linux/kernel/bpf/cpumap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* bpf/cpumap.c
   3 *
   4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
   5 */
   6
   7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
   8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
   9 *
  10 * Unlike devmap which redirects XDP frames out another NIC device,
  11 * this map type redirects raw XDP frames to another CPU.  The remote
  12 * CPU will do SKB-allocation and call the normal network stack.
  13 *
  14 * This is a scalability and isolation mechanism, that allow
  15 * separating the early driver network XDP layer, from the rest of the
  16 * netstack, and assigning dedicated CPUs for this stage.  This
  17 * basically allows for 10G wirespeed pre-filtering via bpf.
  18 */
  19#include <linux/bpf.h>
  20#include <linux/filter.h>
  21#include <linux/ptr_ring.h>
  22#include <net/xdp.h>
  23
  24#include <linux/sched.h>
  25#include <linux/workqueue.h>
  26#include <linux/kthread.h>
  27#include <linux/capability.h>
  28#include <trace/events/xdp.h>
  29
  30#include <linux/netdevice.h>   /* netif_receive_skb_core */
  31#include <linux/etherdevice.h> /* eth_type_trans */
  32
  33/* General idea: XDP packets getting XDP redirected to another CPU,
  34 * will maximum be stored/queued for one driver ->poll() call.  It is
  35 * guaranteed that queueing the frame and the flush operation happen on
  36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
  37 * which queue in bpf_cpu_map_entry contains packets.
  38 */
  39
  40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
  41struct bpf_cpu_map_entry;
  42struct bpf_cpu_map;
  43
  44struct xdp_bulk_queue {
  45        void *q[CPU_MAP_BULK_SIZE];
  46        struct list_head flush_node;
  47        struct bpf_cpu_map_entry *obj;
  48        unsigned int count;
  49};
  50
  51/* Struct for every remote "destination" CPU in map */
  52struct bpf_cpu_map_entry {
  53        u32 cpu;    /* kthread CPU and map index */
  54        int map_id; /* Back reference to map */
  55        u32 qsize;  /* Queue size placeholder for map lookup */
  56
  57        /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
  58        struct xdp_bulk_queue __percpu *bulkq;
  59
  60        struct bpf_cpu_map *cmap;
  61
  62        /* Queue with potential multi-producers, and single-consumer kthread */
  63        struct ptr_ring *queue;
  64        struct task_struct *kthread;
  65        struct work_struct kthread_stop_wq;
  66
  67        atomic_t refcnt; /* Control when this struct can be free'ed */
  68        struct rcu_head rcu;
  69};
  70
  71struct bpf_cpu_map {
  72        struct bpf_map map;
  73        /* Below members specific for map type */
  74        struct bpf_cpu_map_entry **cpu_map;
  75};
  76
  77static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
  78
  79static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
  80
  81static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
  82{
  83        struct bpf_cpu_map *cmap;
  84        int err = -ENOMEM;
  85        u64 cost;
  86        int ret;
  87
  88        if (!capable(CAP_SYS_ADMIN))
  89                return ERR_PTR(-EPERM);
  90
  91        /* check sanity of attributes */
  92        if (attr->max_entries == 0 || attr->key_size != 4 ||
  93            attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
  94                return ERR_PTR(-EINVAL);
  95
  96        cmap = kzalloc(sizeof(*cmap), GFP_USER);
  97        if (!cmap)
  98                return ERR_PTR(-ENOMEM);
  99
 100        bpf_map_init_from_attr(&cmap->map, attr);
 101
 102        /* Pre-limit array size based on NR_CPUS, not final CPU check */
 103        if (cmap->map.max_entries > NR_CPUS) {
 104                err = -E2BIG;
 105                goto free_cmap;
 106        }
 107
 108        /* make sure page count doesn't overflow */
 109        cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
 110
 111        /* Notice returns -EPERM on if map size is larger than memlock limit */
 112        ret = bpf_map_charge_init(&cmap->map.memory, cost);
 113        if (ret) {
 114                err = ret;
 115                goto free_cmap;
 116        }
 117
 118        /* Alloc array for possible remote "destination" CPUs */
 119        cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
 120                                           sizeof(struct bpf_cpu_map_entry *),
 121                                           cmap->map.numa_node);
 122        if (!cmap->cpu_map)
 123                goto free_charge;
 124
 125        return &cmap->map;
 126free_charge:
 127        bpf_map_charge_finish(&cmap->map.memory);
 128free_cmap:
 129        kfree(cmap);
 130        return ERR_PTR(err);
 131}
 132
 133static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 134{
 135        atomic_inc(&rcpu->refcnt);
 136}
 137
 138/* called from workqueue, to workaround syscall using preempt_disable */
 139static void cpu_map_kthread_stop(struct work_struct *work)
 140{
 141        struct bpf_cpu_map_entry *rcpu;
 142
 143        rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
 144
 145        /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
 146         * as it waits until all in-flight call_rcu() callbacks complete.
 147         */
 148        rcu_barrier();
 149
 150        /* kthread_stop will wake_up_process and wait for it to complete */
 151        kthread_stop(rcpu->kthread);
 152}
 153
 154static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
 155                                         struct xdp_frame *xdpf,
 156                                         struct sk_buff *skb)
 157{
 158        unsigned int hard_start_headroom;
 159        unsigned int frame_size;
 160        void *pkt_data_start;
 161
 162        /* Part of headroom was reserved to xdpf */
 163        hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
 164
 165        /* build_skb need to place skb_shared_info after SKB end, and
 166         * also want to know the memory "truesize".  Thus, need to
 167         * know the memory frame size backing xdp_buff.
 168         *
 169         * XDP was designed to have PAGE_SIZE frames, but this
 170         * assumption is not longer true with ixgbe and i40e.  It
 171         * would be preferred to set frame_size to 2048 or 4096
 172         * depending on the driver.
 173         *   frame_size = 2048;
 174         *   frame_len  = frame_size - sizeof(*xdp_frame);
 175         *
 176         * Instead, with info avail, skb_shared_info in placed after
 177         * packet len.  This, unfortunately fakes the truesize.
 178         * Another disadvantage of this approach, the skb_shared_info
 179         * is not at a fixed memory location, with mixed length
 180         * packets, which is bad for cache-line hotness.
 181         */
 182        frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
 183                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 184
 185        pkt_data_start = xdpf->data - hard_start_headroom;
 186        skb = build_skb_around(skb, pkt_data_start, frame_size);
 187        if (unlikely(!skb))
 188                return NULL;
 189
 190        skb_reserve(skb, hard_start_headroom);
 191        __skb_put(skb, xdpf->len);
 192        if (xdpf->metasize)
 193                skb_metadata_set(skb, xdpf->metasize);
 194
 195        /* Essential SKB info: protocol and skb->dev */
 196        skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
 197
 198        /* Optional SKB info, currently missing:
 199         * - HW checksum info           (skb->ip_summed)
 200         * - HW RX hash                 (skb_set_hash)
 201         * - RX ring dev queue index    (skb_record_rx_queue)
 202         */
 203
 204        /* Until page_pool get SKB return path, release DMA here */
 205        xdp_release_frame(xdpf);
 206
 207        /* Allow SKB to reuse area used by xdp_frame */
 208        xdp_scrub_frame(xdpf);
 209
 210        return skb;
 211}
 212
 213static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
 214{
 215        /* The tear-down procedure should have made sure that queue is
 216         * empty.  See __cpu_map_entry_replace() and work-queue
 217         * invoked cpu_map_kthread_stop(). Catch any broken behaviour
 218         * gracefully and warn once.
 219         */
 220        struct xdp_frame *xdpf;
 221
 222        while ((xdpf = ptr_ring_consume(ring)))
 223                if (WARN_ON_ONCE(xdpf))
 224                        xdp_return_frame(xdpf);
 225}
 226
 227static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 228{
 229        if (atomic_dec_and_test(&rcpu->refcnt)) {
 230                /* The queue should be empty at this point */
 231                __cpu_map_ring_cleanup(rcpu->queue);
 232                ptr_ring_cleanup(rcpu->queue, NULL);
 233                kfree(rcpu->queue);
 234                kfree(rcpu);
 235        }
 236}
 237
 238#define CPUMAP_BATCH 8
 239
 240static int cpu_map_kthread_run(void *data)
 241{
 242        struct bpf_cpu_map_entry *rcpu = data;
 243
 244        set_current_state(TASK_INTERRUPTIBLE);
 245
 246        /* When kthread gives stop order, then rcpu have been disconnected
 247         * from map, thus no new packets can enter. Remaining in-flight
 248         * per CPU stored packets are flushed to this queue.  Wait honoring
 249         * kthread_stop signal until queue is empty.
 250         */
 251        while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
 252                unsigned int drops = 0, sched = 0;
 253                void *frames[CPUMAP_BATCH];
 254                void *skbs[CPUMAP_BATCH];
 255                gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
 256                int i, n, m;
 257
 258                /* Release CPU reschedule checks */
 259                if (__ptr_ring_empty(rcpu->queue)) {
 260                        set_current_state(TASK_INTERRUPTIBLE);
 261                        /* Recheck to avoid lost wake-up */
 262                        if (__ptr_ring_empty(rcpu->queue)) {
 263                                schedule();
 264                                sched = 1;
 265                        } else {
 266                                __set_current_state(TASK_RUNNING);
 267                        }
 268                } else {
 269                        sched = cond_resched();
 270                }
 271
 272                /*
 273                 * The bpf_cpu_map_entry is single consumer, with this
 274                 * kthread CPU pinned. Lockless access to ptr_ring
 275                 * consume side valid as no-resize allowed of queue.
 276                 */
 277                n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
 278
 279                for (i = 0; i < n; i++) {
 280                        void *f = frames[i];
 281                        struct page *page = virt_to_page(f);
 282
 283                        /* Bring struct page memory area to curr CPU. Read by
 284                         * build_skb_around via page_is_pfmemalloc(), and when
 285                         * freed written by page_frag_free call.
 286                         */
 287                        prefetchw(page);
 288                }
 289
 290                m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
 291                if (unlikely(m == 0)) {
 292                        for (i = 0; i < n; i++)
 293                                skbs[i] = NULL; /* effect: xdp_return_frame */
 294                        drops = n;
 295                }
 296
 297                local_bh_disable();
 298                for (i = 0; i < n; i++) {
 299                        struct xdp_frame *xdpf = frames[i];
 300                        struct sk_buff *skb = skbs[i];
 301                        int ret;
 302
 303                        skb = cpu_map_build_skb(rcpu, xdpf, skb);
 304                        if (!skb) {
 305                                xdp_return_frame(xdpf);
 306                                continue;
 307                        }
 308
 309                        /* Inject into network stack */
 310                        ret = netif_receive_skb_core(skb);
 311                        if (ret == NET_RX_DROP)
 312                                drops++;
 313                }
 314                /* Feedback loop via tracepoint */
 315                trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
 316
 317                local_bh_enable(); /* resched point, may call do_softirq() */
 318        }
 319        __set_current_state(TASK_RUNNING);
 320
 321        put_cpu_map_entry(rcpu);
 322        return 0;
 323}
 324
 325static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
 326                                                       int map_id)
 327{
 328        gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
 329        struct bpf_cpu_map_entry *rcpu;
 330        struct xdp_bulk_queue *bq;
 331        int numa, err, i;
 332
 333        /* Have map->numa_node, but choose node of redirect target CPU */
 334        numa = cpu_to_node(cpu);
 335
 336        rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
 337        if (!rcpu)
 338                return NULL;
 339
 340        /* Alloc percpu bulkq */
 341        rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
 342                                         sizeof(void *), gfp);
 343        if (!rcpu->bulkq)
 344                goto free_rcu;
 345
 346        for_each_possible_cpu(i) {
 347                bq = per_cpu_ptr(rcpu->bulkq, i);
 348                bq->obj = rcpu;
 349        }
 350
 351        /* Alloc queue */
 352        rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
 353        if (!rcpu->queue)
 354                goto free_bulkq;
 355
 356        err = ptr_ring_init(rcpu->queue, qsize, gfp);
 357        if (err)
 358                goto free_queue;
 359
 360        rcpu->cpu    = cpu;
 361        rcpu->map_id = map_id;
 362        rcpu->qsize  = qsize;
 363
 364        /* Setup kthread */
 365        rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
 366                                               "cpumap/%d/map:%d", cpu, map_id);
 367        if (IS_ERR(rcpu->kthread))
 368                goto free_ptr_ring;
 369
 370        get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
 371        get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
 372
 373        /* Make sure kthread runs on a single CPU */
 374        kthread_bind(rcpu->kthread, cpu);
 375        wake_up_process(rcpu->kthread);
 376
 377        return rcpu;
 378
 379free_ptr_ring:
 380        ptr_ring_cleanup(rcpu->queue, NULL);
 381free_queue:
 382        kfree(rcpu->queue);
 383free_bulkq:
 384        free_percpu(rcpu->bulkq);
 385free_rcu:
 386        kfree(rcpu);
 387        return NULL;
 388}
 389
 390static void __cpu_map_entry_free(struct rcu_head *rcu)
 391{
 392        struct bpf_cpu_map_entry *rcpu;
 393
 394        /* This cpu_map_entry have been disconnected from map and one
 395         * RCU grace-period have elapsed.  Thus, XDP cannot queue any
 396         * new packets and cannot change/set flush_needed that can
 397         * find this entry.
 398         */
 399        rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
 400
 401        free_percpu(rcpu->bulkq);
 402        /* Cannot kthread_stop() here, last put free rcpu resources */
 403        put_cpu_map_entry(rcpu);
 404}
 405
 406/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
 407 * ensure any driver rcu critical sections have completed, but this
 408 * does not guarantee a flush has happened yet. Because driver side
 409 * rcu_read_lock/unlock only protects the running XDP program.  The
 410 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
 411 * pending flush op doesn't fail.
 412 *
 413 * The bpf_cpu_map_entry is still used by the kthread, and there can
 414 * still be pending packets (in queue and percpu bulkq).  A refcnt
 415 * makes sure to last user (kthread_stop vs. call_rcu) free memory
 416 * resources.
 417 *
 418 * The rcu callback __cpu_map_entry_free flush remaining packets in
 419 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
 420 * preemption, cannot call kthread_stop() to make sure queue is empty.
 421 * Instead a work_queue is started for stopping kthread,
 422 * cpu_map_kthread_stop, which waits for an RCU grace period before
 423 * stopping kthread, emptying the queue.
 424 */
 425static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
 426                                    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
 427{
 428        struct bpf_cpu_map_entry *old_rcpu;
 429
 430        old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
 431        if (old_rcpu) {
 432                call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
 433                INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
 434                schedule_work(&old_rcpu->kthread_stop_wq);
 435        }
 436}
 437
 438static int cpu_map_delete_elem(struct bpf_map *map, void *key)
 439{
 440        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 441        u32 key_cpu = *(u32 *)key;
 442
 443        if (key_cpu >= map->max_entries)
 444                return -EINVAL;
 445
 446        /* notice caller map_delete_elem() use preempt_disable() */
 447        __cpu_map_entry_replace(cmap, key_cpu, NULL);
 448        return 0;
 449}
 450
 451static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
 452                               u64 map_flags)
 453{
 454        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 455        struct bpf_cpu_map_entry *rcpu;
 456
 457        /* Array index key correspond to CPU number */
 458        u32 key_cpu = *(u32 *)key;
 459        /* Value is the queue size */
 460        u32 qsize = *(u32 *)value;
 461
 462        if (unlikely(map_flags > BPF_EXIST))
 463                return -EINVAL;
 464        if (unlikely(key_cpu >= cmap->map.max_entries))
 465                return -E2BIG;
 466        if (unlikely(map_flags == BPF_NOEXIST))
 467                return -EEXIST;
 468        if (unlikely(qsize > 16384)) /* sanity limit on qsize */
 469                return -EOVERFLOW;
 470
 471        /* Make sure CPU is a valid possible cpu */
 472        if (!cpu_possible(key_cpu))
 473                return -ENODEV;
 474
 475        if (qsize == 0) {
 476                rcpu = NULL; /* Same as deleting */
 477        } else {
 478                /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
 479                rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
 480                if (!rcpu)
 481                        return -ENOMEM;
 482                rcpu->cmap = cmap;
 483        }
 484        rcu_read_lock();
 485        __cpu_map_entry_replace(cmap, key_cpu, rcpu);
 486        rcu_read_unlock();
 487        return 0;
 488}
 489
 490static void cpu_map_free(struct bpf_map *map)
 491{
 492        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 493        u32 i;
 494
 495        /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 496         * so the bpf programs (can be more than one that used this map) were
 497         * disconnected from events. Wait for outstanding critical sections in
 498         * these programs to complete. The rcu critical section only guarantees
 499         * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
 500         * It does __not__ ensure pending flush operations (if any) are
 501         * complete.
 502         */
 503
 504        bpf_clear_redirect_map(map);
 505        synchronize_rcu();
 506
 507        /* For cpu_map the remote CPUs can still be using the entries
 508         * (struct bpf_cpu_map_entry).
 509         */
 510        for (i = 0; i < cmap->map.max_entries; i++) {
 511                struct bpf_cpu_map_entry *rcpu;
 512
 513                rcpu = READ_ONCE(cmap->cpu_map[i]);
 514                if (!rcpu)
 515                        continue;
 516
 517                /* bq flush and cleanup happens after RCU grace-period */
 518                __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
 519        }
 520        bpf_map_area_free(cmap->cpu_map);
 521        kfree(cmap);
 522}
 523
 524struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 525{
 526        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 527        struct bpf_cpu_map_entry *rcpu;
 528
 529        if (key >= map->max_entries)
 530                return NULL;
 531
 532        rcpu = READ_ONCE(cmap->cpu_map[key]);
 533        return rcpu;
 534}
 535
 536static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
 537{
 538        struct bpf_cpu_map_entry *rcpu =
 539                __cpu_map_lookup_elem(map, *(u32 *)key);
 540
 541        return rcpu ? &rcpu->qsize : NULL;
 542}
 543
 544static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 545{
 546        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 547        u32 index = key ? *(u32 *)key : U32_MAX;
 548        u32 *next = next_key;
 549
 550        if (index >= cmap->map.max_entries) {
 551                *next = 0;
 552                return 0;
 553        }
 554
 555        if (index == cmap->map.max_entries - 1)
 556                return -ENOENT;
 557        *next = index + 1;
 558        return 0;
 559}
 560
 561const struct bpf_map_ops cpu_map_ops = {
 562        .map_alloc              = cpu_map_alloc,
 563        .map_free               = cpu_map_free,
 564        .map_delete_elem        = cpu_map_delete_elem,
 565        .map_update_elem        = cpu_map_update_elem,
 566        .map_lookup_elem        = cpu_map_lookup_elem,
 567        .map_get_next_key       = cpu_map_get_next_key,
 568        .map_check_btf          = map_check_no_btf,
 569};
 570
 571static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
 572{
 573        struct bpf_cpu_map_entry *rcpu = bq->obj;
 574        unsigned int processed = 0, drops = 0;
 575        const int to_cpu = rcpu->cpu;
 576        struct ptr_ring *q;
 577        int i;
 578
 579        if (unlikely(!bq->count))
 580                return 0;
 581
 582        q = rcpu->queue;
 583        spin_lock(&q->producer_lock);
 584
 585        for (i = 0; i < bq->count; i++) {
 586                struct xdp_frame *xdpf = bq->q[i];
 587                int err;
 588
 589                err = __ptr_ring_produce(q, xdpf);
 590                if (err) {
 591                        drops++;
 592                        xdp_return_frame_rx_napi(xdpf);
 593                }
 594                processed++;
 595        }
 596        bq->count = 0;
 597        spin_unlock(&q->producer_lock);
 598
 599        __list_del_clearprev(&bq->flush_node);
 600
 601        /* Feedback loop via tracepoints */
 602        trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 603        return 0;
 604}
 605
 606/* Runs under RCU-read-side, plus in softirq under NAPI protection.
 607 * Thus, safe percpu variable access.
 608 */
 609static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
 610{
 611        struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
 612        struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
 613
 614        if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
 615                bq_flush_to_queue(bq);
 616
 617        /* Notice, xdp_buff/page MUST be queued here, long enough for
 618         * driver to code invoking us to finished, due to driver
 619         * (e.g. ixgbe) recycle tricks based on page-refcnt.
 620         *
 621         * Thus, incoming xdp_frame is always queued here (else we race
 622         * with another CPU on page-refcnt and remaining driver code).
 623         * Queue time is very short, as driver will invoke flush
 624         * operation, when completing napi->poll call.
 625         */
 626        bq->q[bq->count++] = xdpf;
 627
 628        if (!bq->flush_node.prev)
 629                list_add(&bq->flush_node, flush_list);
 630
 631        return 0;
 632}
 633
 634int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
 635                    struct net_device *dev_rx)
 636{
 637        struct xdp_frame *xdpf;
 638
 639        xdpf = convert_to_xdp_frame(xdp);
 640        if (unlikely(!xdpf))
 641                return -EOVERFLOW;
 642
 643        /* Info needed when constructing SKB on remote CPU */
 644        xdpf->dev_rx = dev_rx;
 645
 646        bq_enqueue(rcpu, xdpf);
 647        return 0;
 648}
 649
 650void __cpu_map_flush(void)
 651{
 652        struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
 653        struct xdp_bulk_queue *bq, *tmp;
 654
 655        list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
 656                bq_flush_to_queue(bq);
 657
 658                /* If already running, costs spin_lock_irqsave + smb_mb */
 659                wake_up_process(bq->obj->kthread);
 660        }
 661}
 662
 663static int __init cpu_map_init(void)
 664{
 665        int cpu;
 666
 667        for_each_possible_cpu(cpu)
 668                INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
 669        return 0;
 670}
 671
 672subsys_initcall(cpu_map_init);
 673