linux/kernel/fork.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97
  98#include <asm/pgtable.h>
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;      /* Handle normal Linux uptimes. */
 124int nr_threads;                 /* The idle threads do not count.. */
 125
 126static int max_threads;         /* tunable limit on nr_threads */
 127
 128#define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
 129
 130static const char * const resident_page_types[] = {
 131        NAMED_ARRAY_INDEX(MM_FILEPAGES),
 132        NAMED_ARRAY_INDEX(MM_ANONPAGES),
 133        NAMED_ARRAY_INDEX(MM_SWAPENTS),
 134        NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 135};
 136
 137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 138
 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 140
 141#ifdef CONFIG_PROVE_RCU
 142int lockdep_tasklist_lock_is_held(void)
 143{
 144        return lockdep_is_held(&tasklist_lock);
 145}
 146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 147#endif /* #ifdef CONFIG_PROVE_RCU */
 148
 149int nr_processes(void)
 150{
 151        int cpu;
 152        int total = 0;
 153
 154        for_each_possible_cpu(cpu)
 155                total += per_cpu(process_counts, cpu);
 156
 157        return total;
 158}
 159
 160void __weak arch_release_task_struct(struct task_struct *tsk)
 161{
 162}
 163
 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 165static struct kmem_cache *task_struct_cachep;
 166
 167static inline struct task_struct *alloc_task_struct_node(int node)
 168{
 169        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 170}
 171
 172static inline void free_task_struct(struct task_struct *tsk)
 173{
 174        kmem_cache_free(task_struct_cachep, tsk);
 175}
 176#endif
 177
 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 179
 180/*
 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 182 * kmemcache based allocator.
 183 */
 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 185
 186#ifdef CONFIG_VMAP_STACK
 187/*
 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 189 * flush.  Try to minimize the number of calls by caching stacks.
 190 */
 191#define NR_CACHED_STACKS 2
 192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 193
 194static int free_vm_stack_cache(unsigned int cpu)
 195{
 196        struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 197        int i;
 198
 199        for (i = 0; i < NR_CACHED_STACKS; i++) {
 200                struct vm_struct *vm_stack = cached_vm_stacks[i];
 201
 202                if (!vm_stack)
 203                        continue;
 204
 205                vfree(vm_stack->addr);
 206                cached_vm_stacks[i] = NULL;
 207        }
 208
 209        return 0;
 210}
 211#endif
 212
 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 214{
 215#ifdef CONFIG_VMAP_STACK
 216        void *stack;
 217        int i;
 218
 219        for (i = 0; i < NR_CACHED_STACKS; i++) {
 220                struct vm_struct *s;
 221
 222                s = this_cpu_xchg(cached_stacks[i], NULL);
 223
 224                if (!s)
 225                        continue;
 226
 227                /* Clear the KASAN shadow of the stack. */
 228                kasan_unpoison_shadow(s->addr, THREAD_SIZE);
 229
 230                /* Clear stale pointers from reused stack. */
 231                memset(s->addr, 0, THREAD_SIZE);
 232
 233                tsk->stack_vm_area = s;
 234                tsk->stack = s->addr;
 235                return s->addr;
 236        }
 237
 238        /*
 239         * Allocated stacks are cached and later reused by new threads,
 240         * so memcg accounting is performed manually on assigning/releasing
 241         * stacks to tasks. Drop __GFP_ACCOUNT.
 242         */
 243        stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 244                                     VMALLOC_START, VMALLOC_END,
 245                                     THREADINFO_GFP & ~__GFP_ACCOUNT,
 246                                     PAGE_KERNEL,
 247                                     0, node, __builtin_return_address(0));
 248
 249        /*
 250         * We can't call find_vm_area() in interrupt context, and
 251         * free_thread_stack() can be called in interrupt context,
 252         * so cache the vm_struct.
 253         */
 254        if (stack) {
 255                tsk->stack_vm_area = find_vm_area(stack);
 256                tsk->stack = stack;
 257        }
 258        return stack;
 259#else
 260        struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 261                                             THREAD_SIZE_ORDER);
 262
 263        if (likely(page)) {
 264                tsk->stack = page_address(page);
 265                return tsk->stack;
 266        }
 267        return NULL;
 268#endif
 269}
 270
 271static inline void free_thread_stack(struct task_struct *tsk)
 272{
 273#ifdef CONFIG_VMAP_STACK
 274        struct vm_struct *vm = task_stack_vm_area(tsk);
 275
 276        if (vm) {
 277                int i;
 278
 279                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 280                        mod_memcg_page_state(vm->pages[i],
 281                                             MEMCG_KERNEL_STACK_KB,
 282                                             -(int)(PAGE_SIZE / 1024));
 283
 284                        memcg_kmem_uncharge(vm->pages[i], 0);
 285                }
 286
 287                for (i = 0; i < NR_CACHED_STACKS; i++) {
 288                        if (this_cpu_cmpxchg(cached_stacks[i],
 289                                        NULL, tsk->stack_vm_area) != NULL)
 290                                continue;
 291
 292                        return;
 293                }
 294
 295                vfree_atomic(tsk->stack);
 296                return;
 297        }
 298#endif
 299
 300        __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 301}
 302# else
 303static struct kmem_cache *thread_stack_cache;
 304
 305static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 306                                                  int node)
 307{
 308        unsigned long *stack;
 309        stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 310        tsk->stack = stack;
 311        return stack;
 312}
 313
 314static void free_thread_stack(struct task_struct *tsk)
 315{
 316        kmem_cache_free(thread_stack_cache, tsk->stack);
 317}
 318
 319void thread_stack_cache_init(void)
 320{
 321        thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 322                                        THREAD_SIZE, THREAD_SIZE, 0, 0,
 323                                        THREAD_SIZE, NULL);
 324        BUG_ON(thread_stack_cache == NULL);
 325}
 326# endif
 327#endif
 328
 329/* SLAB cache for signal_struct structures (tsk->signal) */
 330static struct kmem_cache *signal_cachep;
 331
 332/* SLAB cache for sighand_struct structures (tsk->sighand) */
 333struct kmem_cache *sighand_cachep;
 334
 335/* SLAB cache for files_struct structures (tsk->files) */
 336struct kmem_cache *files_cachep;
 337
 338/* SLAB cache for fs_struct structures (tsk->fs) */
 339struct kmem_cache *fs_cachep;
 340
 341/* SLAB cache for vm_area_struct structures */
 342static struct kmem_cache *vm_area_cachep;
 343
 344/* SLAB cache for mm_struct structures (tsk->mm) */
 345static struct kmem_cache *mm_cachep;
 346
 347struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 348{
 349        struct vm_area_struct *vma;
 350
 351        vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 352        if (vma)
 353                vma_init(vma, mm);
 354        return vma;
 355}
 356
 357struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 358{
 359        struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 360
 361        if (new) {
 362                *new = *orig;
 363                INIT_LIST_HEAD(&new->anon_vma_chain);
 364        }
 365        return new;
 366}
 367
 368void vm_area_free(struct vm_area_struct *vma)
 369{
 370        kmem_cache_free(vm_area_cachep, vma);
 371}
 372
 373static void account_kernel_stack(struct task_struct *tsk, int account)
 374{
 375        void *stack = task_stack_page(tsk);
 376        struct vm_struct *vm = task_stack_vm_area(tsk);
 377
 378        BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 379
 380        if (vm) {
 381                int i;
 382
 383                BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 384
 385                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 386                        mod_zone_page_state(page_zone(vm->pages[i]),
 387                                            NR_KERNEL_STACK_KB,
 388                                            PAGE_SIZE / 1024 * account);
 389                }
 390        } else {
 391                /*
 392                 * All stack pages are in the same zone and belong to the
 393                 * same memcg.
 394                 */
 395                struct page *first_page = virt_to_page(stack);
 396
 397                mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 398                                    THREAD_SIZE / 1024 * account);
 399
 400                mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
 401                                    account * (THREAD_SIZE / 1024));
 402        }
 403}
 404
 405static int memcg_charge_kernel_stack(struct task_struct *tsk)
 406{
 407#ifdef CONFIG_VMAP_STACK
 408        struct vm_struct *vm = task_stack_vm_area(tsk);
 409        int ret;
 410
 411        if (vm) {
 412                int i;
 413
 414                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 415                        /*
 416                         * If memcg_kmem_charge() fails, page->mem_cgroup
 417                         * pointer is NULL, and both memcg_kmem_uncharge()
 418                         * and mod_memcg_page_state() in free_thread_stack()
 419                         * will ignore this page. So it's safe.
 420                         */
 421                        ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
 422                        if (ret)
 423                                return ret;
 424
 425                        mod_memcg_page_state(vm->pages[i],
 426                                             MEMCG_KERNEL_STACK_KB,
 427                                             PAGE_SIZE / 1024);
 428                }
 429        }
 430#endif
 431        return 0;
 432}
 433
 434static void release_task_stack(struct task_struct *tsk)
 435{
 436        if (WARN_ON(tsk->state != TASK_DEAD))
 437                return;  /* Better to leak the stack than to free prematurely */
 438
 439        account_kernel_stack(tsk, -1);
 440        free_thread_stack(tsk);
 441        tsk->stack = NULL;
 442#ifdef CONFIG_VMAP_STACK
 443        tsk->stack_vm_area = NULL;
 444#endif
 445}
 446
 447#ifdef CONFIG_THREAD_INFO_IN_TASK
 448void put_task_stack(struct task_struct *tsk)
 449{
 450        if (refcount_dec_and_test(&tsk->stack_refcount))
 451                release_task_stack(tsk);
 452}
 453#endif
 454
 455void free_task(struct task_struct *tsk)
 456{
 457#ifndef CONFIG_THREAD_INFO_IN_TASK
 458        /*
 459         * The task is finally done with both the stack and thread_info,
 460         * so free both.
 461         */
 462        release_task_stack(tsk);
 463#else
 464        /*
 465         * If the task had a separate stack allocation, it should be gone
 466         * by now.
 467         */
 468        WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 469#endif
 470        rt_mutex_debug_task_free(tsk);
 471        ftrace_graph_exit_task(tsk);
 472        put_seccomp_filter(tsk);
 473        arch_release_task_struct(tsk);
 474        if (tsk->flags & PF_KTHREAD)
 475                free_kthread_struct(tsk);
 476        free_task_struct(tsk);
 477}
 478EXPORT_SYMBOL(free_task);
 479
 480#ifdef CONFIG_MMU
 481static __latent_entropy int dup_mmap(struct mm_struct *mm,
 482                                        struct mm_struct *oldmm)
 483{
 484        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 485        struct rb_node **rb_link, *rb_parent;
 486        int retval;
 487        unsigned long charge;
 488        LIST_HEAD(uf);
 489
 490        uprobe_start_dup_mmap();
 491        if (down_write_killable(&oldmm->mmap_sem)) {
 492                retval = -EINTR;
 493                goto fail_uprobe_end;
 494        }
 495        flush_cache_dup_mm(oldmm);
 496        uprobe_dup_mmap(oldmm, mm);
 497        /*
 498         * Not linked in yet - no deadlock potential:
 499         */
 500        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 501
 502        /* No ordering required: file already has been exposed. */
 503        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 504
 505        mm->total_vm = oldmm->total_vm;
 506        mm->data_vm = oldmm->data_vm;
 507        mm->exec_vm = oldmm->exec_vm;
 508        mm->stack_vm = oldmm->stack_vm;
 509
 510        rb_link = &mm->mm_rb.rb_node;
 511        rb_parent = NULL;
 512        pprev = &mm->mmap;
 513        retval = ksm_fork(mm, oldmm);
 514        if (retval)
 515                goto out;
 516        retval = khugepaged_fork(mm, oldmm);
 517        if (retval)
 518                goto out;
 519
 520        prev = NULL;
 521        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 522                struct file *file;
 523
 524                if (mpnt->vm_flags & VM_DONTCOPY) {
 525                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 526                        continue;
 527                }
 528                charge = 0;
 529                /*
 530                 * Don't duplicate many vmas if we've been oom-killed (for
 531                 * example)
 532                 */
 533                if (fatal_signal_pending(current)) {
 534                        retval = -EINTR;
 535                        goto out;
 536                }
 537                if (mpnt->vm_flags & VM_ACCOUNT) {
 538                        unsigned long len = vma_pages(mpnt);
 539
 540                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 541                                goto fail_nomem;
 542                        charge = len;
 543                }
 544                tmp = vm_area_dup(mpnt);
 545                if (!tmp)
 546                        goto fail_nomem;
 547                retval = vma_dup_policy(mpnt, tmp);
 548                if (retval)
 549                        goto fail_nomem_policy;
 550                tmp->vm_mm = mm;
 551                retval = dup_userfaultfd(tmp, &uf);
 552                if (retval)
 553                        goto fail_nomem_anon_vma_fork;
 554                if (tmp->vm_flags & VM_WIPEONFORK) {
 555                        /* VM_WIPEONFORK gets a clean slate in the child. */
 556                        tmp->anon_vma = NULL;
 557                        if (anon_vma_prepare(tmp))
 558                                goto fail_nomem_anon_vma_fork;
 559                } else if (anon_vma_fork(tmp, mpnt))
 560                        goto fail_nomem_anon_vma_fork;
 561                tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 562                tmp->vm_next = tmp->vm_prev = NULL;
 563                file = tmp->vm_file;
 564                if (file) {
 565                        struct inode *inode = file_inode(file);
 566                        struct address_space *mapping = file->f_mapping;
 567
 568                        get_file(file);
 569                        if (tmp->vm_flags & VM_DENYWRITE)
 570                                atomic_dec(&inode->i_writecount);
 571                        i_mmap_lock_write(mapping);
 572                        if (tmp->vm_flags & VM_SHARED)
 573                                atomic_inc(&mapping->i_mmap_writable);
 574                        flush_dcache_mmap_lock(mapping);
 575                        /* insert tmp into the share list, just after mpnt */
 576                        vma_interval_tree_insert_after(tmp, mpnt,
 577                                        &mapping->i_mmap);
 578                        flush_dcache_mmap_unlock(mapping);
 579                        i_mmap_unlock_write(mapping);
 580                }
 581
 582                /*
 583                 * Clear hugetlb-related page reserves for children. This only
 584                 * affects MAP_PRIVATE mappings. Faults generated by the child
 585                 * are not guaranteed to succeed, even if read-only
 586                 */
 587                if (is_vm_hugetlb_page(tmp))
 588                        reset_vma_resv_huge_pages(tmp);
 589
 590                /*
 591                 * Link in the new vma and copy the page table entries.
 592                 */
 593                *pprev = tmp;
 594                pprev = &tmp->vm_next;
 595                tmp->vm_prev = prev;
 596                prev = tmp;
 597
 598                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 599                rb_link = &tmp->vm_rb.rb_right;
 600                rb_parent = &tmp->vm_rb;
 601
 602                mm->map_count++;
 603                if (!(tmp->vm_flags & VM_WIPEONFORK))
 604                        retval = copy_page_range(mm, oldmm, mpnt);
 605
 606                if (tmp->vm_ops && tmp->vm_ops->open)
 607                        tmp->vm_ops->open(tmp);
 608
 609                if (retval)
 610                        goto out;
 611        }
 612        /* a new mm has just been created */
 613        retval = arch_dup_mmap(oldmm, mm);
 614out:
 615        up_write(&mm->mmap_sem);
 616        flush_tlb_mm(oldmm);
 617        up_write(&oldmm->mmap_sem);
 618        dup_userfaultfd_complete(&uf);
 619fail_uprobe_end:
 620        uprobe_end_dup_mmap();
 621        return retval;
 622fail_nomem_anon_vma_fork:
 623        mpol_put(vma_policy(tmp));
 624fail_nomem_policy:
 625        vm_area_free(tmp);
 626fail_nomem:
 627        retval = -ENOMEM;
 628        vm_unacct_memory(charge);
 629        goto out;
 630}
 631
 632static inline int mm_alloc_pgd(struct mm_struct *mm)
 633{
 634        mm->pgd = pgd_alloc(mm);
 635        if (unlikely(!mm->pgd))
 636                return -ENOMEM;
 637        return 0;
 638}
 639
 640static inline void mm_free_pgd(struct mm_struct *mm)
 641{
 642        pgd_free(mm, mm->pgd);
 643}
 644#else
 645static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 646{
 647        down_write(&oldmm->mmap_sem);
 648        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 649        up_write(&oldmm->mmap_sem);
 650        return 0;
 651}
 652#define mm_alloc_pgd(mm)        (0)
 653#define mm_free_pgd(mm)
 654#endif /* CONFIG_MMU */
 655
 656static void check_mm(struct mm_struct *mm)
 657{
 658        int i;
 659
 660        BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 661                         "Please make sure 'struct resident_page_types[]' is updated as well");
 662
 663        for (i = 0; i < NR_MM_COUNTERS; i++) {
 664                long x = atomic_long_read(&mm->rss_stat.count[i]);
 665
 666                if (unlikely(x))
 667                        pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 668                                 mm, resident_page_types[i], x);
 669        }
 670
 671        if (mm_pgtables_bytes(mm))
 672                pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 673                                mm_pgtables_bytes(mm));
 674
 675#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 676        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 677#endif
 678}
 679
 680#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 681#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 682
 683/*
 684 * Called when the last reference to the mm
 685 * is dropped: either by a lazy thread or by
 686 * mmput. Free the page directory and the mm.
 687 */
 688void __mmdrop(struct mm_struct *mm)
 689{
 690        BUG_ON(mm == &init_mm);
 691        WARN_ON_ONCE(mm == current->mm);
 692        WARN_ON_ONCE(mm == current->active_mm);
 693        mm_free_pgd(mm);
 694        destroy_context(mm);
 695        mmu_notifier_subscriptions_destroy(mm);
 696        check_mm(mm);
 697        put_user_ns(mm->user_ns);
 698        free_mm(mm);
 699}
 700EXPORT_SYMBOL_GPL(__mmdrop);
 701
 702static void mmdrop_async_fn(struct work_struct *work)
 703{
 704        struct mm_struct *mm;
 705
 706        mm = container_of(work, struct mm_struct, async_put_work);
 707        __mmdrop(mm);
 708}
 709
 710static void mmdrop_async(struct mm_struct *mm)
 711{
 712        if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 713                INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 714                schedule_work(&mm->async_put_work);
 715        }
 716}
 717
 718static inline void free_signal_struct(struct signal_struct *sig)
 719{
 720        taskstats_tgid_free(sig);
 721        sched_autogroup_exit(sig);
 722        /*
 723         * __mmdrop is not safe to call from softirq context on x86 due to
 724         * pgd_dtor so postpone it to the async context
 725         */
 726        if (sig->oom_mm)
 727                mmdrop_async(sig->oom_mm);
 728        kmem_cache_free(signal_cachep, sig);
 729}
 730
 731static inline void put_signal_struct(struct signal_struct *sig)
 732{
 733        if (refcount_dec_and_test(&sig->sigcnt))
 734                free_signal_struct(sig);
 735}
 736
 737void __put_task_struct(struct task_struct *tsk)
 738{
 739        WARN_ON(!tsk->exit_state);
 740        WARN_ON(refcount_read(&tsk->usage));
 741        WARN_ON(tsk == current);
 742
 743        cgroup_free(tsk);
 744        task_numa_free(tsk, true);
 745        security_task_free(tsk);
 746        exit_creds(tsk);
 747        delayacct_tsk_free(tsk);
 748        put_signal_struct(tsk->signal);
 749
 750        if (!profile_handoff_task(tsk))
 751                free_task(tsk);
 752}
 753EXPORT_SYMBOL_GPL(__put_task_struct);
 754
 755void __init __weak arch_task_cache_init(void) { }
 756
 757/*
 758 * set_max_threads
 759 */
 760static void set_max_threads(unsigned int max_threads_suggested)
 761{
 762        u64 threads;
 763        unsigned long nr_pages = totalram_pages();
 764
 765        /*
 766         * The number of threads shall be limited such that the thread
 767         * structures may only consume a small part of the available memory.
 768         */
 769        if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 770                threads = MAX_THREADS;
 771        else
 772                threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 773                                    (u64) THREAD_SIZE * 8UL);
 774
 775        if (threads > max_threads_suggested)
 776                threads = max_threads_suggested;
 777
 778        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 779}
 780
 781#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 782/* Initialized by the architecture: */
 783int arch_task_struct_size __read_mostly;
 784#endif
 785
 786#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 787static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 788{
 789        /* Fetch thread_struct whitelist for the architecture. */
 790        arch_thread_struct_whitelist(offset, size);
 791
 792        /*
 793         * Handle zero-sized whitelist or empty thread_struct, otherwise
 794         * adjust offset to position of thread_struct in task_struct.
 795         */
 796        if (unlikely(*size == 0))
 797                *offset = 0;
 798        else
 799                *offset += offsetof(struct task_struct, thread);
 800}
 801#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 802
 803void __init fork_init(void)
 804{
 805        int i;
 806#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 807#ifndef ARCH_MIN_TASKALIGN
 808#define ARCH_MIN_TASKALIGN      0
 809#endif
 810        int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 811        unsigned long useroffset, usersize;
 812
 813        /* create a slab on which task_structs can be allocated */
 814        task_struct_whitelist(&useroffset, &usersize);
 815        task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 816                        arch_task_struct_size, align,
 817                        SLAB_PANIC|SLAB_ACCOUNT,
 818                        useroffset, usersize, NULL);
 819#endif
 820
 821        /* do the arch specific task caches init */
 822        arch_task_cache_init();
 823
 824        set_max_threads(MAX_THREADS);
 825
 826        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 827        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 828        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 829                init_task.signal->rlim[RLIMIT_NPROC];
 830
 831        for (i = 0; i < UCOUNT_COUNTS; i++) {
 832                init_user_ns.ucount_max[i] = max_threads/2;
 833        }
 834
 835#ifdef CONFIG_VMAP_STACK
 836        cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 837                          NULL, free_vm_stack_cache);
 838#endif
 839
 840        lockdep_init_task(&init_task);
 841        uprobes_init();
 842}
 843
 844int __weak arch_dup_task_struct(struct task_struct *dst,
 845                                               struct task_struct *src)
 846{
 847        *dst = *src;
 848        return 0;
 849}
 850
 851void set_task_stack_end_magic(struct task_struct *tsk)
 852{
 853        unsigned long *stackend;
 854
 855        stackend = end_of_stack(tsk);
 856        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 857}
 858
 859static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 860{
 861        struct task_struct *tsk;
 862        unsigned long *stack;
 863        struct vm_struct *stack_vm_area __maybe_unused;
 864        int err;
 865
 866        if (node == NUMA_NO_NODE)
 867                node = tsk_fork_get_node(orig);
 868        tsk = alloc_task_struct_node(node);
 869        if (!tsk)
 870                return NULL;
 871
 872        stack = alloc_thread_stack_node(tsk, node);
 873        if (!stack)
 874                goto free_tsk;
 875
 876        if (memcg_charge_kernel_stack(tsk))
 877                goto free_stack;
 878
 879        stack_vm_area = task_stack_vm_area(tsk);
 880
 881        err = arch_dup_task_struct(tsk, orig);
 882
 883        /*
 884         * arch_dup_task_struct() clobbers the stack-related fields.  Make
 885         * sure they're properly initialized before using any stack-related
 886         * functions again.
 887         */
 888        tsk->stack = stack;
 889#ifdef CONFIG_VMAP_STACK
 890        tsk->stack_vm_area = stack_vm_area;
 891#endif
 892#ifdef CONFIG_THREAD_INFO_IN_TASK
 893        refcount_set(&tsk->stack_refcount, 1);
 894#endif
 895
 896        if (err)
 897                goto free_stack;
 898
 899#ifdef CONFIG_SECCOMP
 900        /*
 901         * We must handle setting up seccomp filters once we're under
 902         * the sighand lock in case orig has changed between now and
 903         * then. Until then, filter must be NULL to avoid messing up
 904         * the usage counts on the error path calling free_task.
 905         */
 906        tsk->seccomp.filter = NULL;
 907#endif
 908
 909        setup_thread_stack(tsk, orig);
 910        clear_user_return_notifier(tsk);
 911        clear_tsk_need_resched(tsk);
 912        set_task_stack_end_magic(tsk);
 913
 914#ifdef CONFIG_STACKPROTECTOR
 915        tsk->stack_canary = get_random_canary();
 916#endif
 917        if (orig->cpus_ptr == &orig->cpus_mask)
 918                tsk->cpus_ptr = &tsk->cpus_mask;
 919
 920        /*
 921         * One for the user space visible state that goes away when reaped.
 922         * One for the scheduler.
 923         */
 924        refcount_set(&tsk->rcu_users, 2);
 925        /* One for the rcu users */
 926        refcount_set(&tsk->usage, 1);
 927#ifdef CONFIG_BLK_DEV_IO_TRACE
 928        tsk->btrace_seq = 0;
 929#endif
 930        tsk->splice_pipe = NULL;
 931        tsk->task_frag.page = NULL;
 932        tsk->wake_q.next = NULL;
 933
 934        account_kernel_stack(tsk, 1);
 935
 936        kcov_task_init(tsk);
 937
 938#ifdef CONFIG_FAULT_INJECTION
 939        tsk->fail_nth = 0;
 940#endif
 941
 942#ifdef CONFIG_BLK_CGROUP
 943        tsk->throttle_queue = NULL;
 944        tsk->use_memdelay = 0;
 945#endif
 946
 947#ifdef CONFIG_MEMCG
 948        tsk->active_memcg = NULL;
 949#endif
 950        return tsk;
 951
 952free_stack:
 953        free_thread_stack(tsk);
 954free_tsk:
 955        free_task_struct(tsk);
 956        return NULL;
 957}
 958
 959__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 960
 961static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 962
 963static int __init coredump_filter_setup(char *s)
 964{
 965        default_dump_filter =
 966                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 967                MMF_DUMP_FILTER_MASK;
 968        return 1;
 969}
 970
 971__setup("coredump_filter=", coredump_filter_setup);
 972
 973#include <linux/init_task.h>
 974
 975static void mm_init_aio(struct mm_struct *mm)
 976{
 977#ifdef CONFIG_AIO
 978        spin_lock_init(&mm->ioctx_lock);
 979        mm->ioctx_table = NULL;
 980#endif
 981}
 982
 983static __always_inline void mm_clear_owner(struct mm_struct *mm,
 984                                           struct task_struct *p)
 985{
 986#ifdef CONFIG_MEMCG
 987        if (mm->owner == p)
 988                WRITE_ONCE(mm->owner, NULL);
 989#endif
 990}
 991
 992static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 993{
 994#ifdef CONFIG_MEMCG
 995        mm->owner = p;
 996#endif
 997}
 998
 999static void mm_init_uprobes_state(struct mm_struct *mm)
1000{
1001#ifdef CONFIG_UPROBES
1002        mm->uprobes_state.xol_area = NULL;
1003#endif
1004}
1005
1006static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1007        struct user_namespace *user_ns)
1008{
1009        mm->mmap = NULL;
1010        mm->mm_rb = RB_ROOT;
1011        mm->vmacache_seqnum = 0;
1012        atomic_set(&mm->mm_users, 1);
1013        atomic_set(&mm->mm_count, 1);
1014        init_rwsem(&mm->mmap_sem);
1015        INIT_LIST_HEAD(&mm->mmlist);
1016        mm->core_state = NULL;
1017        mm_pgtables_bytes_init(mm);
1018        mm->map_count = 0;
1019        mm->locked_vm = 0;
1020        atomic64_set(&mm->pinned_vm, 0);
1021        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1022        spin_lock_init(&mm->page_table_lock);
1023        spin_lock_init(&mm->arg_lock);
1024        mm_init_cpumask(mm);
1025        mm_init_aio(mm);
1026        mm_init_owner(mm, p);
1027        RCU_INIT_POINTER(mm->exe_file, NULL);
1028        mmu_notifier_subscriptions_init(mm);
1029        init_tlb_flush_pending(mm);
1030#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1031        mm->pmd_huge_pte = NULL;
1032#endif
1033        mm_init_uprobes_state(mm);
1034
1035        if (current->mm) {
1036                mm->flags = current->mm->flags & MMF_INIT_MASK;
1037                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1038        } else {
1039                mm->flags = default_dump_filter;
1040                mm->def_flags = 0;
1041        }
1042
1043        if (mm_alloc_pgd(mm))
1044                goto fail_nopgd;
1045
1046        if (init_new_context(p, mm))
1047                goto fail_nocontext;
1048
1049        mm->user_ns = get_user_ns(user_ns);
1050        return mm;
1051
1052fail_nocontext:
1053        mm_free_pgd(mm);
1054fail_nopgd:
1055        free_mm(mm);
1056        return NULL;
1057}
1058
1059/*
1060 * Allocate and initialize an mm_struct.
1061 */
1062struct mm_struct *mm_alloc(void)
1063{
1064        struct mm_struct *mm;
1065
1066        mm = allocate_mm();
1067        if (!mm)
1068                return NULL;
1069
1070        memset(mm, 0, sizeof(*mm));
1071        return mm_init(mm, current, current_user_ns());
1072}
1073
1074static inline void __mmput(struct mm_struct *mm)
1075{
1076        VM_BUG_ON(atomic_read(&mm->mm_users));
1077
1078        uprobe_clear_state(mm);
1079        exit_aio(mm);
1080        ksm_exit(mm);
1081        khugepaged_exit(mm); /* must run before exit_mmap */
1082        exit_mmap(mm);
1083        mm_put_huge_zero_page(mm);
1084        set_mm_exe_file(mm, NULL);
1085        if (!list_empty(&mm->mmlist)) {
1086                spin_lock(&mmlist_lock);
1087                list_del(&mm->mmlist);
1088                spin_unlock(&mmlist_lock);
1089        }
1090        if (mm->binfmt)
1091                module_put(mm->binfmt->module);
1092        mmdrop(mm);
1093}
1094
1095/*
1096 * Decrement the use count and release all resources for an mm.
1097 */
1098void mmput(struct mm_struct *mm)
1099{
1100        might_sleep();
1101
1102        if (atomic_dec_and_test(&mm->mm_users))
1103                __mmput(mm);
1104}
1105EXPORT_SYMBOL_GPL(mmput);
1106
1107#ifdef CONFIG_MMU
1108static void mmput_async_fn(struct work_struct *work)
1109{
1110        struct mm_struct *mm = container_of(work, struct mm_struct,
1111                                            async_put_work);
1112
1113        __mmput(mm);
1114}
1115
1116void mmput_async(struct mm_struct *mm)
1117{
1118        if (atomic_dec_and_test(&mm->mm_users)) {
1119                INIT_WORK(&mm->async_put_work, mmput_async_fn);
1120                schedule_work(&mm->async_put_work);
1121        }
1122}
1123#endif
1124
1125/**
1126 * set_mm_exe_file - change a reference to the mm's executable file
1127 *
1128 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1129 *
1130 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1131 * invocations: in mmput() nobody alive left, in execve task is single
1132 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1133 * mm->exe_file, but does so without using set_mm_exe_file() in order
1134 * to do avoid the need for any locks.
1135 */
1136void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1137{
1138        struct file *old_exe_file;
1139
1140        /*
1141         * It is safe to dereference the exe_file without RCU as
1142         * this function is only called if nobody else can access
1143         * this mm -- see comment above for justification.
1144         */
1145        old_exe_file = rcu_dereference_raw(mm->exe_file);
1146
1147        if (new_exe_file)
1148                get_file(new_exe_file);
1149        rcu_assign_pointer(mm->exe_file, new_exe_file);
1150        if (old_exe_file)
1151                fput(old_exe_file);
1152}
1153
1154/**
1155 * get_mm_exe_file - acquire a reference to the mm's executable file
1156 *
1157 * Returns %NULL if mm has no associated executable file.
1158 * User must release file via fput().
1159 */
1160struct file *get_mm_exe_file(struct mm_struct *mm)
1161{
1162        struct file *exe_file;
1163
1164        rcu_read_lock();
1165        exe_file = rcu_dereference(mm->exe_file);
1166        if (exe_file && !get_file_rcu(exe_file))
1167                exe_file = NULL;
1168        rcu_read_unlock();
1169        return exe_file;
1170}
1171EXPORT_SYMBOL(get_mm_exe_file);
1172
1173/**
1174 * get_task_exe_file - acquire a reference to the task's executable file
1175 *
1176 * Returns %NULL if task's mm (if any) has no associated executable file or
1177 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1178 * User must release file via fput().
1179 */
1180struct file *get_task_exe_file(struct task_struct *task)
1181{
1182        struct file *exe_file = NULL;
1183        struct mm_struct *mm;
1184
1185        task_lock(task);
1186        mm = task->mm;
1187        if (mm) {
1188                if (!(task->flags & PF_KTHREAD))
1189                        exe_file = get_mm_exe_file(mm);
1190        }
1191        task_unlock(task);
1192        return exe_file;
1193}
1194EXPORT_SYMBOL(get_task_exe_file);
1195
1196/**
1197 * get_task_mm - acquire a reference to the task's mm
1198 *
1199 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1200 * this kernel workthread has transiently adopted a user mm with use_mm,
1201 * to do its AIO) is not set and if so returns a reference to it, after
1202 * bumping up the use count.  User must release the mm via mmput()
1203 * after use.  Typically used by /proc and ptrace.
1204 */
1205struct mm_struct *get_task_mm(struct task_struct *task)
1206{
1207        struct mm_struct *mm;
1208
1209        task_lock(task);
1210        mm = task->mm;
1211        if (mm) {
1212                if (task->flags & PF_KTHREAD)
1213                        mm = NULL;
1214                else
1215                        mmget(mm);
1216        }
1217        task_unlock(task);
1218        return mm;
1219}
1220EXPORT_SYMBOL_GPL(get_task_mm);
1221
1222struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1223{
1224        struct mm_struct *mm;
1225        int err;
1226
1227        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1228        if (err)
1229                return ERR_PTR(err);
1230
1231        mm = get_task_mm(task);
1232        if (mm && mm != current->mm &&
1233                        !ptrace_may_access(task, mode)) {
1234                mmput(mm);
1235                mm = ERR_PTR(-EACCES);
1236        }
1237        mutex_unlock(&task->signal->cred_guard_mutex);
1238
1239        return mm;
1240}
1241
1242static void complete_vfork_done(struct task_struct *tsk)
1243{
1244        struct completion *vfork;
1245
1246        task_lock(tsk);
1247        vfork = tsk->vfork_done;
1248        if (likely(vfork)) {
1249                tsk->vfork_done = NULL;
1250                complete(vfork);
1251        }
1252        task_unlock(tsk);
1253}
1254
1255static int wait_for_vfork_done(struct task_struct *child,
1256                                struct completion *vfork)
1257{
1258        int killed;
1259
1260        freezer_do_not_count();
1261        cgroup_enter_frozen();
1262        killed = wait_for_completion_killable(vfork);
1263        cgroup_leave_frozen(false);
1264        freezer_count();
1265
1266        if (killed) {
1267                task_lock(child);
1268                child->vfork_done = NULL;
1269                task_unlock(child);
1270        }
1271
1272        put_task_struct(child);
1273        return killed;
1274}
1275
1276/* Please note the differences between mmput and mm_release.
1277 * mmput is called whenever we stop holding onto a mm_struct,
1278 * error success whatever.
1279 *
1280 * mm_release is called after a mm_struct has been removed
1281 * from the current process.
1282 *
1283 * This difference is important for error handling, when we
1284 * only half set up a mm_struct for a new process and need to restore
1285 * the old one.  Because we mmput the new mm_struct before
1286 * restoring the old one. . .
1287 * Eric Biederman 10 January 1998
1288 */
1289static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1290{
1291        uprobe_free_utask(tsk);
1292
1293        /* Get rid of any cached register state */
1294        deactivate_mm(tsk, mm);
1295
1296        /*
1297         * Signal userspace if we're not exiting with a core dump
1298         * because we want to leave the value intact for debugging
1299         * purposes.
1300         */
1301        if (tsk->clear_child_tid) {
1302                if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1303                    atomic_read(&mm->mm_users) > 1) {
1304                        /*
1305                         * We don't check the error code - if userspace has
1306                         * not set up a proper pointer then tough luck.
1307                         */
1308                        put_user(0, tsk->clear_child_tid);
1309                        do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1310                                        1, NULL, NULL, 0, 0);
1311                }
1312                tsk->clear_child_tid = NULL;
1313        }
1314
1315        /*
1316         * All done, finally we can wake up parent and return this mm to him.
1317         * Also kthread_stop() uses this completion for synchronization.
1318         */
1319        if (tsk->vfork_done)
1320                complete_vfork_done(tsk);
1321}
1322
1323void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1324{
1325        futex_exit_release(tsk);
1326        mm_release(tsk, mm);
1327}
1328
1329void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1330{
1331        futex_exec_release(tsk);
1332        mm_release(tsk, mm);
1333}
1334
1335/**
1336 * dup_mm() - duplicates an existing mm structure
1337 * @tsk: the task_struct with which the new mm will be associated.
1338 * @oldmm: the mm to duplicate.
1339 *
1340 * Allocates a new mm structure and duplicates the provided @oldmm structure
1341 * content into it.
1342 *
1343 * Return: the duplicated mm or NULL on failure.
1344 */
1345static struct mm_struct *dup_mm(struct task_struct *tsk,
1346                                struct mm_struct *oldmm)
1347{
1348        struct mm_struct *mm;
1349        int err;
1350
1351        mm = allocate_mm();
1352        if (!mm)
1353                goto fail_nomem;
1354
1355        memcpy(mm, oldmm, sizeof(*mm));
1356
1357        if (!mm_init(mm, tsk, mm->user_ns))
1358                goto fail_nomem;
1359
1360        err = dup_mmap(mm, oldmm);
1361        if (err)
1362                goto free_pt;
1363
1364        mm->hiwater_rss = get_mm_rss(mm);
1365        mm->hiwater_vm = mm->total_vm;
1366
1367        if (mm->binfmt && !try_module_get(mm->binfmt->module))
1368                goto free_pt;
1369
1370        return mm;
1371
1372free_pt:
1373        /* don't put binfmt in mmput, we haven't got module yet */
1374        mm->binfmt = NULL;
1375        mm_init_owner(mm, NULL);
1376        mmput(mm);
1377
1378fail_nomem:
1379        return NULL;
1380}
1381
1382static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1383{
1384        struct mm_struct *mm, *oldmm;
1385        int retval;
1386
1387        tsk->min_flt = tsk->maj_flt = 0;
1388        tsk->nvcsw = tsk->nivcsw = 0;
1389#ifdef CONFIG_DETECT_HUNG_TASK
1390        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1391        tsk->last_switch_time = 0;
1392#endif
1393
1394        tsk->mm = NULL;
1395        tsk->active_mm = NULL;
1396
1397        /*
1398         * Are we cloning a kernel thread?
1399         *
1400         * We need to steal a active VM for that..
1401         */
1402        oldmm = current->mm;
1403        if (!oldmm)
1404                return 0;
1405
1406        /* initialize the new vmacache entries */
1407        vmacache_flush(tsk);
1408
1409        if (clone_flags & CLONE_VM) {
1410                mmget(oldmm);
1411                mm = oldmm;
1412                goto good_mm;
1413        }
1414
1415        retval = -ENOMEM;
1416        mm = dup_mm(tsk, current->mm);
1417        if (!mm)
1418                goto fail_nomem;
1419
1420good_mm:
1421        tsk->mm = mm;
1422        tsk->active_mm = mm;
1423        return 0;
1424
1425fail_nomem:
1426        return retval;
1427}
1428
1429static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1430{
1431        struct fs_struct *fs = current->fs;
1432        if (clone_flags & CLONE_FS) {
1433                /* tsk->fs is already what we want */
1434                spin_lock(&fs->lock);
1435                if (fs->in_exec) {
1436                        spin_unlock(&fs->lock);
1437                        return -EAGAIN;
1438                }
1439                fs->users++;
1440                spin_unlock(&fs->lock);
1441                return 0;
1442        }
1443        tsk->fs = copy_fs_struct(fs);
1444        if (!tsk->fs)
1445                return -ENOMEM;
1446        return 0;
1447}
1448
1449static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1450{
1451        struct files_struct *oldf, *newf;
1452        int error = 0;
1453
1454        /*
1455         * A background process may not have any files ...
1456         */
1457        oldf = current->files;
1458        if (!oldf)
1459                goto out;
1460
1461        if (clone_flags & CLONE_FILES) {
1462                atomic_inc(&oldf->count);
1463                goto out;
1464        }
1465
1466        newf = dup_fd(oldf, &error);
1467        if (!newf)
1468                goto out;
1469
1470        tsk->files = newf;
1471        error = 0;
1472out:
1473        return error;
1474}
1475
1476static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1477{
1478#ifdef CONFIG_BLOCK
1479        struct io_context *ioc = current->io_context;
1480        struct io_context *new_ioc;
1481
1482        if (!ioc)
1483                return 0;
1484        /*
1485         * Share io context with parent, if CLONE_IO is set
1486         */
1487        if (clone_flags & CLONE_IO) {
1488                ioc_task_link(ioc);
1489                tsk->io_context = ioc;
1490        } else if (ioprio_valid(ioc->ioprio)) {
1491                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1492                if (unlikely(!new_ioc))
1493                        return -ENOMEM;
1494
1495                new_ioc->ioprio = ioc->ioprio;
1496                put_io_context(new_ioc);
1497        }
1498#endif
1499        return 0;
1500}
1501
1502static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1503{
1504        struct sighand_struct *sig;
1505
1506        if (clone_flags & CLONE_SIGHAND) {
1507                refcount_inc(&current->sighand->count);
1508                return 0;
1509        }
1510        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1511        RCU_INIT_POINTER(tsk->sighand, sig);
1512        if (!sig)
1513                return -ENOMEM;
1514
1515        refcount_set(&sig->count, 1);
1516        spin_lock_irq(&current->sighand->siglock);
1517        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1518        spin_unlock_irq(&current->sighand->siglock);
1519
1520        /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1521        if (clone_flags & CLONE_CLEAR_SIGHAND)
1522                flush_signal_handlers(tsk, 0);
1523
1524        return 0;
1525}
1526
1527void __cleanup_sighand(struct sighand_struct *sighand)
1528{
1529        if (refcount_dec_and_test(&sighand->count)) {
1530                signalfd_cleanup(sighand);
1531                /*
1532                 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1533                 * without an RCU grace period, see __lock_task_sighand().
1534                 */
1535                kmem_cache_free(sighand_cachep, sighand);
1536        }
1537}
1538
1539/*
1540 * Initialize POSIX timer handling for a thread group.
1541 */
1542static void posix_cpu_timers_init_group(struct signal_struct *sig)
1543{
1544        struct posix_cputimers *pct = &sig->posix_cputimers;
1545        unsigned long cpu_limit;
1546
1547        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1548        posix_cputimers_group_init(pct, cpu_limit);
1549}
1550
1551static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1552{
1553        struct signal_struct *sig;
1554
1555        if (clone_flags & CLONE_THREAD)
1556                return 0;
1557
1558        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1559        tsk->signal = sig;
1560        if (!sig)
1561                return -ENOMEM;
1562
1563        sig->nr_threads = 1;
1564        atomic_set(&sig->live, 1);
1565        refcount_set(&sig->sigcnt, 1);
1566
1567        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1568        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1569        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1570
1571        init_waitqueue_head(&sig->wait_chldexit);
1572        sig->curr_target = tsk;
1573        init_sigpending(&sig->shared_pending);
1574        INIT_HLIST_HEAD(&sig->multiprocess);
1575        seqlock_init(&sig->stats_lock);
1576        prev_cputime_init(&sig->prev_cputime);
1577
1578#ifdef CONFIG_POSIX_TIMERS
1579        INIT_LIST_HEAD(&sig->posix_timers);
1580        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1581        sig->real_timer.function = it_real_fn;
1582#endif
1583
1584        task_lock(current->group_leader);
1585        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1586        task_unlock(current->group_leader);
1587
1588        posix_cpu_timers_init_group(sig);
1589
1590        tty_audit_fork(sig);
1591        sched_autogroup_fork(sig);
1592
1593        sig->oom_score_adj = current->signal->oom_score_adj;
1594        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1595
1596        mutex_init(&sig->cred_guard_mutex);
1597
1598        return 0;
1599}
1600
1601static void copy_seccomp(struct task_struct *p)
1602{
1603#ifdef CONFIG_SECCOMP
1604        /*
1605         * Must be called with sighand->lock held, which is common to
1606         * all threads in the group. Holding cred_guard_mutex is not
1607         * needed because this new task is not yet running and cannot
1608         * be racing exec.
1609         */
1610        assert_spin_locked(&current->sighand->siglock);
1611
1612        /* Ref-count the new filter user, and assign it. */
1613        get_seccomp_filter(current);
1614        p->seccomp = current->seccomp;
1615
1616        /*
1617         * Explicitly enable no_new_privs here in case it got set
1618         * between the task_struct being duplicated and holding the
1619         * sighand lock. The seccomp state and nnp must be in sync.
1620         */
1621        if (task_no_new_privs(current))
1622                task_set_no_new_privs(p);
1623
1624        /*
1625         * If the parent gained a seccomp mode after copying thread
1626         * flags and between before we held the sighand lock, we have
1627         * to manually enable the seccomp thread flag here.
1628         */
1629        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1630                set_tsk_thread_flag(p, TIF_SECCOMP);
1631#endif
1632}
1633
1634SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1635{
1636        current->clear_child_tid = tidptr;
1637
1638        return task_pid_vnr(current);
1639}
1640
1641static void rt_mutex_init_task(struct task_struct *p)
1642{
1643        raw_spin_lock_init(&p->pi_lock);
1644#ifdef CONFIG_RT_MUTEXES
1645        p->pi_waiters = RB_ROOT_CACHED;
1646        p->pi_top_task = NULL;
1647        p->pi_blocked_on = NULL;
1648#endif
1649}
1650
1651static inline void init_task_pid_links(struct task_struct *task)
1652{
1653        enum pid_type type;
1654
1655        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1656                INIT_HLIST_NODE(&task->pid_links[type]);
1657        }
1658}
1659
1660static inline void
1661init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1662{
1663        if (type == PIDTYPE_PID)
1664                task->thread_pid = pid;
1665        else
1666                task->signal->pids[type] = pid;
1667}
1668
1669static inline void rcu_copy_process(struct task_struct *p)
1670{
1671#ifdef CONFIG_PREEMPT_RCU
1672        p->rcu_read_lock_nesting = 0;
1673        p->rcu_read_unlock_special.s = 0;
1674        p->rcu_blocked_node = NULL;
1675        INIT_LIST_HEAD(&p->rcu_node_entry);
1676#endif /* #ifdef CONFIG_PREEMPT_RCU */
1677#ifdef CONFIG_TASKS_RCU
1678        p->rcu_tasks_holdout = false;
1679        INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1680        p->rcu_tasks_idle_cpu = -1;
1681#endif /* #ifdef CONFIG_TASKS_RCU */
1682}
1683
1684struct pid *pidfd_pid(const struct file *file)
1685{
1686        if (file->f_op == &pidfd_fops)
1687                return file->private_data;
1688
1689        return ERR_PTR(-EBADF);
1690}
1691
1692static int pidfd_release(struct inode *inode, struct file *file)
1693{
1694        struct pid *pid = file->private_data;
1695
1696        file->private_data = NULL;
1697        put_pid(pid);
1698        return 0;
1699}
1700
1701#ifdef CONFIG_PROC_FS
1702/**
1703 * pidfd_show_fdinfo - print information about a pidfd
1704 * @m: proc fdinfo file
1705 * @f: file referencing a pidfd
1706 *
1707 * Pid:
1708 * This function will print the pid that a given pidfd refers to in the
1709 * pid namespace of the procfs instance.
1710 * If the pid namespace of the process is not a descendant of the pid
1711 * namespace of the procfs instance 0 will be shown as its pid. This is
1712 * similar to calling getppid() on a process whose parent is outside of
1713 * its pid namespace.
1714 *
1715 * NSpid:
1716 * If pid namespaces are supported then this function will also print
1717 * the pid of a given pidfd refers to for all descendant pid namespaces
1718 * starting from the current pid namespace of the instance, i.e. the
1719 * Pid field and the first entry in the NSpid field will be identical.
1720 * If the pid namespace of the process is not a descendant of the pid
1721 * namespace of the procfs instance 0 will be shown as its first NSpid
1722 * entry and no others will be shown.
1723 * Note that this differs from the Pid and NSpid fields in
1724 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1725 * the  pid namespace of the procfs instance. The difference becomes
1726 * obvious when sending around a pidfd between pid namespaces from a
1727 * different branch of the tree, i.e. where no ancestoral relation is
1728 * present between the pid namespaces:
1729 * - create two new pid namespaces ns1 and ns2 in the initial pid
1730 *   namespace (also take care to create new mount namespaces in the
1731 *   new pid namespace and mount procfs)
1732 * - create a process with a pidfd in ns1
1733 * - send pidfd from ns1 to ns2
1734 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1735 *   have exactly one entry, which is 0
1736 */
1737static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1738{
1739        struct pid *pid = f->private_data;
1740        struct pid_namespace *ns;
1741        pid_t nr = -1;
1742
1743        if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1744                ns = proc_pid_ns(file_inode(m->file));
1745                nr = pid_nr_ns(pid, ns);
1746        }
1747
1748        seq_put_decimal_ll(m, "Pid:\t", nr);
1749
1750#ifdef CONFIG_PID_NS
1751        seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1752        if (nr > 0) {
1753                int i;
1754
1755                /* If nr is non-zero it means that 'pid' is valid and that
1756                 * ns, i.e. the pid namespace associated with the procfs
1757                 * instance, is in the pid namespace hierarchy of pid.
1758                 * Start at one below the already printed level.
1759                 */
1760                for (i = ns->level + 1; i <= pid->level; i++)
1761                        seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1762        }
1763#endif
1764        seq_putc(m, '\n');
1765}
1766#endif
1767
1768/*
1769 * Poll support for process exit notification.
1770 */
1771static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1772{
1773        struct task_struct *task;
1774        struct pid *pid = file->private_data;
1775        __poll_t poll_flags = 0;
1776
1777        poll_wait(file, &pid->wait_pidfd, pts);
1778
1779        rcu_read_lock();
1780        task = pid_task(pid, PIDTYPE_PID);
1781        /*
1782         * Inform pollers only when the whole thread group exits.
1783         * If the thread group leader exits before all other threads in the
1784         * group, then poll(2) should block, similar to the wait(2) family.
1785         */
1786        if (!task || (task->exit_state && thread_group_empty(task)))
1787                poll_flags = EPOLLIN | EPOLLRDNORM;
1788        rcu_read_unlock();
1789
1790        return poll_flags;
1791}
1792
1793const struct file_operations pidfd_fops = {
1794        .release = pidfd_release,
1795        .poll = pidfd_poll,
1796#ifdef CONFIG_PROC_FS
1797        .show_fdinfo = pidfd_show_fdinfo,
1798#endif
1799};
1800
1801static void __delayed_free_task(struct rcu_head *rhp)
1802{
1803        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1804
1805        free_task(tsk);
1806}
1807
1808static __always_inline void delayed_free_task(struct task_struct *tsk)
1809{
1810        if (IS_ENABLED(CONFIG_MEMCG))
1811                call_rcu(&tsk->rcu, __delayed_free_task);
1812        else
1813                free_task(tsk);
1814}
1815
1816/*
1817 * This creates a new process as a copy of the old one,
1818 * but does not actually start it yet.
1819 *
1820 * It copies the registers, and all the appropriate
1821 * parts of the process environment (as per the clone
1822 * flags). The actual kick-off is left to the caller.
1823 */
1824static __latent_entropy struct task_struct *copy_process(
1825                                        struct pid *pid,
1826                                        int trace,
1827                                        int node,
1828                                        struct kernel_clone_args *args)
1829{
1830        int pidfd = -1, retval;
1831        struct task_struct *p;
1832        struct multiprocess_signals delayed;
1833        struct file *pidfile = NULL;
1834        u64 clone_flags = args->flags;
1835        struct nsproxy *nsp = current->nsproxy;
1836
1837        /*
1838         * Don't allow sharing the root directory with processes in a different
1839         * namespace
1840         */
1841        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1842                return ERR_PTR(-EINVAL);
1843
1844        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1845                return ERR_PTR(-EINVAL);
1846
1847        /*
1848         * Thread groups must share signals as well, and detached threads
1849         * can only be started up within the thread group.
1850         */
1851        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1852                return ERR_PTR(-EINVAL);
1853
1854        /*
1855         * Shared signal handlers imply shared VM. By way of the above,
1856         * thread groups also imply shared VM. Blocking this case allows
1857         * for various simplifications in other code.
1858         */
1859        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1860                return ERR_PTR(-EINVAL);
1861
1862        /*
1863         * Siblings of global init remain as zombies on exit since they are
1864         * not reaped by their parent (swapper). To solve this and to avoid
1865         * multi-rooted process trees, prevent global and container-inits
1866         * from creating siblings.
1867         */
1868        if ((clone_flags & CLONE_PARENT) &&
1869                                current->signal->flags & SIGNAL_UNKILLABLE)
1870                return ERR_PTR(-EINVAL);
1871
1872        /*
1873         * If the new process will be in a different pid or user namespace
1874         * do not allow it to share a thread group with the forking task.
1875         */
1876        if (clone_flags & CLONE_THREAD) {
1877                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1878                    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1879                        return ERR_PTR(-EINVAL);
1880        }
1881
1882        /*
1883         * If the new process will be in a different time namespace
1884         * do not allow it to share VM or a thread group with the forking task.
1885         */
1886        if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1887                if (nsp->time_ns != nsp->time_ns_for_children)
1888                        return ERR_PTR(-EINVAL);
1889        }
1890
1891        if (clone_flags & CLONE_PIDFD) {
1892                /*
1893                 * - CLONE_DETACHED is blocked so that we can potentially
1894                 *   reuse it later for CLONE_PIDFD.
1895                 * - CLONE_THREAD is blocked until someone really needs it.
1896                 */
1897                if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1898                        return ERR_PTR(-EINVAL);
1899        }
1900
1901        /*
1902         * Force any signals received before this point to be delivered
1903         * before the fork happens.  Collect up signals sent to multiple
1904         * processes that happen during the fork and delay them so that
1905         * they appear to happen after the fork.
1906         */
1907        sigemptyset(&delayed.signal);
1908        INIT_HLIST_NODE(&delayed.node);
1909
1910        spin_lock_irq(&current->sighand->siglock);
1911        if (!(clone_flags & CLONE_THREAD))
1912                hlist_add_head(&delayed.node, &current->signal->multiprocess);
1913        recalc_sigpending();
1914        spin_unlock_irq(&current->sighand->siglock);
1915        retval = -ERESTARTNOINTR;
1916        if (signal_pending(current))
1917                goto fork_out;
1918
1919        retval = -ENOMEM;
1920        p = dup_task_struct(current, node);
1921        if (!p)
1922                goto fork_out;
1923
1924        /*
1925         * This _must_ happen before we call free_task(), i.e. before we jump
1926         * to any of the bad_fork_* labels. This is to avoid freeing
1927         * p->set_child_tid which is (ab)used as a kthread's data pointer for
1928         * kernel threads (PF_KTHREAD).
1929         */
1930        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1931        /*
1932         * Clear TID on mm_release()?
1933         */
1934        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1935
1936        ftrace_graph_init_task(p);
1937
1938        rt_mutex_init_task(p);
1939
1940#ifdef CONFIG_PROVE_LOCKING
1941        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1942        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1943#endif
1944        retval = -EAGAIN;
1945        if (atomic_read(&p->real_cred->user->processes) >=
1946                        task_rlimit(p, RLIMIT_NPROC)) {
1947                if (p->real_cred->user != INIT_USER &&
1948                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1949                        goto bad_fork_free;
1950        }
1951        current->flags &= ~PF_NPROC_EXCEEDED;
1952
1953        retval = copy_creds(p, clone_flags);
1954        if (retval < 0)
1955                goto bad_fork_free;
1956
1957        /*
1958         * If multiple threads are within copy_process(), then this check
1959         * triggers too late. This doesn't hurt, the check is only there
1960         * to stop root fork bombs.
1961         */
1962        retval = -EAGAIN;
1963        if (nr_threads >= max_threads)
1964                goto bad_fork_cleanup_count;
1965
1966        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1967        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1968        p->flags |= PF_FORKNOEXEC;
1969        INIT_LIST_HEAD(&p->children);
1970        INIT_LIST_HEAD(&p->sibling);
1971        rcu_copy_process(p);
1972        p->vfork_done = NULL;
1973        spin_lock_init(&p->alloc_lock);
1974
1975        init_sigpending(&p->pending);
1976
1977        p->utime = p->stime = p->gtime = 0;
1978#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1979        p->utimescaled = p->stimescaled = 0;
1980#endif
1981        prev_cputime_init(&p->prev_cputime);
1982
1983#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1984        seqcount_init(&p->vtime.seqcount);
1985        p->vtime.starttime = 0;
1986        p->vtime.state = VTIME_INACTIVE;
1987#endif
1988
1989#if defined(SPLIT_RSS_COUNTING)
1990        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1991#endif
1992
1993        p->default_timer_slack_ns = current->timer_slack_ns;
1994
1995#ifdef CONFIG_PSI
1996        p->psi_flags = 0;
1997#endif
1998
1999        task_io_accounting_init(&p->ioac);
2000        acct_clear_integrals(p);
2001
2002        posix_cputimers_init(&p->posix_cputimers);
2003
2004        p->io_context = NULL;
2005        audit_set_context(p, NULL);
2006        cgroup_fork(p);
2007#ifdef CONFIG_NUMA
2008        p->mempolicy = mpol_dup(p->mempolicy);
2009        if (IS_ERR(p->mempolicy)) {
2010                retval = PTR_ERR(p->mempolicy);
2011                p->mempolicy = NULL;
2012                goto bad_fork_cleanup_threadgroup_lock;
2013        }
2014#endif
2015#ifdef CONFIG_CPUSETS
2016        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2017        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2018        seqcount_init(&p->mems_allowed_seq);
2019#endif
2020#ifdef CONFIG_TRACE_IRQFLAGS
2021        p->irq_events = 0;
2022        p->hardirqs_enabled = 0;
2023        p->hardirq_enable_ip = 0;
2024        p->hardirq_enable_event = 0;
2025        p->hardirq_disable_ip = _THIS_IP_;
2026        p->hardirq_disable_event = 0;
2027        p->softirqs_enabled = 1;
2028        p->softirq_enable_ip = _THIS_IP_;
2029        p->softirq_enable_event = 0;
2030        p->softirq_disable_ip = 0;
2031        p->softirq_disable_event = 0;
2032        p->hardirq_context = 0;
2033        p->softirq_context = 0;
2034#endif
2035
2036        p->pagefault_disabled = 0;
2037
2038#ifdef CONFIG_LOCKDEP
2039        lockdep_init_task(p);
2040#endif
2041
2042#ifdef CONFIG_DEBUG_MUTEXES
2043        p->blocked_on = NULL; /* not blocked yet */
2044#endif
2045#ifdef CONFIG_BCACHE
2046        p->sequential_io        = 0;
2047        p->sequential_io_avg    = 0;
2048#endif
2049
2050        /* Perform scheduler related setup. Assign this task to a CPU. */
2051        retval = sched_fork(clone_flags, p);
2052        if (retval)
2053                goto bad_fork_cleanup_policy;
2054
2055        retval = perf_event_init_task(p);
2056        if (retval)
2057                goto bad_fork_cleanup_policy;
2058        retval = audit_alloc(p);
2059        if (retval)
2060                goto bad_fork_cleanup_perf;
2061        /* copy all the process information */
2062        shm_init_task(p);
2063        retval = security_task_alloc(p, clone_flags);
2064        if (retval)
2065                goto bad_fork_cleanup_audit;
2066        retval = copy_semundo(clone_flags, p);
2067        if (retval)
2068                goto bad_fork_cleanup_security;
2069        retval = copy_files(clone_flags, p);
2070        if (retval)
2071                goto bad_fork_cleanup_semundo;
2072        retval = copy_fs(clone_flags, p);
2073        if (retval)
2074                goto bad_fork_cleanup_files;
2075        retval = copy_sighand(clone_flags, p);
2076        if (retval)
2077                goto bad_fork_cleanup_fs;
2078        retval = copy_signal(clone_flags, p);
2079        if (retval)
2080                goto bad_fork_cleanup_sighand;
2081        retval = copy_mm(clone_flags, p);
2082        if (retval)
2083                goto bad_fork_cleanup_signal;
2084        retval = copy_namespaces(clone_flags, p);
2085        if (retval)
2086                goto bad_fork_cleanup_mm;
2087        retval = copy_io(clone_flags, p);
2088        if (retval)
2089                goto bad_fork_cleanup_namespaces;
2090        retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2091                                 args->tls);
2092        if (retval)
2093                goto bad_fork_cleanup_io;
2094
2095        stackleak_task_init(p);
2096
2097        if (pid != &init_struct_pid) {
2098                pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2099                                args->set_tid_size);
2100                if (IS_ERR(pid)) {
2101                        retval = PTR_ERR(pid);
2102                        goto bad_fork_cleanup_thread;
2103                }
2104        }
2105
2106        /*
2107         * This has to happen after we've potentially unshared the file
2108         * descriptor table (so that the pidfd doesn't leak into the child
2109         * if the fd table isn't shared).
2110         */
2111        if (clone_flags & CLONE_PIDFD) {
2112                retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2113                if (retval < 0)
2114                        goto bad_fork_free_pid;
2115
2116                pidfd = retval;
2117
2118                pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2119                                              O_RDWR | O_CLOEXEC);
2120                if (IS_ERR(pidfile)) {
2121                        put_unused_fd(pidfd);
2122                        retval = PTR_ERR(pidfile);
2123                        goto bad_fork_free_pid;
2124                }
2125                get_pid(pid);   /* held by pidfile now */
2126
2127                retval = put_user(pidfd, args->pidfd);
2128                if (retval)
2129                        goto bad_fork_put_pidfd;
2130        }
2131
2132#ifdef CONFIG_BLOCK
2133        p->plug = NULL;
2134#endif
2135        futex_init_task(p);
2136
2137        /*
2138         * sigaltstack should be cleared when sharing the same VM
2139         */
2140        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2141                sas_ss_reset(p);
2142
2143        /*
2144         * Syscall tracing and stepping should be turned off in the
2145         * child regardless of CLONE_PTRACE.
2146         */
2147        user_disable_single_step(p);
2148        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2149#ifdef TIF_SYSCALL_EMU
2150        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2151#endif
2152        clear_tsk_latency_tracing(p);
2153
2154        /* ok, now we should be set up.. */
2155        p->pid = pid_nr(pid);
2156        if (clone_flags & CLONE_THREAD) {
2157                p->exit_signal = -1;
2158                p->group_leader = current->group_leader;
2159                p->tgid = current->tgid;
2160        } else {
2161                if (clone_flags & CLONE_PARENT)
2162                        p->exit_signal = current->group_leader->exit_signal;
2163                else
2164                        p->exit_signal = args->exit_signal;
2165                p->group_leader = p;
2166                p->tgid = p->pid;
2167        }
2168
2169        p->nr_dirtied = 0;
2170        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2171        p->dirty_paused_when = 0;
2172
2173        p->pdeath_signal = 0;
2174        INIT_LIST_HEAD(&p->thread_group);
2175        p->task_works = NULL;
2176
2177        cgroup_threadgroup_change_begin(current);
2178        /*
2179         * Ensure that the cgroup subsystem policies allow the new process to be
2180         * forked. It should be noted the the new process's css_set can be changed
2181         * between here and cgroup_post_fork() if an organisation operation is in
2182         * progress.
2183         */
2184        retval = cgroup_can_fork(p);
2185        if (retval)
2186                goto bad_fork_cgroup_threadgroup_change_end;
2187
2188        /*
2189         * From this point on we must avoid any synchronous user-space
2190         * communication until we take the tasklist-lock. In particular, we do
2191         * not want user-space to be able to predict the process start-time by
2192         * stalling fork(2) after we recorded the start_time but before it is
2193         * visible to the system.
2194         */
2195
2196        p->start_time = ktime_get_ns();
2197        p->start_boottime = ktime_get_boottime_ns();
2198
2199        /*
2200         * Make it visible to the rest of the system, but dont wake it up yet.
2201         * Need tasklist lock for parent etc handling!
2202         */
2203        write_lock_irq(&tasklist_lock);
2204
2205        /* CLONE_PARENT re-uses the old parent */
2206        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2207                p->real_parent = current->real_parent;
2208                p->parent_exec_id = current->parent_exec_id;
2209        } else {
2210                p->real_parent = current;
2211                p->parent_exec_id = current->self_exec_id;
2212        }
2213
2214        klp_copy_process(p);
2215
2216        spin_lock(&current->sighand->siglock);
2217
2218        /*
2219         * Copy seccomp details explicitly here, in case they were changed
2220         * before holding sighand lock.
2221         */
2222        copy_seccomp(p);
2223
2224        rseq_fork(p, clone_flags);
2225
2226        /* Don't start children in a dying pid namespace */
2227        if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2228                retval = -ENOMEM;
2229                goto bad_fork_cancel_cgroup;
2230        }
2231
2232        /* Let kill terminate clone/fork in the middle */
2233        if (fatal_signal_pending(current)) {
2234                retval = -EINTR;
2235                goto bad_fork_cancel_cgroup;
2236        }
2237
2238        /* past the last point of failure */
2239        if (pidfile)
2240                fd_install(pidfd, pidfile);
2241
2242        init_task_pid_links(p);
2243        if (likely(p->pid)) {
2244                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2245
2246                init_task_pid(p, PIDTYPE_PID, pid);
2247                if (thread_group_leader(p)) {
2248                        init_task_pid(p, PIDTYPE_TGID, pid);
2249                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2250                        init_task_pid(p, PIDTYPE_SID, task_session(current));
2251
2252                        if (is_child_reaper(pid)) {
2253                                ns_of_pid(pid)->child_reaper = p;
2254                                p->signal->flags |= SIGNAL_UNKILLABLE;
2255                        }
2256                        p->signal->shared_pending.signal = delayed.signal;
2257                        p->signal->tty = tty_kref_get(current->signal->tty);
2258                        /*
2259                         * Inherit has_child_subreaper flag under the same
2260                         * tasklist_lock with adding child to the process tree
2261                         * for propagate_has_child_subreaper optimization.
2262                         */
2263                        p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2264                                                         p->real_parent->signal->is_child_subreaper;
2265                        list_add_tail(&p->sibling, &p->real_parent->children);
2266                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
2267                        attach_pid(p, PIDTYPE_TGID);
2268                        attach_pid(p, PIDTYPE_PGID);
2269                        attach_pid(p, PIDTYPE_SID);
2270                        __this_cpu_inc(process_counts);
2271                } else {
2272                        current->signal->nr_threads++;
2273                        atomic_inc(&current->signal->live);
2274                        refcount_inc(&current->signal->sigcnt);
2275                        task_join_group_stop(p);
2276                        list_add_tail_rcu(&p->thread_group,
2277                                          &p->group_leader->thread_group);
2278                        list_add_tail_rcu(&p->thread_node,
2279                                          &p->signal->thread_head);
2280                }
2281                attach_pid(p, PIDTYPE_PID);
2282                nr_threads++;
2283        }
2284        total_forks++;
2285        hlist_del_init(&delayed.node);
2286        spin_unlock(&current->sighand->siglock);
2287        syscall_tracepoint_update(p);
2288        write_unlock_irq(&tasklist_lock);
2289
2290        proc_fork_connector(p);
2291        cgroup_post_fork(p);
2292        cgroup_threadgroup_change_end(current);
2293        perf_event_fork(p);
2294
2295        trace_task_newtask(p, clone_flags);
2296        uprobe_copy_process(p, clone_flags);
2297
2298        return p;
2299
2300bad_fork_cancel_cgroup:
2301        spin_unlock(&current->sighand->siglock);
2302        write_unlock_irq(&tasklist_lock);
2303        cgroup_cancel_fork(p);
2304bad_fork_cgroup_threadgroup_change_end:
2305        cgroup_threadgroup_change_end(current);
2306bad_fork_put_pidfd:
2307        if (clone_flags & CLONE_PIDFD) {
2308                fput(pidfile);
2309                put_unused_fd(pidfd);
2310        }
2311bad_fork_free_pid:
2312        if (pid != &init_struct_pid)
2313                free_pid(pid);
2314bad_fork_cleanup_thread:
2315        exit_thread(p);
2316bad_fork_cleanup_io:
2317        if (p->io_context)
2318                exit_io_context(p);
2319bad_fork_cleanup_namespaces:
2320        exit_task_namespaces(p);
2321bad_fork_cleanup_mm:
2322        if (p->mm) {
2323                mm_clear_owner(p->mm, p);
2324                mmput(p->mm);
2325        }
2326bad_fork_cleanup_signal:
2327        if (!(clone_flags & CLONE_THREAD))
2328                free_signal_struct(p->signal);
2329bad_fork_cleanup_sighand:
2330        __cleanup_sighand(p->sighand);
2331bad_fork_cleanup_fs:
2332        exit_fs(p); /* blocking */
2333bad_fork_cleanup_files:
2334        exit_files(p); /* blocking */
2335bad_fork_cleanup_semundo:
2336        exit_sem(p);
2337bad_fork_cleanup_security:
2338        security_task_free(p);
2339bad_fork_cleanup_audit:
2340        audit_free(p);
2341bad_fork_cleanup_perf:
2342        perf_event_free_task(p);
2343bad_fork_cleanup_policy:
2344        lockdep_free_task(p);
2345#ifdef CONFIG_NUMA
2346        mpol_put(p->mempolicy);
2347bad_fork_cleanup_threadgroup_lock:
2348#endif
2349        delayacct_tsk_free(p);
2350bad_fork_cleanup_count:
2351        atomic_dec(&p->cred->user->processes);
2352        exit_creds(p);
2353bad_fork_free:
2354        p->state = TASK_DEAD;
2355        put_task_stack(p);
2356        delayed_free_task(p);
2357fork_out:
2358        spin_lock_irq(&current->sighand->siglock);
2359        hlist_del_init(&delayed.node);
2360        spin_unlock_irq(&current->sighand->siglock);
2361        return ERR_PTR(retval);
2362}
2363
2364static inline void init_idle_pids(struct task_struct *idle)
2365{
2366        enum pid_type type;
2367
2368        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2369                INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2370                init_task_pid(idle, type, &init_struct_pid);
2371        }
2372}
2373
2374struct task_struct *fork_idle(int cpu)
2375{
2376        struct task_struct *task;
2377        struct kernel_clone_args args = {
2378                .flags = CLONE_VM,
2379        };
2380
2381        task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2382        if (!IS_ERR(task)) {
2383                init_idle_pids(task);
2384                init_idle(task, cpu);
2385        }
2386
2387        return task;
2388}
2389
2390struct mm_struct *copy_init_mm(void)
2391{
2392        return dup_mm(NULL, &init_mm);
2393}
2394
2395/*
2396 *  Ok, this is the main fork-routine.
2397 *
2398 * It copies the process, and if successful kick-starts
2399 * it and waits for it to finish using the VM if required.
2400 *
2401 * args->exit_signal is expected to be checked for sanity by the caller.
2402 */
2403long _do_fork(struct kernel_clone_args *args)
2404{
2405        u64 clone_flags = args->flags;
2406        struct completion vfork;
2407        struct pid *pid;
2408        struct task_struct *p;
2409        int trace = 0;
2410        long nr;
2411
2412        /*
2413         * Determine whether and which event to report to ptracer.  When
2414         * called from kernel_thread or CLONE_UNTRACED is explicitly
2415         * requested, no event is reported; otherwise, report if the event
2416         * for the type of forking is enabled.
2417         */
2418        if (!(clone_flags & CLONE_UNTRACED)) {
2419                if (clone_flags & CLONE_VFORK)
2420                        trace = PTRACE_EVENT_VFORK;
2421                else if (args->exit_signal != SIGCHLD)
2422                        trace = PTRACE_EVENT_CLONE;
2423                else
2424                        trace = PTRACE_EVENT_FORK;
2425
2426                if (likely(!ptrace_event_enabled(current, trace)))
2427                        trace = 0;
2428        }
2429
2430        p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2431        add_latent_entropy();
2432
2433        if (IS_ERR(p))
2434                return PTR_ERR(p);
2435
2436        /*
2437         * Do this prior waking up the new thread - the thread pointer
2438         * might get invalid after that point, if the thread exits quickly.
2439         */
2440        trace_sched_process_fork(current, p);
2441
2442        pid = get_task_pid(p, PIDTYPE_PID);
2443        nr = pid_vnr(pid);
2444
2445        if (clone_flags & CLONE_PARENT_SETTID)
2446                put_user(nr, args->parent_tid);
2447
2448        if (clone_flags & CLONE_VFORK) {
2449                p->vfork_done = &vfork;
2450                init_completion(&vfork);
2451                get_task_struct(p);
2452        }
2453
2454        wake_up_new_task(p);
2455
2456        /* forking complete and child started to run, tell ptracer */
2457        if (unlikely(trace))
2458                ptrace_event_pid(trace, pid);
2459
2460        if (clone_flags & CLONE_VFORK) {
2461                if (!wait_for_vfork_done(p, &vfork))
2462                        ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2463        }
2464
2465        put_pid(pid);
2466        return nr;
2467}
2468
2469bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2470{
2471        /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2472        if ((kargs->flags & CLONE_PIDFD) &&
2473            (kargs->flags & CLONE_PARENT_SETTID))
2474                return false;
2475
2476        return true;
2477}
2478
2479#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2480/* For compatibility with architectures that call do_fork directly rather than
2481 * using the syscall entry points below. */
2482long do_fork(unsigned long clone_flags,
2483              unsigned long stack_start,
2484              unsigned long stack_size,
2485              int __user *parent_tidptr,
2486              int __user *child_tidptr)
2487{
2488        struct kernel_clone_args args = {
2489                .flags          = (clone_flags & ~CSIGNAL),
2490                .pidfd          = parent_tidptr,
2491                .child_tid      = child_tidptr,
2492                .parent_tid     = parent_tidptr,
2493                .exit_signal    = (clone_flags & CSIGNAL),
2494                .stack          = stack_start,
2495                .stack_size     = stack_size,
2496        };
2497
2498        if (!legacy_clone_args_valid(&args))
2499                return -EINVAL;
2500
2501        return _do_fork(&args);
2502}
2503#endif
2504
2505/*
2506 * Create a kernel thread.
2507 */
2508pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2509{
2510        struct kernel_clone_args args = {
2511                .flags          = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2512                .exit_signal    = (flags & CSIGNAL),
2513                .stack          = (unsigned long)fn,
2514                .stack_size     = (unsigned long)arg,
2515        };
2516
2517        return _do_fork(&args);
2518}
2519
2520#ifdef __ARCH_WANT_SYS_FORK
2521SYSCALL_DEFINE0(fork)
2522{
2523#ifdef CONFIG_MMU
2524        struct kernel_clone_args args = {
2525                .exit_signal = SIGCHLD,
2526        };
2527
2528        return _do_fork(&args);
2529#else
2530        /* can not support in nommu mode */
2531        return -EINVAL;
2532#endif
2533}
2534#endif
2535
2536#ifdef __ARCH_WANT_SYS_VFORK
2537SYSCALL_DEFINE0(vfork)
2538{
2539        struct kernel_clone_args args = {
2540                .flags          = CLONE_VFORK | CLONE_VM,
2541                .exit_signal    = SIGCHLD,
2542        };
2543
2544        return _do_fork(&args);
2545}
2546#endif
2547
2548#ifdef __ARCH_WANT_SYS_CLONE
2549#ifdef CONFIG_CLONE_BACKWARDS
2550SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2551                 int __user *, parent_tidptr,
2552                 unsigned long, tls,
2553                 int __user *, child_tidptr)
2554#elif defined(CONFIG_CLONE_BACKWARDS2)
2555SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2556                 int __user *, parent_tidptr,
2557                 int __user *, child_tidptr,
2558                 unsigned long, tls)
2559#elif defined(CONFIG_CLONE_BACKWARDS3)
2560SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2561                int, stack_size,
2562                int __user *, parent_tidptr,
2563                int __user *, child_tidptr,
2564                unsigned long, tls)
2565#else
2566SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2567                 int __user *, parent_tidptr,
2568                 int __user *, child_tidptr,
2569                 unsigned long, tls)
2570#endif
2571{
2572        struct kernel_clone_args args = {
2573                .flags          = (clone_flags & ~CSIGNAL),
2574                .pidfd          = parent_tidptr,
2575                .child_tid      = child_tidptr,
2576                .parent_tid     = parent_tidptr,
2577                .exit_signal    = (clone_flags & CSIGNAL),
2578                .stack          = newsp,
2579                .tls            = tls,
2580        };
2581
2582        if (!legacy_clone_args_valid(&args))
2583                return -EINVAL;
2584
2585        return _do_fork(&args);
2586}
2587#endif
2588
2589#ifdef __ARCH_WANT_SYS_CLONE3
2590
2591/*
2592 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2593 * the registers containing the syscall arguments for clone. This doesn't work
2594 * with clone3 since the TLS value is passed in clone_args instead.
2595 */
2596#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2597#error clone3 requires copy_thread_tls support in arch
2598#endif
2599
2600noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2601                                              struct clone_args __user *uargs,
2602                                              size_t usize)
2603{
2604        int err;
2605        struct clone_args args;
2606        pid_t *kset_tid = kargs->set_tid;
2607
2608        if (unlikely(usize > PAGE_SIZE))
2609                return -E2BIG;
2610        if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2611                return -EINVAL;
2612
2613        err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2614        if (err)
2615                return err;
2616
2617        if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2618                return -EINVAL;
2619
2620        if (unlikely(!args.set_tid && args.set_tid_size > 0))
2621                return -EINVAL;
2622
2623        if (unlikely(args.set_tid && args.set_tid_size == 0))
2624                return -EINVAL;
2625
2626        /*
2627         * Verify that higher 32bits of exit_signal are unset and that
2628         * it is a valid signal
2629         */
2630        if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2631                     !valid_signal(args.exit_signal)))
2632                return -EINVAL;
2633
2634        *kargs = (struct kernel_clone_args){
2635                .flags          = args.flags,
2636                .pidfd          = u64_to_user_ptr(args.pidfd),
2637                .child_tid      = u64_to_user_ptr(args.child_tid),
2638                .parent_tid     = u64_to_user_ptr(args.parent_tid),
2639                .exit_signal    = args.exit_signal,
2640                .stack          = args.stack,
2641                .stack_size     = args.stack_size,
2642                .tls            = args.tls,
2643                .set_tid_size   = args.set_tid_size,
2644        };
2645
2646        if (args.set_tid &&
2647                copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2648                        (kargs->set_tid_size * sizeof(pid_t))))
2649                return -EFAULT;
2650
2651        kargs->set_tid = kset_tid;
2652
2653        return 0;
2654}
2655
2656/**
2657 * clone3_stack_valid - check and prepare stack
2658 * @kargs: kernel clone args
2659 *
2660 * Verify that the stack arguments userspace gave us are sane.
2661 * In addition, set the stack direction for userspace since it's easy for us to
2662 * determine.
2663 */
2664static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2665{
2666        if (kargs->stack == 0) {
2667                if (kargs->stack_size > 0)
2668                        return false;
2669        } else {
2670                if (kargs->stack_size == 0)
2671                        return false;
2672
2673                if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2674                        return false;
2675
2676#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2677                kargs->stack += kargs->stack_size;
2678#endif
2679        }
2680
2681        return true;
2682}
2683
2684static bool clone3_args_valid(struct kernel_clone_args *kargs)
2685{
2686        /* Verify that no unknown flags are passed along. */
2687        if (kargs->flags & ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND))
2688                return false;
2689
2690        /*
2691         * - make the CLONE_DETACHED bit reuseable for clone3
2692         * - make the CSIGNAL bits reuseable for clone3
2693         */
2694        if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2695                return false;
2696
2697        if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2698            (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2699                return false;
2700
2701        if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2702            kargs->exit_signal)
2703                return false;
2704
2705        if (!clone3_stack_valid(kargs))
2706                return false;
2707
2708        return true;
2709}
2710
2711/**
2712 * clone3 - create a new process with specific properties
2713 * @uargs: argument structure
2714 * @size:  size of @uargs
2715 *
2716 * clone3() is the extensible successor to clone()/clone2().
2717 * It takes a struct as argument that is versioned by its size.
2718 *
2719 * Return: On success, a positive PID for the child process.
2720 *         On error, a negative errno number.
2721 */
2722SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2723{
2724        int err;
2725
2726        struct kernel_clone_args kargs;
2727        pid_t set_tid[MAX_PID_NS_LEVEL];
2728
2729        kargs.set_tid = set_tid;
2730
2731        err = copy_clone_args_from_user(&kargs, uargs, size);
2732        if (err)
2733                return err;
2734
2735        if (!clone3_args_valid(&kargs))
2736                return -EINVAL;
2737
2738        return _do_fork(&kargs);
2739}
2740#endif
2741
2742void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2743{
2744        struct task_struct *leader, *parent, *child;
2745        int res;
2746
2747        read_lock(&tasklist_lock);
2748        leader = top = top->group_leader;
2749down:
2750        for_each_thread(leader, parent) {
2751                list_for_each_entry(child, &parent->children, sibling) {
2752                        res = visitor(child, data);
2753                        if (res) {
2754                                if (res < 0)
2755                                        goto out;
2756                                leader = child;
2757                                goto down;
2758                        }
2759up:
2760                        ;
2761                }
2762        }
2763
2764        if (leader != top) {
2765                child = leader;
2766                parent = child->real_parent;
2767                leader = parent->group_leader;
2768                goto up;
2769        }
2770out:
2771        read_unlock(&tasklist_lock);
2772}
2773
2774#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2775#define ARCH_MIN_MMSTRUCT_ALIGN 0
2776#endif
2777
2778static void sighand_ctor(void *data)
2779{
2780        struct sighand_struct *sighand = data;
2781
2782        spin_lock_init(&sighand->siglock);
2783        init_waitqueue_head(&sighand->signalfd_wqh);
2784}
2785
2786void __init proc_caches_init(void)
2787{
2788        unsigned int mm_size;
2789
2790        sighand_cachep = kmem_cache_create("sighand_cache",
2791                        sizeof(struct sighand_struct), 0,
2792                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2793                        SLAB_ACCOUNT, sighand_ctor);
2794        signal_cachep = kmem_cache_create("signal_cache",
2795                        sizeof(struct signal_struct), 0,
2796                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2797                        NULL);
2798        files_cachep = kmem_cache_create("files_cache",
2799                        sizeof(struct files_struct), 0,
2800                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2801                        NULL);
2802        fs_cachep = kmem_cache_create("fs_cache",
2803                        sizeof(struct fs_struct), 0,
2804                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2805                        NULL);
2806
2807        /*
2808         * The mm_cpumask is located at the end of mm_struct, and is
2809         * dynamically sized based on the maximum CPU number this system
2810         * can have, taking hotplug into account (nr_cpu_ids).
2811         */
2812        mm_size = sizeof(struct mm_struct) + cpumask_size();
2813
2814        mm_cachep = kmem_cache_create_usercopy("mm_struct",
2815                        mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2816                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2817                        offsetof(struct mm_struct, saved_auxv),
2818                        sizeof_field(struct mm_struct, saved_auxv),
2819                        NULL);
2820        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2821        mmap_init();
2822        nsproxy_cache_init();
2823}
2824
2825/*
2826 * Check constraints on flags passed to the unshare system call.
2827 */
2828static int check_unshare_flags(unsigned long unshare_flags)
2829{
2830        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2831                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2832                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2833                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2834                                CLONE_NEWTIME))
2835                return -EINVAL;
2836        /*
2837         * Not implemented, but pretend it works if there is nothing
2838         * to unshare.  Note that unsharing the address space or the
2839         * signal handlers also need to unshare the signal queues (aka
2840         * CLONE_THREAD).
2841         */
2842        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2843                if (!thread_group_empty(current))
2844                        return -EINVAL;
2845        }
2846        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2847                if (refcount_read(&current->sighand->count) > 1)
2848                        return -EINVAL;
2849        }
2850        if (unshare_flags & CLONE_VM) {
2851                if (!current_is_single_threaded())
2852                        return -EINVAL;
2853        }
2854
2855        return 0;
2856}
2857
2858/*
2859 * Unshare the filesystem structure if it is being shared
2860 */
2861static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2862{
2863        struct fs_struct *fs = current->fs;
2864
2865        if (!(unshare_flags & CLONE_FS) || !fs)
2866                return 0;
2867
2868        /* don't need lock here; in the worst case we'll do useless copy */
2869        if (fs->users == 1)
2870                return 0;
2871
2872        *new_fsp = copy_fs_struct(fs);
2873        if (!*new_fsp)
2874                return -ENOMEM;
2875
2876        return 0;
2877}
2878
2879/*
2880 * Unshare file descriptor table if it is being shared
2881 */
2882static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2883{
2884        struct files_struct *fd = current->files;
2885        int error = 0;
2886
2887        if ((unshare_flags & CLONE_FILES) &&
2888            (fd && atomic_read(&fd->count) > 1)) {
2889                *new_fdp = dup_fd(fd, &error);
2890                if (!*new_fdp)
2891                        return error;
2892        }
2893
2894        return 0;
2895}
2896
2897/*
2898 * unshare allows a process to 'unshare' part of the process
2899 * context which was originally shared using clone.  copy_*
2900 * functions used by do_fork() cannot be used here directly
2901 * because they modify an inactive task_struct that is being
2902 * constructed. Here we are modifying the current, active,
2903 * task_struct.
2904 */
2905int ksys_unshare(unsigned long unshare_flags)
2906{
2907        struct fs_struct *fs, *new_fs = NULL;
2908        struct files_struct *fd, *new_fd = NULL;
2909        struct cred *new_cred = NULL;
2910        struct nsproxy *new_nsproxy = NULL;
2911        int do_sysvsem = 0;
2912        int err;
2913
2914        /*
2915         * If unsharing a user namespace must also unshare the thread group
2916         * and unshare the filesystem root and working directories.
2917         */
2918        if (unshare_flags & CLONE_NEWUSER)
2919                unshare_flags |= CLONE_THREAD | CLONE_FS;
2920        /*
2921         * If unsharing vm, must also unshare signal handlers.
2922         */
2923        if (unshare_flags & CLONE_VM)
2924                unshare_flags |= CLONE_SIGHAND;
2925        /*
2926         * If unsharing a signal handlers, must also unshare the signal queues.
2927         */
2928        if (unshare_flags & CLONE_SIGHAND)
2929                unshare_flags |= CLONE_THREAD;
2930        /*
2931         * If unsharing namespace, must also unshare filesystem information.
2932         */
2933        if (unshare_flags & CLONE_NEWNS)
2934                unshare_flags |= CLONE_FS;
2935
2936        err = check_unshare_flags(unshare_flags);
2937        if (err)
2938                goto bad_unshare_out;
2939        /*
2940         * CLONE_NEWIPC must also detach from the undolist: after switching
2941         * to a new ipc namespace, the semaphore arrays from the old
2942         * namespace are unreachable.
2943         */
2944        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2945                do_sysvsem = 1;
2946        err = unshare_fs(unshare_flags, &new_fs);
2947        if (err)
2948                goto bad_unshare_out;
2949        err = unshare_fd(unshare_flags, &new_fd);
2950        if (err)
2951                goto bad_unshare_cleanup_fs;
2952        err = unshare_userns(unshare_flags, &new_cred);
2953        if (err)
2954                goto bad_unshare_cleanup_fd;
2955        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2956                                         new_cred, new_fs);
2957        if (err)
2958                goto bad_unshare_cleanup_cred;
2959
2960        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2961                if (do_sysvsem) {
2962                        /*
2963                         * CLONE_SYSVSEM is equivalent to sys_exit().
2964                         */
2965                        exit_sem(current);
2966                }
2967                if (unshare_flags & CLONE_NEWIPC) {
2968                        /* Orphan segments in old ns (see sem above). */
2969                        exit_shm(current);
2970                        shm_init_task(current);
2971                }
2972
2973                if (new_nsproxy)
2974                        switch_task_namespaces(current, new_nsproxy);
2975
2976                task_lock(current);
2977
2978                if (new_fs) {
2979                        fs = current->fs;
2980                        spin_lock(&fs->lock);
2981                        current->fs = new_fs;
2982                        if (--fs->users)
2983                                new_fs = NULL;
2984                        else
2985                                new_fs = fs;
2986                        spin_unlock(&fs->lock);
2987                }
2988
2989                if (new_fd) {
2990                        fd = current->files;
2991                        current->files = new_fd;
2992                        new_fd = fd;
2993                }
2994
2995                task_unlock(current);
2996
2997                if (new_cred) {
2998                        /* Install the new user namespace */
2999                        commit_creds(new_cred);
3000                        new_cred = NULL;
3001                }
3002        }
3003
3004        perf_event_namespaces(current);
3005
3006bad_unshare_cleanup_cred:
3007        if (new_cred)
3008                put_cred(new_cred);
3009bad_unshare_cleanup_fd:
3010        if (new_fd)
3011                put_files_struct(new_fd);
3012
3013bad_unshare_cleanup_fs:
3014        if (new_fs)
3015                free_fs_struct(new_fs);
3016
3017bad_unshare_out:
3018        return err;
3019}
3020
3021SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3022{
3023        return ksys_unshare(unshare_flags);
3024}
3025
3026/*
3027 *      Helper to unshare the files of the current task.
3028 *      We don't want to expose copy_files internals to
3029 *      the exec layer of the kernel.
3030 */
3031
3032int unshare_files(struct files_struct **displaced)
3033{
3034        struct task_struct *task = current;
3035        struct files_struct *copy = NULL;
3036        int error;
3037
3038        error = unshare_fd(CLONE_FILES, &copy);
3039        if (error || !copy) {
3040                *displaced = NULL;
3041                return error;
3042        }
3043        *displaced = task->files;
3044        task_lock(task);
3045        task->files = copy;
3046        task_unlock(task);
3047        return 0;
3048}
3049
3050int sysctl_max_threads(struct ctl_table *table, int write,
3051                       void __user *buffer, size_t *lenp, loff_t *ppos)
3052{
3053        struct ctl_table t;
3054        int ret;
3055        int threads = max_threads;
3056        int min = 1;
3057        int max = MAX_THREADS;
3058
3059        t = *table;
3060        t.data = &threads;
3061        t.extra1 = &min;
3062        t.extra2 = &max;
3063
3064        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3065        if (ret || !write)
3066                return ret;
3067
3068        max_threads = threads;
3069
3070        return 0;
3071}
3072