linux/kernel/cgroup/cgroup-v1.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include "cgroup-internal.h"
   3
   4#include <linux/ctype.h>
   5#include <linux/kmod.h>
   6#include <linux/sort.h>
   7#include <linux/delay.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/sched/task.h>
  11#include <linux/magic.h>
  12#include <linux/slab.h>
  13#include <linux/vmalloc.h>
  14#include <linux/delayacct.h>
  15#include <linux/pid_namespace.h>
  16#include <linux/cgroupstats.h>
  17#include <linux/fs_parser.h>
  18
  19#include <trace/events/cgroup.h>
  20
  21/*
  22 * pidlists linger the following amount before being destroyed.  The goal
  23 * is avoiding frequent destruction in the middle of consecutive read calls
  24 * Expiring in the middle is a performance problem not a correctness one.
  25 * 1 sec should be enough.
  26 */
  27#define CGROUP_PIDLIST_DESTROY_DELAY    HZ
  28
  29/* Controllers blocked by the commandline in v1 */
  30static u16 cgroup_no_v1_mask;
  31
  32/* disable named v1 mounts */
  33static bool cgroup_no_v1_named;
  34
  35/*
  36 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  37 * separate workqueue as flush domain.
  38 */
  39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  40
  41/*
  42 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
  43 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
  44 */
  45static DEFINE_SPINLOCK(release_agent_path_lock);
  46
  47bool cgroup1_ssid_disabled(int ssid)
  48{
  49        return cgroup_no_v1_mask & (1 << ssid);
  50}
  51
  52/**
  53 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  54 * @from: attach to all cgroups of a given task
  55 * @tsk: the task to be attached
  56 */
  57int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  58{
  59        struct cgroup_root *root;
  60        int retval = 0;
  61
  62        mutex_lock(&cgroup_mutex);
  63        percpu_down_write(&cgroup_threadgroup_rwsem);
  64        for_each_root(root) {
  65                struct cgroup *from_cgrp;
  66
  67                if (root == &cgrp_dfl_root)
  68                        continue;
  69
  70                spin_lock_irq(&css_set_lock);
  71                from_cgrp = task_cgroup_from_root(from, root);
  72                spin_unlock_irq(&css_set_lock);
  73
  74                retval = cgroup_attach_task(from_cgrp, tsk, false);
  75                if (retval)
  76                        break;
  77        }
  78        percpu_up_write(&cgroup_threadgroup_rwsem);
  79        mutex_unlock(&cgroup_mutex);
  80
  81        return retval;
  82}
  83EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  84
  85/**
  86 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  87 * @to: cgroup to which the tasks will be moved
  88 * @from: cgroup in which the tasks currently reside
  89 *
  90 * Locking rules between cgroup_post_fork() and the migration path
  91 * guarantee that, if a task is forking while being migrated, the new child
  92 * is guaranteed to be either visible in the source cgroup after the
  93 * parent's migration is complete or put into the target cgroup.  No task
  94 * can slip out of migration through forking.
  95 */
  96int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  97{
  98        DEFINE_CGROUP_MGCTX(mgctx);
  99        struct cgrp_cset_link *link;
 100        struct css_task_iter it;
 101        struct task_struct *task;
 102        int ret;
 103
 104        if (cgroup_on_dfl(to))
 105                return -EINVAL;
 106
 107        ret = cgroup_migrate_vet_dst(to);
 108        if (ret)
 109                return ret;
 110
 111        mutex_lock(&cgroup_mutex);
 112
 113        percpu_down_write(&cgroup_threadgroup_rwsem);
 114
 115        /* all tasks in @from are being moved, all csets are source */
 116        spin_lock_irq(&css_set_lock);
 117        list_for_each_entry(link, &from->cset_links, cset_link)
 118                cgroup_migrate_add_src(link->cset, to, &mgctx);
 119        spin_unlock_irq(&css_set_lock);
 120
 121        ret = cgroup_migrate_prepare_dst(&mgctx);
 122        if (ret)
 123                goto out_err;
 124
 125        /*
 126         * Migrate tasks one-by-one until @from is empty.  This fails iff
 127         * ->can_attach() fails.
 128         */
 129        do {
 130                css_task_iter_start(&from->self, 0, &it);
 131
 132                do {
 133                        task = css_task_iter_next(&it);
 134                } while (task && (task->flags & PF_EXITING));
 135
 136                if (task)
 137                        get_task_struct(task);
 138                css_task_iter_end(&it);
 139
 140                if (task) {
 141                        ret = cgroup_migrate(task, false, &mgctx);
 142                        if (!ret)
 143                                TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 144                        put_task_struct(task);
 145                }
 146        } while (task && !ret);
 147out_err:
 148        cgroup_migrate_finish(&mgctx);
 149        percpu_up_write(&cgroup_threadgroup_rwsem);
 150        mutex_unlock(&cgroup_mutex);
 151        return ret;
 152}
 153
 154/*
 155 * Stuff for reading the 'tasks'/'procs' files.
 156 *
 157 * Reading this file can return large amounts of data if a cgroup has
 158 * *lots* of attached tasks. So it may need several calls to read(),
 159 * but we cannot guarantee that the information we produce is correct
 160 * unless we produce it entirely atomically.
 161 *
 162 */
 163
 164/* which pidlist file are we talking about? */
 165enum cgroup_filetype {
 166        CGROUP_FILE_PROCS,
 167        CGROUP_FILE_TASKS,
 168};
 169
 170/*
 171 * A pidlist is a list of pids that virtually represents the contents of one
 172 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 173 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 174 * to the cgroup.
 175 */
 176struct cgroup_pidlist {
 177        /*
 178         * used to find which pidlist is wanted. doesn't change as long as
 179         * this particular list stays in the list.
 180        */
 181        struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 182        /* array of xids */
 183        pid_t *list;
 184        /* how many elements the above list has */
 185        int length;
 186        /* each of these stored in a list by its cgroup */
 187        struct list_head links;
 188        /* pointer to the cgroup we belong to, for list removal purposes */
 189        struct cgroup *owner;
 190        /* for delayed destruction */
 191        struct delayed_work destroy_dwork;
 192};
 193
 194/*
 195 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 196 * should be left afterwards.
 197 */
 198void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 199{
 200        struct cgroup_pidlist *l, *tmp_l;
 201
 202        mutex_lock(&cgrp->pidlist_mutex);
 203        list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 204                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 205        mutex_unlock(&cgrp->pidlist_mutex);
 206
 207        flush_workqueue(cgroup_pidlist_destroy_wq);
 208        BUG_ON(!list_empty(&cgrp->pidlists));
 209}
 210
 211static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 212{
 213        struct delayed_work *dwork = to_delayed_work(work);
 214        struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 215                                                destroy_dwork);
 216        struct cgroup_pidlist *tofree = NULL;
 217
 218        mutex_lock(&l->owner->pidlist_mutex);
 219
 220        /*
 221         * Destroy iff we didn't get queued again.  The state won't change
 222         * as destroy_dwork can only be queued while locked.
 223         */
 224        if (!delayed_work_pending(dwork)) {
 225                list_del(&l->links);
 226                kvfree(l->list);
 227                put_pid_ns(l->key.ns);
 228                tofree = l;
 229        }
 230
 231        mutex_unlock(&l->owner->pidlist_mutex);
 232        kfree(tofree);
 233}
 234
 235/*
 236 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 237 * Returns the number of unique elements.
 238 */
 239static int pidlist_uniq(pid_t *list, int length)
 240{
 241        int src, dest = 1;
 242
 243        /*
 244         * we presume the 0th element is unique, so i starts at 1. trivial
 245         * edge cases first; no work needs to be done for either
 246         */
 247        if (length == 0 || length == 1)
 248                return length;
 249        /* src and dest walk down the list; dest counts unique elements */
 250        for (src = 1; src < length; src++) {
 251                /* find next unique element */
 252                while (list[src] == list[src-1]) {
 253                        src++;
 254                        if (src == length)
 255                                goto after;
 256                }
 257                /* dest always points to where the next unique element goes */
 258                list[dest] = list[src];
 259                dest++;
 260        }
 261after:
 262        return dest;
 263}
 264
 265/*
 266 * The two pid files - task and cgroup.procs - guaranteed that the result
 267 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 268 * different per namespace, each namespace needs differently sorted list,
 269 * making it impossible to use, for example, single rbtree of member tasks
 270 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 271 * per open file is dangerous, so cgroup had to implement shared pool of
 272 * pidlists keyed by cgroup and namespace.
 273 */
 274static int cmppid(const void *a, const void *b)
 275{
 276        return *(pid_t *)a - *(pid_t *)b;
 277}
 278
 279static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 280                                                  enum cgroup_filetype type)
 281{
 282        struct cgroup_pidlist *l;
 283        /* don't need task_nsproxy() if we're looking at ourself */
 284        struct pid_namespace *ns = task_active_pid_ns(current);
 285
 286        lockdep_assert_held(&cgrp->pidlist_mutex);
 287
 288        list_for_each_entry(l, &cgrp->pidlists, links)
 289                if (l->key.type == type && l->key.ns == ns)
 290                        return l;
 291        return NULL;
 292}
 293
 294/*
 295 * find the appropriate pidlist for our purpose (given procs vs tasks)
 296 * returns with the lock on that pidlist already held, and takes care
 297 * of the use count, or returns NULL with no locks held if we're out of
 298 * memory.
 299 */
 300static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 301                                                enum cgroup_filetype type)
 302{
 303        struct cgroup_pidlist *l;
 304
 305        lockdep_assert_held(&cgrp->pidlist_mutex);
 306
 307        l = cgroup_pidlist_find(cgrp, type);
 308        if (l)
 309                return l;
 310
 311        /* entry not found; create a new one */
 312        l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 313        if (!l)
 314                return l;
 315
 316        INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 317        l->key.type = type;
 318        /* don't need task_nsproxy() if we're looking at ourself */
 319        l->key.ns = get_pid_ns(task_active_pid_ns(current));
 320        l->owner = cgrp;
 321        list_add(&l->links, &cgrp->pidlists);
 322        return l;
 323}
 324
 325/*
 326 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 327 */
 328static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 329                              struct cgroup_pidlist **lp)
 330{
 331        pid_t *array;
 332        int length;
 333        int pid, n = 0; /* used for populating the array */
 334        struct css_task_iter it;
 335        struct task_struct *tsk;
 336        struct cgroup_pidlist *l;
 337
 338        lockdep_assert_held(&cgrp->pidlist_mutex);
 339
 340        /*
 341         * If cgroup gets more users after we read count, we won't have
 342         * enough space - tough.  This race is indistinguishable to the
 343         * caller from the case that the additional cgroup users didn't
 344         * show up until sometime later on.
 345         */
 346        length = cgroup_task_count(cgrp);
 347        array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
 348        if (!array)
 349                return -ENOMEM;
 350        /* now, populate the array */
 351        css_task_iter_start(&cgrp->self, 0, &it);
 352        while ((tsk = css_task_iter_next(&it))) {
 353                if (unlikely(n == length))
 354                        break;
 355                /* get tgid or pid for procs or tasks file respectively */
 356                if (type == CGROUP_FILE_PROCS)
 357                        pid = task_tgid_vnr(tsk);
 358                else
 359                        pid = task_pid_vnr(tsk);
 360                if (pid > 0) /* make sure to only use valid results */
 361                        array[n++] = pid;
 362        }
 363        css_task_iter_end(&it);
 364        length = n;
 365        /* now sort & (if procs) strip out duplicates */
 366        sort(array, length, sizeof(pid_t), cmppid, NULL);
 367        if (type == CGROUP_FILE_PROCS)
 368                length = pidlist_uniq(array, length);
 369
 370        l = cgroup_pidlist_find_create(cgrp, type);
 371        if (!l) {
 372                kvfree(array);
 373                return -ENOMEM;
 374        }
 375
 376        /* store array, freeing old if necessary */
 377        kvfree(l->list);
 378        l->list = array;
 379        l->length = length;
 380        *lp = l;
 381        return 0;
 382}
 383
 384/*
 385 * seq_file methods for the tasks/procs files. The seq_file position is the
 386 * next pid to display; the seq_file iterator is a pointer to the pid
 387 * in the cgroup->l->list array.
 388 */
 389
 390static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 391{
 392        /*
 393         * Initially we receive a position value that corresponds to
 394         * one more than the last pid shown (or 0 on the first call or
 395         * after a seek to the start). Use a binary-search to find the
 396         * next pid to display, if any
 397         */
 398        struct kernfs_open_file *of = s->private;
 399        struct cgroup *cgrp = seq_css(s)->cgroup;
 400        struct cgroup_pidlist *l;
 401        enum cgroup_filetype type = seq_cft(s)->private;
 402        int index = 0, pid = *pos;
 403        int *iter, ret;
 404
 405        mutex_lock(&cgrp->pidlist_mutex);
 406
 407        /*
 408         * !NULL @of->priv indicates that this isn't the first start()
 409         * after open.  If the matching pidlist is around, we can use that.
 410         * Look for it.  Note that @of->priv can't be used directly.  It
 411         * could already have been destroyed.
 412         */
 413        if (of->priv)
 414                of->priv = cgroup_pidlist_find(cgrp, type);
 415
 416        /*
 417         * Either this is the first start() after open or the matching
 418         * pidlist has been destroyed inbetween.  Create a new one.
 419         */
 420        if (!of->priv) {
 421                ret = pidlist_array_load(cgrp, type,
 422                                         (struct cgroup_pidlist **)&of->priv);
 423                if (ret)
 424                        return ERR_PTR(ret);
 425        }
 426        l = of->priv;
 427
 428        if (pid) {
 429                int end = l->length;
 430
 431                while (index < end) {
 432                        int mid = (index + end) / 2;
 433                        if (l->list[mid] == pid) {
 434                                index = mid;
 435                                break;
 436                        } else if (l->list[mid] <= pid)
 437                                index = mid + 1;
 438                        else
 439                                end = mid;
 440                }
 441        }
 442        /* If we're off the end of the array, we're done */
 443        if (index >= l->length)
 444                return NULL;
 445        /* Update the abstract position to be the actual pid that we found */
 446        iter = l->list + index;
 447        *pos = *iter;
 448        return iter;
 449}
 450
 451static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 452{
 453        struct kernfs_open_file *of = s->private;
 454        struct cgroup_pidlist *l = of->priv;
 455
 456        if (l)
 457                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 458                                 CGROUP_PIDLIST_DESTROY_DELAY);
 459        mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 460}
 461
 462static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 463{
 464        struct kernfs_open_file *of = s->private;
 465        struct cgroup_pidlist *l = of->priv;
 466        pid_t *p = v;
 467        pid_t *end = l->list + l->length;
 468        /*
 469         * Advance to the next pid in the array. If this goes off the
 470         * end, we're done
 471         */
 472        p++;
 473        if (p >= end) {
 474                (*pos)++;
 475                return NULL;
 476        } else {
 477                *pos = *p;
 478                return p;
 479        }
 480}
 481
 482static int cgroup_pidlist_show(struct seq_file *s, void *v)
 483{
 484        seq_printf(s, "%d\n", *(int *)v);
 485
 486        return 0;
 487}
 488
 489static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 490                                     char *buf, size_t nbytes, loff_t off,
 491                                     bool threadgroup)
 492{
 493        struct cgroup *cgrp;
 494        struct task_struct *task;
 495        const struct cred *cred, *tcred;
 496        ssize_t ret;
 497        bool locked;
 498
 499        cgrp = cgroup_kn_lock_live(of->kn, false);
 500        if (!cgrp)
 501                return -ENODEV;
 502
 503        task = cgroup_procs_write_start(buf, threadgroup, &locked);
 504        ret = PTR_ERR_OR_ZERO(task);
 505        if (ret)
 506                goto out_unlock;
 507
 508        /*
 509         * Even if we're attaching all tasks in the thread group, we only
 510         * need to check permissions on one of them.
 511         */
 512        cred = current_cred();
 513        tcred = get_task_cred(task);
 514        if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 515            !uid_eq(cred->euid, tcred->uid) &&
 516            !uid_eq(cred->euid, tcred->suid))
 517                ret = -EACCES;
 518        put_cred(tcred);
 519        if (ret)
 520                goto out_finish;
 521
 522        ret = cgroup_attach_task(cgrp, task, threadgroup);
 523
 524out_finish:
 525        cgroup_procs_write_finish(task, locked);
 526out_unlock:
 527        cgroup_kn_unlock(of->kn);
 528
 529        return ret ?: nbytes;
 530}
 531
 532static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 533                                   char *buf, size_t nbytes, loff_t off)
 534{
 535        return __cgroup1_procs_write(of, buf, nbytes, off, true);
 536}
 537
 538static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 539                                   char *buf, size_t nbytes, loff_t off)
 540{
 541        return __cgroup1_procs_write(of, buf, nbytes, off, false);
 542}
 543
 544static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 545                                          char *buf, size_t nbytes, loff_t off)
 546{
 547        struct cgroup *cgrp;
 548
 549        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 550
 551        cgrp = cgroup_kn_lock_live(of->kn, false);
 552        if (!cgrp)
 553                return -ENODEV;
 554        spin_lock(&release_agent_path_lock);
 555        strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 556                sizeof(cgrp->root->release_agent_path));
 557        spin_unlock(&release_agent_path_lock);
 558        cgroup_kn_unlock(of->kn);
 559        return nbytes;
 560}
 561
 562static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 563{
 564        struct cgroup *cgrp = seq_css(seq)->cgroup;
 565
 566        spin_lock(&release_agent_path_lock);
 567        seq_puts(seq, cgrp->root->release_agent_path);
 568        spin_unlock(&release_agent_path_lock);
 569        seq_putc(seq, '\n');
 570        return 0;
 571}
 572
 573static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 574{
 575        seq_puts(seq, "0\n");
 576        return 0;
 577}
 578
 579static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 580                                         struct cftype *cft)
 581{
 582        return notify_on_release(css->cgroup);
 583}
 584
 585static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 586                                          struct cftype *cft, u64 val)
 587{
 588        if (val)
 589                set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 590        else
 591                clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 592        return 0;
 593}
 594
 595static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 596                                      struct cftype *cft)
 597{
 598        return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 599}
 600
 601static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 602                                       struct cftype *cft, u64 val)
 603{
 604        if (val)
 605                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 606        else
 607                clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 608        return 0;
 609}
 610
 611/* cgroup core interface files for the legacy hierarchies */
 612struct cftype cgroup1_base_files[] = {
 613        {
 614                .name = "cgroup.procs",
 615                .seq_start = cgroup_pidlist_start,
 616                .seq_next = cgroup_pidlist_next,
 617                .seq_stop = cgroup_pidlist_stop,
 618                .seq_show = cgroup_pidlist_show,
 619                .private = CGROUP_FILE_PROCS,
 620                .write = cgroup1_procs_write,
 621        },
 622        {
 623                .name = "cgroup.clone_children",
 624                .read_u64 = cgroup_clone_children_read,
 625                .write_u64 = cgroup_clone_children_write,
 626        },
 627        {
 628                .name = "cgroup.sane_behavior",
 629                .flags = CFTYPE_ONLY_ON_ROOT,
 630                .seq_show = cgroup_sane_behavior_show,
 631        },
 632        {
 633                .name = "tasks",
 634                .seq_start = cgroup_pidlist_start,
 635                .seq_next = cgroup_pidlist_next,
 636                .seq_stop = cgroup_pidlist_stop,
 637                .seq_show = cgroup_pidlist_show,
 638                .private = CGROUP_FILE_TASKS,
 639                .write = cgroup1_tasks_write,
 640        },
 641        {
 642                .name = "notify_on_release",
 643                .read_u64 = cgroup_read_notify_on_release,
 644                .write_u64 = cgroup_write_notify_on_release,
 645        },
 646        {
 647                .name = "release_agent",
 648                .flags = CFTYPE_ONLY_ON_ROOT,
 649                .seq_show = cgroup_release_agent_show,
 650                .write = cgroup_release_agent_write,
 651                .max_write_len = PATH_MAX - 1,
 652        },
 653        { }     /* terminate */
 654};
 655
 656/* Display information about each subsystem and each hierarchy */
 657int proc_cgroupstats_show(struct seq_file *m, void *v)
 658{
 659        struct cgroup_subsys *ss;
 660        int i;
 661
 662        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 663        /*
 664         * ideally we don't want subsystems moving around while we do this.
 665         * cgroup_mutex is also necessary to guarantee an atomic snapshot of
 666         * subsys/hierarchy state.
 667         */
 668        mutex_lock(&cgroup_mutex);
 669
 670        for_each_subsys(ss, i)
 671                seq_printf(m, "%s\t%d\t%d\t%d\n",
 672                           ss->legacy_name, ss->root->hierarchy_id,
 673                           atomic_read(&ss->root->nr_cgrps),
 674                           cgroup_ssid_enabled(i));
 675
 676        mutex_unlock(&cgroup_mutex);
 677        return 0;
 678}
 679
 680/**
 681 * cgroupstats_build - build and fill cgroupstats
 682 * @stats: cgroupstats to fill information into
 683 * @dentry: A dentry entry belonging to the cgroup for which stats have
 684 * been requested.
 685 *
 686 * Build and fill cgroupstats so that taskstats can export it to user
 687 * space.
 688 */
 689int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 690{
 691        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 692        struct cgroup *cgrp;
 693        struct css_task_iter it;
 694        struct task_struct *tsk;
 695
 696        /* it should be kernfs_node belonging to cgroupfs and is a directory */
 697        if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 698            kernfs_type(kn) != KERNFS_DIR)
 699                return -EINVAL;
 700
 701        mutex_lock(&cgroup_mutex);
 702
 703        /*
 704         * We aren't being called from kernfs and there's no guarantee on
 705         * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 706         * @kn->priv is RCU safe.  Let's do the RCU dancing.
 707         */
 708        rcu_read_lock();
 709        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 710        if (!cgrp || cgroup_is_dead(cgrp)) {
 711                rcu_read_unlock();
 712                mutex_unlock(&cgroup_mutex);
 713                return -ENOENT;
 714        }
 715        rcu_read_unlock();
 716
 717        css_task_iter_start(&cgrp->self, 0, &it);
 718        while ((tsk = css_task_iter_next(&it))) {
 719                switch (tsk->state) {
 720                case TASK_RUNNING:
 721                        stats->nr_running++;
 722                        break;
 723                case TASK_INTERRUPTIBLE:
 724                        stats->nr_sleeping++;
 725                        break;
 726                case TASK_UNINTERRUPTIBLE:
 727                        stats->nr_uninterruptible++;
 728                        break;
 729                case TASK_STOPPED:
 730                        stats->nr_stopped++;
 731                        break;
 732                default:
 733                        if (delayacct_is_task_waiting_on_io(tsk))
 734                                stats->nr_io_wait++;
 735                        break;
 736                }
 737        }
 738        css_task_iter_end(&it);
 739
 740        mutex_unlock(&cgroup_mutex);
 741        return 0;
 742}
 743
 744void cgroup1_check_for_release(struct cgroup *cgrp)
 745{
 746        if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 747            !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 748                schedule_work(&cgrp->release_agent_work);
 749}
 750
 751/*
 752 * Notify userspace when a cgroup is released, by running the
 753 * configured release agent with the name of the cgroup (path
 754 * relative to the root of cgroup file system) as the argument.
 755 *
 756 * Most likely, this user command will try to rmdir this cgroup.
 757 *
 758 * This races with the possibility that some other task will be
 759 * attached to this cgroup before it is removed, or that some other
 760 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 761 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 762 * unused, and this cgroup will be reprieved from its death sentence,
 763 * to continue to serve a useful existence.  Next time it's released,
 764 * we will get notified again, if it still has 'notify_on_release' set.
 765 *
 766 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 767 * means only wait until the task is successfully execve()'d.  The
 768 * separate release agent task is forked by call_usermodehelper(),
 769 * then control in this thread returns here, without waiting for the
 770 * release agent task.  We don't bother to wait because the caller of
 771 * this routine has no use for the exit status of the release agent
 772 * task, so no sense holding our caller up for that.
 773 */
 774void cgroup1_release_agent(struct work_struct *work)
 775{
 776        struct cgroup *cgrp =
 777                container_of(work, struct cgroup, release_agent_work);
 778        char *pathbuf = NULL, *agentbuf = NULL;
 779        char *argv[3], *envp[3];
 780        int ret;
 781
 782        mutex_lock(&cgroup_mutex);
 783
 784        pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 785        agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
 786        if (!pathbuf || !agentbuf || !strlen(agentbuf))
 787                goto out;
 788
 789        spin_lock_irq(&css_set_lock);
 790        ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 791        spin_unlock_irq(&css_set_lock);
 792        if (ret < 0 || ret >= PATH_MAX)
 793                goto out;
 794
 795        argv[0] = agentbuf;
 796        argv[1] = pathbuf;
 797        argv[2] = NULL;
 798
 799        /* minimal command environment */
 800        envp[0] = "HOME=/";
 801        envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 802        envp[2] = NULL;
 803
 804        mutex_unlock(&cgroup_mutex);
 805        call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 806        goto out_free;
 807out:
 808        mutex_unlock(&cgroup_mutex);
 809out_free:
 810        kfree(agentbuf);
 811        kfree(pathbuf);
 812}
 813
 814/*
 815 * cgroup_rename - Only allow simple rename of directories in place.
 816 */
 817static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 818                          const char *new_name_str)
 819{
 820        struct cgroup *cgrp = kn->priv;
 821        int ret;
 822
 823        if (kernfs_type(kn) != KERNFS_DIR)
 824                return -ENOTDIR;
 825        if (kn->parent != new_parent)
 826                return -EIO;
 827
 828        /*
 829         * We're gonna grab cgroup_mutex which nests outside kernfs
 830         * active_ref.  kernfs_rename() doesn't require active_ref
 831         * protection.  Break them before grabbing cgroup_mutex.
 832         */
 833        kernfs_break_active_protection(new_parent);
 834        kernfs_break_active_protection(kn);
 835
 836        mutex_lock(&cgroup_mutex);
 837
 838        ret = kernfs_rename(kn, new_parent, new_name_str);
 839        if (!ret)
 840                TRACE_CGROUP_PATH(rename, cgrp);
 841
 842        mutex_unlock(&cgroup_mutex);
 843
 844        kernfs_unbreak_active_protection(kn);
 845        kernfs_unbreak_active_protection(new_parent);
 846        return ret;
 847}
 848
 849static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 850{
 851        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 852        struct cgroup_subsys *ss;
 853        int ssid;
 854
 855        for_each_subsys(ss, ssid)
 856                if (root->subsys_mask & (1 << ssid))
 857                        seq_show_option(seq, ss->legacy_name, NULL);
 858        if (root->flags & CGRP_ROOT_NOPREFIX)
 859                seq_puts(seq, ",noprefix");
 860        if (root->flags & CGRP_ROOT_XATTR)
 861                seq_puts(seq, ",xattr");
 862        if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 863                seq_puts(seq, ",cpuset_v2_mode");
 864
 865        spin_lock(&release_agent_path_lock);
 866        if (strlen(root->release_agent_path))
 867                seq_show_option(seq, "release_agent",
 868                                root->release_agent_path);
 869        spin_unlock(&release_agent_path_lock);
 870
 871        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 872                seq_puts(seq, ",clone_children");
 873        if (strlen(root->name))
 874                seq_show_option(seq, "name", root->name);
 875        return 0;
 876}
 877
 878enum cgroup1_param {
 879        Opt_all,
 880        Opt_clone_children,
 881        Opt_cpuset_v2_mode,
 882        Opt_name,
 883        Opt_none,
 884        Opt_noprefix,
 885        Opt_release_agent,
 886        Opt_xattr,
 887};
 888
 889const struct fs_parameter_spec cgroup1_fs_parameters[] = {
 890        fsparam_flag  ("all",           Opt_all),
 891        fsparam_flag  ("clone_children", Opt_clone_children),
 892        fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 893        fsparam_string("name",          Opt_name),
 894        fsparam_flag  ("none",          Opt_none),
 895        fsparam_flag  ("noprefix",      Opt_noprefix),
 896        fsparam_string("release_agent", Opt_release_agent),
 897        fsparam_flag  ("xattr",         Opt_xattr),
 898        {}
 899};
 900
 901int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 902{
 903        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 904        struct cgroup_subsys *ss;
 905        struct fs_parse_result result;
 906        int opt, i;
 907
 908        opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
 909        if (opt == -ENOPARAM) {
 910                if (strcmp(param->key, "source") == 0) {
 911                        fc->source = param->string;
 912                        param->string = NULL;
 913                        return 0;
 914                }
 915                for_each_subsys(ss, i) {
 916                        if (strcmp(param->key, ss->legacy_name))
 917                                continue;
 918                        ctx->subsys_mask |= (1 << i);
 919                        return 0;
 920                }
 921                return invalfc(fc, "Unknown subsys name '%s'", param->key);
 922        }
 923        if (opt < 0)
 924                return opt;
 925
 926        switch (opt) {
 927        case Opt_none:
 928                /* Explicitly have no subsystems */
 929                ctx->none = true;
 930                break;
 931        case Opt_all:
 932                ctx->all_ss = true;
 933                break;
 934        case Opt_noprefix:
 935                ctx->flags |= CGRP_ROOT_NOPREFIX;
 936                break;
 937        case Opt_clone_children:
 938                ctx->cpuset_clone_children = true;
 939                break;
 940        case Opt_cpuset_v2_mode:
 941                ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 942                break;
 943        case Opt_xattr:
 944                ctx->flags |= CGRP_ROOT_XATTR;
 945                break;
 946        case Opt_release_agent:
 947                /* Specifying two release agents is forbidden */
 948                if (ctx->release_agent)
 949                        return invalfc(fc, "release_agent respecified");
 950                ctx->release_agent = param->string;
 951                param->string = NULL;
 952                break;
 953        case Opt_name:
 954                /* blocked by boot param? */
 955                if (cgroup_no_v1_named)
 956                        return -ENOENT;
 957                /* Can't specify an empty name */
 958                if (!param->size)
 959                        return invalfc(fc, "Empty name");
 960                if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 961                        return invalfc(fc, "Name too long");
 962                /* Must match [\w.-]+ */
 963                for (i = 0; i < param->size; i++) {
 964                        char c = param->string[i];
 965                        if (isalnum(c))
 966                                continue;
 967                        if ((c == '.') || (c == '-') || (c == '_'))
 968                                continue;
 969                        return invalfc(fc, "Invalid name");
 970                }
 971                /* Specifying two names is forbidden */
 972                if (ctx->name)
 973                        return invalfc(fc, "name respecified");
 974                ctx->name = param->string;
 975                param->string = NULL;
 976                break;
 977        }
 978        return 0;
 979}
 980
 981static int check_cgroupfs_options(struct fs_context *fc)
 982{
 983        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 984        u16 mask = U16_MAX;
 985        u16 enabled = 0;
 986        struct cgroup_subsys *ss;
 987        int i;
 988
 989#ifdef CONFIG_CPUSETS
 990        mask = ~((u16)1 << cpuset_cgrp_id);
 991#endif
 992        for_each_subsys(ss, i)
 993                if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
 994                        enabled |= 1 << i;
 995
 996        ctx->subsys_mask &= enabled;
 997
 998        /*
 999         * In absense of 'none', 'name=' or subsystem name options,
1000         * let's default to 'all'.
1001         */
1002        if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1003                ctx->all_ss = true;
1004
1005        if (ctx->all_ss) {
1006                /* Mutually exclusive option 'all' + subsystem name */
1007                if (ctx->subsys_mask)
1008                        return invalfc(fc, "subsys name conflicts with all");
1009                /* 'all' => select all the subsystems */
1010                ctx->subsys_mask = enabled;
1011        }
1012
1013        /*
1014         * We either have to specify by name or by subsystems. (So all
1015         * empty hierarchies must have a name).
1016         */
1017        if (!ctx->subsys_mask && !ctx->name)
1018                return invalfc(fc, "Need name or subsystem set");
1019
1020        /*
1021         * Option noprefix was introduced just for backward compatibility
1022         * with the old cpuset, so we allow noprefix only if mounting just
1023         * the cpuset subsystem.
1024         */
1025        if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1026                return invalfc(fc, "noprefix used incorrectly");
1027
1028        /* Can't specify "none" and some subsystems */
1029        if (ctx->subsys_mask && ctx->none)
1030                return invalfc(fc, "none used incorrectly");
1031
1032        return 0;
1033}
1034
1035int cgroup1_reconfigure(struct fs_context *fc)
1036{
1037        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1038        struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1039        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1040        int ret = 0;
1041        u16 added_mask, removed_mask;
1042
1043        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1044
1045        /* See what subsystems are wanted */
1046        ret = check_cgroupfs_options(fc);
1047        if (ret)
1048                goto out_unlock;
1049
1050        if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1051                pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1052                        task_tgid_nr(current), current->comm);
1053
1054        added_mask = ctx->subsys_mask & ~root->subsys_mask;
1055        removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1056
1057        /* Don't allow flags or name to change at remount */
1058        if ((ctx->flags ^ root->flags) ||
1059            (ctx->name && strcmp(ctx->name, root->name))) {
1060                errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1061                       ctx->flags, ctx->name ?: "", root->flags, root->name);
1062                ret = -EINVAL;
1063                goto out_unlock;
1064        }
1065
1066        /* remounting is not allowed for populated hierarchies */
1067        if (!list_empty(&root->cgrp.self.children)) {
1068                ret = -EBUSY;
1069                goto out_unlock;
1070        }
1071
1072        ret = rebind_subsystems(root, added_mask);
1073        if (ret)
1074                goto out_unlock;
1075
1076        WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1077
1078        if (ctx->release_agent) {
1079                spin_lock(&release_agent_path_lock);
1080                strcpy(root->release_agent_path, ctx->release_agent);
1081                spin_unlock(&release_agent_path_lock);
1082        }
1083
1084        trace_cgroup_remount(root);
1085
1086 out_unlock:
1087        mutex_unlock(&cgroup_mutex);
1088        return ret;
1089}
1090
1091struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1092        .rename                 = cgroup1_rename,
1093        .show_options           = cgroup1_show_options,
1094        .mkdir                  = cgroup_mkdir,
1095        .rmdir                  = cgroup_rmdir,
1096        .show_path              = cgroup_show_path,
1097};
1098
1099/*
1100 * The guts of cgroup1 mount - find or create cgroup_root to use.
1101 * Called with cgroup_mutex held; returns 0 on success, -E... on
1102 * error and positive - in case when the candidate is busy dying.
1103 * On success it stashes a reference to cgroup_root into given
1104 * cgroup_fs_context; that reference is *NOT* counting towards the
1105 * cgroup_root refcount.
1106 */
1107static int cgroup1_root_to_use(struct fs_context *fc)
1108{
1109        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1110        struct cgroup_root *root;
1111        struct cgroup_subsys *ss;
1112        int i, ret;
1113
1114        /* First find the desired set of subsystems */
1115        ret = check_cgroupfs_options(fc);
1116        if (ret)
1117                return ret;
1118
1119        /*
1120         * Destruction of cgroup root is asynchronous, so subsystems may
1121         * still be dying after the previous unmount.  Let's drain the
1122         * dying subsystems.  We just need to ensure that the ones
1123         * unmounted previously finish dying and don't care about new ones
1124         * starting.  Testing ref liveliness is good enough.
1125         */
1126        for_each_subsys(ss, i) {
1127                if (!(ctx->subsys_mask & (1 << i)) ||
1128                    ss->root == &cgrp_dfl_root)
1129                        continue;
1130
1131                if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1132                        return 1;       /* restart */
1133                cgroup_put(&ss->root->cgrp);
1134        }
1135
1136        for_each_root(root) {
1137                bool name_match = false;
1138
1139                if (root == &cgrp_dfl_root)
1140                        continue;
1141
1142                /*
1143                 * If we asked for a name then it must match.  Also, if
1144                 * name matches but sybsys_mask doesn't, we should fail.
1145                 * Remember whether name matched.
1146                 */
1147                if (ctx->name) {
1148                        if (strcmp(ctx->name, root->name))
1149                                continue;
1150                        name_match = true;
1151                }
1152
1153                /*
1154                 * If we asked for subsystems (or explicitly for no
1155                 * subsystems) then they must match.
1156                 */
1157                if ((ctx->subsys_mask || ctx->none) &&
1158                    (ctx->subsys_mask != root->subsys_mask)) {
1159                        if (!name_match)
1160                                continue;
1161                        return -EBUSY;
1162                }
1163
1164                if (root->flags ^ ctx->flags)
1165                        pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1166
1167                ctx->root = root;
1168                return 0;
1169        }
1170
1171        /*
1172         * No such thing, create a new one.  name= matching without subsys
1173         * specification is allowed for already existing hierarchies but we
1174         * can't create new one without subsys specification.
1175         */
1176        if (!ctx->subsys_mask && !ctx->none)
1177                return invalfc(fc, "No subsys list or none specified");
1178
1179        /* Hierarchies may only be created in the initial cgroup namespace. */
1180        if (ctx->ns != &init_cgroup_ns)
1181                return -EPERM;
1182
1183        root = kzalloc(sizeof(*root), GFP_KERNEL);
1184        if (!root)
1185                return -ENOMEM;
1186
1187        ctx->root = root;
1188        init_cgroup_root(ctx);
1189
1190        ret = cgroup_setup_root(root, ctx->subsys_mask);
1191        if (ret)
1192                cgroup_free_root(root);
1193        return ret;
1194}
1195
1196int cgroup1_get_tree(struct fs_context *fc)
1197{
1198        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1199        int ret;
1200
1201        /* Check if the caller has permission to mount. */
1202        if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1203                return -EPERM;
1204
1205        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1206
1207        ret = cgroup1_root_to_use(fc);
1208        if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1209                ret = 1;        /* restart */
1210
1211        mutex_unlock(&cgroup_mutex);
1212
1213        if (!ret)
1214                ret = cgroup_do_get_tree(fc);
1215
1216        if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1217                struct super_block *sb = fc->root->d_sb;
1218                dput(fc->root);
1219                deactivate_locked_super(sb);
1220                ret = 1;
1221        }
1222
1223        if (unlikely(ret > 0)) {
1224                msleep(10);
1225                return restart_syscall();
1226        }
1227        return ret;
1228}
1229
1230static int __init cgroup1_wq_init(void)
1231{
1232        /*
1233         * Used to destroy pidlists and separate to serve as flush domain.
1234         * Cap @max_active to 1 too.
1235         */
1236        cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1237                                                    0, 1);
1238        BUG_ON(!cgroup_pidlist_destroy_wq);
1239        return 0;
1240}
1241core_initcall(cgroup1_wq_init);
1242
1243static int __init cgroup_no_v1(char *str)
1244{
1245        struct cgroup_subsys *ss;
1246        char *token;
1247        int i;
1248
1249        while ((token = strsep(&str, ",")) != NULL) {
1250                if (!*token)
1251                        continue;
1252
1253                if (!strcmp(token, "all")) {
1254                        cgroup_no_v1_mask = U16_MAX;
1255                        continue;
1256                }
1257
1258                if (!strcmp(token, "named")) {
1259                        cgroup_no_v1_named = true;
1260                        continue;
1261                }
1262
1263                for_each_subsys(ss, i) {
1264                        if (strcmp(token, ss->name) &&
1265                            strcmp(token, ss->legacy_name))
1266                                continue;
1267
1268                        cgroup_no_v1_mask |= 1 << i;
1269                }
1270        }
1271        return 1;
1272}
1273__setup("cgroup_no_v1=", cgroup_no_v1);
1274