linux/kernel/kexec_file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/syscalls.h>
  28#include <linux/vmalloc.h>
  29#include "kexec_internal.h"
  30
  31static int kexec_calculate_store_digests(struct kimage *image);
  32
  33/*
  34 * Currently this is the only default function that is exported as some
  35 * architectures need it to do additional handlings.
  36 * In the future, other default functions may be exported too if required.
  37 */
  38int kexec_image_probe_default(struct kimage *image, void *buf,
  39                              unsigned long buf_len)
  40{
  41        const struct kexec_file_ops * const *fops;
  42        int ret = -ENOEXEC;
  43
  44        for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  45                ret = (*fops)->probe(buf, buf_len);
  46                if (!ret) {
  47                        image->fops = *fops;
  48                        return ret;
  49                }
  50        }
  51
  52        return ret;
  53}
  54
  55/* Architectures can provide this probe function */
  56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  57                                         unsigned long buf_len)
  58{
  59        return kexec_image_probe_default(image, buf, buf_len);
  60}
  61
  62static void *kexec_image_load_default(struct kimage *image)
  63{
  64        if (!image->fops || !image->fops->load)
  65                return ERR_PTR(-ENOEXEC);
  66
  67        return image->fops->load(image, image->kernel_buf,
  68                                 image->kernel_buf_len, image->initrd_buf,
  69                                 image->initrd_buf_len, image->cmdline_buf,
  70                                 image->cmdline_buf_len);
  71}
  72
  73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  74{
  75        return kexec_image_load_default(image);
  76}
  77
  78int kexec_image_post_load_cleanup_default(struct kimage *image)
  79{
  80        if (!image->fops || !image->fops->cleanup)
  81                return 0;
  82
  83        return image->fops->cleanup(image->image_loader_data);
  84}
  85
  86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88        return kexec_image_post_load_cleanup_default(image);
  89}
  90
  91#ifdef CONFIG_KEXEC_SIG
  92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  93                                          unsigned long buf_len)
  94{
  95        if (!image->fops || !image->fops->verify_sig) {
  96                pr_debug("kernel loader does not support signature verification.\n");
  97                return -EKEYREJECTED;
  98        }
  99
 100        return image->fops->verify_sig(buf, buf_len);
 101}
 102
 103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 104                                        unsigned long buf_len)
 105{
 106        return kexec_image_verify_sig_default(image, buf, buf_len);
 107}
 108#endif
 109
 110/*
 111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 112 * @pi:         Purgatory to be relocated.
 113 * @section:    Section relocations applying to.
 114 * @relsec:     Section containing RELAs.
 115 * @symtab:     Corresponding symtab.
 116 *
 117 * Return: 0 on success, negative errno on error.
 118 */
 119int __weak
 120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 121                                 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 122{
 123        pr_err("RELA relocation unsupported.\n");
 124        return -ENOEXEC;
 125}
 126
 127/*
 128 * arch_kexec_apply_relocations - apply relocations of type REL
 129 * @pi:         Purgatory to be relocated.
 130 * @section:    Section relocations applying to.
 131 * @relsec:     Section containing RELs.
 132 * @symtab:     Corresponding symtab.
 133 *
 134 * Return: 0 on success, negative errno on error.
 135 */
 136int __weak
 137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 138                             const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 139{
 140        pr_err("REL relocation unsupported.\n");
 141        return -ENOEXEC;
 142}
 143
 144/*
 145 * Free up memory used by kernel, initrd, and command line. This is temporary
 146 * memory allocation which is not needed any more after these buffers have
 147 * been loaded into separate segments and have been copied elsewhere.
 148 */
 149void kimage_file_post_load_cleanup(struct kimage *image)
 150{
 151        struct purgatory_info *pi = &image->purgatory_info;
 152
 153        vfree(image->kernel_buf);
 154        image->kernel_buf = NULL;
 155
 156        vfree(image->initrd_buf);
 157        image->initrd_buf = NULL;
 158
 159        kfree(image->cmdline_buf);
 160        image->cmdline_buf = NULL;
 161
 162        vfree(pi->purgatory_buf);
 163        pi->purgatory_buf = NULL;
 164
 165        vfree(pi->sechdrs);
 166        pi->sechdrs = NULL;
 167
 168        /* See if architecture has anything to cleanup post load */
 169        arch_kimage_file_post_load_cleanup(image);
 170
 171        /*
 172         * Above call should have called into bootloader to free up
 173         * any data stored in kimage->image_loader_data. It should
 174         * be ok now to free it up.
 175         */
 176        kfree(image->image_loader_data);
 177        image->image_loader_data = NULL;
 178}
 179
 180#ifdef CONFIG_KEXEC_SIG
 181static int
 182kimage_validate_signature(struct kimage *image)
 183{
 184        const char *reason;
 185        int ret;
 186
 187        ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 188                                           image->kernel_buf_len);
 189        switch (ret) {
 190        case 0:
 191                break;
 192
 193                /* Certain verification errors are non-fatal if we're not
 194                 * checking errors, provided we aren't mandating that there
 195                 * must be a valid signature.
 196                 */
 197        case -ENODATA:
 198                reason = "kexec of unsigned image";
 199                goto decide;
 200        case -ENOPKG:
 201                reason = "kexec of image with unsupported crypto";
 202                goto decide;
 203        case -ENOKEY:
 204                reason = "kexec of image with unavailable key";
 205        decide:
 206                if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 207                        pr_notice("%s rejected\n", reason);
 208                        return ret;
 209                }
 210
 211                /* If IMA is guaranteed to appraise a signature on the kexec
 212                 * image, permit it even if the kernel is otherwise locked
 213                 * down.
 214                 */
 215                if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 216                    security_locked_down(LOCKDOWN_KEXEC))
 217                        return -EPERM;
 218
 219                return 0;
 220
 221                /* All other errors are fatal, including nomem, unparseable
 222                 * signatures and signature check failures - even if signatures
 223                 * aren't required.
 224                 */
 225        default:
 226                pr_notice("kernel signature verification failed (%d).\n", ret);
 227        }
 228
 229        return ret;
 230}
 231#endif
 232
 233/*
 234 * In file mode list of segments is prepared by kernel. Copy relevant
 235 * data from user space, do error checking, prepare segment list
 236 */
 237static int
 238kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 239                             const char __user *cmdline_ptr,
 240                             unsigned long cmdline_len, unsigned flags)
 241{
 242        int ret;
 243        void *ldata;
 244        loff_t size;
 245
 246        ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 247                                       &size, INT_MAX, READING_KEXEC_IMAGE);
 248        if (ret)
 249                return ret;
 250        image->kernel_buf_len = size;
 251
 252        /* Call arch image probe handlers */
 253        ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 254                                            image->kernel_buf_len);
 255        if (ret)
 256                goto out;
 257
 258#ifdef CONFIG_KEXEC_SIG
 259        ret = kimage_validate_signature(image);
 260
 261        if (ret)
 262                goto out;
 263#endif
 264        /* It is possible that there no initramfs is being loaded */
 265        if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 266                ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 267                                               &size, INT_MAX,
 268                                               READING_KEXEC_INITRAMFS);
 269                if (ret)
 270                        goto out;
 271                image->initrd_buf_len = size;
 272        }
 273
 274        if (cmdline_len) {
 275                image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 276                if (IS_ERR(image->cmdline_buf)) {
 277                        ret = PTR_ERR(image->cmdline_buf);
 278                        image->cmdline_buf = NULL;
 279                        goto out;
 280                }
 281
 282                image->cmdline_buf_len = cmdline_len;
 283
 284                /* command line should be a string with last byte null */
 285                if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 286                        ret = -EINVAL;
 287                        goto out;
 288                }
 289
 290                ima_kexec_cmdline(image->cmdline_buf,
 291                                  image->cmdline_buf_len - 1);
 292        }
 293
 294        /* IMA needs to pass the measurement list to the next kernel. */
 295        ima_add_kexec_buffer(image);
 296
 297        /* Call arch image load handlers */
 298        ldata = arch_kexec_kernel_image_load(image);
 299
 300        if (IS_ERR(ldata)) {
 301                ret = PTR_ERR(ldata);
 302                goto out;
 303        }
 304
 305        image->image_loader_data = ldata;
 306out:
 307        /* In case of error, free up all allocated memory in this function */
 308        if (ret)
 309                kimage_file_post_load_cleanup(image);
 310        return ret;
 311}
 312
 313static int
 314kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 315                       int initrd_fd, const char __user *cmdline_ptr,
 316                       unsigned long cmdline_len, unsigned long flags)
 317{
 318        int ret;
 319        struct kimage *image;
 320        bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 321
 322        image = do_kimage_alloc_init();
 323        if (!image)
 324                return -ENOMEM;
 325
 326        image->file_mode = 1;
 327
 328        if (kexec_on_panic) {
 329                /* Enable special crash kernel control page alloc policy. */
 330                image->control_page = crashk_res.start;
 331                image->type = KEXEC_TYPE_CRASH;
 332        }
 333
 334        ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 335                                           cmdline_ptr, cmdline_len, flags);
 336        if (ret)
 337                goto out_free_image;
 338
 339        ret = sanity_check_segment_list(image);
 340        if (ret)
 341                goto out_free_post_load_bufs;
 342
 343        ret = -ENOMEM;
 344        image->control_code_page = kimage_alloc_control_pages(image,
 345                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 346        if (!image->control_code_page) {
 347                pr_err("Could not allocate control_code_buffer\n");
 348                goto out_free_post_load_bufs;
 349        }
 350
 351        if (!kexec_on_panic) {
 352                image->swap_page = kimage_alloc_control_pages(image, 0);
 353                if (!image->swap_page) {
 354                        pr_err("Could not allocate swap buffer\n");
 355                        goto out_free_control_pages;
 356                }
 357        }
 358
 359        *rimage = image;
 360        return 0;
 361out_free_control_pages:
 362        kimage_free_page_list(&image->control_pages);
 363out_free_post_load_bufs:
 364        kimage_file_post_load_cleanup(image);
 365out_free_image:
 366        kfree(image);
 367        return ret;
 368}
 369
 370SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 371                unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 372                unsigned long, flags)
 373{
 374        int ret = 0, i;
 375        struct kimage **dest_image, *image;
 376
 377        /* We only trust the superuser with rebooting the system. */
 378        if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 379                return -EPERM;
 380
 381        /* Make sure we have a legal set of flags */
 382        if (flags != (flags & KEXEC_FILE_FLAGS))
 383                return -EINVAL;
 384
 385        image = NULL;
 386
 387        if (!mutex_trylock(&kexec_mutex))
 388                return -EBUSY;
 389
 390        dest_image = &kexec_image;
 391        if (flags & KEXEC_FILE_ON_CRASH) {
 392                dest_image = &kexec_crash_image;
 393                if (kexec_crash_image)
 394                        arch_kexec_unprotect_crashkres();
 395        }
 396
 397        if (flags & KEXEC_FILE_UNLOAD)
 398                goto exchange;
 399
 400        /*
 401         * In case of crash, new kernel gets loaded in reserved region. It is
 402         * same memory where old crash kernel might be loaded. Free any
 403         * current crash dump kernel before we corrupt it.
 404         */
 405        if (flags & KEXEC_FILE_ON_CRASH)
 406                kimage_free(xchg(&kexec_crash_image, NULL));
 407
 408        ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 409                                     cmdline_len, flags);
 410        if (ret)
 411                goto out;
 412
 413        ret = machine_kexec_prepare(image);
 414        if (ret)
 415                goto out;
 416
 417        /*
 418         * Some architecture(like S390) may touch the crash memory before
 419         * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 420         */
 421        ret = kimage_crash_copy_vmcoreinfo(image);
 422        if (ret)
 423                goto out;
 424
 425        ret = kexec_calculate_store_digests(image);
 426        if (ret)
 427                goto out;
 428
 429        for (i = 0; i < image->nr_segments; i++) {
 430                struct kexec_segment *ksegment;
 431
 432                ksegment = &image->segment[i];
 433                pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 434                         i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 435                         ksegment->memsz);
 436
 437                ret = kimage_load_segment(image, &image->segment[i]);
 438                if (ret)
 439                        goto out;
 440        }
 441
 442        kimage_terminate(image);
 443
 444        ret = machine_kexec_post_load(image);
 445        if (ret)
 446                goto out;
 447
 448        /*
 449         * Free up any temporary buffers allocated which are not needed
 450         * after image has been loaded
 451         */
 452        kimage_file_post_load_cleanup(image);
 453exchange:
 454        image = xchg(dest_image, image);
 455out:
 456        if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 457                arch_kexec_protect_crashkres();
 458
 459        mutex_unlock(&kexec_mutex);
 460        kimage_free(image);
 461        return ret;
 462}
 463
 464static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 465                                    struct kexec_buf *kbuf)
 466{
 467        struct kimage *image = kbuf->image;
 468        unsigned long temp_start, temp_end;
 469
 470        temp_end = min(end, kbuf->buf_max);
 471        temp_start = temp_end - kbuf->memsz;
 472
 473        do {
 474                /* align down start */
 475                temp_start = temp_start & (~(kbuf->buf_align - 1));
 476
 477                if (temp_start < start || temp_start < kbuf->buf_min)
 478                        return 0;
 479
 480                temp_end = temp_start + kbuf->memsz - 1;
 481
 482                /*
 483                 * Make sure this does not conflict with any of existing
 484                 * segments
 485                 */
 486                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 487                        temp_start = temp_start - PAGE_SIZE;
 488                        continue;
 489                }
 490
 491                /* We found a suitable memory range */
 492                break;
 493        } while (1);
 494
 495        /* If we are here, we found a suitable memory range */
 496        kbuf->mem = temp_start;
 497
 498        /* Success, stop navigating through remaining System RAM ranges */
 499        return 1;
 500}
 501
 502static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 503                                     struct kexec_buf *kbuf)
 504{
 505        struct kimage *image = kbuf->image;
 506        unsigned long temp_start, temp_end;
 507
 508        temp_start = max(start, kbuf->buf_min);
 509
 510        do {
 511                temp_start = ALIGN(temp_start, kbuf->buf_align);
 512                temp_end = temp_start + kbuf->memsz - 1;
 513
 514                if (temp_end > end || temp_end > kbuf->buf_max)
 515                        return 0;
 516                /*
 517                 * Make sure this does not conflict with any of existing
 518                 * segments
 519                 */
 520                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 521                        temp_start = temp_start + PAGE_SIZE;
 522                        continue;
 523                }
 524
 525                /* We found a suitable memory range */
 526                break;
 527        } while (1);
 528
 529        /* If we are here, we found a suitable memory range */
 530        kbuf->mem = temp_start;
 531
 532        /* Success, stop navigating through remaining System RAM ranges */
 533        return 1;
 534}
 535
 536static int locate_mem_hole_callback(struct resource *res, void *arg)
 537{
 538        struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 539        u64 start = res->start, end = res->end;
 540        unsigned long sz = end - start + 1;
 541
 542        /* Returning 0 will take to next memory range */
 543        if (sz < kbuf->memsz)
 544                return 0;
 545
 546        if (end < kbuf->buf_min || start > kbuf->buf_max)
 547                return 0;
 548
 549        /*
 550         * Allocate memory top down with-in ram range. Otherwise bottom up
 551         * allocation.
 552         */
 553        if (kbuf->top_down)
 554                return locate_mem_hole_top_down(start, end, kbuf);
 555        return locate_mem_hole_bottom_up(start, end, kbuf);
 556}
 557
 558#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 559static int kexec_walk_memblock(struct kexec_buf *kbuf,
 560                               int (*func)(struct resource *, void *))
 561{
 562        int ret = 0;
 563        u64 i;
 564        phys_addr_t mstart, mend;
 565        struct resource res = { };
 566
 567        if (kbuf->image->type == KEXEC_TYPE_CRASH)
 568                return func(&crashk_res, kbuf);
 569
 570        if (kbuf->top_down) {
 571                for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 572                                                &mstart, &mend, NULL) {
 573                        /*
 574                         * In memblock, end points to the first byte after the
 575                         * range while in kexec, end points to the last byte
 576                         * in the range.
 577                         */
 578                        res.start = mstart;
 579                        res.end = mend - 1;
 580                        ret = func(&res, kbuf);
 581                        if (ret)
 582                                break;
 583                }
 584        } else {
 585                for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 586                                        &mstart, &mend, NULL) {
 587                        /*
 588                         * In memblock, end points to the first byte after the
 589                         * range while in kexec, end points to the last byte
 590                         * in the range.
 591                         */
 592                        res.start = mstart;
 593                        res.end = mend - 1;
 594                        ret = func(&res, kbuf);
 595                        if (ret)
 596                                break;
 597                }
 598        }
 599
 600        return ret;
 601}
 602#else
 603static int kexec_walk_memblock(struct kexec_buf *kbuf,
 604                               int (*func)(struct resource *, void *))
 605{
 606        return 0;
 607}
 608#endif
 609
 610/**
 611 * kexec_walk_resources - call func(data) on free memory regions
 612 * @kbuf:       Context info for the search. Also passed to @func.
 613 * @func:       Function to call for each memory region.
 614 *
 615 * Return: The memory walk will stop when func returns a non-zero value
 616 * and that value will be returned. If all free regions are visited without
 617 * func returning non-zero, then zero will be returned.
 618 */
 619static int kexec_walk_resources(struct kexec_buf *kbuf,
 620                                int (*func)(struct resource *, void *))
 621{
 622        if (kbuf->image->type == KEXEC_TYPE_CRASH)
 623                return walk_iomem_res_desc(crashk_res.desc,
 624                                           IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 625                                           crashk_res.start, crashk_res.end,
 626                                           kbuf, func);
 627        else
 628                return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 629}
 630
 631/**
 632 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 633 * @kbuf:       Parameters for the memory search.
 634 *
 635 * On success, kbuf->mem will have the start address of the memory region found.
 636 *
 637 * Return: 0 on success, negative errno on error.
 638 */
 639int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 640{
 641        int ret;
 642
 643        /* Arch knows where to place */
 644        if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 645                return 0;
 646
 647        if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 648                ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 649        else
 650                ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 651
 652        return ret == 1 ? 0 : -EADDRNOTAVAIL;
 653}
 654
 655/**
 656 * kexec_add_buffer - place a buffer in a kexec segment
 657 * @kbuf:       Buffer contents and memory parameters.
 658 *
 659 * This function assumes that kexec_mutex is held.
 660 * On successful return, @kbuf->mem will have the physical address of
 661 * the buffer in memory.
 662 *
 663 * Return: 0 on success, negative errno on error.
 664 */
 665int kexec_add_buffer(struct kexec_buf *kbuf)
 666{
 667
 668        struct kexec_segment *ksegment;
 669        int ret;
 670
 671        /* Currently adding segment this way is allowed only in file mode */
 672        if (!kbuf->image->file_mode)
 673                return -EINVAL;
 674
 675        if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 676                return -EINVAL;
 677
 678        /*
 679         * Make sure we are not trying to add buffer after allocating
 680         * control pages. All segments need to be placed first before
 681         * any control pages are allocated. As control page allocation
 682         * logic goes through list of segments to make sure there are
 683         * no destination overlaps.
 684         */
 685        if (!list_empty(&kbuf->image->control_pages)) {
 686                WARN_ON(1);
 687                return -EINVAL;
 688        }
 689
 690        /* Ensure minimum alignment needed for segments. */
 691        kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 692        kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 693
 694        /* Walk the RAM ranges and allocate a suitable range for the buffer */
 695        ret = kexec_locate_mem_hole(kbuf);
 696        if (ret)
 697                return ret;
 698
 699        /* Found a suitable memory range */
 700        ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 701        ksegment->kbuf = kbuf->buffer;
 702        ksegment->bufsz = kbuf->bufsz;
 703        ksegment->mem = kbuf->mem;
 704        ksegment->memsz = kbuf->memsz;
 705        kbuf->image->nr_segments++;
 706        return 0;
 707}
 708
 709/* Calculate and store the digest of segments */
 710static int kexec_calculate_store_digests(struct kimage *image)
 711{
 712        struct crypto_shash *tfm;
 713        struct shash_desc *desc;
 714        int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 715        size_t desc_size, nullsz;
 716        char *digest;
 717        void *zero_buf;
 718        struct kexec_sha_region *sha_regions;
 719        struct purgatory_info *pi = &image->purgatory_info;
 720
 721        if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 722                return 0;
 723
 724        zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 725        zero_buf_sz = PAGE_SIZE;
 726
 727        tfm = crypto_alloc_shash("sha256", 0, 0);
 728        if (IS_ERR(tfm)) {
 729                ret = PTR_ERR(tfm);
 730                goto out;
 731        }
 732
 733        desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 734        desc = kzalloc(desc_size, GFP_KERNEL);
 735        if (!desc) {
 736                ret = -ENOMEM;
 737                goto out_free_tfm;
 738        }
 739
 740        sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 741        sha_regions = vzalloc(sha_region_sz);
 742        if (!sha_regions)
 743                goto out_free_desc;
 744
 745        desc->tfm   = tfm;
 746
 747        ret = crypto_shash_init(desc);
 748        if (ret < 0)
 749                goto out_free_sha_regions;
 750
 751        digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 752        if (!digest) {
 753                ret = -ENOMEM;
 754                goto out_free_sha_regions;
 755        }
 756
 757        for (j = i = 0; i < image->nr_segments; i++) {
 758                struct kexec_segment *ksegment;
 759
 760                ksegment = &image->segment[i];
 761                /*
 762                 * Skip purgatory as it will be modified once we put digest
 763                 * info in purgatory.
 764                 */
 765                if (ksegment->kbuf == pi->purgatory_buf)
 766                        continue;
 767
 768                ret = crypto_shash_update(desc, ksegment->kbuf,
 769                                          ksegment->bufsz);
 770                if (ret)
 771                        break;
 772
 773                /*
 774                 * Assume rest of the buffer is filled with zero and
 775                 * update digest accordingly.
 776                 */
 777                nullsz = ksegment->memsz - ksegment->bufsz;
 778                while (nullsz) {
 779                        unsigned long bytes = nullsz;
 780
 781                        if (bytes > zero_buf_sz)
 782                                bytes = zero_buf_sz;
 783                        ret = crypto_shash_update(desc, zero_buf, bytes);
 784                        if (ret)
 785                                break;
 786                        nullsz -= bytes;
 787                }
 788
 789                if (ret)
 790                        break;
 791
 792                sha_regions[j].start = ksegment->mem;
 793                sha_regions[j].len = ksegment->memsz;
 794                j++;
 795        }
 796
 797        if (!ret) {
 798                ret = crypto_shash_final(desc, digest);
 799                if (ret)
 800                        goto out_free_digest;
 801                ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 802                                                     sha_regions, sha_region_sz, 0);
 803                if (ret)
 804                        goto out_free_digest;
 805
 806                ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 807                                                     digest, SHA256_DIGEST_SIZE, 0);
 808                if (ret)
 809                        goto out_free_digest;
 810        }
 811
 812out_free_digest:
 813        kfree(digest);
 814out_free_sha_regions:
 815        vfree(sha_regions);
 816out_free_desc:
 817        kfree(desc);
 818out_free_tfm:
 819        kfree(tfm);
 820out:
 821        return ret;
 822}
 823
 824#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 825/*
 826 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 827 * @pi:         Purgatory to be loaded.
 828 * @kbuf:       Buffer to setup.
 829 *
 830 * Allocates the memory needed for the buffer. Caller is responsible to free
 831 * the memory after use.
 832 *
 833 * Return: 0 on success, negative errno on error.
 834 */
 835static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 836                                      struct kexec_buf *kbuf)
 837{
 838        const Elf_Shdr *sechdrs;
 839        unsigned long bss_align;
 840        unsigned long bss_sz;
 841        unsigned long align;
 842        int i, ret;
 843
 844        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 845        kbuf->buf_align = bss_align = 1;
 846        kbuf->bufsz = bss_sz = 0;
 847
 848        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 849                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 850                        continue;
 851
 852                align = sechdrs[i].sh_addralign;
 853                if (sechdrs[i].sh_type != SHT_NOBITS) {
 854                        if (kbuf->buf_align < align)
 855                                kbuf->buf_align = align;
 856                        kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 857                        kbuf->bufsz += sechdrs[i].sh_size;
 858                } else {
 859                        if (bss_align < align)
 860                                bss_align = align;
 861                        bss_sz = ALIGN(bss_sz, align);
 862                        bss_sz += sechdrs[i].sh_size;
 863                }
 864        }
 865        kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 866        kbuf->memsz = kbuf->bufsz + bss_sz;
 867        if (kbuf->buf_align < bss_align)
 868                kbuf->buf_align = bss_align;
 869
 870        kbuf->buffer = vzalloc(kbuf->bufsz);
 871        if (!kbuf->buffer)
 872                return -ENOMEM;
 873        pi->purgatory_buf = kbuf->buffer;
 874
 875        ret = kexec_add_buffer(kbuf);
 876        if (ret)
 877                goto out;
 878
 879        return 0;
 880out:
 881        vfree(pi->purgatory_buf);
 882        pi->purgatory_buf = NULL;
 883        return ret;
 884}
 885
 886/*
 887 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 888 * @pi:         Purgatory to be loaded.
 889 * @kbuf:       Buffer prepared to store purgatory.
 890 *
 891 * Allocates the memory needed for the buffer. Caller is responsible to free
 892 * the memory after use.
 893 *
 894 * Return: 0 on success, negative errno on error.
 895 */
 896static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 897                                         struct kexec_buf *kbuf)
 898{
 899        unsigned long bss_addr;
 900        unsigned long offset;
 901        Elf_Shdr *sechdrs;
 902        int i;
 903
 904        /*
 905         * The section headers in kexec_purgatory are read-only. In order to
 906         * have them modifiable make a temporary copy.
 907         */
 908        sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 909        if (!sechdrs)
 910                return -ENOMEM;
 911        memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 912               pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 913        pi->sechdrs = sechdrs;
 914
 915        offset = 0;
 916        bss_addr = kbuf->mem + kbuf->bufsz;
 917        kbuf->image->start = pi->ehdr->e_entry;
 918
 919        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 920                unsigned long align;
 921                void *src, *dst;
 922
 923                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 924                        continue;
 925
 926                align = sechdrs[i].sh_addralign;
 927                if (sechdrs[i].sh_type == SHT_NOBITS) {
 928                        bss_addr = ALIGN(bss_addr, align);
 929                        sechdrs[i].sh_addr = bss_addr;
 930                        bss_addr += sechdrs[i].sh_size;
 931                        continue;
 932                }
 933
 934                offset = ALIGN(offset, align);
 935                if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 936                    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 937                    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 938                                         + sechdrs[i].sh_size)) {
 939                        kbuf->image->start -= sechdrs[i].sh_addr;
 940                        kbuf->image->start += kbuf->mem + offset;
 941                }
 942
 943                src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 944                dst = pi->purgatory_buf + offset;
 945                memcpy(dst, src, sechdrs[i].sh_size);
 946
 947                sechdrs[i].sh_addr = kbuf->mem + offset;
 948                sechdrs[i].sh_offset = offset;
 949                offset += sechdrs[i].sh_size;
 950        }
 951
 952        return 0;
 953}
 954
 955static int kexec_apply_relocations(struct kimage *image)
 956{
 957        int i, ret;
 958        struct purgatory_info *pi = &image->purgatory_info;
 959        const Elf_Shdr *sechdrs;
 960
 961        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 962
 963        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 964                const Elf_Shdr *relsec;
 965                const Elf_Shdr *symtab;
 966                Elf_Shdr *section;
 967
 968                relsec = sechdrs + i;
 969
 970                if (relsec->sh_type != SHT_RELA &&
 971                    relsec->sh_type != SHT_REL)
 972                        continue;
 973
 974                /*
 975                 * For section of type SHT_RELA/SHT_REL,
 976                 * ->sh_link contains section header index of associated
 977                 * symbol table. And ->sh_info contains section header
 978                 * index of section to which relocations apply.
 979                 */
 980                if (relsec->sh_info >= pi->ehdr->e_shnum ||
 981                    relsec->sh_link >= pi->ehdr->e_shnum)
 982                        return -ENOEXEC;
 983
 984                section = pi->sechdrs + relsec->sh_info;
 985                symtab = sechdrs + relsec->sh_link;
 986
 987                if (!(section->sh_flags & SHF_ALLOC))
 988                        continue;
 989
 990                /*
 991                 * symtab->sh_link contain section header index of associated
 992                 * string table.
 993                 */
 994                if (symtab->sh_link >= pi->ehdr->e_shnum)
 995                        /* Invalid section number? */
 996                        continue;
 997
 998                /*
 999                 * Respective architecture needs to provide support for applying
1000                 * relocations of type SHT_RELA/SHT_REL.
1001                 */
1002                if (relsec->sh_type == SHT_RELA)
1003                        ret = arch_kexec_apply_relocations_add(pi, section,
1004                                                               relsec, symtab);
1005                else if (relsec->sh_type == SHT_REL)
1006                        ret = arch_kexec_apply_relocations(pi, section,
1007                                                           relsec, symtab);
1008                if (ret)
1009                        return ret;
1010        }
1011
1012        return 0;
1013}
1014
1015/*
1016 * kexec_load_purgatory - Load and relocate the purgatory object.
1017 * @image:      Image to add the purgatory to.
1018 * @kbuf:       Memory parameters to use.
1019 *
1020 * Allocates the memory needed for image->purgatory_info.sechdrs and
1021 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1022 * to free the memory after use.
1023 *
1024 * Return: 0 on success, negative errno on error.
1025 */
1026int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1027{
1028        struct purgatory_info *pi = &image->purgatory_info;
1029        int ret;
1030
1031        if (kexec_purgatory_size <= 0)
1032                return -EINVAL;
1033
1034        pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1035
1036        ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1037        if (ret)
1038                return ret;
1039
1040        ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1041        if (ret)
1042                goto out_free_kbuf;
1043
1044        ret = kexec_apply_relocations(image);
1045        if (ret)
1046                goto out;
1047
1048        return 0;
1049out:
1050        vfree(pi->sechdrs);
1051        pi->sechdrs = NULL;
1052out_free_kbuf:
1053        vfree(pi->purgatory_buf);
1054        pi->purgatory_buf = NULL;
1055        return ret;
1056}
1057
1058/*
1059 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1060 * @pi:         Purgatory to search in.
1061 * @name:       Name of the symbol.
1062 *
1063 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1064 */
1065static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1066                                                  const char *name)
1067{
1068        const Elf_Shdr *sechdrs;
1069        const Elf_Ehdr *ehdr;
1070        const Elf_Sym *syms;
1071        const char *strtab;
1072        int i, k;
1073
1074        if (!pi->ehdr)
1075                return NULL;
1076
1077        ehdr = pi->ehdr;
1078        sechdrs = (void *)ehdr + ehdr->e_shoff;
1079
1080        for (i = 0; i < ehdr->e_shnum; i++) {
1081                if (sechdrs[i].sh_type != SHT_SYMTAB)
1082                        continue;
1083
1084                if (sechdrs[i].sh_link >= ehdr->e_shnum)
1085                        /* Invalid strtab section number */
1086                        continue;
1087                strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1088                syms = (void *)ehdr + sechdrs[i].sh_offset;
1089
1090                /* Go through symbols for a match */
1091                for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1092                        if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1093                                continue;
1094
1095                        if (strcmp(strtab + syms[k].st_name, name) != 0)
1096                                continue;
1097
1098                        if (syms[k].st_shndx == SHN_UNDEF ||
1099                            syms[k].st_shndx >= ehdr->e_shnum) {
1100                                pr_debug("Symbol: %s has bad section index %d.\n",
1101                                                name, syms[k].st_shndx);
1102                                return NULL;
1103                        }
1104
1105                        /* Found the symbol we are looking for */
1106                        return &syms[k];
1107                }
1108        }
1109
1110        return NULL;
1111}
1112
1113void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1114{
1115        struct purgatory_info *pi = &image->purgatory_info;
1116        const Elf_Sym *sym;
1117        Elf_Shdr *sechdr;
1118
1119        sym = kexec_purgatory_find_symbol(pi, name);
1120        if (!sym)
1121                return ERR_PTR(-EINVAL);
1122
1123        sechdr = &pi->sechdrs[sym->st_shndx];
1124
1125        /*
1126         * Returns the address where symbol will finally be loaded after
1127         * kexec_load_segment()
1128         */
1129        return (void *)(sechdr->sh_addr + sym->st_value);
1130}
1131
1132/*
1133 * Get or set value of a symbol. If "get_value" is true, symbol value is
1134 * returned in buf otherwise symbol value is set based on value in buf.
1135 */
1136int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1137                                   void *buf, unsigned int size, bool get_value)
1138{
1139        struct purgatory_info *pi = &image->purgatory_info;
1140        const Elf_Sym *sym;
1141        Elf_Shdr *sec;
1142        char *sym_buf;
1143
1144        sym = kexec_purgatory_find_symbol(pi, name);
1145        if (!sym)
1146                return -EINVAL;
1147
1148        if (sym->st_size != size) {
1149                pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1150                       name, (unsigned long)sym->st_size, size);
1151                return -EINVAL;
1152        }
1153
1154        sec = pi->sechdrs + sym->st_shndx;
1155
1156        if (sec->sh_type == SHT_NOBITS) {
1157                pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1158                       get_value ? "get" : "set");
1159                return -EINVAL;
1160        }
1161
1162        sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1163
1164        if (get_value)
1165                memcpy((void *)buf, sym_buf, size);
1166        else
1167                memcpy((void *)sym_buf, buf, size);
1168
1169        return 0;
1170}
1171#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1172
1173int crash_exclude_mem_range(struct crash_mem *mem,
1174                            unsigned long long mstart, unsigned long long mend)
1175{
1176        int i, j;
1177        unsigned long long start, end;
1178        struct crash_mem_range temp_range = {0, 0};
1179
1180        for (i = 0; i < mem->nr_ranges; i++) {
1181                start = mem->ranges[i].start;
1182                end = mem->ranges[i].end;
1183
1184                if (mstart > end || mend < start)
1185                        continue;
1186
1187                /* Truncate any area outside of range */
1188                if (mstart < start)
1189                        mstart = start;
1190                if (mend > end)
1191                        mend = end;
1192
1193                /* Found completely overlapping range */
1194                if (mstart == start && mend == end) {
1195                        mem->ranges[i].start = 0;
1196                        mem->ranges[i].end = 0;
1197                        if (i < mem->nr_ranges - 1) {
1198                                /* Shift rest of the ranges to left */
1199                                for (j = i; j < mem->nr_ranges - 1; j++) {
1200                                        mem->ranges[j].start =
1201                                                mem->ranges[j+1].start;
1202                                        mem->ranges[j].end =
1203                                                        mem->ranges[j+1].end;
1204                                }
1205                        }
1206                        mem->nr_ranges--;
1207                        return 0;
1208                }
1209
1210                if (mstart > start && mend < end) {
1211                        /* Split original range */
1212                        mem->ranges[i].end = mstart - 1;
1213                        temp_range.start = mend + 1;
1214                        temp_range.end = end;
1215                } else if (mstart != start)
1216                        mem->ranges[i].end = mstart - 1;
1217                else
1218                        mem->ranges[i].start = mend + 1;
1219                break;
1220        }
1221
1222        /* If a split happened, add the split to array */
1223        if (!temp_range.end)
1224                return 0;
1225
1226        /* Split happened */
1227        if (i == mem->max_nr_ranges - 1)
1228                return -ENOMEM;
1229
1230        /* Location where new range should go */
1231        j = i + 1;
1232        if (j < mem->nr_ranges) {
1233                /* Move over all ranges one slot towards the end */
1234                for (i = mem->nr_ranges - 1; i >= j; i--)
1235                        mem->ranges[i + 1] = mem->ranges[i];
1236        }
1237
1238        mem->ranges[j].start = temp_range.start;
1239        mem->ranges[j].end = temp_range.end;
1240        mem->nr_ranges++;
1241        return 0;
1242}
1243
1244int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1245                          void **addr, unsigned long *sz)
1246{
1247        Elf64_Ehdr *ehdr;
1248        Elf64_Phdr *phdr;
1249        unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1250        unsigned char *buf;
1251        unsigned int cpu, i;
1252        unsigned long long notes_addr;
1253        unsigned long mstart, mend;
1254
1255        /* extra phdr for vmcoreinfo elf note */
1256        nr_phdr = nr_cpus + 1;
1257        nr_phdr += mem->nr_ranges;
1258
1259        /*
1260         * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1261         * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1262         * I think this is required by tools like gdb. So same physical
1263         * memory will be mapped in two elf headers. One will contain kernel
1264         * text virtual addresses and other will have __va(physical) addresses.
1265         */
1266
1267        nr_phdr++;
1268        elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1269        elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1270
1271        buf = vzalloc(elf_sz);
1272        if (!buf)
1273                return -ENOMEM;
1274
1275        ehdr = (Elf64_Ehdr *)buf;
1276        phdr = (Elf64_Phdr *)(ehdr + 1);
1277        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1278        ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1279        ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1280        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1281        ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1282        memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1283        ehdr->e_type = ET_CORE;
1284        ehdr->e_machine = ELF_ARCH;
1285        ehdr->e_version = EV_CURRENT;
1286        ehdr->e_phoff = sizeof(Elf64_Ehdr);
1287        ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1288        ehdr->e_phentsize = sizeof(Elf64_Phdr);
1289
1290        /* Prepare one phdr of type PT_NOTE for each present cpu */
1291        for_each_present_cpu(cpu) {
1292                phdr->p_type = PT_NOTE;
1293                notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1294                phdr->p_offset = phdr->p_paddr = notes_addr;
1295                phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1296                (ehdr->e_phnum)++;
1297                phdr++;
1298        }
1299
1300        /* Prepare one PT_NOTE header for vmcoreinfo */
1301        phdr->p_type = PT_NOTE;
1302        phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1303        phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1304        (ehdr->e_phnum)++;
1305        phdr++;
1306
1307        /* Prepare PT_LOAD type program header for kernel text region */
1308        if (kernel_map) {
1309                phdr->p_type = PT_LOAD;
1310                phdr->p_flags = PF_R|PF_W|PF_X;
1311                phdr->p_vaddr = (unsigned long) _text;
1312                phdr->p_filesz = phdr->p_memsz = _end - _text;
1313                phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1314                ehdr->e_phnum++;
1315                phdr++;
1316        }
1317
1318        /* Go through all the ranges in mem->ranges[] and prepare phdr */
1319        for (i = 0; i < mem->nr_ranges; i++) {
1320                mstart = mem->ranges[i].start;
1321                mend = mem->ranges[i].end;
1322
1323                phdr->p_type = PT_LOAD;
1324                phdr->p_flags = PF_R|PF_W|PF_X;
1325                phdr->p_offset  = mstart;
1326
1327                phdr->p_paddr = mstart;
1328                phdr->p_vaddr = (unsigned long) __va(mstart);
1329                phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1330                phdr->p_align = 0;
1331                ehdr->e_phnum++;
1332                phdr++;
1333                pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1334                        phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1335                        ehdr->e_phnum, phdr->p_offset);
1336        }
1337
1338        *addr = buf;
1339        *sz = elf_sz;
1340        return 0;
1341}
1342