nomem;
 972
 973        btf->resolved_sizes = resolved_sizes;
 974        btf->resolved_ids = resolved_ids;
 975        env->visit_states = visit_states;
 976
 977        return 0;
 978
 979nomem:
 980        kvfree(resolved_sizes);
 981        kvfree(resolved_ids);
 982        kvfree(visit_states);
 983        return -ENOMEM;
 984}
 985
 986static void btf_verifier_env_free(struct btf_verifier_env *env)
 987{
 988        kvfree(env->visit_states);
 989        kfree(env);
 990}
 991
 992static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
 993                                     const struct btf_type *next_type)
 994{
 995        switch (env->resolve_mode) {
 996        case RESOLVE_TBD:
 997                /* int, enum or void is a sink */
 998                return !btf_type_needs_resolve(next_type);
 999        case RESOLVE_PTR:
1000                /* int, enum, void, struct, array, func or func_proto is a sink
1001                 * for ptr
1002                 */
1003                return !btf_type_is_modifier(next_type) &&
1004                        !btf_type_is_ptr(next_type);
1005        case RESOLVE_STRUCT_OR_ARRAY:
1006                /* int, enum, void, ptr, func or func_proto is a sink
1007                 * for struct and array
1008                 */
1009                return !btf_type_is_modifier(next_type) &&
1010                        !btf_type_is_array(next_type) &&
1011                        !btf_type_is_struct(next_type);
1012        default:
1013                BUG();
1014        }
1015}
1016
1017static bool env_type_is_resolved(const struct btf_verifier_env *env,
1018                                 u32 type_id)
1019{
1020        return env->visit_states[type_id] == RESOLVED;
1021}
1022
1023static int env_stack_push(struct btf_verifier_env *env,
1024                          const struct btf_type *t, u32 type_id)
1025{
1026        struct resolve_vertex *v;
1027
1028        if (env->top_stack == MAX_RESOLVE_DEPTH)
1029                return -E2BIG;
1030
1031        if (env->visit_states[type_id] != NOT_VISITED)
1032                return -EEXIST;
1033
1034        env->visit_states[type_id] = VISITED;
1035
1036        v = &env->stack[env->top_stack++];
1037        v->t = t;
1038        v->type_id = type_id;
1039        v->next_member = 0;
1040
1041        if (env->resolve_mode == RESOLVE_TBD) {
1042                if (btf_type_is_ptr(t))
1043                        env->resolve_mode = RESOLVE_PTR;
1044                else if (btf_type_is_struct(t) || btf_type_is_array(t))
1045                        env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1046        }
1047
1048        return 0;
1049}
1050
1051static void env_stack_set_next_member(struct btf_verifier_env *env,
1052                                      u16 next_member)
1053{
1054        env->stack[env->top_stack - 1].next_member = next_member;
1055}
1056
1057static void env_stack_pop_resolved(struct btf_verifier_env *env,
1058                                   u32 resolved_type_id,
1059                                   u32 resolved_size)
1060{
1061        u32 type_id = env->stack[--(env->top_stack)].type_id;
1062        struct btf *btf = env->btf;
1063
1064        btf->resolved_sizes[type_id] = resolved_size;
1065        btf->resolved_ids[type_id] = resolved_type_id;
1066        env->visit_states[type_id] = RESOLVED;
1067}
1068
1069static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1070{
1071        return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1072}
1073
1074/* Resolve the size of a passed-in "type"
1075 *
1076 * type: is an array (e.g. u32 array[x][y])
1077 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1078 * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1079 *             corresponds to the return type.
1080 * *elem_type: u32
1081 * *total_nelems: (x * y).  Hence, individual elem size is
1082 *                (*type_size / *total_nelems)
1083 *
1084 * type: is not an array (e.g. const struct X)
1085 * return type: type "struct X"
1086 * *type_size: sizeof(struct X)
1087 * *elem_type: same as return type ("struct X")
1088 * *total_nelems: 1
1089 */
1090const struct btf_type *
1091btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1092                 u32 *type_size, const struct btf_type **elem_type,
1093                 u32 *total_nelems)
1094{
1095        const struct btf_type *array_type = NULL;
1096        const struct btf_array *array;
1097        u32 i, size, nelems = 1;
1098
1099        for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1100                switch (BTF_INFO_KIND(type->info)) {
1101                /* type->size can be used */
1102                case BTF_KIND_INT:
1103                case BTF_KIND_STRUCT:
1104                case BTF_KIND_UNION:
1105                case BTF_KIND_ENUM:
1106                        size = type->size;
1107                        goto resolved;
1108
1109                case BTF_KIND_PTR:
1110                        size = sizeof(void *);
1111                        goto resolved;
1112
1113                /* Modifiers */
1114                case BTF_KIND_TYPEDEF:
1115                case BTF_KIND_VOLATILE:
1116                case BTF_KIND_CONST:
1117                case BTF_KIND_RESTRICT:
1118                        type = btf_type_by_id(btf, type->type);
1119                        break;
1120
1121                case BTF_KIND_ARRAY:
1122                        if (!array_type)
1123                                array_type = type;
1124                        array = btf_type_array(type);
1125                        if (nelems && array->nelems > U32_MAX / nelems)
1126                                return ERR_PTR(-EINVAL);
1127                        nelems *= array->nelems;
1128                        type = btf_type_by_id(btf, array->type);
1129                        break;
1130
1131                /* type without size */
1132                default:
1133                        return ERR_PTR(-EINVAL);
1134                }
1135        }
1136
1137        return ERR_PTR(-EINVAL);
1138
1139resolved:
1140        if (nelems && size > U32_MAX / nelems)
1141                return ERR_PTR(-EINVAL);
1142
1143        *type_size = nelems * size;
1144        if (total_nelems)
1145                *total_nelems = nelems;
1146        if (elem_type)
1147                *elem_type = type;
1148
1149        return array_type ? : type;
1150}
1151
1152/* The input param "type_id" must point to a needs_resolve type */
1153static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1154                                                  u32 *type_id)
1155{
1156        *type_id = btf->resolved_ids[*type_id];
1157        return btf_type_by_id(btf, *type_id);
1158}
1159
1160const struct btf_type *btf_type_id_size(const struct btf *btf,
1161                                        u32 *type_id, u32 *ret_size)
1162{
1163        const struct btf_type *size_type;
1164        u32 size_type_id = *type_id;
1165        u32 size = 0;
1166
1167        size_type = btf_type_by_id(btf, size_type_id);
1168        if (btf_type_nosize_or_null(size_type))
1169                return NULL;
1170
1171        if (btf_type_has_size(size_type)) {
1172                size = size_type->size;
1173        } else if (btf_type_is_array(size_type)) {
1174                size = btf->resolved_sizes[size_type_id];
1175        } else if (btf_type_is_ptr(size_type)) {
1176                size = sizeof(void *);
1177        } else {
1178                if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1179                                 !btf_type_is_var(size_type)))
1180                        return NULL;
1181
1182                size_type_id = btf->resolved_ids[size_type_id];
1183                size_type = btf_type_by_id(btf, size_type_id);
1184                if (btf_type_nosize_or_null(size_type))
1185                        return NULL;
1186                else if (btf_type_has_size(size_type))
1187                        size = size_type->size;
1188                else if (btf_type_is_array(size_type))
1189                        size = btf->resolved_sizes[size_type_id];
1190                else if (btf_type_is_ptr(size_type))
1191                        size = sizeof(void *);
1192                else
1193                        return NULL;
1194        }
1195
1196        *type_id = size_type_id;
1197        if (ret_size)
1198                *ret_size = size;
1199
1200        return size_type;
1201}
1202
1203static int btf_df_check_member(struct btf_verifier_env *env,
1204                               const struct btf_type *struct_type,
1205                               const struct btf_member *member,
1206                               const struct btf_type *member_type)
1207{
1208        btf_verifier_log_basic(env, struct_type,
1209                               "Unsupported check_member");
1210        return -EINVAL;
1211}
1212
1213static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1214                                     const struct btf_type *struct_type,
1215                                     const struct btf_member *member,
1216                                     const struct btf_type *member_type)
1217{
1218        btf_verifier_log_basic(env, struct_type,
1219                               "Unsupported check_kflag_member");
1220        return -EINVAL;
1221}
1222
1223/* Used for ptr, array and struct/union type members.
1224 * int, enum and modifier types have their specific callback functions.
1225 */
1226static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1227                                          const struct btf_type *struct_type,
1228                                          const struct btf_member *member,
1229                                          const struct btf_type *member_type)
1230{
1231        if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1232                btf_verifier_log_member(env, struct_type, member,
1233                                        "Invalid member bitfield_size");
1234                return -EINVAL;
1235        }
1236
1237        /* bitfield size is 0, so member->offset represents bit offset only.
1238         * It is safe to call non kflag check_member variants.
1239         */
1240        return btf_type_ops(member_type)->check_member(env, struct_type,
1241                                                       member,
1242                                                       member_type);
1243}
1244
1245static int btf_df_resolve(struct btf_verifier_env *env,
1246                          const struct resolve_vertex *v)
1247{
1248        btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1249        return -EINVAL;
1250}
1251
1252static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1253                            u32 type_id, void *data, u8 bits_offsets,
1254                            struct seq_file *m)
1255{
1256        seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1257}
1258
1259static int btf_int_check_member(struct btf_verifier_env *env,
1260                                const struct btf_type *struct_type,
1261                                const struct btf_member *member,
1262                                const struct btf_type *member_type)
1263{
1264        u32 int_data = btf_type_int(member_type);
1265        u32 struct_bits_off = member->offset;
1266        u32 struct_size = struct_type->size;
1267        u32 nr_copy_bits;
1268        u32 bytes_offset;
1269
1270        if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1271                btf_verifier_log_member(env, struct_type, member,
1272                                        "bits_offset exceeds U32_MAX");
1273                return -EINVAL;
1274        }
1275
1276        struct_bits_off += BTF_INT_OFFSET(int_data);
1277        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1278        nr_copy_bits = BTF_INT_BITS(int_data) +
1279                BITS_PER_BYTE_MASKED(struct_bits_off);
1280
1281        if (nr_copy_bits > BITS_PER_U128) {
1282                btf_verifier_log_member(env, struct_type, member,
1283                                        "nr_copy_bits exceeds 128");
1284                return -EINVAL;
1285        }
1286
1287        if (struct_size < bytes_offset ||
1288            struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1289                btf_verifier_log_member(env, struct_type, member,
1290                                        "Member exceeds struct_size");
1291                return -EINVAL;
1292        }
1293
1294        return 0;
1295}
1296
1297static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1298                                      const struct btf_type *struct_type,
1299                                      const struct btf_member *member,
1300                                      const struct btf_type *member_type)
1301{
1302        u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1303        u32 int_data = btf_type_int(member_type);
1304        u32 struct_size = struct_type->size;
1305        u32 nr_copy_bits;
1306
1307        /* a regular int type is required for the kflag int member */
1308        if (!btf_type_int_is_regular(member_type)) {
1309                btf_verifier_log_member(env, struct_type, member,
1310                                        "Invalid member base type");
1311                return -EINVAL;
1312        }
1313
1314        /* check sanity of bitfield size */
1315        nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1316        struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1317        nr_int_data_bits = BTF_INT_BITS(int_data);
1318        if (!nr_bits) {
1319                /* Not a bitfield member, member offset must be at byte
1320                 * boundary.
1321                 */
1322                if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1323                        btf_verifier_log_member(env, struct_type, member,
1324                                                "Invalid member offset");
1325                        return -EINVAL;
1326                }
1327
1328                nr_bits = nr_int_data_bits;
1329        } else if (nr_bits > nr_int_data_bits) {
1330                btf_verifier_log_member(env, struct_type, member,
1331                                        "Invalid member bitfield_size");
1332                return -EINVAL;
1333        }
1334
1335        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1336        nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1337        if (nr_copy_bits > BITS_PER_U128) {
1338                btf_verifier_log_member(env, struct_type, member,
1339                                        "nr_copy_bits exceeds 128");
1340                return -EINVAL;
1341        }
1342
1343        if (struct_size < bytes_offset ||
1344            struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1345                btf_verifier_log_member(env, struct_type, member,
1346                                        "Member exceeds struct_size");
1347                return -EINVAL;
1348        }
1349
1350        return 0;
1351}
1352
1353static s32 btf_int_check_meta(struct btf_verifier_env *env,
1354                              const struct btf_type *t,
1355                              u32 meta_left)
1356{
1357        u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1358        u16 encoding;
1359
1360        if (meta_left < meta_needed) {
1361                btf_verifier_log_basic(env, t,
1362                                       "meta_left:%u meta_needed:%u",
1363                                       meta_left, meta_needed);
1364                return -EINVAL;
1365        }
1366
1367        if (btf_type_vlen(t)) {
1368                btf_verifier_log_type(env, t, "vlen != 0");
1369                return -EINVAL;
1370        }
1371
1372        if (btf_type_kflag(t)) {
1373                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1374                return -EINVAL;
1375        }
1376
1377        int_data = btf_type_int(t);
1378        if (int_data & ~BTF_INT_MASK) {
1379                btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1380                                       int_data);
1381                return -EINVAL;
1382        }
1383
1384        nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1385
1386        if (nr_bits > BITS_PER_U128) {
1387                btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1388                                      BITS_PER_U128);
1389                return -EINVAL;
1390        }
1391
1392        if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1393                btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1394                return -EINVAL;
1395        }
1396
1397        /*
1398         * Only one of the encoding bits is allowed and it
1399         * should be sufficient for the pretty print purpose (i.e. decoding).
1400         * Multiple bits can be allowed later if it is found
1401         * to be insufficient.
1402         */
1403        encoding = BTF_INT_ENCODING(int_data);
1404        if (encoding &&
1405            encoding != BTF_INT_SIGNED &&
1406            encoding != BTF_INT_CHAR &&
1407            encoding != BTF_INT_BOOL) {
1408                btf_verifier_log_type(env, t, "Unsupported encoding");
1409                return -ENOTSUPP;
1410        }
1411
1412        btf_verifier_log_type(env, t, NULL);
1413
1414        return meta_needed;
1415}
1416
1417static void btf_int_log(struct btf_verifier_env *env,
1418                        const struct btf_type *t)
1419{
1420        int int_data = btf_type_int(t);
1421
1422        btf_verifier_log(env,
1423                         "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1424                         t->size, BTF_INT_OFFSET(int_data),
1425                         BTF_INT_BITS(int_data),
1426                         btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1427}
1428
1429static void btf_int128_print(struct seq_file *m, void *data)
1430{
1431        /* data points to a __int128 number.
1432         * Suppose
1433         *     int128_num = *(__int128 *)data;
1434         * The below formulas shows what upper_num and lower_num represents:
1435         *     upper_num = int128_num >> 64;
1436         *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1437         */
1438        u64 upper_num, lower_num;
1439
1440#ifdef __BIG_ENDIAN_BITFIELD
1441        upper_num = *(u64 *)data;
1442        lower_num = *(u64 *)(data + 8);
1443#else
1444        upper_num = *(u64 *)(data + 8);
1445        lower_num = *(u64 *)data;
1446#endif
1447        if (upper_num == 0)
1448                seq_printf(m, "0x%llx", lower_num);
1449        else
1450                seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1451}
1452
1453static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1454                             u16 right_shift_bits)
1455{
1456        u64 upper_num, lower_num;
1457
1458#ifdef __BIG_ENDIAN_BITFIELD
1459        upper_num = print_num[0];
1460        lower_num = print_num[1];
1461#else
1462        upper_num = print_num[1];
1463        lower_num = print_num[0];
1464#endif
1465
1466        /* shake out un-needed bits by shift/or operations */
1467        if (left_shift_bits >= 64) {
1468                upper_num = lower_num << (left_shift_bits - 64);
1469                lower_num = 0;
1470        } else {
1471                upper_num = (upper_num << left_shift_bits) |
1472                            (lower_num >> (64 - left_shift_bits));
1473                lower_num = lower_num << left_shift_bits;
1474        }
1475
1476        if (right_shift_bits >= 64) {
1477                lower_num = upper_num >> (right_shift_bits - 64);
1478                upper_num = 0;
1479        } else {
1480                lower_num = (lower_num >> right_shift_bits) |
1481                            (upper_num << (64 - right_shift_bits));
1482                upper_num = upper_num >> right_shift_bits;
1483        }
1484
1485#ifdef __BIG_ENDIAN_BITFIELD
1486        print_num[0] = upper_num;
1487        print_num[1] = lower_num;
1488#else
1489        print_num[0] = lower_num;
1490        print_num[1] = upper_num;
1491#endif
1492}
1493
1494static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1495                                  u8 nr_bits, struct seq_file *m)
1496{
1497        u16 left_shift_bits, right_shift_bits;
1498        u8 nr_copy_bytes;
1499        u8 nr_copy_bits;
1500        u64 print_num[2] = {};
1501
1502        nr_copy_bits = nr_bits + bits_offset;
1503        nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1504
1505        memcpy(print_num, data, nr_copy_bytes);
1506
1507#ifdef __BIG_ENDIAN_BITFIELD
1508        left_shift_bits = bits_offset;
1509#else
1510        left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1511#endif
1512        right_shift_bits = BITS_PER_U128 - nr_bits;
1513
1514        btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1515        btf_int128_print(m, print_num);
1516}
1517
1518
1519static void btf_int_bits_seq_show(const struct btf *btf,
1520                                  const struct btf_type *t,
1521                                  void *data, u8 bits_offset,
1522                                  struct seq_file *m)
1523{
1524        u32 int_data = btf_type_int(t);
1525        u8 nr_bits = BTF_INT_BITS(int_data);
1526        u8 total_bits_offset;
1527
1528        /*
1529         * bits_offset is at most 7.
1530         * BTF_INT_OFFSET() cannot exceed 128 bits.
1531         */
1532        total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1533        data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1534        bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1535        btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1536}
1537
1538static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1539                             u32 type_id, void *data, u8 bits_offset,
1540                             struct seq_file *m)
1541{
1542        u32 int_data = btf_type_int(t);
1543        u8 encoding = BTF_INT_ENCODING(int_data);
1544        bool sign = encoding & BTF_INT_SIGNED;
1545        u8 nr_bits = BTF_INT_BITS(int_data);
1546
1547        if (bits_offset || BTF_INT_OFFSET(int_data) ||
1548            BITS_PER_BYTE_MASKED(nr_bits)) {
1549                btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1550                return;
1551        }
1552
1553        switch (nr_bits) {
1554        case 128:
1555                btf_int128_print(m, data);
1556                break;
1557        case 64:
1558                if (sign)
1559                        seq_printf(m, "%lld", *(s64 *)data);
1560                else
1561                        seq_printf(m, "%llu", *(u64 *)data);
1562                break;
1563        case 32:
1564                if (sign)
1565                        seq_printf(m, "%d", *(s32 *)data);
1566                else
1567                        seq_printf(m, "%u", *(u32 *)data);
1568                break;
1569        case 16:
1570                if (sign)
1571                        seq_printf(m, "%d", *(s16 *)data);
1572                else
1573                        seq_printf(m, "%u", *(u16 *)data);
1574                break;
1575        case 8:
1576                if (sign)
1577                        seq_printf(m, "%d", *(s8 *)data);
1578                else
1579                        seq_printf(m, "%u", *(u8 *)data);
1580                break;
1581        default:
1582                btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1583        }
1584}
1585
1586static const struct btf_kind_operations int_ops = {
1587        .check_meta = btf_int_check_meta,
1588        .resolve = btf_df_resolve,
1589        .check_member = btf_int_check_member,
1590        .check_kflag_member = btf_int_check_kflag_member,
1591        .log_details = btf_int_log,
1592        .seq_show = btf_int_seq_show,
1593};
1594
1595static int btf_modifier_check_member(struct btf_verifier_env *env,
1596                                     const struct btf_type *struct_type,
1597                                     const struct btf_member *member,
1598                                     const struct btf_type *member_type)
1599{
1600        const struct btf_type *resolved_type;
1601        u32 resolved_type_id = member->type;
1602        struct btf_member resolved_member;
1603        struct btf *btf = env->btf;
1604
1605        resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1606        if (!resolved_type) {
1607                btf_verifier_log_member(env, struct_type, member,
1608                                        "Invalid member");
1609                return -EINVAL;
1610        }
1611
1612        resolved_member = *member;
1613        resolved_member.type = resolved_type_id;
1614
1615        return btf_type_ops(resolved_type)->check_member(env, struct_type,
1616                                                         &resolved_member,
1617                                                         resolved_type);
1618}
1619
1620static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1621                                           const struct btf_type *struct_type,
1622                                           const struct btf_member *member,
1623                                           const struct btf_type *member_type)
1624{
1625        const struct btf_type *resolved_type;
1626        u32 resolved_type_id = member->type;
1627        struct btf_member resolved_member;
1628        struct btf *btf = env->btf;
1629
1630        resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1631        if (!resolved_type) {
1632                btf_verifier_log_member(env, struct_type, member,
1633                                        "Invalid member");
1634                return -EINVAL;
1635        }
1636
1637        resolved_member = *member;
1638        resolved_member.type = resolved_type_id;
1639
1640        return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1641                                                               &resolved_member,
1642                                                               resolved_type);
1643}
1644
1645static int btf_ptr_check_member(struct btf_verifier_env *env,
1646                                const struct btf_type *struct_type,
1647                                const struct btf_member *member,
1648                                const struct btf_type *member_type)
1649{
1650        u32 struct_size, struct_bits_off, bytes_offset;
1651
1652        struct_size = struct_type->size;
1653        struct_bits_off = member->offset;
1654        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1655
1656        if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1657                btf_verifier_log_member(env, struct_type, member,
1658                                        "Member is not byte aligned");
1659                return -EINVAL;
1660        }
1661
1662        if (struct_size - bytes_offset < sizeof(void *)) {
1663                btf_verifier_log_member(env, struct_type, member,
1664                                        "Member exceeds struct_size");
1665                return -EINVAL;
1666        }
1667
1668        return 0;
1669}
1670
1671static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1672                                   const struct btf_type *t,
1673                                   u32 meta_left)
1674{
1675        if (btf_type_vlen(t)) {
1676                btf_verifier_log_type(env, t, "vlen != 0");
1677                return -EINVAL;
1678        }
1679
1680        if (btf_type_kflag(t)) {
1681                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1682                return -EINVAL;
1683        }
1684
1685        if (!BTF_TYPE_ID_VALID(t->type)) {
1686                btf_verifier_log_type(env, t, "Invalid type_id");
1687                return -EINVAL;
1688        }
1689
1690        /* typedef type must have a valid name, and other ref types,
1691         * volatile, const, restrict, should have a null name.
1692         */
1693        if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1694                if (!t->name_off ||
1695                    !btf_name_valid_identifier(env->btf, t->name_off)) {
1696                        btf_verifier_log_type(env, t, "Invalid name");
1697                        return -EINVAL;
1698                }
1699        } else {
1700                if (t->name_off) {
1701                        btf_verifier_log_type(env, t, "Invalid name");
1702                        return -EINVAL;
1703                }
1704        }
1705
1706        btf_verifier_log_type(env, t, NULL);
1707
1708        return 0;
1709}
1710
1711static int btf_modifier_resolve(struct btf_verifier_env *env,
1712                                const struct resolve_vertex *v)
1713{
1714        const struct btf_type *t = v->t;
1715        const struct btf_type *next_type;
1716        u32 next_type_id = t->type;
1717        struct btf *btf = env->btf;
1718
1719        next_type = btf_type_by_id(btf, next_type_id);
1720        if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1721                btf_verifier_log_type(env, v->t, "Invalid type_id");
1722                return -EINVAL;
1723        }
1724
1725        if (!env_type_is_resolve_sink(env, next_type) &&
1726            !env_type_is_resolved(env, next_type_id))
1727                return env_stack_push(env, next_type, next_type_id);
1728
1729        /* Figure out the resolved next_type_id with size.
1730         * They will be stored in the current modifier's
1731         * resolved_ids and resolved_sizes such that it can
1732         * save us a few type-following when we use it later (e.g. in
1733         * pretty print).
1734         */
1735        if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1736                if (env_type_is_resolved(env, next_type_id))
1737                        next_type = btf_type_id_resolve(btf, &next_type_id);
1738
1739                /* "typedef void new_void", "const void"...etc */
1740                if (!btf_type_is_void(next_type) &&
1741                    !btf_type_is_fwd(next_type) &&
1742                    !btf_type_is_func_proto(next_type)) {
1743                        btf_verifier_log_type(env, v->t, "Invalid type_id");
1744                        return -EINVAL;
1745                }
1746        }
1747
1748        env_stack_pop_resolved(env, next_type_id, 0);
1749
1750        return 0;
1751}
1752
1753static int btf_var_resolve(struct btf_verifier_env *env,
1754                           const struct resolve_vertex *v)
1755{
1756        const struct btf_type *next_type;
1757        const struct btf_type *t = v->t;
1758        u32 next_type_id = t->type;
1759        struct btf *btf = env->btf;
1760
1761        next_type = btf_type_by_id(btf, next_type_id);
1762        if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1763                btf_verifier_log_type(env, v->t, "Invalid type_id");
1764                return -EINVAL;
1765        }
1766
1767        if (!env_type_is_resolve_sink(env, next_type) &&
1768            !env_type_is_resolved(env, next_type_id))
1769                return env_stack_push(env, next_type, next_type_id);
1770
1771        if (btf_type_is_modifier(next_type)) {
1772                const struct btf_type *resolved_type;
1773                u32 resolved_type_id;
1774
1775                resolved_type_id = next_type_id;
1776                resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1777
1778                if (btf_type_is_ptr(resolved_type) &&
1779                    !env_type_is_resolve_sink(env, resolved_type) &&
1780                    !env_type_is_resolved(env, resolved_type_id))
1781                        return env_stack_push(env, resolved_type,
1782                                              resolved_type_id);
1783        }
1784
1785        /* We must resolve to something concrete at this point, no
1786         * forward types or similar that would resolve to size of
1787         * zero is allowed.
1788         */
1789        if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1790                btf_verifier_log_type(env, v->t, "Invalid type_id");
1791                return -EINVAL;
1792        }
1793
1794        env_stack_pop_resolved(env, next_type_id, 0);
1795
1796        return 0;
1797}
1798
1799static int btf_ptr_resolve(struct btf_verifier_env *env,
1800                           const struct resolve_vertex *v)
1801{
1802        const struct btf_type *next_type;
1803        const struct btf_type *t = v->t;
1804        u32 next_type_id = t->type;
1805        struct btf *btf = env->btf;
1806
1807        next_type = btf_type_by_id(btf, next_type_id);
1808        if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1809                btf_verifier_log_type(env, v->t, "Invalid type_id");
1810                return -EINVAL;
1811        }
1812
1813        if (!env_type_is_resolve_sink(env, next_type) &&
1814            !env_type_is_resolved(env, next_type_id))
1815                return env_stack_push(env, next_type, next_type_id);
1816
1817        /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1818         * the modifier may have stopped resolving when it was resolved
1819         * to a ptr (last-resolved-ptr).
1820         *
1821         * We now need to continue from the last-resolved-ptr to
1822         * ensure the last-resolved-ptr will not referring back to
1823         * the currenct ptr (t).
1824         */
1825        if (btf_type_is_modifier(next_type)) {
1826                const struct btf_type *resolved_type;
1827                u32 resolved_type_id;
1828
1829                resolved_type_id = next_type_id;
1830                resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1831
1832                if (btf_type_is_ptr(resolved_type) &&
1833                    !env_type_is_resolve_sink(env, resolved_type) &&
1834                    !env_type_is_resolved(env, resolved_type_id))
1835                        return env_stack_push(env, resolved_type,
1836                                              resolved_type_id);
1837        }
1838
1839        if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1840                if (env_type_is_resolved(env, next_type_id))
1841                        next_type = btf_type_id_resolve(btf, &next_type_id);
1842
1843                if (!btf_type_is_void(next_type) &&
1844                    !btf_type_is_fwd(next_type) &&
1845                    !btf_type_is_func_proto(next_type)) {
1846                        btf_verifier_log_type(env, v->t, "Invalid type_id");
1847                        return -EINVAL;
1848                }
1849        }
1850
1851        env_stack_pop_resolved(env, next_type_id, 0);
1852
1853        return 0;
1854}
1855
1856static void btf_modifier_seq_show(const struct btf *btf,
1857                                  const struct btf_type *t,
1858                                  u32 type_id, void *data,
1859                                  u8 bits_offset, struct seq_file *m)
1860{
1861        if (btf->resolved_ids)
1862                t = btf_type_id_resolve(btf, &type_id);
1863        else
1864                t = btf_type_skip_modifiers(btf, type_id, NULL);
1865
1866        btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1867}
1868
1869static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1870                             u32 type_id, void *data, u8 bits_offset,
1871                             struct seq_file *m)
1872{
1873        t = btf_type_id_resolve(btf, &type_id);
1874
1875        btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1876}
1877
1878static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1879                             u32 type_id, void *data, u8 bits_offset,
1880                             struct seq_file *m)
1881{
1882        /* It is a hashed value */
1883        seq_printf(m, "%p", *(void **)data);
1884}
1885
1886static void btf_ref_type_log(struct btf_verifier_env *env,
1887                             const struct btf_type *t)
1888{
1889        btf_verifier_log(env, "type_id=%u", t->type);
1890}
1891
1892static struct btf_kind_operations modifier_ops = {
1893        .check_meta = btf_ref_type_check_meta,
1894        .resolve = btf_modifier_resolve,
1895        .check_member = btf_modifier_check_member,
1896        .check_kflag_member = btf_modifier_check_kflag_member,
1897        .log_details = btf_ref_type_log,
1898        .seq_show = btf_modifier_seq_show,
1899};
1900
1901static struct btf_kind_operations ptr_ops = {
1902        .check_meta = btf_ref_type_check_meta,
1903        .resolve = btf_ptr_resolve,
1904        .check_member = btf_ptr_check_member,
1905        .check_kflag_member = btf_generic_check_kflag_member,
1906        .log_details = btf_ref_type_log,
1907        .seq_show = btf_ptr_seq_show,
1908};
1909
1910static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1911                              const struct btf_type *t,
1912                              u32 meta_left)
1913{
1914        if (btf_type_vlen(t)) {
1915                btf_verifier_log_type(env, t, "vlen != 0");
1916                return -EINVAL;
1917        }
1918
1919        if (t->type) {
1920                btf_verifier_log_type(env, t, "type != 0");
1921                return -EINVAL;
1922        }
1923
1924        /* fwd type must have a valid name */
1925        if (!t->name_off ||
1926            !btf_name_valid_identifier(env->btf, t->name_off)) {
1927                btf_verifier_log_type(env, t, "Invalid name");
1928                return -EINVAL;
1929        }
1930
1931        btf_verifier_log_type(env, t, NULL);
1932
1933        return 0;
1934}
1935
1936static void btf_fwd_type_log(struct btf_verifier_env *env,
1937                             const struct btf_type *t)
1938{
1939        btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1940}
1941
1942static struct btf_kind_operations fwd_ops = {
1943        .check_meta = btf_fwd_check_meta,
1944        .resolve = btf_df_resolve,
1945        .check_member = btf_df_check_member,
1946        .check_kflag_member = btf_df_check_kflag_member,
1947        .log_details = btf_fwd_type_log,
1948        .seq_show = btf_df_seq_show,
1949};
1950
1951static int btf_array_check_member(struct btf_verifier_env *env,
1952                                  const struct btf_type *struct_type,
1953                                  const struct btf_member *member,
1954                                  const struct btf_type *member_type)
1955{
1956        u32 struct_bits_off = member->offset;
1957        u32 struct_size, bytes_offset;
1958        u32 array_type_id, array_size;
1959        struct btf *btf = env->btf;
1960
1961        if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1962                btf_verifier_log_member(env, struct_type, member,
1963                                        "Member is not byte aligned");
1964                return -EINVAL;
1965        }
1966
1967        array_type_id = member->type;
1968        btf_type_id_size(btf, &array_type_id, &array_size);
1969        struct_size = struct_type->size;
1970        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1971        if (struct_size - bytes_offset < array_size) {
1972                btf_verifier_log_member(env, struct_type, member,
1973                                        "Member exceeds struct_size");
1974                return -EINVAL;
1975        }
1976
1977        return 0;
1978}
1979
1980static s32 btf_array_check_meta(struct btf_verifier_env *env,
1981                                const struct btf_type *t,
1982                                u32 meta_left)
1983{
1984        const struct btf_array *array = btf_type_array(t);
1985        u32 meta_needed = sizeof(*array);
1986
1987        if (meta_left < meta_needed) {
1988                btf_verifier_log_basic(env, t,
1989                                       "meta_left:%u meta_needed:%u",
1990                                       meta_left, meta_needed);
1991                return -EINVAL;
1992        }
1993
1994        /* array type should not have a name */
1995        if (t->name_off) {
1996                btf_verifier_log_type(env, t, "Invalid name");
1997                return -EINVAL;
1998        }
1999
2000        if (btf_type_vlen(t)) {
2001                btf_verifier_log_type(env, t, "vlen != 0");
2002                return -EINVAL;
2003        }
2004
2005        if (btf_type_kflag(t)) {
2006                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2007                return -EINVAL;
2008        }
2009
2010        if (t->size) {
2011                btf_verifier_log_type(env, t, "size != 0");
2012                return -EINVAL;
2013        }
2014
2015        /* Array elem type and index type cannot be in type void,
2016         * so !array->type and !array->index_type are not allowed.
2017         */
2018        if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2019                btf_verifier_log_type(env, t, "Invalid elem");
2020                return -EINVAL;
2021        }
2022
2023        if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2024                btf_verifier_log_type(env, t, "Invalid index");
2025                return -EINVAL;
2026        }
2027
2028        btf_verifier_log_type(env, t, NULL);
2029
2030        return meta_needed;
2031}
2032
2033static int btf_array_resolve(struct btf_verifier_env *env,
2034                             const struct resolve_vertex *v)
2035{
2036        const struct btf_array *array = btf_type_array(v->t);
2037        const struct btf_type *elem_type, *index_type;
2038        u32 elem_type_id, index_type_id;
2039        struct btf *btf = env->btf;
2040        u32 elem_size;
2041
2042        /* Check array->index_type */
2043        index_type_id = array->index_type;
2044        index_type = btf_type_by_id(btf, index_type_id);
2045        if (btf_type_nosize_or_null(index_type) ||
2046            btf_type_is_resolve_source_only(index_type)) {
2047                btf_verifier_log_type(env, v->t, "Invalid index");
2048                return -EINVAL;
2049        }
2050
2051        if (!env_type_is_resolve_sink(env, index_type) &&
2052            !env_type_is_resolved(env, index_type_id))
2053                return env_stack_push(env, index_type, index_type_id);
2054
2055        index_type = btf_type_id_size(btf, &index_type_id, NULL);
2056        if (!index_type || !btf_type_is_int(index_type) ||
2057            !btf_type_int_is_regular(index_type)) {
2058                btf_verifier_log_type(env, v->t, "Invalid index");
2059                return -EINVAL;
2060        }
2061
2062        /* Check array->type */
2063        elem_type_id = array->type;
2064        elem_type = btf_type_by_id(btf, elem_type_id);
2065        if (btf_type_nosize_or_null(elem_type) ||
2066            btf_type_is_resolve_source_only(elem_type)) {
2067                btf_verifier_log_type(env, v->t,
2068                                      "Invalid elem");
2069                return -EINVAL;
2070        }
2071
2072        if (!env_type_is_resolve_sink(env, elem_type) &&
2073            !env_type_is_resolved(env, elem_type_id))
2074                return env_stack_push(env, elem_type, elem_type_id);
2075
2076        elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2077        if (!elem_type) {
2078                btf_verifier_log_type(env, v->t, "Invalid elem");
2079                return -EINVAL;
2080        }
2081
2082        if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2083                btf_verifier_log_type(env, v->t, "Invalid array of int");
2084                return -EINVAL;
2085        }
2086
2087        if (array->nelems && elem_size > U32_MAX / array->nelems) {
2088                btf_verifier_log_type(env, v->t,
2089                                      "Array size overflows U32_MAX");
2090                return -EINVAL;
2091        }
2092
2093        env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2094
2095        return 0;
2096}
2097
2098static void btf_array_log(struct btf_verifier_env *env,
2099                          const struct btf_type *t)
2100{
2101        const struct btf_array *array = btf_type_array(t);
2102
2103        btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2104                         array->type, array->index_type, array->nelems);
2105}
2106
2107static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
2108                               u32 type_id, void *data, u8 bits_offset,
2109                               struct seq_file *m)
2110{
2111        const struct btf_array *array = btf_type_array(t);
2112        const struct btf_kind_operations *elem_ops;
2113        const struct btf_type *elem_type;
2114        u32 i, elem_size, elem_type_id;
2115
2116        elem_type_id = array->type;
2117        elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2118        elem_ops = btf_type_ops(elem_type);
2119        seq_puts(m, "[");
2120        for (i = 0; i < array->nelems; i++) {
2121                if (i)
2122                        seq_puts(m, ",");
2123
2124                elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2125                                   bits_offset, m);
2126                data += elem_size;
2127        }
2128        seq_puts(m, "]");
2129}
2130
2131static struct btf_kind_operations array_ops = {
2132        .check_meta = btf_array_check_meta,
2133        .resolve = btf_array_resolve,
2134        .check_member = btf_array_check_member,
2135        .check_kflag_member = btf_generic_check_kflag_member,
2136        .log_details = btf_array_log,
2137        .seq_show = btf_array_seq_show,
2138};
2139
2140static int btf_struct_check_member(struct btf_verifier_env *env,
2141                                   const struct btf_type *struct_type,
2142                                   const struct btf_member *member,
2143                                   const struct btf_type *member_type)
2144{
2145        u32 struct_bits_off = member->offset;
2146        u32 struct_size, bytes_offset;
2147
2148        if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2149                btf_verifier_log_member(env, struct_type, member,
2150                                        "Member is not byte aligned");
2151                return -EINVAL;
2152        }
2153
2154        struct_size = struct_type->size;
2155        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2156        if (struct_size - bytes_offset < member_type->size) {
2157                btf_verifier_log_member(env, struct_type, member,
2158                                        "Member exceeds struct_size");
2159                return -EINVAL;
2160        }
2161
2162        return 0;
2163}
2164
2165static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2166                                 const struct btf_type *t,
2167                                 u32 meta_left)
2168{
2169        bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2170        const struct btf_member *member;
2171        u32 meta_needed, last_offset;
2172        struct btf *btf = env->btf;
2173        u32 struct_size = t->size;
2174        u32 offset;
2175        u16 i;
2176
2177        meta_needed = btf_type_vlen(t) * sizeof(*member);
2178        if (meta_left < meta_needed) {
2179                btf_verifier_log_basic(env, t,
2180                                       "meta_left:%u meta_needed:%u",
2181                                       meta_left, meta_needed);
2182                return -EINVAL;
2183        }
2184
2185        /* struct type either no name or a valid one */
2186        if (t->name_off &&
2187            !btf_name_valid_identifier(env->btf, t->name_off)) {
2188                btf_verifier_log_type(env, t, "Invalid name");
2189                return -EINVAL;
2190        }
2191
2192        btf_verifier_log_type(env, t, NULL);
2193
2194        last_offset = 0;
2195        for_each_member(i, t, member) {
2196                if (!btf_name_offset_valid(btf, member->name_off)) {
2197                        btf_verifier_log_member(env, t, member,
2198                                                "Invalid member name_offset:%u",
2199                                                member->name_off);
2200                        return -EINVAL;
2201                }
2202
2203                /* struct member either no name or a valid one */
2204                if (member->name_off &&
2205                    !btf_name_valid_identifier(btf, member->name_off)) {
2206                        btf_verifier_log_member(env, t, member, "Invalid name");
2207                        return -EINVAL;
2208                }
2209                /* A member cannot be in type void */
2210                if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2211                        btf_verifier_log_member(env, t, member,
2212                                                "Invalid type_id");
2213                        return -EINVAL;
2214                }
2215
2216                offset = btf_member_bit_offset(t, member);
2217                if (is_union && offset) {
2218                        btf_verifier_log_member(env, t, member,
2219                                                "Invalid member bits_offset");
2220                        return -EINVAL;
2221                }
2222
2223                /*
2224                 * ">" instead of ">=" because the last member could be
2225                 * "char a[0];"
2226                 */
2227                if (last_offset > offset) {
2228                        btf_verifier_log_member(env, t, member,
2229                                                "Invalid member bits_offset");
2230                        return -EINVAL;
2231                }
2232
2233                if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2234                        btf_verifier_log_member(env, t, member,
2235                                                "Member bits_offset exceeds its struct size");
2236                        return -EINVAL;
2237                }
2238
2239                btf_verifier_log_member(env, t, member, NULL);
2240                last_offset = offset;
2241        }
2242
2243        return meta_needed;
2244}
2245
2246static int btf_struct_resolve(struct btf_verifier_env *env,
2247                              const struct resolve_vertex *v)
2248{
2249        const struct btf_member *member;
2250        int err;
2251        u16 i;
2252
2253        /* Before continue resolving the next_member,
2254         * ensure the last member is indeed resolved to a
2255         * type with size info.
2256         */
2257        if (v->next_member) {
2258                const struct btf_type *last_member_type;
2259                const struct btf_member *last_member;
2260                u16 last_member_type_id;
2261
2262                last_member = btf_type_member(v->t) + v->next_member - 1;
2263                last_member_type_id = last_member->type;
2264                if (WARN_ON_ONCE(!env_type_is_resolved(env,
2265                                                       last_member_type_id)))
2266                        return -EINVAL;
2267
2268                last_member_type = btf_type_by_id(env->btf,
2269                                                  last_member_type_id);
2270                if (btf_type_kflag(v->t))
2271                        err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2272                                                                last_member,
2273                                                                last_member_type);
2274                else
2275                        err = btf_type_ops(last_member_type)->check_member(env, v->t,
2276                                                                last_member,
2277                                                                last_member_type);
2278                if (err)
2279                        return err;
2280        }
2281
2282        for_each_member_from(i, v->next_member, v->t, member) {
2283                u32 member_type_id = member->type;
2284                const struct btf_type *member_type = btf_type_by_id(env->btf,
2285                                                                member_type_id);
2286
2287                if (btf_type_nosize_or_null(member_type) ||
2288                    btf_type_is_resolve_source_only(member_type)) {
2289                        btf_verifier_log_member(env, v->t, member,
2290                                                "Invalid member");
2291                        return -EINVAL;
2292                }
2293
2294                if (!env_type_is_resolve_sink(env, member_type) &&
2295                    !env_type_is_resolved(env, member_type_id)) {
2296                        env_stack_set_next_member(env, i + 1);
2297                        return env_stack_push(env, member_type, member_type_id);
2298                }
2299
2300                if (btf_type_kflag(v->t))
2301                        err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2302                                                                            member,
2303                                                                            member_type);
2304                else
2305                        err = btf_type_ops(member_type)->check_member(env, v->t,
2306                                                                      member,
2307                                                                      member_type);
2308                if (err)
2309                        return err;
2310        }
2311
2312        env_stack_pop_resolved(env, 0, 0);
2313
2314        return 0;
2315}
2316
2317static void btf_struct_log(struct btf_verifier_env *env,
2318                           const struct btf_type *t)
2319{
2320        btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2321}
2322
2323/* find 'struct bpf_spin_lock' in map value.
2324 * return >= 0 offset if found
2325 * and < 0 in case of error
2326 */
2327int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2328{
2329        const struct btf_member *member;
2330        u32 i, off = -ENOENT;
2331
2332        if (!__btf_type_is_struct(t))
2333                return -EINVAL;
2334
2335        for_each_member(i, t, member) {
2336                const struct btf_type *member_type = btf_type_by_id(btf,
2337                                                                    member->type);
2338                if (!__btf_type_is_struct(member_type))
2339                        continue;
2340                if (member_type->size != sizeof(struct bpf_spin_lock))
2341                        continue;
2342                if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2343                           "bpf_spin_lock"))
2344                        continue;
2345                if (off != -ENOENT)
2346                        /* only one 'struct bpf_spin_lock' is allowed */
2347                        return -E2BIG;
2348                off = btf_member_bit_offset(t, member);
2349                if (off % 8)
2350                        /* valid C code cannot generate such BTF */
2351                        return -EINVAL;
2352                off /= 8;
2353                if (off % __alignof__(struct bpf_spin_lock))
2354                        /* valid struct bpf_spin_lock will be 4 byte aligned */
2355                        return -EINVAL;
2356        }
2357        return off;
2358}
2359
2360static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2361                                u32 type_id, void *data, u8 bits_offset,
2362                                struct seq_file *m)
2363{
2364        const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2365        const struct btf_member *member;
2366        u32 i;
2367
2368        seq_puts(m, "{");
2369        for_each_member(i, t, member) {
2370                const struct btf_type *member_type = btf_type_by_id(btf,
2371                                                                member->type);
2372                const struct btf_kind_operations *ops;
2373                u32 member_offset, bitfield_size;
2374                u32 bytes_offset;
2375                u8 bits8_offset;
2376
2377                if (i)
2378                        seq_puts(m, seq);
2379
2380                member_offset = btf_member_bit_offset(t, member);
2381                bitfield_size = btf_member_bitfield_size(t, member);
2382                bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2383                bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2384                if (bitfield_size) {
2385                        btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2386                                              bitfield_size, m);
2387                } else {
2388                        ops = btf_type_ops(member_type);
2389                        ops->seq_show(btf, member_type, member->type,
2390                                      data + bytes_offset, bits8_offset, m);
2391                }
2392        }
2393        seq_puts(m, "}");
2394}
2395
2396static struct btf_kind_operations struct_ops = {
2397        .check_meta = btf_struct_check_meta,
2398        .resolve = btf_struct_resolve,
2399        .check_member = btf_struct_check_member,
2400        .check_kflag_member = btf_generic_check_kflag_member,
2401        .log_details = btf_struct_log,
2402        .seq_show = btf_struct_seq_show,
2403};
2404
2405static int btf_enum_check_member(struct btf_verifier_env *env,
2406                                 const struct btf_type *struct_type,
2407                                 const struct btf_member *member,
2408                                 const struct btf_type *member_type)
2409{
2410        u32 struct_bits_off = member->offset;
2411        u32 struct_size, bytes_offset;
2412
2413        if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2414                btf_verifier_log_member(env, struct_type, member,
2415                                        "Member is not byte aligned");
2416                return -EINVAL;
2417        }
2418
2419        struct_size = struct_type->size;
2420        bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2421        if (struct_size - bytes_offset < member_type->size) {
2422                btf_verifier_log_member(env, struct_type, member,
2423                                        "Member exceeds struct_size");
2424                return -EINVAL;
2425        }
2426
2427        return 0;
2428}
2429
2430static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2431                                       const struct btf_type *struct_type,
2432                                       const struct btf_member *member,
2433                                       const struct btf_type *member_type)
2434{
2435        u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2436        u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2437
2438        struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2439        nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2440        if (!nr_bits) {
2441                if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2442                        btf_verifier_log_member(env, struct_type, member,
2443                                                "Member is not byte aligned");
2444                        return -EINVAL;
2445                }
2446
2447                nr_bits = int_bitsize;
2448        } else if (nr_bits > int_bitsize) {
2449                btf_verifier_log_member(env, struct_type, member,
2450                                        "Invalid member bitfield_size");
2451                return -EINVAL;
2452        }
2453
2454        struct_size = struct_type->size;
2455        bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2456        if (struct_size < bytes_end) {
2457                btf_verifier_log_member(env, struct_type, member,
2458                                        "Member exceeds struct_size");
2459                return -EINVAL;
2460        }
2461
2462        return 0;
2463}
2464
2465static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2466                               const struct btf_type *t,
2467                               u32 meta_left)
2468{
2469        const struct btf_enum *enums = btf_type_enum(t);
2470        struct btf *btf = env->btf;
2471        u16 i, nr_enums;
2472        u32 meta_needed;
2473
2474        nr_enums = btf_type_vlen(t);
2475        meta_needed = nr_enums * sizeof(*enums);
2476
2477        if (meta_left < meta_needed) {
2478                btf_verifier_log_basic(env, t,
2479                                       "meta_left:%u meta_needed:%u",
2480                                       meta_left, meta_needed);
2481                return -EINVAL;
2482        }
2483
2484        if (btf_type_kflag(t)) {
2485                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2486                return -EINVAL;
2487        }
2488
2489        if (t->size > 8 || !is_power_of_2(t->size)) {
2490                btf_verifier_log_type(env, t, "Unexpected size");
2491                return -EINVAL;
2492        }
2493
2494        /* enum type either no name or a valid one */
2495        if (t->name_off &&
2496            !btf_name_valid_identifier(env->btf, t->name_off)) {
2497                btf_verifier_log_type(env, t, "Invalid name");
2498                return -EINVAL;
2499        }
2500
2501        btf_verifier_log_type(env, t, NULL);
2502
2503        for (i = 0; i < nr_enums; i++) {
2504                if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2505                        btf_verifier_log(env, "\tInvalid name_offset:%u",
2506                                         enums[i].name_off);
2507                        return -EINVAL;
2508                }
2509
2510                /* enum member must have a valid name */
2511                if (!enums[i].name_off ||
2512                    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2513                        btf_verifier_log_type(env, t, "Invalid name");
2514                        return -EINVAL;
2515                }
2516
2517                if (env->log.level == BPF_LOG_KERNEL)
2518                        continue;
2519                btf_verifier_log(env, "\t%s val=%d\n",
2520                                 __btf_name_by_offset(btf, enums[i].name_off),
2521                                 enums[i].val);
2522        }
2523
2524        return meta_needed;
2525}
2526
2527static void btf_enum_log(struct btf_verifier_env *env,
2528                         const struct btf_type *t)
2529{
2530        btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2531}
2532
2533static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2534                              u32 type_id, void *data, u8 bits_offset,
2535                              struct seq_file *m)
2536{
2537        const struct btf_enum *enums = btf_type_enum(t);
2538        u32 i, nr_enums = btf_type_vlen(t);
2539        int v = *(int *)data;
2540
2541        for (i = 0; i < nr_enums; i++) {
2542                if (v == enums[i].val) {
2543                        seq_printf(m, "%s",
2544                                   __btf_name_by_offset(btf,
2545                                                        enums[i].name_off));
2546                        return;
2547                }
2548        }
2549
2550        seq_printf(m, "%d", v);
2551}
2552
2553static struct btf_kind_operations enum_ops = {
2554        .check_meta = btf_enum_check_meta,
2555        .resolve = btf_df_resolve,
2556        .check_member = btf_enum_check_member,
2557        .check_kflag_member = btf_enum_check_kflag_member,
2558        .log_details = btf_enum_log,
2559        .seq_show = btf_enum_seq_show,
2560};
2561
2562static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2563                                     const struct btf_type *t,
2564                                     u32 meta_left)
2565{
2566        u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2567
2568        if (meta_left < meta_needed) {
2569                btf_verifier_log_basic(env, t,
2570                                       "meta_left:%u meta_needed:%u",
2571                                       meta_left, meta_needed);
2572                return -EINVAL;
2573        }
2574
2575        if (t->name_off) {
2576                btf_verifier_log_type(env, t, "Invalid name");
2577                return -EINVAL;
2578        }
2579
2580        if (btf_type_kflag(t)) {
2581                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2582                return -EINVAL;
2583        }
2584
2585        btf_verifier_log_type(env, t, NULL);
2586
2587        return meta_needed;
2588}
2589
2590static void btf_func_proto_log(struct btf_verifier_env *env,
2591                               const struct btf_type *t)
2592{
2593        const struct btf_param *args = (const struct btf_param *)(t + 1);
2594        u16 nr_args = btf_type_vlen(t), i;
2595
2596        btf_verifier_log(env, "return=%u args=(", t->type);
2597        if (!nr_args) {
2598                btf_verifier_log(env, "void");
2599                goto done;
2600        }
2601
2602        if (nr_args == 1 && !args[0].type) {
2603                /* Only one vararg */
2604                btf_verifier_log(env, "vararg");
2605                goto done;
2606        }
2607
2608        btf_verifier_log(env, "%u %s", args[0].type,
2609                         __btf_name_by_offset(env->btf,
2610                                              args[0].name_off));
2611        for (i = 1; i < nr_args - 1; i++)
2612                btf_verifier_log(env, ", %u %s", args[i].type,
2613                                 __btf_name_by_offset(env->btf,
2614                                                      args[i].name_off));
2615
2616        if (nr_args > 1) {
2617                const struct btf_param *last_arg = &args[nr_args - 1];
2618
2619                if (last_arg->type)
2620                        btf_verifier_log(env, ", %u %s", last_arg->type,
2621                                         __btf_name_by_offset(env->btf,
2622                                                              last_arg->name_off));
2623                else
2624                        btf_verifier_log(env, ", vararg");
2625        }
2626
2627done:
2628        btf_verifier_log(env, ")");
2629}
2630
2631static struct btf_kind_operations func_proto_ops = {
2632        .check_meta = btf_func_proto_check_meta,
2633        .resolve = btf_df_resolve,
2634        /*
2635         * BTF_KIND_FUNC_PROTO cannot be directly referred by
2636         * a struct's member.
2637         *
2638         * It should be a funciton pointer instead.
2639         * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2640         *
2641         * Hence, there is no btf_func_check_member().
2642         */
2643        .check_member = btf_df_check_member,
2644        .check_kflag_member = btf_df_check_kflag_member,
2645        .log_details = btf_func_proto_log,
2646        .seq_show = btf_df_seq_show,
2647};
2648
2649static s32 btf_func_check_meta(struct btf_verifier_env *env,
2650                               const struct btf_type *t,
2651                               u32 meta_left)
2652{
2653        if (!t->name_off ||
2654            !btf_name_valid_identifier(env->btf, t->name_off)) {
2655                btf_verifier_log_type(env, t, "Invalid name");
2656                return -EINVAL;
2657        }
2658
2659        if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
2660                btf_verifier_log_type(env, t, "Invalid func linkage");
2661                return -EINVAL;
2662        }
2663
2664        if (btf_type_kflag(t)) {
2665                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2666                return -EINVAL;
2667        }
2668
2669        btf_verifier_log_type(env, t, NULL);
2670
2671        return 0;
2672}
2673
2674static struct btf_kind_operations func_ops = {
2675        .check_meta = btf_func_check_meta,
2676        .resolve = btf_df_resolve,
2677        .check_member = btf_df_check_member,
2678        .check_kflag_member = btf_df_check_kflag_member,
2679        .log_details = btf_ref_type_log,
2680        .seq_show = btf_df_seq_show,
2681};
2682
2683static s32 btf_var_check_meta(struct btf_verifier_env *env,
2684                              const struct btf_type *t,
2685                              u32 meta_left)
2686{
2687        const struct btf_var *var;
2688        u32 meta_needed = sizeof(*var);
2689
2690        if (meta_left < meta_needed) {
2691                btf_verifier_log_basic(env, t,
2692                                       "meta_left:%u meta_needed:%u",
2693                                       meta_left, meta_needed);
2694                return -EINVAL;
2695        }
2696
2697        if (btf_type_vlen(t)) {
2698                btf_verifier_log_type(env, t, "vlen != 0");
2699                return -EINVAL;
2700        }
2701
2702        if (btf_type_kflag(t)) {
2703                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2704                return -EINVAL;
2705        }
2706
2707        if (!t->name_off ||
2708            !__btf_name_valid(env->btf, t->name_off, true)) {
2709                btf_verifier_log_type(env, t, "Invalid name");
2710                return -EINVAL;
2711        }
2712
2713        /* A var cannot be in type void */
2714        if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2715                btf_verifier_log_type(env, t, "Invalid type_id");
2716                return -EINVAL;
2717        }
2718
2719        var = btf_type_var(t);
2720        if (var->linkage != BTF_VAR_STATIC &&
2721            var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2722                btf_verifier_log_type(env, t, "Linkage not supported");
2723                return -EINVAL;
2724        }
2725
2726        btf_verifier_log_type(env, t, NULL);
2727
2728        return meta_needed;
2729}
2730
2731static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2732{
2733        const struct btf_var *var = btf_type_var(t);
2734
2735        btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2736}
2737
2738static const struct btf_kind_operations var_ops = {
2739        .check_meta             = btf_var_check_meta,
2740        .resolve                = btf_var_resolve,
2741        .check_member           = btf_df_check_member,
2742        .check_kflag_member     = btf_df_check_kflag_member,
2743        .log_details            = btf_var_log,
2744        .seq_show               = btf_var_seq_show,
2745};
2746
2747static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2748                                  const struct btf_type *t,
2749                                  u32 meta_left)
2750{
2751        const struct btf_var_secinfo *vsi;
2752        u64 last_vsi_end_off = 0, sum = 0;
2753        u32 i, meta_needed;
2754
2755        meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2756        if (meta_left < meta_needed) {
2757                btf_verifier_log_basic(env, t,
2758                                       "meta_left:%u meta_needed:%u",
2759                                       meta_left, meta_needed);
2760                return -EINVAL;
2761        }
2762
2763        if (!btf_type_vlen(t)) {
2764                btf_verifier_log_type(env, t, "vlen == 0");
2765                return -EINVAL;
2766        }
2767
2768        if (!t->size) {
2769                btf_verifier_log_type(env, t, "size == 0");
2770                return -EINVAL;
2771        }
2772
2773        if (btf_type_kflag(t)) {
2774                btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2775                return -EINVAL;
2776        }
2777
2778        if (!t->name_off ||
2779            !btf_name_valid_section(env->btf, t->name_off)) {
2780                btf_verifier_log_type(env, t, "Invalid name");
2781                return -EINVAL;
2782        }
2783
2784        btf_verifier_log_type(env, t, NULL);
2785
2786        for_each_vsi(i, t, vsi) {
2787                /* A var cannot be in type void */
2788                if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2789                        btf_verifier_log_vsi(env, t, vsi,
2790                                             "Invalid type_id");
2791                        return -EINVAL;
2792                }
2793
2794                if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2795                        btf_verifier_log_vsi(env, t, vsi,
2796                                             "Invalid offset");
2797                        return -EINVAL;
2798                }
2799
2800                if (!vsi->size || vsi->size > t->size) {
2801                        btf_verifier_log_vsi(env, t, vsi,
2802                                             "Invalid size");
2803                        return -EINVAL;
2804                }
2805
2806                last_vsi_end_off = vsi->offset + vsi->size;
2807                if (last_vsi_end_off > t->size) {
2808                        btf_verifier_log_vsi(env, t, vsi,
2809                                             "Invalid offset+size");
2810                        return -EINVAL;
2811                }
2812
2813                btf_verifier_log_vsi(env, t, vsi, NULL);
2814                sum += vsi->size;
2815        }
2816
2817        if (t->size < sum) {
2818                btf_verifier_log_type(env, t, "Invalid btf_info size");
2819                return -EINVAL;
2820        }
2821
2822        return meta_needed;
2823}
2824
2825static int btf_datasec_resolve(struct btf_verifier_env *env,
2826                               const struct resolve_vertex *v)
2827{
2828        const struct btf_var_secinfo *vsi;
2829        struct btf *btf = env->btf;
2830        u16 i;
2831
2832        for_each_vsi_from(i, v->next_member, v->t, vsi) {
2833                u32 var_type_id = vsi->type, type_id, type_size = 0;
2834                const struct btf_type *var_type = btf_type_by_id(env->btf,
2835                                                                 var_type_id);
2836                if (!var_type || !btf_type_is_var(var_type)) {
2837                        btf_verifier_log_vsi(env, v->t, vsi,
2838                                             "Not a VAR kind member");
2839                        return -EINVAL;
2840                }
2841
2842                if (!env_type_is_resolve_sink(env, var_type) &&
2843                    !env_type_is_resolved(env, var_type_id)) {
2844                        env_stack_set_next_member(env, i + 1);
2845                        return env_stack_push(env, var_type, var_type_id);
2846                }
2847
2848                type_id = var_type->type;
2849                if (!btf_type_id_size(btf, &type_id, &type_size)) {
2850                        btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2851                        return -EINVAL;
2852                }
2853
2854                if (vsi->size < type_size) {
2855                        btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2856                        return -EINVAL;
2857                }
2858        }
2859
2860        env_stack_pop_resolved(env, 0, 0);
2861        return 0;
2862}
2863
2864static void btf_datasec_log(struct btf_verifier_env *env,
2865                            const struct btf_type *t)
2866{
2867        btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2868}
2869
2870static void btf_datasec_seq_show(const struct btf *btf,
2871                                 const struct btf_type *t, u32 type_id,
2872                                 void *data, u8 bits_offset,
2873                                 struct seq_file *m)
2874{
2875        const struct btf_var_secinfo *vsi;
2876        const struct btf_type *var;
2877        u32 i;
2878
2879        seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2880        for_each_vsi(i, t, vsi) {
2881                var = btf_type_by_id(btf, vsi->type);
2882                if (i)
2883                        seq_puts(m, ",");
2884                btf_type_ops(var)->seq_show(btf, var, vsi->type,
2885                                            data + vsi->offset, bits_offset, m);
2886        }
2887        seq_puts(m, "}");
2888}
2889
2890static const struct btf_kind_operations datasec_ops = {
2891        .check_meta             = btf_datasec_check_meta,
2892        .resolve                = btf_datasec_resolve,
2893        .check_member           = btf_df_check_member,
2894        .check_kflag_member     = btf_df_check_kflag_member,
2895        .log_details            = btf_datasec_log,
2896        .seq_show               = btf_datasec_seq_show,
2897};
2898
2899static int btf_func_proto_check(struct btf_verifier_env *env,
2900                                const struct btf_type *t)
2901{
2902        const struct btf_type *ret_type;
2903        const struct btf_param *args;
2904        const struct btf *btf;
2905        u16 nr_args, i;
2906        int err;
2907
2908        btf = env->btf;
2909        args = (const struct btf_param *)(t + 1);
2910        nr_args = btf_type_vlen(t);
2911
2912        /* Check func return type which could be "void" (t->type == 0) */
2913        if (t->type) {
2914                u32 ret_type_id = t->type;
2915
2916                ret_type = btf_type_by_id(btf, ret_type_id);
2917                if (!ret_type) {
2918                        btf_verifier_log_type(env, t, "Invalid return type");
2919                        return -EINVAL;
2920                }
2921
2922                if (btf_type_needs_resolve(ret_type) &&
2923                    !env_type_is_resolved(env, ret_type_id)) {
2924                        err = btf_resolve(env, ret_type, ret_type_id);
2925                        if (err)
2926                                return err;
2927                }
2928
2929                /* Ensure the return type is a type that has a size */
2930                if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2931                        btf_verifier_log_type(env, t, "Invalid return type");
2932                        return -EINVAL;
2933                }
2934        }
2935
2936        if (!nr_args)
2937                return 0;
2938
2939        /* Last func arg type_id could be 0 if it is a vararg */
2940        if (!args[nr_args - 1].type) {
2941                if (args[nr_args - 1].name_off) {
2942                        btf_verifier_log_type(env, t, "Invalid arg#%u",
2943                                              nr_args);
2944                        return -EINVAL;
2945                }
2946                nr_args--;
2947        }
2948
2949        err = 0;
2950        for (i = 0; i < nr_args; i++) {
2951                const struct btf_type *arg_type;
2952                u32 arg_type_id;
2953
2954                arg_type_id = args[i].type;
2955                arg_type = btf_type_by_id(btf, arg_type_id);
2956                if (!arg_type) {
2957                        btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2958                        err = -EINVAL;
2959                        break;
2960                }
2961
2962                if (args[i].name_off &&
2963                    (!btf_name_offset_valid(btf, args[i].name_off) ||
2964                     !btf_name_valid_identifier(btf, args[i].name_off))) {
2965                        btf_verifier_log_type(env, t,
2966                                              "Invalid arg#%u", i + 1);
2967                        err = -EINVAL;
2968                        break;
2969                }
2970
2971                if (btf_type_needs_resolve(arg_type) &&
2972                    !env_type_is_resolved(env, arg_type_id)) {
2973                        err = btf_resolve(env, arg_type, arg_type_id);
2974                        if (err)
2975                                break;
2976                }
2977
2978                if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2979                        btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2980                        err = -EINVAL;
2981                        break;
2982                }
2983        }
2984
2985        return err;
2986}
2987
2988static int btf_func_check(struct btf_verifier_env *env,
2989                          const struct btf_type *t)
2990{
2991        const struct btf_type *proto_type;
2992        const struct btf_param *args;
2993        const struct btf *btf;
2994        u16 nr_args, i;
2995
2996        btf = env->btf;
2997        proto_type = btf_type_by_id(btf, t->type);
2998
2999        if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3000                btf_verifier_log_type(env, t, "Invalid type_id");
3001                return -EINVAL;
3002        }
3003
3004        args = (const struct btf_param *)(proto_type + 1);
3005        nr_args = btf_type_vlen(proto_type);
3006        for (i = 0; i < nr_args; i++) {
3007                if (!args[i].name_off && args[i].type) {
3008                        btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3009                        return -EINVAL;
3010                }
3011        }
3012
3013        return 0;
3014}
3015
3016static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3017        [BTF_KIND_INT] = &int_ops,
3018        [BTF_KIND_PTR] = &ptr_ops,
3019        [BTF_KIND_ARRAY] = &array_ops,
3020        [BTF_KIND_STRUCT] = &struct_ops,
3021        [BTF_KIND_UNION] = &struct_ops,
3022        [BTF_KIND_ENUM] = &enum_ops,
3023        [BTF_KIND_FWD] = &fwd_ops,
3024        [BTF_KIND_TYPEDEF] = &modifier_ops,
3025        [BTF_KIND_VOLATILE] = &modifier_ops,
3026        [BTF_KIND_CONST] = &modifier_ops,
3027        [BTF_KIND_RESTRICT] = &modifier_ops,
3028        [BTF_KIND_FUNC] = &func_ops,
3029        [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3030        [BTF_KIND_VAR] = &var_ops,
3031        [BTF_KIND_DATASEC] = &datasec_ops,
3032};
3033
3034static s32 btf_check_meta(struct btf_verifier_env *env,
3035                          const struct btf_type *t,
3036                          u32 meta_left)
3037{
3038        u32 saved_meta_left = meta_left;
3039        s32 var_meta_size;
3040
3041        if (meta_left < sizeof(*t)) {
3042                btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3043                                 env->log_type_id, meta_left, sizeof(*t));
3044                return -EINVAL;
3045        }
3046        meta_left -= sizeof(*t);
3047
3048        if (t->info & ~BTF_INFO_MASK) {
3049                btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3050                                 env->log_type_id, t->info);
3051                return -EINVAL;
3052        }
3053
3054        if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3055            BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3056                btf_verifier_log(env, "[%u] Invalid kind:%u",
3057                                 env->log_type_id, BTF_INFO_KIND(t->info));
3058                return -EINVAL;
3059        }
3060
3061        if (!btf_name_offset_valid(env->btf, t->name_off)) {
3062                btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3063                                 env->log_type_id, t->name_off);
3064                return -EINVAL;
3065        }
3066
3067        var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3068        if (var_meta_size < 0)
3069                return var_meta_size;
3070
3071        meta_left -= var_meta_size;
3072
3073        return saved_meta_left - meta_left;
3074}
3075
3076static int btf_check_all_metas(struct btf_verifier_env *env)
3077{
3078        struct btf *btf = env->btf;
3079        struct btf_header *hdr;
3080        void *cur, *end;
3081
3082        hdr = &btf->hdr;
3083        cur = btf->nohdr_data + hdr->type_off;
3084        end = cur + hdr->type_len;
3085
3086        env->log_type_id = 1;
3087        while (cur < end) {
3088                struct btf_type *t = cur;
3089                s32 meta_size;
3090
3091                meta_size = btf_check_meta(env, t, end - cur);
3092                if (meta_size < 0)
3093                        return meta_size;
3094
3095                btf_add_type(env, t);
3096                cur += meta_size;
3097                env->log_type_id++;
3098        }
3099
3100        return 0;
3101}
3102
3103static bool btf_resolve_valid(struct btf_verifier_env *env,
3104                              const struct btf_type *t,
3105                              u32 type_id)
3106{
3107        struct btf *btf = env->btf;
3108
3109        if (!env_type_is_resolved(env, type_id))
3110                return false;
3111
3112        if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3113                return !btf->resolved_ids[type_id] &&
3114                       !btf->resolved_sizes[type_id];
3115
3116        if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3117            btf_type_is_var(t)) {
3118                t = btf_type_id_resolve(btf, &type_id);
3119                return t &&
3120                       !btf_type_is_modifier(t) &&
3121                       !btf_type_is_var(t) &&
3122                       !btf_type_is_datasec(t);
3123        }
3124
3125        if (btf_type_is_array(t)) {
3126                const struct btf_array *array = btf_type_array(t);
3127                const struct btf_type *elem_type;
3128                u32 elem_type_id = array->type;
3129                u32 elem_size;
3130
3131                elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3132                return elem_type && !btf_type_is_modifier(elem_type) &&
3133                        (array->nelems * elem_size ==
3134                         btf->resolved_sizes[type_id]);
3135        }
3136
3137        return false;
3138}
3139
3140static int btf_resolve(struct btf_verifier_env *env,
3141                       const struct btf_type *t, u32 type_id)
3142{
3143        u32 save_log_type_id = env->log_type_id;
3144        const struct resolve_vertex *v;
3145        int err = 0;
3146
3147        env->resolve_mode = RESOLVE_TBD;
3148        env_stack_push(env, t, type_id);
3149        while (!err && (v = env_stack_peak(env))) {
3150                env->log_type_id = v->type_id;
3151                err = btf_type_ops(v->t)->resolve(env, v);
3152        }
3153
3154        env->log_type_id = type_id;
3155        if (err == -E2BIG) {
3156                btf_verifier_log_type(env, t,
3157                                      "Exceeded max resolving depth:%u",
3158                                      MAX_RESOLVE_DEPTH);
3159        } else if (err == -EEXIST) {
3160                btf_verifier_log_type(env, t, "Loop detected");
3161        }
3162
3163        /* Final sanity check */
3164        if (!err && !btf_resolve_valid(env, t, type_id)) {
3165                btf_verifier_log_type(env, t, "Invalid resolve state");
3166                err = -EINVAL;
3167        }
3168
3169        env->log_type_id = save_log_type_id;
3170        return err;
3171}
3172
3173static int btf_check_all_types(struct btf_verifier_env *env)
3174{
3175        struct btf *btf = env->btf;
3176        u32 type_id;
3177        int err;
3178
3179        err = env_resolve_init(env);
3180        if (err)
3181                return err;
3182
3183        env->phase++;
3184        for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3185                const struct btf_type *t = btf_type_by_id(btf, type_id);
3186
3187                env->log_type_id = type_id;
3188                if (btf_type_needs_resolve(t) &&
3189                    !env_type_is_resolved(env, type_id)) {
3190                        err = btf_resolve(env, t, type_id);
3191                        if (err)
3192                                return err;
3193                }
3194
3195                if (btf_type_is_func_proto(t)) {
3196                        err = btf_func_proto_check(env, t);
3197                        if (err)
3198                                return err;
3199                }
3200
3201                if (btf_type_is_func(t)) {
3202                        err = btf_func_check(env, t);
3203                        if (err)
3204                                return err;
3205                }
3206        }
3207
3208        return 0;
3209}
3210
3211static int btf_parse_type_sec(struct btf_verifier_env *env)
3212{
3213        const struct btf_header *hdr = &env->btf->hdr;
3214        int err;
3215
3216        /* Type section must align to 4 bytes */
3217        if (hdr->type_off & (sizeof(u32) - 1)) {
3218                btf_verifier_log(env, "Unaligned type_off");
3219                return -EINVAL;
3220        }
3221
3222        if (!hdr->type_len) {
3223                btf_verifier_log(env, "No type found");
3224                return -EINVAL;
3225        }
3226
3227        err = btf_check_all_metas(env);
3228        if (err)
3229                return err;
3230
3231        return btf_check_all_types(env);
3232}
3233
3234static int btf_parse_str_sec(struct btf_verifier_env *env)
3235{
3236        const struct btf_header *hdr;
3237        struct btf *btf = env->btf;
3238        const char *start, *end;
3239
3240        hdr = &btf->hdr;
3241        start = btf->nohdr_data + hdr->str_off;
3242        end = start + hdr->str_len;
3243
3244        if (end != btf->data + btf->data_size) {
3245                btf_verifier_log(env, "String section is not at the end");
3246                return -EINVAL;
3247        }
3248
3249        if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3250            start[0] || end[-1]) {
3251                btf_verifier_log(env, "Invalid string section");
3252                return -EINVAL;
3253        }
3254
3255        btf->strings = start;
3256
3257        return 0;
3258}
3259
3260static const size_t btf_sec_info_offset[] = {
3261        offsetof(struct btf_header, type_off),
3262        offsetof(struct btf_header, str_off),
3263};
3264
3265static int btf_sec_info_cmp(const void *a, const void *b)
3266{
3267        const struct btf_sec_info *x = a;
3268        const struct btf_sec_info *y = b;
3269
3270        return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3271}
3272
3273static int btf_check_sec_info(struct btf_verifier_env *env,
3274                              u32 btf_data_size)
3275{
3276        struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3277        u32 total, expected_total, i;
3278        const struct btf_header *hdr;
3279        const struct btf *btf;
3280
3281        btf = env->btf;
3282        hdr = &btf->hdr;
3283
3284        /* Populate the secs from hdr */
3285        for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3286                secs[i] = *(struct btf_sec_info *)((void *)hdr +
3287                                                   btf_sec_info_offset[i]);
3288
3289        sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3290             sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3291
3292        /* Check for gaps and overlap among sections */
3293        total = 0;
3294        expected_total = btf_data_size - hdr->hdr_len;
3295        for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3296                if (expected_total < secs[i].off) {
3297                        btf_verifier_log(env, "Invalid section offset");
3298                        return -EINVAL;
3299                }
3300                if (total < secs[i].off) {
3301                        /* gap */
3302                        btf_verifier_log(env, "Unsupported section found");
3303                        return -EINVAL;
3304                }
3305                if (total > secs[i].off) {
3306                        btf_verifier_log(env, "Section overlap found");
3307                        return -EINVAL;
3308                }
3309                if (expected_total - total < secs[i].len) {
3310                        btf_verifier_log(env,
3311                                         "Total section length too long");
3312                        return -EINVAL;
3313                }
3314                total += secs[i].len;
3315        }
3316
3317        /* There is data other than hdr and known sections */
3318        if (expected_total != total) {
3319                btf_verifier_log(env, "Unsupported section found");
3320                return -EINVAL;
3321        }
3322
3323        return 0;
3324}
3325
3326static int btf_parse_hdr(struct btf_verifier_env *env)
3327{
3328        u32 hdr_len, hdr_copy, btf_data_size;
3329        const struct btf_header *hdr;
3330        struct btf *btf;
3331        int err;
3332
3333        btf = env->btf;
3334        btf_data_size = btf->data_size;
3335
3336        if (btf_data_size <
3337            offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3338                btf_verifier_log(env, "hdr_len not found");
3339                return -EINVAL;
3340        }
3341
3342        hdr = btf->data;
3343        hdr_len = hdr->hdr_len;
3344        if (btf_data_size < hdr_len) {
3345                btf_verifier_log(env, "btf_header not found");
3346                return -EINVAL;
3347        }
3348
3349        /* Ensure the unsupported header fields are zero */
3350        if (hdr_len > sizeof(btf->hdr)) {
3351                u8 *expected_zero = btf->data + sizeof(btf->hdr);
3352                u8 *end = btf->data + hdr_len;
3353
3354                for (; expected_zero < end; expected_zero++) {
3355                        if (*expected_zero) {
3356                                btf_verifier_log(env, "Unsupported btf_header");
3357                                return -E2BIG;
3358                        }
3359                }
3360        }
3361
3362        hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3363        memcpy(&btf->hdr, btf->data, hdr_copy);
3364
3365        hdr = &btf->hdr;
3366
3367        btf_verifier_log_hdr(env, btf_data_size);
3368
3369        if (hdr->magic != BTF_MAGIC) {
3370                btf_verifier_log(env, "Invalid magic");
3371                return -EINVAL;
3372        }
3373
3374        if (hdr->version != BTF_VERSION) {
3375                btf_verifier_log(env, "Unsupported version");
3376                return -ENOTSUPP;
3377        }
3378
3379        if (hdr->flags) {
3380                btf_verifier_log(env, "Unsupported flags");
3381                return -ENOTSUPP;
3382        }
3383
3384        if (btf_data_size == hdr->hdr_len) {
3385                btf_verifier_log(env, "No data");
3386                return -EINVAL;
3387        }
3388
3389        err = btf_check_sec_info(env, btf_data_size);
3390        if (err)
3391                return err;
3392
3393        return 0;
3394}
3395
3396static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3397                             u32 log_level, char __user *log_ubuf, u32 log_size)
3398{
3399        struct btf_verifier_env *env = NULL;
3400        struct bpf_verifier_log *log;
3401        struct btf *btf = NULL;
3402        u8 *data;
3403        int err;
3404
3405        if (btf_data_size > BTF_MAX_SIZE)
3406                return ERR_PTR(-E2BIG);
3407
3408        env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3409        if (!env)
3410                return ERR_PTR(-ENOMEM);
3411
3412        log = &env->log;
3413        if (log_level || log_ubuf || log_size) {
3414                /* user requested verbose verifier output
3415                 * and supplied buffer to store the verification trace
3416                 */
3417                log->level = log_level;
3418                log->ubuf = log_ubuf;
3419                log->len_total = log_size;
3420
3421                /* log attributes have to be sane */
3422                if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3423                    !log->level || !log->ubuf) {
3424                        err = -EINVAL;
3425                        goto errout;
3426                }
3427        }
3428
3429        btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3430        if (!btf) {
3431                err = -ENOMEM;
3432                goto errout;
3433        }
3434        env->btf = btf;
3435
3436        data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3437        if (!data) {
3438                err = -ENOMEM;
3439                goto errout;
3440        }
3441
3442        btf->data = data;
3443        btf->data_size = btf_data_size;
3444
3445        if (copy_from_user(data, btf_data, btf_data_size)) {
3446                err = -EFAULT;
3447                goto errout;
3448        }
3449
3450        err = btf_parse_hdr(env);
3451        if (err)
3452                goto errout;
3453
3454        btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3455
3456        err = btf_parse_str_sec(env);
3457        if (err)
3458                goto errout;
3459
3460        err = btf_parse_type_sec(env);
3461        if (err)
3462                goto errout;
3463
3464        if (log->level && bpf_verifier_log_full(log)) {
3465                err = -ENOSPC;
3466                goto errout;
3467        }
3468
3469        btf_verifier_env_free(env);
3470        refcount_set(&btf->refcnt, 1);
3471        return btf;
3472
3473errout:
3474        btf_verifier_env_free(env);
3475        if (btf)
3476                btf_free(btf);
3477        return ERR_PTR(err);
3478}
3479
3480extern char __weak _binary__btf_vmlinux_bin_start[];
3481extern char __weak _binary__btf_vmlinux_bin_end[];
3482extern struct btf *btf_vmlinux;
3483
3484#define BPF_MAP_TYPE(_id, _ops)
3485static union {
3486        struct bpf_ctx_convert {
3487#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3488        prog_ctx_type _id##_prog; \
3489        kern_ctx_type _id##_kern;
3490#include <linux/bpf_types.h>
3491#undef BPF_PROG_TYPE
3492        } *__t;
3493        /* 't' is written once under lock. Read many times. */
3494        const struct btf_type *t;
3495} bpf_ctx_convert;
3496enum {
3497#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3498        __ctx_convert##_id,
3499#include <linux/bpf_types.h>
3500#undef BPF_PROG_TYPE
3501        __ctx_convert_unused, /* to avoid empty enum in extreme .config */
3502};
3503static u8 bpf_ctx_convert_map[] = {
3504#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3505        [_id] = __ctx_convert##_id,
3506#include <linux/bpf_types.h>
3507#undef BPF_PROG_TYPE
3508        0, /* avoid empty array */
3509};
3510#undef BPF_MAP_TYPE
3511
3512static const struct btf_member *
3513btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
3514                      const struct btf_type *t, enum bpf_prog_type prog_type,
3515                      int arg)
3516{
3517        const struct btf_type *conv_struct;
3518        const struct btf_type *ctx_struct;
3519        const struct btf_member *ctx_type;
3520        const char *tname, *ctx_tname;
3521
3522        conv_struct = bpf_ctx_convert.t;
3523        if (!conv_struct) {
3524                bpf_log(log, "btf_vmlinux is malformed\n");
3525                return NULL;
3526        }
3527        t = btf_type_by_id(btf, t->type);
3528        while (btf_type_is_modifier(t))
3529                t = btf_type_by_id(btf, t->type);
3530        if (!btf_type_is_struct(t)) {
3531                /* Only pointer to struct is supported for now.
3532                 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
3533                 * is not supported yet.
3534                 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
3535                 */
3536                if (log->level & BPF_LOG_LEVEL)
3537                        bpf_log(log, "arg#%d type is not a struct\n", arg);
3538                return NULL;
3539        }
3540        tname = btf_name_by_offset(btf, t->name_off);
3541        if (!tname) {
3542                bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
3543                return NULL;
3544        }
3545        /* prog_type is valid bpf program type. No need for bounds check. */
3546        ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
3547        /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
3548         * Like 'struct __sk_buff'
3549         */
3550        ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
3551        if (!ctx_struct)
3552                /* should not happen */
3553                return NULL;
3554        ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
3555        if (!ctx_tname) {
3556                /* should not happen */
3557                bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
3558                return NULL;
3559        }
3560        /* only compare that prog's ctx type name is the same as
3561         * kernel expects. No need to compare field by field.
3562         * It's ok for bpf prog to do:
3563         * struct __sk_buff {};
3564         * int socket_filter_bpf_prog(struct __sk_buff *skb)
3565         * { // no fields of skb are ever used }
3566         */
3567        if (strcmp(ctx_tname, tname))
3568                return NULL;
3569        return ctx_type;
3570}
3571
3572static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
3573                                     struct btf *btf,
3574                                     const struct btf_type *t,
3575                                     enum bpf_prog_type prog_type,
3576                                     int arg)
3577{
3578        const struct btf_member *prog_ctx_type, *kern_ctx_type;
3579
3580        prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
3581        if (!prog_ctx_type)
3582                return -ENOENT;
3583        kern_ctx_type = prog_ctx_type + 1;
3584        return kern_ctx_type->type;
3585}
3586
3587struct btf *btf_parse_vmlinux(void)
3588{
3589        struct btf_verifier_env *env = NULL;
3590        struct bpf_verifier_log *log;
3591        struct btf *btf = NULL;
3592        int err, i;
3593
3594        env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3595        if (!env)
3596                return ERR_PTR(-ENOMEM);
3597
3598        log = &env->log;
3599        log->level = BPF_LOG_KERNEL;
3600
3601        btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3602        if (!btf) {
3603                err = -ENOMEM;
3604                goto errout;
3605        }
3606        env->btf = btf;
3607
3608        btf->data = _binary__btf_vmlinux_bin_start;
3609        btf->data_size = _binary__btf_vmlinux_bin_end -
3610                _binary__btf_vmlinux_bin_start;
3611
3612        err = btf_parse_hdr(env);
3613        if (err)
3614                goto errout;
3615
3616        btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3617
3618        err = btf_parse_str_sec(env);
3619        if (err)
3620                goto errout;
3621
3622        err = btf_check_all_metas(env);
3623        if (err)
3624                goto errout;
3625
3626        /* find struct bpf_ctx_convert for type checking later */
3627        for (i = 1; i <= btf->nr_types; i++) {
3628                const struct btf_type *t;
3629                const char *tname;
3630
3631                t = btf_type_by_id(btf, i);
3632                if (!__btf_type_is_struct(t))
3633                        continue;
3634                tname = __btf_name_by_offset(btf, t->name_off);
3635                if (!strcmp(tname, "bpf_ctx_convert")) {
3636                        /* btf_parse_vmlinux() runs under bpf_verifier_lock */
3637                        bpf_ctx_convert.t = t;
3638                        break;
3639                }
3640        }
3641        if (i > btf->nr_types) {
3642                err = -ENOENT;
3643                goto errout;
3644        }
3645
3646        bpf_struct_ops_init(btf, log);
3647
3648        btf_verifier_env_free(env);
3649        refcount_set(&btf->refcnt, 1);
3650        return btf;
3651
3652errout:
3653        btf_verifier_env_free(env);
3654        if (btf) {
3655                kvfree(btf->types);
3656                kfree(btf);
3657        }
3658        return ERR_PTR(err);
3659}
3660
3661struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
3662{
3663        struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3664
3665        if (tgt_prog) {
3666                return tgt_prog->aux->btf;
3667        } else {
3668                return btf_vmlinux;
3669        }
3670}
3671
3672static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
3673{
3674        /* t comes in already as a pointer */
3675        t = btf_type_by_id(btf, t->type);
3676
3677        /* allow const */
3678        if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
3679                t = btf_type_by_id(btf, t->type);
3680
3681        /* char, signed char, unsigned char */
3682        return btf_type_is_int(t) && t->size == 1;
3683}
3684
3685bool btf_ctx_access(int off, int size, enum bpf_access_type type,
3686                    const struct bpf_prog *prog,
3687                    struct bpf_insn_access_aux *info)
3688{
3689        const struct btf_type *t = prog->aux->attach_func_proto;
3690        struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3691        struct btf *btf = bpf_prog_get_target_btf(prog);
3692        const char *tname = prog->aux->attach_func_name;
3693        struct bpf_verifier_log *log = info->log;
3694        const struct btf_param *args;
3695        u32 nr_args, arg;
3696        int ret;
3697
3698        if (off % 8) {
3699                bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
3700                        tname, off);
3701                return false;
3702        }
3703        arg = off / 8;
3704        args = (const struct btf_param *)(t + 1);
3705        /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
3706        nr_args = t ? btf_type_vlen(t) : 5;
3707        if (prog->aux->attach_btf_trace) {
3708                /* skip first 'void *__data' argument in btf_trace_##name typedef */
3709                args++;
3710                nr_args--;
3711        }
3712
3713        if (prog->expected_attach_type == BPF_TRACE_FEXIT &&
3714            arg == nr_args) {
3715                if (!t)
3716                        /* Default prog with 5 args. 6th arg is retval. */
3717                        return true;
3718                /* function return type */
3719                t = btf_type_by_id(btf, t->type);
3720        } else if (arg >= nr_args) {
3721                bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3722                        tname, arg + 1);
3723                return false;
3724        } else {
3725                if (!t)
3726                        /* Default prog with 5 args */
3727                        return true;
3728                t = btf_type_by_id(btf, args[arg].type);
3729        }
3730        /* skip modifiers */
3731        while (btf_type_is_modifier(t))
3732                t = btf_type_by_id(btf, t->type);
3733        if (btf_type_is_int(t) || btf_type_is_enum(t))
3734                /* accessing a scalar */
3735                return true;
3736        if (!btf_type_is_ptr(t)) {
3737                bpf_log(log,
3738                        "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
3739                        tname, arg,
3740                        __btf_name_by_offset(btf, t->name_off),
3741                        btf_kind_str[BTF_INFO_KIND(t->info)]);
3742                return false;
3743        }
3744        if (t->type == 0)
3745                /* This is a pointer to void.
3746                 * It is the same as scalar from the verifier safety pov.
3747                 * No further pointer walking is allowed.
3748                 */
3749                return true;
3750
3751        if (is_string_ptr(btf, t))
3752                return true;
3753
3754        /* this is a pointer to another type */
3755        info->reg_type = PTR_TO_BTF_ID;
3756
3757        if (tgt_prog) {
3758                ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type, arg);
3759                if (ret > 0) {
3760                        info->btf_id = ret;
3761                        return true;
3762                } else {
3763                        return false;
3764                }
3765        }
3766
3767        info->btf_id = t->type;
3768        t = btf_type_by_id(btf, t->type);
3769        /* skip modifiers */
3770        while (btf_type_is_modifier(t)) {
3771                info->btf_id = t->type;
3772                t = btf_type_by_id(btf, t->type);
3773        }
3774        if (!btf_type_is_struct(t)) {
3775                bpf_log(log,
3776                        "func '%s' arg%d type %s is not a struct\n",
3777                        tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
3778                return false;
3779        }
3780        bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
3781                tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
3782                __btf_name_by_offset(btf, t->name_off));
3783        return true;
3784}
3785
3786int btf_struct_access(struct bpf_verifier_log *log,
3787                      const struct btf_type *t, int off, int size,
3788                      enum bpf_access_type atype,
3789                      u32 *next_btf_id)
3790{
3791        u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
3792        const struct btf_type *mtype, *elem_type = NULL;
3793        const struct btf_member *member;
3794        const char *tname, *mname;
3795
3796again:
3797        tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3798        if (!btf_type_is_struct(t)) {
3799                bpf_log(log, "Type '%s' is not a struct\n", tname);
3800                return -EINVAL;
3801        }
3802
3803        if (off + size > t->size) {
3804                bpf_log(log, "access beyond struct %s at off %u size %u\n",
3805                        tname, off, size);
3806                return -EACCES;
3807        }
3808
3809        for_each_member(i, t, member) {
3810                /* offset of the field in bytes */
3811                moff = btf_member_bit_offset(t, member) / 8;
3812                if (off + size <= moff)
3813                        /* won't find anything, field is already too far */
3814                        break;
3815
3816                if (btf_member_bitfield_size(t, member)) {
3817                        u32 end_bit = btf_member_bit_offset(t, member) +
3818                                btf_member_bitfield_size(t, member);
3819
3820                        /* off <= moff instead of off == moff because clang
3821                         * does not generate a BTF member for anonymous
3822                         * bitfield like the ":16" here:
3823                         * struct {
3824                         *      int :16;
3825                         *      int x:8;
3826                         * };
3827                         */
3828                        if (off <= moff &&
3829                            BITS_ROUNDUP_BYTES(end_bit) <= off + size)
3830                                return SCALAR_VALUE;
3831
3832                        /* off may be accessing a following member
3833                         *
3834                         * or
3835                         *
3836                         * Doing partial access at either end of this
3837                         * bitfield.  Continue on this case also to
3838                         * treat it as not accessing this bitfield
3839                         * and eventually error out as field not
3840                         * found to keep it simple.
3841                         * It could be relaxed if there was a legit
3842                         * partial access case later.
3843                         */
3844                        continue;
3845                }
3846
3847                /* In case of "off" is pointing to holes of a struct */
3848                if (off < moff)
3849                        break;
3850
3851                /* type of the field */
3852                mtype = btf_type_by_id(btf_vmlinux, member->type);
3853                mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
3854
3855                mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
3856                                         &elem_type, &total_nelems);
3857                if (IS_ERR(mtype)) {
3858                        bpf_log(log, "field %s doesn't have size\n", mname);
3859                        return -EFAULT;
3860                }
3861
3862                mtrue_end = moff + msize;
3863                if (off >= mtrue_end)
3864                        /* no overlap with member, keep iterating */
3865                        continue;
3866
3867                if (btf_type_is_array(mtype)) {
3868                        u32 elem_idx;
3869
3870                        /* btf_resolve_size() above helps to
3871                         * linearize a multi-dimensional array.
3872                         *
3873                         * The logic here is treating an array
3874                         * in a struct as the following way:
3875                         *
3876                         * struct outer {
3877                         *      struct inner array[2][2];
3878                         * };
3879                         *
3880                         * looks like:
3881                         *
3882                         * struct outer {
3883                         *      struct inner array_elem0;
3884                         *      struct inner array_elem1;
3885                         *      struct inner array_elem2;
3886                         *      struct inner array_elem3;
3887                         * };
3888                         *
3889                         * When accessing outer->array[1][0], it moves
3890                         * moff to "array_elem2", set mtype to
3891                         * "struct inner", and msize also becomes
3892                         * sizeof(struct inner).  Then most of the
3893                         * remaining logic will fall through without
3894                         * caring the current member is an array or
3895                         * not.
3896                         *
3897                         * Unlike mtype/msize/moff, mtrue_end does not
3898                         * change.  The naming difference ("_true") tells
3899                         * that it is not always corresponding to
3900                         * the current mtype/msize/moff.
3901                         * It is the true end of the current
3902                         * member (i.e. array in this case).  That
3903                         * will allow an int array to be accessed like
3904                         * a scratch space,
3905                         * i.e. allow access beyond the size of
3906                         *      the array's element as long as it is
3907                         *      within the mtrue_end boundary.
3908                         */
3909
3910                        /* skip empty array */
3911                        if (moff == mtrue_end)
3912                                continue;
3913
3914                        msize /= total_nelems;
3915                        elem_idx = (off - moff) / msize;
3916                        moff += elem_idx * msize;
3917                        mtype = elem_type;
3918                }
3919
3920                /* the 'off' we're looking for is either equal to start
3921                 * of this field or inside of this struct
3922                 */
3923                if (btf_type_is_struct(mtype)) {
3924                        /* our field must be inside that union or struct */
3925                        t = mtype;
3926
3927                        /* adjust offset we're looking for */
3928                        off -= moff;
3929                        goto again;
3930                }
3931
3932                if (btf_type_is_ptr(mtype)) {
3933                        const struct btf_type *stype;
3934                        u32 id;
3935
3936                        if (msize != size || off != moff) {
3937                                bpf_log(log,
3938                                        "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
3939                                        mname, moff, tname, off, size);
3940                                return -EACCES;
3941                        }
3942
3943                        stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
3944                        if (btf_type_is_struct(stype)) {
3945                                *next_btf_id = id;
3946                                return PTR_TO_BTF_ID;
3947                        }
3948                }
3949
3950                /* Allow more flexible access within an int as long as
3951                 * it is within mtrue_end.
3952                 * Since mtrue_end could be the end of an array,
3953                 * that also allows using an array of int as a scratch
3954                 * space. e.g. skb->cb[].
3955                 */
3956                if (off + size > mtrue_end) {
3957                        bpf_log(log,
3958                                "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
3959                                mname, mtrue_end, tname, off, size);
3960                        return -EACCES;
3961                }
3962
3963                return SCALAR_VALUE;
3964        }
3965        bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
3966        return -EINVAL;
3967}
3968
3969static int __btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn,
3970                                   int arg)
3971{
3972        char fnname[KSYM_SYMBOL_LEN + 4] = "btf_";
3973        const struct btf_param *args;
3974        const struct btf_type *t;
3975        const char *tname, *sym;
3976        u32 btf_id, i;
3977
3978        if (IS_ERR(btf_vmlinux)) {
3979                bpf_log(log, "btf_vmlinux is malformed\n");
3980                return -EINVAL;
3981        }
3982
3983        sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4);
3984        if (!sym) {
3985                bpf_log(log, "kernel doesn't have kallsyms\n");
3986                return -EFAULT;
3987        }
3988
3989        for (i = 1; i <= btf_vmlinux->nr_types; i++) {
3990                t = btf_type_by_id(btf_vmlinux, i);
3991                if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF)
3992                        continue;
3993                tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3994                if (!strcmp(tname, fnname))
3995                        break;
3996        }
3997        if (i > btf_vmlinux->nr_types) {
3998                bpf_log(log, "helper %s type is not found\n", fnname);
3999                return -ENOENT;
4000        }
4001
4002        t = btf_type_by_id(btf_vmlinux, t->type);
4003        if (!btf_type_is_ptr(t))
4004                return -EFAULT;
4005        t = btf_type_by_id(btf_vmlinux, t->type);
4006        if (!btf_type_is_func_proto(t))
4007                return -EFAULT;
4008
4009        args = (const struct btf_param *)(t + 1);
4010        if (arg >= btf_type_vlen(t)) {
4011                bpf_log(log, "bpf helper %s doesn't have %d-th argument\n",
4012                        fnname, arg);
4013                return -EINVAL;
4014        }
4015
4016        t = btf_type_by_id(btf_vmlinux, args[arg].type);
4017        if (!btf_type_is_ptr(t) || !t->type) {
4018                /* anything but the pointer to struct is a helper config bug */
4019                bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n");
4020                return -EFAULT;
4021        }
4022        btf_id = t->type;
4023        t = btf_type_by_id(btf_vmlinux, t->type);
4024        /* skip modifiers */
4025        while (btf_type_is_modifier(t)) {
4026                btf_id = t->type;
4027                t = btf_type_by_id(btf_vmlinux, t->type);
4028        }
4029        if (!btf_type_is_struct(t)) {
4030                bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n");
4031                return -EFAULT;
4032        }
4033        bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4,
4034                arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off));
4035        return btf_id;
4036}
4037
4038int btf_resolve_helper_id(struct bpf_verifier_log *log,
4039                          const struct bpf_func_proto *fn, int arg)
4040{
4041        int *btf_id = &fn->btf_id[arg];
4042        int ret;
4043
4044        if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID)
4045                return -EINVAL;
4046
4047        ret = READ_ONCE(*btf_id);
4048        if (ret)
4049                return ret;
4050        /* ok to race the search. The result is the same */
4051        ret = __btf_resolve_helper_id(log, fn->func, arg);
4052        if (!ret) {
4053                /* Function argument cannot be type 'void' */
4054                bpf_log(log, "BTF resolution bug\n");
4055                return -EFAULT;
4056        }
4057        WRITE_ONCE(*btf_id, ret);
4058        return ret;
4059}
4060
4061static int __get_type_size(struct btf *btf, u32 btf_id,
4062                           const struct btf_type **bad_type)
4063{
4064        const struct btf_type *t;
4065
4066        if (!btf_id)
4067                /* void */
4068                return 0;
4069        t = btf_type_by_id(btf, btf_id);
4070        while (t && btf_type_is_modifier(t))
4071                t = btf_type_by_id(btf, t->type);
4072        if (!t) {
4073                *bad_type = btf->types[0];
4074                return -EINVAL;
4075        }
4076        if (btf_type_is_ptr(t))
4077                /* kernel size of pointer. Not BPF's size of pointer*/
4078                return sizeof(void *);
4079        if (btf_type_is_int(t) || btf_type_is_enum(t))
4080                return t->size;
4081        *bad_type = t;
4082        return -EINVAL;
4083}
4084
4085int btf_distill_func_proto(struct bpf_verifier_log *log,
4086                           struct btf *btf,
4087                           const struct btf_type *func,
4088                           const char *tname,
4089                           struct btf_func_model *m)
4090{
4091        const struct btf_param *args;
4092        const struct btf_type *t;
4093        u32 i, nargs;
4094        int ret;
4095
4096        if (!func) {
4097                /* BTF function prototype doesn't match the verifier types.
4098                 * Fall back to 5 u64 args.
4099                 */
4100                for (i = 0; i < 5; i++)
4101                        m->arg_size[i] = 8;
4102                m->ret_size = 8;
4103                m->nr_args = 5;
4104                return 0;
4105        }
4106        args = (const struct btf_param *)(func + 1);
4107        nargs = btf_type_vlen(func);
4108        if (nargs >= MAX_BPF_FUNC_ARGS) {
4109                bpf_log(log,
4110                        "The function %s has %d arguments. Too many.\n",
4111                        tname, nargs);
4112                return -EINVAL;
4113        }
4114        ret = __get_type_size(btf, func->type, &t);
4115        if (ret < 0) {
4116                bpf_log(log,
4117                        "The function %s return type %s is unsupported.\n",
4118                        tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4119                return -EINVAL;
4120        }
4121        m->ret_size = ret;
4122
4123        for (i = 0; i < nargs; i++) {
4124                ret = __get_type_size(btf, args[i].type, &t);
4125                if (ret < 0) {
4126                        bpf_log(log,
4127                                "The function %s arg%d type %s is unsupported.\n",
4128                                tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4129                        return -EINVAL;
4130                }
4131                m->arg_size[i] = ret;
4132        }
4133        m->nr_args = nargs;
4134        return 0;
4135}
4136
4137/* Compare BTFs of two functions assuming only scalars and pointers to context.
4138 * t1 points to BTF_KIND_FUNC in btf1
4139 * t2 points to BTF_KIND_FUNC in btf2
4140 * Returns:
4141 * EINVAL - function prototype mismatch
4142 * EFAULT - verifier bug
4143 * 0 - 99% match. The last 1% is validated by the verifier.
4144 */
4145static int btf_check_func_type_match(struct bpf_verifier_log *log,
4146                                     struct btf *btf1, const struct btf_type *t1,
4147                                     struct btf *btf2, const struct btf_type *t2)
4148{
4149        const struct btf_param *args1, *args2;
4150        const char *fn1, *fn2, *s1, *s2;
4151        u32 nargs1, nargs2, i;
4152
4153        fn1 = btf_name_by_offset(btf1, t1->name_off);
4154        fn2 = btf_name_by_offset(btf2, t2->name_off);
4155
4156        if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
4157                bpf_log(log, "%s() is not a global function\n", fn1);
4158                return -EINVAL;
4159        }
4160        if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
4161                bpf_log(log, "%s() is not a global function\n", fn2);
4162                return -EINVAL;
4163        }
4164
4165        t1 = btf_type_by_id(btf1, t1->type);
4166        if (!t1 || !btf_type_is_func_proto(t1))
4167                return -EFAULT;
4168        t2 = btf_type_by_id(btf2, t2->type);
4169        if (!t2 || !btf_type_is_func_proto(t2))
4170                return -EFAULT;
4171
4172        args1 = (const struct btf_param *)(t1 + 1);
4173        nargs1 = btf_type_vlen(t1);
4174        args2 = (const struct btf_param *)(t2 + 1);
4175        nargs2 = btf_type_vlen(t2);
4176
4177        if (nargs1 != nargs2) {
4178                bpf_log(log, "%s() has %d args while %s() has %d args\n",
4179                        fn1, nargs1, fn2, nargs2);
4180                return -EINVAL;
4181        }
4182
4183        t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4184        t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4185        if (t1->info != t2->info) {
4186                bpf_log(log,
4187                        "Return type %s of %s() doesn't match type %s of %s()\n",
4188                        btf_type_str(t1), fn1,
4189                        btf_type_str(t2), fn2);
4190                return -EINVAL;
4191        }
4192
4193        for (i = 0; i < nargs1; i++) {
4194                t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
4195                t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
4196
4197                if (t1->info != t2->info) {
4198                        bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
4199                                i, fn1, btf_type_str(t1),
4200                                fn2, btf_type_str(t2));
4201                        return -EINVAL;
4202                }
4203                if (btf_type_has_size(t1) && t1->size != t2->size) {
4204                        bpf_log(log,
4205                                "arg%d in %s() has size %d while %s() has %d\n",
4206                                i, fn1, t1->size,
4207                                fn2, t2->size);
4208                        return -EINVAL;
4209                }
4210
4211                /* global functions are validated with scalars and pointers
4212                 * to context only. And only global functions can be replaced.
4213                 * Hence type check only those types.
4214                 */
4215                if (btf_type_is_int(t1) || btf_type_is_enum(t1))
4216                        continue;
4217                if (!btf_type_is_ptr(t1)) {
4218                        bpf_log(log,
4219                                "arg%d in %s() has unrecognized type\n",
4220                                i, fn1);
4221                        return -EINVAL;
4222                }
4223                t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4224                t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4225                if (!btf_type_is_struct(t1)) {
4226                        bpf_log(log,
4227                                "arg%d in %s() is not a pointer to context\n",
4228                                i, fn1);
4229                        return -EINVAL;
4230                }
4231                if (!btf_type_is_struct(t2)) {
4232                        bpf_log(log,
4233                                "arg%d in %s() is not a pointer to context\n",
4234                                i, fn2);
4235                        return -EINVAL;
4236                }
4237                /* This is an optional check to make program writing easier.
4238                 * Compare names of structs and report an error to the user.
4239                 * btf_prepare_func_args() already checked that t2 struct
4240                 * is a context type. btf_prepare_func_args() will check
4241                 * later that t1 struct is a context type as well.
4242                 */
4243                s1 = btf_name_by_offset(btf1, t1->name_off);
4244                s2 = btf_name_by_offset(btf2, t2->name_off);
4245                if (strcmp(s1, s2)) {
4246                        bpf_log(log,
4247                                "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
4248                                i, fn1, s1, fn2, s2);
4249                        return -EINVAL;
4250                }
4251        }
4252        return 0;
4253}
4254
4255/* Compare BTFs of given program with BTF of target program */
4256int btf_check_type_match(struct bpf_verifier_env *env, struct bpf_prog *prog,
4257                         struct btf *btf2, const struct btf_type *t2)
4258{
4259        struct btf *btf1 = prog->aux->btf;
4260        const struct btf_type *t1;
4261        u32 btf_id = 0;
4262
4263        if (!prog->aux->func_info) {
4264                bpf_log(&env->log, "Program extension requires BTF\n");
4265                return -EINVAL;
4266        }
4267
4268        btf_id = prog->aux->func_info[0].type_id;
4269        if (!btf_id)
4270                return -EFAULT;
4271
4272        t1 = btf_type_by_id(btf1, btf_id);
4273        if (!t1 || !btf_type_is_func(t1))
4274                return -EFAULT;
4275
4276        return btf_check_func_type_match(&env->log, btf1, t1, btf2, t2);
4277}
4278
4279/* Compare BTF of a function with given bpf_reg_state.
4280 * Returns:
4281 * EFAULT - there is a verifier bug. Abort verification.
4282 * EINVAL - there is a type mismatch or BTF is not available.
4283 * 0 - BTF matches with what bpf_reg_state expects.
4284 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
4285 */
4286int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
4287                             struct bpf_reg_state *reg)
4288{
4289        struct bpf_verifier_log *log = &env->log;
4290        struct bpf_prog *prog = env->prog;
4291        struct btf *btf = prog->aux->btf;
4292        const struct btf_param *args;
4293        const struct btf_type *t;
4294        u32 i, nargs, btf_id;
4295        const char *tname;
4296
4297        if (!prog->aux->func_info)
4298                return -EINVAL;
4299
4300        btf_id = prog->aux->func_info[subprog].type_id;
4301        if (!btf_id)
4302                return -EFAULT;
4303
4304        if (prog->aux->func_info_aux[subprog].unreliable)
4305                return -EINVAL;
4306
4307        t = btf_type_by_id(btf, btf_id);
4308        if (!t || !btf_type_is_func(t)) {
4309                /* These checks were already done by the verifier while loading
4310                 * struct bpf_func_info
4311                 */
4312                bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4313                        subprog);
4314                return -EFAULT;
4315        }
4316        tname = btf_name_by_offset(btf, t->name_off);
4317
4318        t = btf_type_by_id(btf, t->type);
4319        if (!t || !btf_type_is_func_proto(t)) {
4320                bpf_log(log, "Invalid BTF of func %s\n", tname);
4321                return -EFAULT;
4322        }
4323        args = (const struct btf_param *)(t + 1);
4324        nargs = btf_type_vlen(t);
4325        if (nargs > 5) {
4326                bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
4327                goto out;
4328        }
4329        /* check that BTF function arguments match actual types that the
4330         * verifier sees.
4331         */
4332        for (i = 0; i < nargs; i++) {
4333                t = btf_type_by_id(btf, args[i].type);
4334                while (btf_type_is_modifier(t))
4335                        t = btf_type_by_id(btf, t->type);
4336                if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4337                        if (reg[i + 1].type == SCALAR_VALUE)
4338                                continue;
4339                        bpf_log(log, "R%d is not a scalar\n", i + 1);
4340                        goto out;
4341                }
4342                if (btf_type_is_ptr(t)) {
4343                        if (reg[i + 1].type == SCALAR_VALUE) {
4344                                bpf_log(log, "R%d is not a pointer\n", i + 1);
4345                                goto out;
4346                        }
4347                        /* If function expects ctx type in BTF check that caller
4348                         * is passing PTR_TO_CTX.
4349                         */
4350                        if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
4351                                if (reg[i + 1].type != PTR_TO_CTX) {
4352                                        bpf_log(log,
4353                                                "arg#%d expected pointer to ctx, but got %s\n",
4354                                                i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4355                                        goto out;
4356                                }
4357                                if (check_ctx_reg(env, &reg[i + 1], i + 1))
4358                                        goto out;
4359                                continue;
4360                        }
4361                }
4362                bpf_log(log, "Unrecognized arg#%d type %s\n",
4363                        i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4364                goto out;
4365        }
4366        return 0;
4367out:
4368        /* Compiler optimizations can remove arguments from static functions
4369         * or mismatched type can be passed into a global function.
4370         * In such cases mark the function as unreliable from BTF point of view.
4371         */
4372        prog->aux->func_info_aux[subprog].unreliable = true;
4373        return -EINVAL;
4374}
4375
4376/* Convert BTF of a function into bpf_reg_state if possible
4377 * Returns:
4378 * EFAULT - there is a verifier bug. Abort verification.
4379 * EINVAL - cannot convert BTF.
4380 * 0 - Successfully converted BTF into bpf_reg_state
4381 * (either PTR_TO_CTX or SCALAR_VALUE).
4382 */
4383int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
4384                          struct bpf_reg_state *reg)
4385{
4386        struct bpf_verifier_log *log = &env->log;
4387        struct bpf_prog *prog = env->prog;
4388        enum bpf_prog_type prog_type = prog->type;
4389        struct btf *btf = prog->aux->btf;
4390        const struct btf_param *args;
4391        const struct btf_type *t;
4392        u32 i, nargs, btf_id;
4393        const char *tname;
4394
4395        if (!prog->aux->func_info ||
4396            prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
4397                bpf_log(log, "Verifier bug\n");
4398                return -EFAULT;
4399        }
4400
4401        btf_id = prog->aux->func_info[subprog].type_id;
4402        if (!btf_id) {
4403                bpf_log(log, "Global functions need valid BTF\n");
4404                return -EFAULT;
4405        }
4406
4407        t = btf_type_by_id(btf, btf_id);
4408        if (!t || !btf_type_is_func(t)) {
4409                /* These checks were already done by the verifier while loading
4410                 * struct bpf_func_info
4411                 */
4412                bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4413                        subprog);
4414                return -EFAULT;
4415        }
4416        tname = btf_name_by_offset(btf, t->name_off);
4417
4418        if (log->level & BPF_LOG_LEVEL)
4419                bpf_log(log, "Validating %s() func#%d...\n",
4420                        tname, subprog);
4421
4422        if (prog->aux->func_info_aux[subprog].unreliable) {
4423                bpf_log(log, "Verifier bug in function %s()\n", tname);
4424                return -EFAULT;
4425        }
4426        if (prog_type == BPF_PROG_TYPE_EXT)
4427                prog_type = prog->aux->linked_prog->type;
4428
4429        t = btf_type_by_id(btf, t->type);
4430        if (!t || !btf_type_is_func_proto(t)) {
4431                bpf_log(log, "Invalid type of function %s()\n", tname);
4432                return -EFAULT;
4433        }
4434        args = (const struct btf_param *)(t + 1);
4435        nargs = btf_type_vlen(t);
4436        if (nargs > 5) {
4437                bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
4438                        tname, nargs);
4439                return -EINVAL;
4440        }
4441        /* check that function returns int */
4442        t = btf_type_by_id(btf, t->type);
4443        while (btf_type_is_modifier(t))
4444                t = btf_type_by_id(btf, t->type);
4445        if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
4446                bpf_log(log,
4447                        "Global function %s() doesn't return scalar. Only those are supported.\n",
4448                        tname);
4449                return -EINVAL;
4450        }
4451        /* Convert BTF function arguments into verifier types.
4452         * Only PTR_TO_CTX and SCALAR are supported atm.
4453         */
4454        for (i = 0; i < nargs; i++) {
4455                t = btf_type_by_id(btf, args[i].type);
4456                while (btf_type_is_modifier(t))
4457                        t = btf_type_by_id(btf, t->type);
4458                if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4459                        reg[i + 1].type = SCALAR_VALUE;
4460                        continue;
4461                }
4462                if (btf_type_is_ptr(t) &&
4463                    btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
4464                        reg[i + 1].type = PTR_TO_CTX;
4465                        continue;
4466                }
4467                bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
4468                        i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
4469                return -EINVAL;
4470        }
4471        return 0;
4472}
4473
4474void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
4475                       struct seq_file *m)
4476{
4477        const struct btf_type *t = btf_type_by_id(btf, type_id);
4478
4479        btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
4480}
4481
4482#ifdef CONFIG_PROC_FS
4483static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
4484{
4485        const struct btf *btf = filp->private_data;
4486
4487        seq_printf(m, "btf_id:\t%u\n", btf->id);
4488}
4489#endif
4490
4491static int btf_release(struct inode *inode, struct file *filp)
4492{
4493        btf_put(filp->private_data);
4494        return 0;
4495}
4496
4497const struct file_operations btf_fops = {
4498#ifdef CONFIG_PROC_FS
4499        .show_fdinfo    = bpf_btf_show_fdinfo,
4500#endif
4501        .release        = btf_release,
4502};
4503
4504static int __btf_new_fd(struct btf *btf)
4505{
4506        return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
4507}
4508
4509int btf_new_fd(const union bpf_attr *attr)
4510{
4511        struct btf *btf;
4512        int ret;
4513
4514        btf = btf_parse(u64_to_user_ptr(attr->btf),
4515                        attr->btf_size, attr->btf_log_level,
4516                        u64_to_user_ptr(attr->btf_log_buf),
4517                        attr->btf_log_size);
4518        if (IS_ERR(btf))
4519                return PTR_ERR(btf);
4520
4521        ret = btf_alloc_id(btf);
4522        if (ret) {
4523                btf_free(btf);
4524                return ret;
4525        }
4526
4527        /*
4528         * The BTF ID is published to the userspace.
4529         * All BTF free must go through call_rcu() from
4530         * now on (i.e. free by calling btf_put()).
4531         */
4532
4533        ret = __btf_new_fd(btf);
4534        if (ret < 0)
4535                btf_put(btf);
4536
4537        return ret;
4538}
4539
4540struct btf *btf_get_by_fd(int fd)
4541{
4542        struct btf *btf;
4543        struct fd f;
4544
4545        f = fdget(fd);
4546
4547        if (!f.file)
4548                return ERR_PTR(-EBADF);
4549
4550        if (f.file->f_op != &btf_fops) {
4551                fdput(f);
4552                return ERR_PTR(-EINVAL);
4553        }
4554
4555        btf = f.file->private_data;
4556        refcount_inc(&btf->refcnt);
4557        fdput(f);
4558
4559        return btf;
4560}
4561
4562int btf_get_info_by_fd(const struct btf *btf,
4563                       const union bpf_attr *attr,
4564                       union bpf_attr __user *uattr)
4565{
4566        struct bpf_btf_info __user *uinfo;
4567        struct bpf_btf_info info;
4568        u32 info_copy, btf_copy;
4569        void __user *ubtf;
4570        u32 uinfo_len;
4571
4572        uinfo = u64_to_user_ptr(attr->info.info);
4573        uinfo_len = attr->info.info_len;
4574
4575        info_copy = min_t(u32, uinfo_len, sizeof(info));
4576        memset(&info, 0, sizeof(info));
4577        if (copy_from_user(&info, uinfo, info_copy))
4578                return -EFAULT;
4579
4580        info.id = btf->id;
4581        ubtf = u64_to_user_ptr(info.btf);
4582        btf_copy = min_t(u32, btf->data_size, info.btf_size);
4583        if (copy_to_user(ubtf, btf->data, btf_copy))
4584                return -EFAULT;
4585        info.btf_size = btf->data_size;
4586
4587        if (copy_to_user(uinfo, &info, info_copy) ||
4588            put_user(info_copy, &uattr->info.info_len))
4589                return -EFAULT;
4590
4591        return 0;
4592}
4593
4594int btf_get_fd_by_id(u32 id)
4595{
4596        struct btf *btf;
4597        int fd;
4598
4599        rcu_read_lock();
4600        btf = idr_find(&btf_idr, id);
4601        if (!btf || !refcount_inc_not_zero(&btf->refcnt))
4602                btf = ERR_PTR(-ENOENT);
4603        rcu_read_unlock();
4604
4605        if (IS_ERR(btf))
4606                return PTR_ERR(btf);
4607
4608        fd = __btf_new_fd(btf);
4609        if (fd < 0)
4610                btf_put(btf);
4611
4612        return fd;
4613}
4614
4615u32 btf_id(const struct btf *btf)
4616{
4617        return btf->id;
4618}
4619