linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/module.h>
  24#include <linux/irq_work.h>
  25#include <linux/posix-timers.h>
  26#include <linux/context_tracking.h>
  27#include <linux/mm.h>
  28
  29#include <asm/irq_regs.h>
  30
  31#include "tick-internal.h"
  32
  33#include <trace/events/timer.h>
  34
  35/*
  36 * Per-CPU nohz control structure
  37 */
  38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  39
  40struct tick_sched *tick_get_tick_sched(int cpu)
  41{
  42        return &per_cpu(tick_cpu_sched, cpu);
  43}
  44
  45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  46/*
  47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  48 */
  49static ktime_t last_jiffies_update;
  50
  51/*
  52 * Must be called with interrupts disabled !
  53 */
  54static void tick_do_update_jiffies64(ktime_t now)
  55{
  56        unsigned long ticks = 0;
  57        ktime_t delta;
  58
  59        /*
  60         * Do a quick check without holding jiffies_lock:
  61         * The READ_ONCE() pairs with two updates done later in this function.
  62         */
  63        delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
  64        if (delta < tick_period)
  65                return;
  66
  67        /* Reevaluate with jiffies_lock held */
  68        write_seqlock(&jiffies_lock);
  69
  70        delta = ktime_sub(now, last_jiffies_update);
  71        if (delta >= tick_period) {
  72
  73                delta = ktime_sub(delta, tick_period);
  74                /* Pairs with the lockless read in this function. */
  75                WRITE_ONCE(last_jiffies_update,
  76                           ktime_add(last_jiffies_update, tick_period));
  77
  78                /* Slow path for long timeouts */
  79                if (unlikely(delta >= tick_period)) {
  80                        s64 incr = ktime_to_ns(tick_period);
  81
  82                        ticks = ktime_divns(delta, incr);
  83
  84                        /* Pairs with the lockless read in this function. */
  85                        WRITE_ONCE(last_jiffies_update,
  86                                   ktime_add_ns(last_jiffies_update,
  87                                                incr * ticks));
  88                }
  89                do_timer(++ticks);
  90
  91                /* Keep the tick_next_period variable up to date */
  92                tick_next_period = ktime_add(last_jiffies_update, tick_period);
  93        } else {
  94                write_sequnlock(&jiffies_lock);
  95                return;
  96        }
  97        write_sequnlock(&jiffies_lock);
  98        update_wall_time();
  99}
 100
 101/*
 102 * Initialize and return retrieve the jiffies update.
 103 */
 104static ktime_t tick_init_jiffy_update(void)
 105{
 106        ktime_t period;
 107
 108        write_seqlock(&jiffies_lock);
 109        /* Did we start the jiffies update yet ? */
 110        if (last_jiffies_update == 0)
 111                last_jiffies_update = tick_next_period;
 112        period = last_jiffies_update;
 113        write_sequnlock(&jiffies_lock);
 114        return period;
 115}
 116
 117static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 118{
 119        int cpu = smp_processor_id();
 120
 121#ifdef CONFIG_NO_HZ_COMMON
 122        /*
 123         * Check if the do_timer duty was dropped. We don't care about
 124         * concurrency: This happens only when the CPU in charge went
 125         * into a long sleep. If two CPUs happen to assign themselves to
 126         * this duty, then the jiffies update is still serialized by
 127         * jiffies_lock.
 128         *
 129         * If nohz_full is enabled, this should not happen because the
 130         * tick_do_timer_cpu never relinquishes.
 131         */
 132        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 133#ifdef CONFIG_NO_HZ_FULL
 134                WARN_ON(tick_nohz_full_running);
 135#endif
 136                tick_do_timer_cpu = cpu;
 137        }
 138#endif
 139
 140        /* Check, if the jiffies need an update */
 141        if (tick_do_timer_cpu == cpu)
 142                tick_do_update_jiffies64(now);
 143
 144        if (ts->inidle)
 145                ts->got_idle_tick = 1;
 146}
 147
 148static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 149{
 150#ifdef CONFIG_NO_HZ_COMMON
 151        /*
 152         * When we are idle and the tick is stopped, we have to touch
 153         * the watchdog as we might not schedule for a really long
 154         * time. This happens on complete idle SMP systems while
 155         * waiting on the login prompt. We also increment the "start of
 156         * idle" jiffy stamp so the idle accounting adjustment we do
 157         * when we go busy again does not account too much ticks.
 158         */
 159        if (ts->tick_stopped) {
 160                touch_softlockup_watchdog_sched();
 161                if (is_idle_task(current))
 162                        ts->idle_jiffies++;
 163                /*
 164                 * In case the current tick fired too early past its expected
 165                 * expiration, make sure we don't bypass the next clock reprogramming
 166                 * to the same deadline.
 167                 */
 168                ts->next_tick = 0;
 169        }
 170#endif
 171        update_process_times(user_mode(regs));
 172        profile_tick(CPU_PROFILING);
 173}
 174#endif
 175
 176#ifdef CONFIG_NO_HZ_FULL
 177cpumask_var_t tick_nohz_full_mask;
 178bool tick_nohz_full_running;
 179EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 180static atomic_t tick_dep_mask;
 181
 182static bool check_tick_dependency(atomic_t *dep)
 183{
 184        int val = atomic_read(dep);
 185
 186        if (val & TICK_DEP_MASK_POSIX_TIMER) {
 187                trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 188                return true;
 189        }
 190
 191        if (val & TICK_DEP_MASK_PERF_EVENTS) {
 192                trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 193                return true;
 194        }
 195
 196        if (val & TICK_DEP_MASK_SCHED) {
 197                trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 198                return true;
 199        }
 200
 201        if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 202                trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 203                return true;
 204        }
 205
 206        if (val & TICK_DEP_MASK_RCU) {
 207                trace_tick_stop(0, TICK_DEP_MASK_RCU);
 208                return true;
 209        }
 210
 211        return false;
 212}
 213
 214static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 215{
 216        lockdep_assert_irqs_disabled();
 217
 218        if (unlikely(!cpu_online(cpu)))
 219                return false;
 220
 221        if (check_tick_dependency(&tick_dep_mask))
 222                return false;
 223
 224        if (check_tick_dependency(&ts->tick_dep_mask))
 225                return false;
 226
 227        if (check_tick_dependency(&current->tick_dep_mask))
 228                return false;
 229
 230        if (check_tick_dependency(&current->signal->tick_dep_mask))
 231                return false;
 232
 233        return true;
 234}
 235
 236static void nohz_full_kick_func(struct irq_work *work)
 237{
 238        /* Empty, the tick restart happens on tick_nohz_irq_exit() */
 239}
 240
 241static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 242        .func = nohz_full_kick_func,
 243};
 244
 245/*
 246 * Kick this CPU if it's full dynticks in order to force it to
 247 * re-evaluate its dependency on the tick and restart it if necessary.
 248 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 249 * is NMI safe.
 250 */
 251static void tick_nohz_full_kick(void)
 252{
 253        if (!tick_nohz_full_cpu(smp_processor_id()))
 254                return;
 255
 256        irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 257}
 258
 259/*
 260 * Kick the CPU if it's full dynticks in order to force it to
 261 * re-evaluate its dependency on the tick and restart it if necessary.
 262 */
 263void tick_nohz_full_kick_cpu(int cpu)
 264{
 265        if (!tick_nohz_full_cpu(cpu))
 266                return;
 267
 268        irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 269}
 270
 271/*
 272 * Kick all full dynticks CPUs in order to force these to re-evaluate
 273 * their dependency on the tick and restart it if necessary.
 274 */
 275static void tick_nohz_full_kick_all(void)
 276{
 277        int cpu;
 278
 279        if (!tick_nohz_full_running)
 280                return;
 281
 282        preempt_disable();
 283        for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 284                tick_nohz_full_kick_cpu(cpu);
 285        preempt_enable();
 286}
 287
 288static void tick_nohz_dep_set_all(atomic_t *dep,
 289                                  enum tick_dep_bits bit)
 290{
 291        int prev;
 292
 293        prev = atomic_fetch_or(BIT(bit), dep);
 294        if (!prev)
 295                tick_nohz_full_kick_all();
 296}
 297
 298/*
 299 * Set a global tick dependency. Used by perf events that rely on freq and
 300 * by unstable clock.
 301 */
 302void tick_nohz_dep_set(enum tick_dep_bits bit)
 303{
 304        tick_nohz_dep_set_all(&tick_dep_mask, bit);
 305}
 306
 307void tick_nohz_dep_clear(enum tick_dep_bits bit)
 308{
 309        atomic_andnot(BIT(bit), &tick_dep_mask);
 310}
 311
 312/*
 313 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 314 * manage events throttling.
 315 */
 316void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 317{
 318        int prev;
 319        struct tick_sched *ts;
 320
 321        ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 322
 323        prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 324        if (!prev) {
 325                preempt_disable();
 326                /* Perf needs local kick that is NMI safe */
 327                if (cpu == smp_processor_id()) {
 328                        tick_nohz_full_kick();
 329                } else {
 330                        /* Remote irq work not NMI-safe */
 331                        if (!WARN_ON_ONCE(in_nmi()))
 332                                tick_nohz_full_kick_cpu(cpu);
 333                }
 334                preempt_enable();
 335        }
 336}
 337EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 338
 339void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 340{
 341        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 342
 343        atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 344}
 345EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 346
 347/*
 348 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 349 * per task timers.
 350 */
 351void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 352{
 353        /*
 354         * We could optimize this with just kicking the target running the task
 355         * if that noise matters for nohz full users.
 356         */
 357        tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 358}
 359EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 360
 361void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 362{
 363        atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 364}
 365EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 366
 367/*
 368 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 369 * per process timers.
 370 */
 371void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 372{
 373        tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 374}
 375
 376void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 377{
 378        atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 379}
 380
 381/*
 382 * Re-evaluate the need for the tick as we switch the current task.
 383 * It might need the tick due to per task/process properties:
 384 * perf events, posix CPU timers, ...
 385 */
 386void __tick_nohz_task_switch(void)
 387{
 388        unsigned long flags;
 389        struct tick_sched *ts;
 390
 391        local_irq_save(flags);
 392
 393        if (!tick_nohz_full_cpu(smp_processor_id()))
 394                goto out;
 395
 396        ts = this_cpu_ptr(&tick_cpu_sched);
 397
 398        if (ts->tick_stopped) {
 399                if (atomic_read(&current->tick_dep_mask) ||
 400                    atomic_read(&current->signal->tick_dep_mask))
 401                        tick_nohz_full_kick();
 402        }
 403out:
 404        local_irq_restore(flags);
 405}
 406
 407/* Get the boot-time nohz CPU list from the kernel parameters. */
 408void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 409{
 410        alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 411        cpumask_copy(tick_nohz_full_mask, cpumask);
 412        tick_nohz_full_running = true;
 413}
 414EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
 415
 416static int tick_nohz_cpu_down(unsigned int cpu)
 417{
 418        /*
 419         * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 420         * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 421         * CPUs. It must remain online when nohz full is enabled.
 422         */
 423        if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 424                return -EBUSY;
 425        return 0;
 426}
 427
 428void __init tick_nohz_init(void)
 429{
 430        int cpu, ret;
 431
 432        if (!tick_nohz_full_running)
 433                return;
 434
 435        /*
 436         * Full dynticks uses irq work to drive the tick rescheduling on safe
 437         * locking contexts. But then we need irq work to raise its own
 438         * interrupts to avoid circular dependency on the tick
 439         */
 440        if (!arch_irq_work_has_interrupt()) {
 441                pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 442                cpumask_clear(tick_nohz_full_mask);
 443                tick_nohz_full_running = false;
 444                return;
 445        }
 446
 447        if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 448                        !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 449                cpu = smp_processor_id();
 450
 451                if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 452                        pr_warn("NO_HZ: Clearing %d from nohz_full range "
 453                                "for timekeeping\n", cpu);
 454                        cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 455                }
 456        }
 457
 458        for_each_cpu(cpu, tick_nohz_full_mask)
 459                context_tracking_cpu_set(cpu);
 460
 461        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 462                                        "kernel/nohz:predown", NULL,
 463                                        tick_nohz_cpu_down);
 464        WARN_ON(ret < 0);
 465        pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 466                cpumask_pr_args(tick_nohz_full_mask));
 467}
 468#endif
 469
 470/*
 471 * NOHZ - aka dynamic tick functionality
 472 */
 473#ifdef CONFIG_NO_HZ_COMMON
 474/*
 475 * NO HZ enabled ?
 476 */
 477bool tick_nohz_enabled __read_mostly  = true;
 478unsigned long tick_nohz_active  __read_mostly;
 479/*
 480 * Enable / Disable tickless mode
 481 */
 482static int __init setup_tick_nohz(char *str)
 483{
 484        return (kstrtobool(str, &tick_nohz_enabled) == 0);
 485}
 486
 487__setup("nohz=", setup_tick_nohz);
 488
 489bool tick_nohz_tick_stopped(void)
 490{
 491        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 492
 493        return ts->tick_stopped;
 494}
 495
 496bool tick_nohz_tick_stopped_cpu(int cpu)
 497{
 498        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 499
 500        return ts->tick_stopped;
 501}
 502
 503/**
 504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 505 *
 506 * Called from interrupt entry when the CPU was idle
 507 *
 508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 509 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 510 * value. We do this unconditionally on any CPU, as we don't know whether the
 511 * CPU, which has the update task assigned is in a long sleep.
 512 */
 513static void tick_nohz_update_jiffies(ktime_t now)
 514{
 515        unsigned long flags;
 516
 517        __this_cpu_write(tick_cpu_sched.idle_waketime, now);
 518
 519        local_irq_save(flags);
 520        tick_do_update_jiffies64(now);
 521        local_irq_restore(flags);
 522
 523        touch_softlockup_watchdog_sched();
 524}
 525
 526/*
 527 * Updates the per-CPU time idle statistics counters
 528 */
 529static void
 530update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 531{
 532        ktime_t delta;
 533
 534        if (ts->idle_active) {
 535                delta = ktime_sub(now, ts->idle_entrytime);
 536                if (nr_iowait_cpu(cpu) > 0)
 537                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 538                else
 539                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 540                ts->idle_entrytime = now;
 541        }
 542
 543        if (last_update_time)
 544                *last_update_time = ktime_to_us(now);
 545
 546}
 547
 548static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 549{
 550        update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 551        ts->idle_active = 0;
 552
 553        sched_clock_idle_wakeup_event();
 554}
 555
 556static void tick_nohz_start_idle(struct tick_sched *ts)
 557{
 558        ts->idle_entrytime = ktime_get();
 559        ts->idle_active = 1;
 560        sched_clock_idle_sleep_event();
 561}
 562
 563/**
 564 * get_cpu_idle_time_us - get the total idle time of a CPU
 565 * @cpu: CPU number to query
 566 * @last_update_time: variable to store update time in. Do not update
 567 * counters if NULL.
 568 *
 569 * Return the cumulative idle time (since boot) for a given
 570 * CPU, in microseconds.
 571 *
 572 * This time is measured via accounting rather than sampling,
 573 * and is as accurate as ktime_get() is.
 574 *
 575 * This function returns -1 if NOHZ is not enabled.
 576 */
 577u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 578{
 579        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 580        ktime_t now, idle;
 581
 582        if (!tick_nohz_active)
 583                return -1;
 584
 585        now = ktime_get();
 586        if (last_update_time) {
 587                update_ts_time_stats(cpu, ts, now, last_update_time);
 588                idle = ts->idle_sleeptime;
 589        } else {
 590                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 591                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 592
 593                        idle = ktime_add(ts->idle_sleeptime, delta);
 594                } else {
 595                        idle = ts->idle_sleeptime;
 596                }
 597        }
 598
 599        return ktime_to_us(idle);
 600
 601}
 602EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 603
 604/**
 605 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 606 * @cpu: CPU number to query
 607 * @last_update_time: variable to store update time in. Do not update
 608 * counters if NULL.
 609 *
 610 * Return the cumulative iowait time (since boot) for a given
 611 * CPU, in microseconds.
 612 *
 613 * This time is measured via accounting rather than sampling,
 614 * and is as accurate as ktime_get() is.
 615 *
 616 * This function returns -1 if NOHZ is not enabled.
 617 */
 618u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 619{
 620        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 621        ktime_t now, iowait;
 622
 623        if (!tick_nohz_active)
 624                return -1;
 625
 626        now = ktime_get();
 627        if (last_update_time) {
 628                update_ts_time_stats(cpu, ts, now, last_update_time);
 629                iowait = ts->iowait_sleeptime;
 630        } else {
 631                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 632                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 633
 634                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 635                } else {
 636                        iowait = ts->iowait_sleeptime;
 637                }
 638        }
 639
 640        return ktime_to_us(iowait);
 641}
 642EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 643
 644static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 645{
 646        hrtimer_cancel(&ts->sched_timer);
 647        hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 648
 649        /* Forward the time to expire in the future */
 650        hrtimer_forward(&ts->sched_timer, now, tick_period);
 651
 652        if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 653                hrtimer_start_expires(&ts->sched_timer,
 654                                      HRTIMER_MODE_ABS_PINNED_HARD);
 655        } else {
 656                tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 657        }
 658
 659        /*
 660         * Reset to make sure next tick stop doesn't get fooled by past
 661         * cached clock deadline.
 662         */
 663        ts->next_tick = 0;
 664}
 665
 666static inline bool local_timer_softirq_pending(void)
 667{
 668        return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 669}
 670
 671static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 672{
 673        u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 674        unsigned long basejiff;
 675        unsigned int seq;
 676
 677        /* Read jiffies and the time when jiffies were updated last */
 678        do {
 679                seq = read_seqbegin(&jiffies_lock);
 680                basemono = last_jiffies_update;
 681                basejiff = jiffies;
 682        } while (read_seqretry(&jiffies_lock, seq));
 683        ts->last_jiffies = basejiff;
 684        ts->timer_expires_base = basemono;
 685
 686        /*
 687         * Keep the periodic tick, when RCU, architecture or irq_work
 688         * requests it.
 689         * Aside of that check whether the local timer softirq is
 690         * pending. If so its a bad idea to call get_next_timer_interrupt()
 691         * because there is an already expired timer, so it will request
 692         * immeditate expiry, which rearms the hardware timer with a
 693         * minimal delta which brings us back to this place
 694         * immediately. Lather, rinse and repeat...
 695         */
 696        if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 697            irq_work_needs_cpu() || local_timer_softirq_pending()) {
 698                next_tick = basemono + TICK_NSEC;
 699        } else {
 700                /*
 701                 * Get the next pending timer. If high resolution
 702                 * timers are enabled this only takes the timer wheel
 703                 * timers into account. If high resolution timers are
 704                 * disabled this also looks at the next expiring
 705                 * hrtimer.
 706                 */
 707                next_tmr = get_next_timer_interrupt(basejiff, basemono);
 708                ts->next_timer = next_tmr;
 709                /* Take the next rcu event into account */
 710                next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 711        }
 712
 713        /*
 714         * If the tick is due in the next period, keep it ticking or
 715         * force prod the timer.
 716         */
 717        delta = next_tick - basemono;
 718        if (delta <= (u64)TICK_NSEC) {
 719                /*
 720                 * Tell the timer code that the base is not idle, i.e. undo
 721                 * the effect of get_next_timer_interrupt():
 722                 */
 723                timer_clear_idle();
 724                /*
 725                 * We've not stopped the tick yet, and there's a timer in the
 726                 * next period, so no point in stopping it either, bail.
 727                 */
 728                if (!ts->tick_stopped) {
 729                        ts->timer_expires = 0;
 730                        goto out;
 731                }
 732        }
 733
 734        /*
 735         * If this CPU is the one which had the do_timer() duty last, we limit
 736         * the sleep time to the timekeeping max_deferment value.
 737         * Otherwise we can sleep as long as we want.
 738         */
 739        delta = timekeeping_max_deferment();
 740        if (cpu != tick_do_timer_cpu &&
 741            (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 742                delta = KTIME_MAX;
 743
 744        /* Calculate the next expiry time */
 745        if (delta < (KTIME_MAX - basemono))
 746                expires = basemono + delta;
 747        else
 748                expires = KTIME_MAX;
 749
 750        ts->timer_expires = min_t(u64, expires, next_tick);
 751
 752out:
 753        return ts->timer_expires;
 754}
 755
 756static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 757{
 758        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 759        u64 basemono = ts->timer_expires_base;
 760        u64 expires = ts->timer_expires;
 761        ktime_t tick = expires;
 762
 763        /* Make sure we won't be trying to stop it twice in a row. */
 764        ts->timer_expires_base = 0;
 765
 766        /*
 767         * If this CPU is the one which updates jiffies, then give up
 768         * the assignment and let it be taken by the CPU which runs
 769         * the tick timer next, which might be this CPU as well. If we
 770         * don't drop this here the jiffies might be stale and
 771         * do_timer() never invoked. Keep track of the fact that it
 772         * was the one which had the do_timer() duty last.
 773         */
 774        if (cpu == tick_do_timer_cpu) {
 775                tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 776                ts->do_timer_last = 1;
 777        } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 778                ts->do_timer_last = 0;
 779        }
 780
 781        /* Skip reprogram of event if its not changed */
 782        if (ts->tick_stopped && (expires == ts->next_tick)) {
 783                /* Sanity check: make sure clockevent is actually programmed */
 784                if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 785                        return;
 786
 787                WARN_ON_ONCE(1);
 788                printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 789                            basemono, ts->next_tick, dev->next_event,
 790                            hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 791        }
 792
 793        /*
 794         * nohz_stop_sched_tick can be called several times before
 795         * the nohz_restart_sched_tick is called. This happens when
 796         * interrupts arrive which do not cause a reschedule. In the
 797         * first call we save the current tick time, so we can restart
 798         * the scheduler tick in nohz_restart_sched_tick.
 799         */
 800        if (!ts->tick_stopped) {
 801                calc_load_nohz_start();
 802                quiet_vmstat();
 803
 804                ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 805                ts->tick_stopped = 1;
 806                trace_tick_stop(1, TICK_DEP_MASK_NONE);
 807        }
 808
 809        ts->next_tick = tick;
 810
 811        /*
 812         * If the expiration time == KTIME_MAX, then we simply stop
 813         * the tick timer.
 814         */
 815        if (unlikely(expires == KTIME_MAX)) {
 816                if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 817                        hrtimer_cancel(&ts->sched_timer);
 818                return;
 819        }
 820
 821        if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 822                hrtimer_start(&ts->sched_timer, tick,
 823                              HRTIMER_MODE_ABS_PINNED_HARD);
 824        } else {
 825                hrtimer_set_expires(&ts->sched_timer, tick);
 826                tick_program_event(tick, 1);
 827        }
 828}
 829
 830static void tick_nohz_retain_tick(struct tick_sched *ts)
 831{
 832        ts->timer_expires_base = 0;
 833}
 834
 835#ifdef CONFIG_NO_HZ_FULL
 836static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 837{
 838        if (tick_nohz_next_event(ts, cpu))
 839                tick_nohz_stop_tick(ts, cpu);
 840        else
 841                tick_nohz_retain_tick(ts);
 842}
 843#endif /* CONFIG_NO_HZ_FULL */
 844
 845static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 846{
 847        /* Update jiffies first */
 848        tick_do_update_jiffies64(now);
 849
 850        /*
 851         * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 852         * the clock forward checks in the enqueue path:
 853         */
 854        timer_clear_idle();
 855
 856        calc_load_nohz_stop();
 857        touch_softlockup_watchdog_sched();
 858        /*
 859         * Cancel the scheduled timer and restore the tick
 860         */
 861        ts->tick_stopped  = 0;
 862        ts->idle_exittime = now;
 863
 864        tick_nohz_restart(ts, now);
 865}
 866
 867static void tick_nohz_full_update_tick(struct tick_sched *ts)
 868{
 869#ifdef CONFIG_NO_HZ_FULL
 870        int cpu = smp_processor_id();
 871
 872        if (!tick_nohz_full_cpu(cpu))
 873                return;
 874
 875        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 876                return;
 877
 878        if (can_stop_full_tick(cpu, ts))
 879                tick_nohz_stop_sched_tick(ts, cpu);
 880        else if (ts->tick_stopped)
 881                tick_nohz_restart_sched_tick(ts, ktime_get());
 882#endif
 883}
 884
 885static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 886{
 887        /*
 888         * If this CPU is offline and it is the one which updates
 889         * jiffies, then give up the assignment and let it be taken by
 890         * the CPU which runs the tick timer next. If we don't drop
 891         * this here the jiffies might be stale and do_timer() never
 892         * invoked.
 893         */
 894        if (unlikely(!cpu_online(cpu))) {
 895                if (cpu == tick_do_timer_cpu)
 896                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 897                /*
 898                 * Make sure the CPU doesn't get fooled by obsolete tick
 899                 * deadline if it comes back online later.
 900                 */
 901                ts->next_tick = 0;
 902                return false;
 903        }
 904
 905        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 906                return false;
 907
 908        if (need_resched())
 909                return false;
 910
 911        if (unlikely(local_softirq_pending())) {
 912                static int ratelimit;
 913
 914                if (ratelimit < 10 &&
 915                    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 916                        pr_warn("NOHZ: local_softirq_pending %02x\n",
 917                                (unsigned int) local_softirq_pending());
 918                        ratelimit++;
 919                }
 920                return false;
 921        }
 922
 923        if (tick_nohz_full_enabled()) {
 924                /*
 925                 * Keep the tick alive to guarantee timekeeping progression
 926                 * if there are full dynticks CPUs around
 927                 */
 928                if (tick_do_timer_cpu == cpu)
 929                        return false;
 930                /*
 931                 * Boot safety: make sure the timekeeping duty has been
 932                 * assigned before entering dyntick-idle mode,
 933                 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
 934                 */
 935                if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
 936                        return false;
 937
 938                /* Should not happen for nohz-full */
 939                if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 940                        return false;
 941        }
 942
 943        return true;
 944}
 945
 946static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 947{
 948        ktime_t expires;
 949        int cpu = smp_processor_id();
 950
 951        /*
 952         * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 953         * tick timer expiration time is known already.
 954         */
 955        if (ts->timer_expires_base)
 956                expires = ts->timer_expires;
 957        else if (can_stop_idle_tick(cpu, ts))
 958                expires = tick_nohz_next_event(ts, cpu);
 959        else
 960                return;
 961
 962        ts->idle_calls++;
 963
 964        if (expires > 0LL) {
 965                int was_stopped = ts->tick_stopped;
 966
 967                tick_nohz_stop_tick(ts, cpu);
 968
 969                ts->idle_sleeps++;
 970                ts->idle_expires = expires;
 971
 972                if (!was_stopped && ts->tick_stopped) {
 973                        ts->idle_jiffies = ts->last_jiffies;
 974                        nohz_balance_enter_idle(cpu);
 975                }
 976        } else {
 977                tick_nohz_retain_tick(ts);
 978        }
 979}
 980
 981/**
 982 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 983 *
 984 * When the next event is more than a tick into the future, stop the idle tick
 985 */
 986void tick_nohz_idle_stop_tick(void)
 987{
 988        __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 989}
 990
 991void tick_nohz_idle_retain_tick(void)
 992{
 993        tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 994        /*
 995         * Undo the effect of get_next_timer_interrupt() called from
 996         * tick_nohz_next_event().
 997         */
 998        timer_clear_idle();
 999}
1000
1001/**
1002 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1003 *
1004 * Called when we start the idle loop.
1005 */
1006void tick_nohz_idle_enter(void)
1007{
1008        struct tick_sched *ts;
1009
1010        lockdep_assert_irqs_enabled();
1011
1012        local_irq_disable();
1013
1014        ts = this_cpu_ptr(&tick_cpu_sched);
1015
1016        WARN_ON_ONCE(ts->timer_expires_base);
1017
1018        ts->inidle = 1;
1019        tick_nohz_start_idle(ts);
1020
1021        local_irq_enable();
1022}
1023
1024/**
1025 * tick_nohz_irq_exit - update next tick event from interrupt exit
1026 *
1027 * When an interrupt fires while we are idle and it doesn't cause
1028 * a reschedule, it may still add, modify or delete a timer, enqueue
1029 * an RCU callback, etc...
1030 * So we need to re-calculate and reprogram the next tick event.
1031 */
1032void tick_nohz_irq_exit(void)
1033{
1034        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1035
1036        if (ts->inidle)
1037                tick_nohz_start_idle(ts);
1038        else
1039                tick_nohz_full_update_tick(ts);
1040}
1041
1042/**
1043 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1044 */
1045bool tick_nohz_idle_got_tick(void)
1046{
1047        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1048
1049        if (ts->got_idle_tick) {
1050                ts->got_idle_tick = 0;
1051                return true;
1052        }
1053        return false;
1054}
1055
1056/**
1057 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1058 * or the tick, whatever that expires first. Note that, if the tick has been
1059 * stopped, it returns the next hrtimer.
1060 *
1061 * Called from power state control code with interrupts disabled
1062 */
1063ktime_t tick_nohz_get_next_hrtimer(void)
1064{
1065        return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1066}
1067
1068/**
1069 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1070 * @delta_next: duration until the next event if the tick cannot be stopped
1071 *
1072 * Called from power state control code with interrupts disabled
1073 */
1074ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1075{
1076        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1077        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1078        int cpu = smp_processor_id();
1079        /*
1080         * The idle entry time is expected to be a sufficient approximation of
1081         * the current time at this point.
1082         */
1083        ktime_t now = ts->idle_entrytime;
1084        ktime_t next_event;
1085
1086        WARN_ON_ONCE(!ts->inidle);
1087
1088        *delta_next = ktime_sub(dev->next_event, now);
1089
1090        if (!can_stop_idle_tick(cpu, ts))
1091                return *delta_next;
1092
1093        next_event = tick_nohz_next_event(ts, cpu);
1094        if (!next_event)
1095                return *delta_next;
1096
1097        /*
1098         * If the next highres timer to expire is earlier than next_event, the
1099         * idle governor needs to know that.
1100         */
1101        next_event = min_t(u64, next_event,
1102                           hrtimer_next_event_without(&ts->sched_timer));
1103
1104        return ktime_sub(next_event, now);
1105}
1106
1107/**
1108 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1109 * for a particular CPU.
1110 *
1111 * Called from the schedutil frequency scaling governor in scheduler context.
1112 */
1113unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1114{
1115        struct tick_sched *ts = tick_get_tick_sched(cpu);
1116
1117        return ts->idle_calls;
1118}
1119
1120/**
1121 * tick_nohz_get_idle_calls - return the current idle calls counter value
1122 *
1123 * Called from the schedutil frequency scaling governor in scheduler context.
1124 */
1125unsigned long tick_nohz_get_idle_calls(void)
1126{
1127        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1128
1129        return ts->idle_calls;
1130}
1131
1132static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1133{
1134#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1135        unsigned long ticks;
1136
1137        if (vtime_accounting_enabled_this_cpu())
1138                return;
1139        /*
1140         * We stopped the tick in idle. Update process times would miss the
1141         * time we slept as update_process_times does only a 1 tick
1142         * accounting. Enforce that this is accounted to idle !
1143         */
1144        ticks = jiffies - ts->idle_jiffies;
1145        /*
1146         * We might be one off. Do not randomly account a huge number of ticks!
1147         */
1148        if (ticks && ticks < LONG_MAX)
1149                account_idle_ticks(ticks);
1150#endif
1151}
1152
1153static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1154{
1155        tick_nohz_restart_sched_tick(ts, now);
1156        tick_nohz_account_idle_ticks(ts);
1157}
1158
1159void tick_nohz_idle_restart_tick(void)
1160{
1161        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162
1163        if (ts->tick_stopped)
1164                __tick_nohz_idle_restart_tick(ts, ktime_get());
1165}
1166
1167/**
1168 * tick_nohz_idle_exit - restart the idle tick from the idle task
1169 *
1170 * Restart the idle tick when the CPU is woken up from idle
1171 * This also exit the RCU extended quiescent state. The CPU
1172 * can use RCU again after this function is called.
1173 */
1174void tick_nohz_idle_exit(void)
1175{
1176        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1177        bool idle_active, tick_stopped;
1178        ktime_t now;
1179
1180        local_irq_disable();
1181
1182        WARN_ON_ONCE(!ts->inidle);
1183        WARN_ON_ONCE(ts->timer_expires_base);
1184
1185        ts->inidle = 0;
1186        idle_active = ts->idle_active;
1187        tick_stopped = ts->tick_stopped;
1188
1189        if (idle_active || tick_stopped)
1190                now = ktime_get();
1191
1192        if (idle_active)
1193                tick_nohz_stop_idle(ts, now);
1194
1195        if (tick_stopped)
1196                __tick_nohz_idle_restart_tick(ts, now);
1197
1198        local_irq_enable();
1199}
1200
1201/*
1202 * The nohz low res interrupt handler
1203 */
1204static void tick_nohz_handler(struct clock_event_device *dev)
1205{
1206        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1207        struct pt_regs *regs = get_irq_regs();
1208        ktime_t now = ktime_get();
1209
1210        dev->next_event = KTIME_MAX;
1211
1212        tick_sched_do_timer(ts, now);
1213        tick_sched_handle(ts, regs);
1214
1215        /* No need to reprogram if we are running tickless  */
1216        if (unlikely(ts->tick_stopped))
1217                return;
1218
1219        hrtimer_forward(&ts->sched_timer, now, tick_period);
1220        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1221}
1222
1223static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1224{
1225        if (!tick_nohz_enabled)
1226                return;
1227        ts->nohz_mode = mode;
1228        /* One update is enough */
1229        if (!test_and_set_bit(0, &tick_nohz_active))
1230                timers_update_nohz();
1231}
1232
1233/**
1234 * tick_nohz_switch_to_nohz - switch to nohz mode
1235 */
1236static void tick_nohz_switch_to_nohz(void)
1237{
1238        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1239        ktime_t next;
1240
1241        if (!tick_nohz_enabled)
1242                return;
1243
1244        if (tick_switch_to_oneshot(tick_nohz_handler))
1245                return;
1246
1247        /*
1248         * Recycle the hrtimer in ts, so we can share the
1249         * hrtimer_forward with the highres code.
1250         */
1251        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1252        /* Get the next period */
1253        next = tick_init_jiffy_update();
1254
1255        hrtimer_set_expires(&ts->sched_timer, next);
1256        hrtimer_forward_now(&ts->sched_timer, tick_period);
1257        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1258        tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1259}
1260
1261static inline void tick_nohz_irq_enter(void)
1262{
1263        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1264        ktime_t now;
1265
1266        if (!ts->idle_active && !ts->tick_stopped)
1267                return;
1268        now = ktime_get();
1269        if (ts->idle_active)
1270                tick_nohz_stop_idle(ts, now);
1271        if (ts->tick_stopped)
1272                tick_nohz_update_jiffies(now);
1273}
1274
1275#else
1276
1277static inline void tick_nohz_switch_to_nohz(void) { }
1278static inline void tick_nohz_irq_enter(void) { }
1279static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1280
1281#endif /* CONFIG_NO_HZ_COMMON */
1282
1283/*
1284 * Called from irq_enter to notify about the possible interruption of idle()
1285 */
1286void tick_irq_enter(void)
1287{
1288        tick_check_oneshot_broadcast_this_cpu();
1289        tick_nohz_irq_enter();
1290}
1291
1292/*
1293 * High resolution timer specific code
1294 */
1295#ifdef CONFIG_HIGH_RES_TIMERS
1296/*
1297 * We rearm the timer until we get disabled by the idle code.
1298 * Called with interrupts disabled.
1299 */
1300static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1301{
1302        struct tick_sched *ts =
1303                container_of(timer, struct tick_sched, sched_timer);
1304        struct pt_regs *regs = get_irq_regs();
1305        ktime_t now = ktime_get();
1306
1307        tick_sched_do_timer(ts, now);
1308
1309        /*
1310         * Do not call, when we are not in irq context and have
1311         * no valid regs pointer
1312         */
1313        if (regs)
1314                tick_sched_handle(ts, regs);
1315        else
1316                ts->next_tick = 0;
1317
1318        /* No need to reprogram if we are in idle or full dynticks mode */
1319        if (unlikely(ts->tick_stopped))
1320                return HRTIMER_NORESTART;
1321
1322        hrtimer_forward(timer, now, tick_period);
1323
1324        return HRTIMER_RESTART;
1325}
1326
1327static int sched_skew_tick;
1328
1329static int __init skew_tick(char *str)
1330{
1331        get_option(&str, &sched_skew_tick);
1332
1333        return 0;
1334}
1335early_param("skew_tick", skew_tick);
1336
1337/**
1338 * tick_setup_sched_timer - setup the tick emulation timer
1339 */
1340void tick_setup_sched_timer(void)
1341{
1342        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1343        ktime_t now = ktime_get();
1344
1345        /*
1346         * Emulate tick processing via per-CPU hrtimers:
1347         */
1348        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1349        ts->sched_timer.function = tick_sched_timer;
1350
1351        /* Get the next period (per-CPU) */
1352        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1353
1354        /* Offset the tick to avert jiffies_lock contention. */
1355        if (sched_skew_tick) {
1356                u64 offset = ktime_to_ns(tick_period) >> 1;
1357                do_div(offset, num_possible_cpus());
1358                offset *= smp_processor_id();
1359                hrtimer_add_expires_ns(&ts->sched_timer, offset);
1360        }
1361
1362        hrtimer_forward(&ts->sched_timer, now, tick_period);
1363        hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1364        tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1365}
1366#endif /* HIGH_RES_TIMERS */
1367
1368#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1369void tick_cancel_sched_timer(int cpu)
1370{
1371        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1372
1373# ifdef CONFIG_HIGH_RES_TIMERS
1374        if (ts->sched_timer.base)
1375                hrtimer_cancel(&ts->sched_timer);
1376# endif
1377
1378        memset(ts, 0, sizeof(*ts));
1379}
1380#endif
1381
1382/**
1383 * Async notification about clocksource changes
1384 */
1385void tick_clock_notify(void)
1386{
1387        int cpu;
1388
1389        for_each_possible_cpu(cpu)
1390                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1391}
1392
1393/*
1394 * Async notification about clock event changes
1395 */
1396void tick_oneshot_notify(void)
1397{
1398        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1399
1400        set_bit(0, &ts->check_clocks);
1401}
1402
1403/**
1404 * Check, if a change happened, which makes oneshot possible.
1405 *
1406 * Called cyclic from the hrtimer softirq (driven by the timer
1407 * softirq) allow_nohz signals, that we can switch into low-res nohz
1408 * mode, because high resolution timers are disabled (either compile
1409 * or runtime). Called with interrupts disabled.
1410 */
1411int tick_check_oneshot_change(int allow_nohz)
1412{
1413        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1414
1415        if (!test_and_clear_bit(0, &ts->check_clocks))
1416                return 0;
1417
1418        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1419                return 0;
1420
1421        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1422                return 0;
1423
1424        if (!allow_nohz)
1425                return 1;
1426
1427        tick_nohz_switch_to_nohz();
1428        return 0;
1429}
1430