1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19#include <linux/bpf.h>
20#include <linux/filter.h>
21#include <linux/ptr_ring.h>
22#include <net/xdp.h>
23
24#include <linux/sched.h>
25#include <linux/workqueue.h>
26#include <linux/kthread.h>
27#include <linux/capability.h>
28#include <trace/events/xdp.h>
29
30#include <linux/netdevice.h>
31#include <linux/etherdevice.h>
32
33
34
35
36
37
38
39
40#define CPU_MAP_BULK_SIZE 8
41struct bpf_cpu_map_entry;
42struct bpf_cpu_map;
43
44struct xdp_bulk_queue {
45 void *q[CPU_MAP_BULK_SIZE];
46 struct list_head flush_node;
47 struct bpf_cpu_map_entry *obj;
48 unsigned int count;
49};
50
51
52struct bpf_cpu_map_entry {
53 u32 cpu;
54 int map_id;
55 u32 qsize;
56
57
58 struct xdp_bulk_queue __percpu *bulkq;
59
60 struct bpf_cpu_map *cmap;
61
62
63 struct ptr_ring *queue;
64 struct task_struct *kthread;
65 struct work_struct kthread_stop_wq;
66
67 atomic_t refcnt;
68 struct rcu_head rcu;
69};
70
71struct bpf_cpu_map {
72 struct bpf_map map;
73
74 struct bpf_cpu_map_entry **cpu_map;
75};
76
77static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
78
79static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
80
81static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
82{
83 struct bpf_cpu_map *cmap;
84 int err = -ENOMEM;
85 u64 cost;
86 int ret;
87
88 if (!capable(CAP_SYS_ADMIN))
89 return ERR_PTR(-EPERM);
90
91
92 if (attr->max_entries == 0 || attr->key_size != 4 ||
93 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
94 return ERR_PTR(-EINVAL);
95
96 cmap = kzalloc(sizeof(*cmap), GFP_USER);
97 if (!cmap)
98 return ERR_PTR(-ENOMEM);
99
100 bpf_map_init_from_attr(&cmap->map, attr);
101
102
103 if (cmap->map.max_entries > NR_CPUS) {
104 err = -E2BIG;
105 goto free_cmap;
106 }
107
108
109 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
110
111
112 ret = bpf_map_charge_init(&cmap->map.memory, cost);
113 if (ret) {
114 err = ret;
115 goto free_cmap;
116 }
117
118
119 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
120 sizeof(struct bpf_cpu_map_entry *),
121 cmap->map.numa_node);
122 if (!cmap->cpu_map)
123 goto free_charge;
124
125 return &cmap->map;
126free_charge:
127 bpf_map_charge_finish(&cmap->map.memory);
128free_cmap:
129 kfree(cmap);
130 return ERR_PTR(err);
131}
132
133static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
134{
135 atomic_inc(&rcpu->refcnt);
136}
137
138
139static void cpu_map_kthread_stop(struct work_struct *work)
140{
141 struct bpf_cpu_map_entry *rcpu;
142
143 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
144
145
146
147
148 rcu_barrier();
149
150
151 kthread_stop(rcpu->kthread);
152}
153
154static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
155 struct xdp_frame *xdpf,
156 struct sk_buff *skb)
157{
158 unsigned int hard_start_headroom;
159 unsigned int frame_size;
160 void *pkt_data_start;
161
162
163 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom;
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182 frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
183 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
184
185 pkt_data_start = xdpf->data - hard_start_headroom;
186 skb = build_skb_around(skb, pkt_data_start, frame_size);
187 if (unlikely(!skb))
188 return NULL;
189
190 skb_reserve(skb, hard_start_headroom);
191 __skb_put(skb, xdpf->len);
192 if (xdpf->metasize)
193 skb_metadata_set(skb, xdpf->metasize);
194
195
196 skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
197
198
199
200
201
202
203
204
205 xdp_release_frame(xdpf);
206
207
208 xdp_scrub_frame(xdpf);
209
210 return skb;
211}
212
213static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
214{
215
216
217
218
219
220 struct xdp_frame *xdpf;
221
222 while ((xdpf = ptr_ring_consume(ring)))
223 if (WARN_ON_ONCE(xdpf))
224 xdp_return_frame(xdpf);
225}
226
227static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
228{
229 if (atomic_dec_and_test(&rcpu->refcnt)) {
230
231 __cpu_map_ring_cleanup(rcpu->queue);
232 ptr_ring_cleanup(rcpu->queue, NULL);
233 kfree(rcpu->queue);
234 kfree(rcpu);
235 }
236}
237
238#define CPUMAP_BATCH 8
239
240static int cpu_map_kthread_run(void *data)
241{
242 struct bpf_cpu_map_entry *rcpu = data;
243
244 set_current_state(TASK_INTERRUPTIBLE);
245
246
247
248
249
250
251 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
252 unsigned int drops = 0, sched = 0;
253 void *frames[CPUMAP_BATCH];
254 void *skbs[CPUMAP_BATCH];
255 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
256 int i, n, m;
257
258
259 if (__ptr_ring_empty(rcpu->queue)) {
260 set_current_state(TASK_INTERRUPTIBLE);
261
262 if (__ptr_ring_empty(rcpu->queue)) {
263 schedule();
264 sched = 1;
265 } else {
266 __set_current_state(TASK_RUNNING);
267 }
268 } else {
269 sched = cond_resched();
270 }
271
272
273
274
275
276
277 n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
278
279 for (i = 0; i < n; i++) {
280 void *f = frames[i];
281 struct page *page = virt_to_page(f);
282
283
284
285
286
287 prefetchw(page);
288 }
289
290 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
291 if (unlikely(m == 0)) {
292 for (i = 0; i < n; i++)
293 skbs[i] = NULL;
294 drops = n;
295 }
296
297 local_bh_disable();
298 for (i = 0; i < n; i++) {
299 struct xdp_frame *xdpf = frames[i];
300 struct sk_buff *skb = skbs[i];
301 int ret;
302
303 skb = cpu_map_build_skb(rcpu, xdpf, skb);
304 if (!skb) {
305 xdp_return_frame(xdpf);
306 continue;
307 }
308
309
310 ret = netif_receive_skb_core(skb);
311 if (ret == NET_RX_DROP)
312 drops++;
313 }
314
315 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
316
317 local_bh_enable();
318 }
319 __set_current_state(TASK_RUNNING);
320
321 put_cpu_map_entry(rcpu);
322 return 0;
323}
324
325static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
326 int map_id)
327{
328 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
329 struct bpf_cpu_map_entry *rcpu;
330 struct xdp_bulk_queue *bq;
331 int numa, err, i;
332
333
334 numa = cpu_to_node(cpu);
335
336 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
337 if (!rcpu)
338 return NULL;
339
340
341 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
342 sizeof(void *), gfp);
343 if (!rcpu->bulkq)
344 goto free_rcu;
345
346 for_each_possible_cpu(i) {
347 bq = per_cpu_ptr(rcpu->bulkq, i);
348 bq->obj = rcpu;
349 }
350
351
352 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
353 if (!rcpu->queue)
354 goto free_bulkq;
355
356 err = ptr_ring_init(rcpu->queue, qsize, gfp);
357 if (err)
358 goto free_queue;
359
360 rcpu->cpu = cpu;
361 rcpu->map_id = map_id;
362 rcpu->qsize = qsize;
363
364
365 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
366 "cpumap/%d/map:%d", cpu, map_id);
367 if (IS_ERR(rcpu->kthread))
368 goto free_ptr_ring;
369
370 get_cpu_map_entry(rcpu);
371 get_cpu_map_entry(rcpu);
372
373
374 kthread_bind(rcpu->kthread, cpu);
375 wake_up_process(rcpu->kthread);
376
377 return rcpu;
378
379free_ptr_ring:
380 ptr_ring_cleanup(rcpu->queue, NULL);
381free_queue:
382 kfree(rcpu->queue);
383free_bulkq:
384 free_percpu(rcpu->bulkq);
385free_rcu:
386 kfree(rcpu);
387 return NULL;
388}
389
390static void __cpu_map_entry_free(struct rcu_head *rcu)
391{
392 struct bpf_cpu_map_entry *rcpu;
393
394
395
396
397
398
399 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
400
401 free_percpu(rcpu->bulkq);
402
403 put_cpu_map_entry(rcpu);
404}
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
426 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
427{
428 struct bpf_cpu_map_entry *old_rcpu;
429
430 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
431 if (old_rcpu) {
432 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
433 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
434 schedule_work(&old_rcpu->kthread_stop_wq);
435 }
436}
437
438static int cpu_map_delete_elem(struct bpf_map *map, void *key)
439{
440 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
441 u32 key_cpu = *(u32 *)key;
442
443 if (key_cpu >= map->max_entries)
444 return -EINVAL;
445
446
447 __cpu_map_entry_replace(cmap, key_cpu, NULL);
448 return 0;
449}
450
451static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
452 u64 map_flags)
453{
454 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
455 struct bpf_cpu_map_entry *rcpu;
456
457
458 u32 key_cpu = *(u32 *)key;
459
460 u32 qsize = *(u32 *)value;
461
462 if (unlikely(map_flags > BPF_EXIST))
463 return -EINVAL;
464 if (unlikely(key_cpu >= cmap->map.max_entries))
465 return -E2BIG;
466 if (unlikely(map_flags == BPF_NOEXIST))
467 return -EEXIST;
468 if (unlikely(qsize > 16384))
469 return -EOVERFLOW;
470
471
472 if (!cpu_possible(key_cpu))
473 return -ENODEV;
474
475 if (qsize == 0) {
476 rcpu = NULL;
477 } else {
478
479 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
480 if (!rcpu)
481 return -ENOMEM;
482 rcpu->cmap = cmap;
483 }
484 rcu_read_lock();
485 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
486 rcu_read_unlock();
487 return 0;
488}
489
490static void cpu_map_free(struct bpf_map *map)
491{
492 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
493 u32 i;
494
495
496
497
498
499
500
501
502
503
504 bpf_clear_redirect_map(map);
505 synchronize_rcu();
506
507
508
509
510 for (i = 0; i < cmap->map.max_entries; i++) {
511 struct bpf_cpu_map_entry *rcpu;
512
513 rcpu = READ_ONCE(cmap->cpu_map[i]);
514 if (!rcpu)
515 continue;
516
517
518 __cpu_map_entry_replace(cmap, i, NULL);
519 }
520 bpf_map_area_free(cmap->cpu_map);
521 kfree(cmap);
522}
523
524struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
525{
526 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
527 struct bpf_cpu_map_entry *rcpu;
528
529 if (key >= map->max_entries)
530 return NULL;
531
532 rcpu = READ_ONCE(cmap->cpu_map[key]);
533 return rcpu;
534}
535
536static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
537{
538 struct bpf_cpu_map_entry *rcpu =
539 __cpu_map_lookup_elem(map, *(u32 *)key);
540
541 return rcpu ? &rcpu->qsize : NULL;
542}
543
544static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
545{
546 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
547 u32 index = key ? *(u32 *)key : U32_MAX;
548 u32 *next = next_key;
549
550 if (index >= cmap->map.max_entries) {
551 *next = 0;
552 return 0;
553 }
554
555 if (index == cmap->map.max_entries - 1)
556 return -ENOENT;
557 *next = index + 1;
558 return 0;
559}
560
561const struct bpf_map_ops cpu_map_ops = {
562 .map_alloc = cpu_map_alloc,
563 .map_free = cpu_map_free,
564 .map_delete_elem = cpu_map_delete_elem,
565 .map_update_elem = cpu_map_update_elem,
566 .map_lookup_elem = cpu_map_lookup_elem,
567 .map_get_next_key = cpu_map_get_next_key,
568 .map_check_btf = map_check_no_btf,
569};
570
571static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
572{
573 struct bpf_cpu_map_entry *rcpu = bq->obj;
574 unsigned int processed = 0, drops = 0;
575 const int to_cpu = rcpu->cpu;
576 struct ptr_ring *q;
577 int i;
578
579 if (unlikely(!bq->count))
580 return 0;
581
582 q = rcpu->queue;
583 spin_lock(&q->producer_lock);
584
585 for (i = 0; i < bq->count; i++) {
586 struct xdp_frame *xdpf = bq->q[i];
587 int err;
588
589 err = __ptr_ring_produce(q, xdpf);
590 if (err) {
591 drops++;
592 xdp_return_frame_rx_napi(xdpf);
593 }
594 processed++;
595 }
596 bq->count = 0;
597 spin_unlock(&q->producer_lock);
598
599 __list_del_clearprev(&bq->flush_node);
600
601
602 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
603 return 0;
604}
605
606
607
608
609static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
610{
611 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
612 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
613
614 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
615 bq_flush_to_queue(bq);
616
617
618
619
620
621
622
623
624
625
626 bq->q[bq->count++] = xdpf;
627
628 if (!bq->flush_node.prev)
629 list_add(&bq->flush_node, flush_list);
630
631 return 0;
632}
633
634int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
635 struct net_device *dev_rx)
636{
637 struct xdp_frame *xdpf;
638
639 xdpf = convert_to_xdp_frame(xdp);
640 if (unlikely(!xdpf))
641 return -EOVERFLOW;
642
643
644 xdpf->dev_rx = dev_rx;
645
646 bq_enqueue(rcpu, xdpf);
647 return 0;
648}
649
650void __cpu_map_flush(void)
651{
652 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
653 struct xdp_bulk_queue *bq, *tmp;
654
655 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
656 bq_flush_to_queue(bq);
657
658
659 wake_up_process(bq->obj->kthread);
660 }
661}
662
663static int __init cpu_map_init(void)
664{
665 int cpu;
666
667 for_each_possible_cpu(cpu)
668 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
669 return 0;
670}
671
672subsys_initcall(cpu_map_init);
673