1
2
3
4
5
6
7#include <linux/memblock.h>
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/dma-direct.h>
11#include <linux/scatterlist.h>
12#include <linux/dma-contiguous.h>
13#include <linux/dma-noncoherent.h>
14#include <linux/pfn.h>
15#include <linux/vmalloc.h>
16#include <linux/set_memory.h>
17#include <linux/swiotlb.h>
18
19
20
21
22
23
24unsigned int zone_dma_bits __ro_after_init = 24;
25
26static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 phys_addr_t phys)
28{
29 if (force_dma_unencrypted(dev))
30 return __phys_to_dma(dev, phys);
31 return phys_to_dma(dev, phys);
32}
33
34static inline struct page *dma_direct_to_page(struct device *dev,
35 dma_addr_t dma_addr)
36{
37 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38}
39
40u64 dma_direct_get_required_mask(struct device *dev)
41{
42 u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45}
46
47static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 u64 *phys_limit)
49{
50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52 if (force_dma_unencrypted(dev))
53 *phys_limit = __dma_to_phys(dev, dma_limit);
54 else
55 *phys_limit = dma_to_phys(dev, dma_limit);
56
57
58
59
60
61
62
63
64
65 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
66 return GFP_DMA;
67 if (*phys_limit <= DMA_BIT_MASK(32))
68 return GFP_DMA32;
69 return 0;
70}
71
72static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
73{
74 return phys_to_dma_direct(dev, phys) + size - 1 <=
75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76}
77
78struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
79 gfp_t gfp, unsigned long attrs)
80{
81 size_t alloc_size = PAGE_ALIGN(size);
82 int node = dev_to_node(dev);
83 struct page *page = NULL;
84 u64 phys_limit;
85
86 if (attrs & DMA_ATTR_NO_WARN)
87 gfp |= __GFP_NOWARN;
88
89
90 gfp &= ~__GFP_ZERO;
91 gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
92 &phys_limit);
93 page = dma_alloc_contiguous(dev, alloc_size, gfp);
94 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
95 dma_free_contiguous(dev, page, alloc_size);
96 page = NULL;
97 }
98again:
99 if (!page)
100 page = alloc_pages_node(node, gfp, get_order(alloc_size));
101 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102 dma_free_contiguous(dev, page, size);
103 page = NULL;
104
105 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
106 phys_limit < DMA_BIT_MASK(64) &&
107 !(gfp & (GFP_DMA32 | GFP_DMA))) {
108 gfp |= GFP_DMA32;
109 goto again;
110 }
111
112 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
113 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
114 goto again;
115 }
116 }
117
118 return page;
119}
120
121void *dma_direct_alloc_pages(struct device *dev, size_t size,
122 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
123{
124 struct page *page;
125 void *ret;
126
127 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
128 dma_alloc_need_uncached(dev, attrs) &&
129 !gfpflags_allow_blocking(gfp)) {
130 ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
131 if (!ret)
132 return NULL;
133 goto done;
134 }
135
136 page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
137 if (!page)
138 return NULL;
139
140 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
141 !force_dma_unencrypted(dev)) {
142
143 if (!PageHighMem(page))
144 arch_dma_prep_coherent(page, size);
145
146 ret = page;
147 goto done;
148 }
149
150 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
151 dma_alloc_need_uncached(dev, attrs)) ||
152 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
153
154 arch_dma_prep_coherent(page, PAGE_ALIGN(size));
155
156
157 ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
158 dma_pgprot(dev, PAGE_KERNEL, attrs),
159 __builtin_return_address(0));
160 if (!ret) {
161 dma_free_contiguous(dev, page, size);
162 return ret;
163 }
164
165 memset(ret, 0, size);
166 goto done;
167 }
168
169 if (PageHighMem(page)) {
170
171
172
173
174
175
176 dev_info(dev, "Rejecting highmem page from CMA.\n");
177 dma_free_contiguous(dev, page, size);
178 return NULL;
179 }
180
181 ret = page_address(page);
182 if (force_dma_unencrypted(dev))
183 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
184
185 memset(ret, 0, size);
186
187 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
188 dma_alloc_need_uncached(dev, attrs)) {
189 arch_dma_prep_coherent(page, size);
190 ret = uncached_kernel_address(ret);
191 }
192done:
193 if (force_dma_unencrypted(dev))
194 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
195 else
196 *dma_handle = phys_to_dma(dev, page_to_phys(page));
197 return ret;
198}
199
200void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
201 dma_addr_t dma_addr, unsigned long attrs)
202{
203 unsigned int page_order = get_order(size);
204
205 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
206 !force_dma_unencrypted(dev)) {
207
208 dma_free_contiguous(dev, cpu_addr, size);
209 return;
210 }
211
212 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
213 dma_free_from_pool(cpu_addr, PAGE_ALIGN(size)))
214 return;
215
216 if (force_dma_unencrypted(dev))
217 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
218
219 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
220 vunmap(cpu_addr);
221
222 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
223}
224
225void *dma_direct_alloc(struct device *dev, size_t size,
226 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
227{
228 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
229 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
230 dma_alloc_need_uncached(dev, attrs))
231 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
232 return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
233}
234
235void dma_direct_free(struct device *dev, size_t size,
236 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
237{
238 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
239 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
240 dma_alloc_need_uncached(dev, attrs))
241 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
242 else
243 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
244}
245
246#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
247 defined(CONFIG_SWIOTLB)
248void dma_direct_sync_single_for_device(struct device *dev,
249 dma_addr_t addr, size_t size, enum dma_data_direction dir)
250{
251 phys_addr_t paddr = dma_to_phys(dev, addr);
252
253 if (unlikely(is_swiotlb_buffer(paddr)))
254 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
255
256 if (!dev_is_dma_coherent(dev))
257 arch_sync_dma_for_device(paddr, size, dir);
258}
259EXPORT_SYMBOL(dma_direct_sync_single_for_device);
260
261void dma_direct_sync_sg_for_device(struct device *dev,
262 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
263{
264 struct scatterlist *sg;
265 int i;
266
267 for_each_sg(sgl, sg, nents, i) {
268 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
269
270 if (unlikely(is_swiotlb_buffer(paddr)))
271 swiotlb_tbl_sync_single(dev, paddr, sg->length,
272 dir, SYNC_FOR_DEVICE);
273
274 if (!dev_is_dma_coherent(dev))
275 arch_sync_dma_for_device(paddr, sg->length,
276 dir);
277 }
278}
279EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
280#endif
281
282#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
283 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
284 defined(CONFIG_SWIOTLB)
285void dma_direct_sync_single_for_cpu(struct device *dev,
286 dma_addr_t addr, size_t size, enum dma_data_direction dir)
287{
288 phys_addr_t paddr = dma_to_phys(dev, addr);
289
290 if (!dev_is_dma_coherent(dev)) {
291 arch_sync_dma_for_cpu(paddr, size, dir);
292 arch_sync_dma_for_cpu_all();
293 }
294
295 if (unlikely(is_swiotlb_buffer(paddr)))
296 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
297}
298EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
299
300void dma_direct_sync_sg_for_cpu(struct device *dev,
301 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
302{
303 struct scatterlist *sg;
304 int i;
305
306 for_each_sg(sgl, sg, nents, i) {
307 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
308
309 if (!dev_is_dma_coherent(dev))
310 arch_sync_dma_for_cpu(paddr, sg->length, dir);
311
312 if (unlikely(is_swiotlb_buffer(paddr)))
313 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
314 SYNC_FOR_CPU);
315 }
316
317 if (!dev_is_dma_coherent(dev))
318 arch_sync_dma_for_cpu_all();
319}
320EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
321
322void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
323 size_t size, enum dma_data_direction dir, unsigned long attrs)
324{
325 phys_addr_t phys = dma_to_phys(dev, addr);
326
327 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
328 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
329
330 if (unlikely(is_swiotlb_buffer(phys)))
331 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
332}
333EXPORT_SYMBOL(dma_direct_unmap_page);
334
335void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
336 int nents, enum dma_data_direction dir, unsigned long attrs)
337{
338 struct scatterlist *sg;
339 int i;
340
341 for_each_sg(sgl, sg, nents, i)
342 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
343 attrs);
344}
345EXPORT_SYMBOL(dma_direct_unmap_sg);
346#endif
347
348dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
349 unsigned long offset, size_t size, enum dma_data_direction dir,
350 unsigned long attrs)
351{
352 phys_addr_t phys = page_to_phys(page) + offset;
353 dma_addr_t dma_addr = phys_to_dma(dev, phys);
354
355 if (unlikely(swiotlb_force == SWIOTLB_FORCE))
356 return swiotlb_map(dev, phys, size, dir, attrs);
357
358 if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
359 if (swiotlb_force != SWIOTLB_NO_FORCE)
360 return swiotlb_map(dev, phys, size, dir, attrs);
361
362 dev_WARN_ONCE(dev, 1,
363 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
364 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
365 return DMA_MAPPING_ERROR;
366 }
367
368 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
369 arch_sync_dma_for_device(phys, size, dir);
370 return dma_addr;
371}
372EXPORT_SYMBOL(dma_direct_map_page);
373
374int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
375 enum dma_data_direction dir, unsigned long attrs)
376{
377 int i;
378 struct scatterlist *sg;
379
380 for_each_sg(sgl, sg, nents, i) {
381 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
382 sg->offset, sg->length, dir, attrs);
383 if (sg->dma_address == DMA_MAPPING_ERROR)
384 goto out_unmap;
385 sg_dma_len(sg) = sg->length;
386 }
387
388 return nents;
389
390out_unmap:
391 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
392 return 0;
393}
394EXPORT_SYMBOL(dma_direct_map_sg);
395
396dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
397 size_t size, enum dma_data_direction dir, unsigned long attrs)
398{
399 dma_addr_t dma_addr = paddr;
400
401 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
402 dev_err_once(dev,
403 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
404 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
405 WARN_ON_ONCE(1);
406 return DMA_MAPPING_ERROR;
407 }
408
409 return dma_addr;
410}
411EXPORT_SYMBOL(dma_direct_map_resource);
412
413int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
414 void *cpu_addr, dma_addr_t dma_addr, size_t size,
415 unsigned long attrs)
416{
417 struct page *page = dma_direct_to_page(dev, dma_addr);
418 int ret;
419
420 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
421 if (!ret)
422 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
423 return ret;
424}
425
426#ifdef CONFIG_MMU
427bool dma_direct_can_mmap(struct device *dev)
428{
429 return dev_is_dma_coherent(dev) ||
430 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
431}
432
433int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
434 void *cpu_addr, dma_addr_t dma_addr, size_t size,
435 unsigned long attrs)
436{
437 unsigned long user_count = vma_pages(vma);
438 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
439 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
440 int ret = -ENXIO;
441
442 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
443
444 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
445 return ret;
446
447 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
448 return -ENXIO;
449 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
450 user_count << PAGE_SHIFT, vma->vm_page_prot);
451}
452#else
453bool dma_direct_can_mmap(struct device *dev)
454{
455 return false;
456}
457
458int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
459 void *cpu_addr, dma_addr_t dma_addr, size_t size,
460 unsigned long attrs)
461{
462 return -ENXIO;
463}
464#endif
465
466int dma_direct_supported(struct device *dev, u64 mask)
467{
468 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
469
470
471
472
473
474
475
476 if (mask >= DMA_BIT_MASK(32))
477 return 1;
478
479
480
481
482
483
484 if (IS_ENABLED(CONFIG_ZONE_DMA))
485 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
486 return mask >= __phys_to_dma(dev, min_mask);
487}
488
489size_t dma_direct_max_mapping_size(struct device *dev)
490{
491
492 if (is_swiotlb_active() &&
493 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
494 return swiotlb_max_mapping_size(dev);
495 return SIZE_MAX;
496}
497