linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60/*
  61 * migrate_prep() needs to be called before we start compiling a list of pages
  62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  63 * undesirable, use migrate_prep_local()
  64 */
  65int migrate_prep(void)
  66{
  67        /*
  68         * Clear the LRU lists so pages can be isolated.
  69         * Note that pages may be moved off the LRU after we have
  70         * drained them. Those pages will fail to migrate like other
  71         * pages that may be busy.
  72         */
  73        lru_add_drain_all();
  74
  75        return 0;
  76}
  77
  78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  79int migrate_prep_local(void)
  80{
  81        lru_add_drain();
  82
  83        return 0;
  84}
  85
  86int isolate_movable_page(struct page *page, isolate_mode_t mode)
  87{
  88        struct address_space *mapping;
  89
  90        /*
  91         * Avoid burning cycles with pages that are yet under __free_pages(),
  92         * or just got freed under us.
  93         *
  94         * In case we 'win' a race for a movable page being freed under us and
  95         * raise its refcount preventing __free_pages() from doing its job
  96         * the put_page() at the end of this block will take care of
  97         * release this page, thus avoiding a nasty leakage.
  98         */
  99        if (unlikely(!get_page_unless_zero(page)))
 100                goto out;
 101
 102        /*
 103         * Check PageMovable before holding a PG_lock because page's owner
 104         * assumes anybody doesn't touch PG_lock of newly allocated page
 105         * so unconditionally grabbing the lock ruins page's owner side.
 106         */
 107        if (unlikely(!__PageMovable(page)))
 108                goto out_putpage;
 109        /*
 110         * As movable pages are not isolated from LRU lists, concurrent
 111         * compaction threads can race against page migration functions
 112         * as well as race against the releasing a page.
 113         *
 114         * In order to avoid having an already isolated movable page
 115         * being (wrongly) re-isolated while it is under migration,
 116         * or to avoid attempting to isolate pages being released,
 117         * lets be sure we have the page lock
 118         * before proceeding with the movable page isolation steps.
 119         */
 120        if (unlikely(!trylock_page(page)))
 121                goto out_putpage;
 122
 123        if (!PageMovable(page) || PageIsolated(page))
 124                goto out_no_isolated;
 125
 126        mapping = page_mapping(page);
 127        VM_BUG_ON_PAGE(!mapping, page);
 128
 129        if (!mapping->a_ops->isolate_page(page, mode))
 130                goto out_no_isolated;
 131
 132        /* Driver shouldn't use PG_isolated bit of page->flags */
 133        WARN_ON_ONCE(PageIsolated(page));
 134        __SetPageIsolated(page);
 135        unlock_page(page);
 136
 137        return 0;
 138
 139out_no_isolated:
 140        unlock_page(page);
 141out_putpage:
 142        put_page(page);
 143out:
 144        return -EBUSY;
 145}
 146
 147/* It should be called on page which is PG_movable */
 148void putback_movable_page(struct page *page)
 149{
 150        struct address_space *mapping;
 151
 152        VM_BUG_ON_PAGE(!PageLocked(page), page);
 153        VM_BUG_ON_PAGE(!PageMovable(page), page);
 154        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 155
 156        mapping = page_mapping(page);
 157        mapping->a_ops->putback_page(page);
 158        __ClearPageIsolated(page);
 159}
 160
 161/*
 162 * Put previously isolated pages back onto the appropriate lists
 163 * from where they were once taken off for compaction/migration.
 164 *
 165 * This function shall be used whenever the isolated pageset has been
 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 167 * and isolate_huge_page().
 168 */
 169void putback_movable_pages(struct list_head *l)
 170{
 171        struct page *page;
 172        struct page *page2;
 173
 174        list_for_each_entry_safe(page, page2, l, lru) {
 175                if (unlikely(PageHuge(page))) {
 176                        putback_active_hugepage(page);
 177                        continue;
 178                }
 179                list_del(&page->lru);
 180                /*
 181                 * We isolated non-lru movable page so here we can use
 182                 * __PageMovable because LRU page's mapping cannot have
 183                 * PAGE_MAPPING_MOVABLE.
 184                 */
 185                if (unlikely(__PageMovable(page))) {
 186                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 187                        lock_page(page);
 188                        if (PageMovable(page))
 189                                putback_movable_page(page);
 190                        else
 191                                __ClearPageIsolated(page);
 192                        unlock_page(page);
 193                        put_page(page);
 194                } else {
 195                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 196                                        page_is_file_cache(page), -hpage_nr_pages(page));
 197                        putback_lru_page(page);
 198                }
 199        }
 200}
 201
 202/*
 203 * Restore a potential migration pte to a working pte entry
 204 */
 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 206                                 unsigned long addr, void *old)
 207{
 208        struct page_vma_mapped_walk pvmw = {
 209                .page = old,
 210                .vma = vma,
 211                .address = addr,
 212                .flags = PVMW_SYNC | PVMW_MIGRATION,
 213        };
 214        struct page *new;
 215        pte_t pte;
 216        swp_entry_t entry;
 217
 218        VM_BUG_ON_PAGE(PageTail(page), page);
 219        while (page_vma_mapped_walk(&pvmw)) {
 220                if (PageKsm(page))
 221                        new = page;
 222                else
 223                        new = page - pvmw.page->index +
 224                                linear_page_index(vma, pvmw.address);
 225
 226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 227                /* PMD-mapped THP migration entry */
 228                if (!pvmw.pte) {
 229                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 230                        remove_migration_pmd(&pvmw, new);
 231                        continue;
 232                }
 233#endif
 234
 235                get_page(new);
 236                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 237                if (pte_swp_soft_dirty(*pvmw.pte))
 238                        pte = pte_mksoft_dirty(pte);
 239
 240                /*
 241                 * Recheck VMA as permissions can change since migration started
 242                 */
 243                entry = pte_to_swp_entry(*pvmw.pte);
 244                if (is_write_migration_entry(entry))
 245                        pte = maybe_mkwrite(pte, vma);
 246
 247                if (unlikely(is_zone_device_page(new))) {
 248                        if (is_device_private_page(new)) {
 249                                entry = make_device_private_entry(new, pte_write(pte));
 250                                pte = swp_entry_to_pte(entry);
 251                        }
 252                }
 253
 254#ifdef CONFIG_HUGETLB_PAGE
 255                if (PageHuge(new)) {
 256                        pte = pte_mkhuge(pte);
 257                        pte = arch_make_huge_pte(pte, vma, new, 0);
 258                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 259                        if (PageAnon(new))
 260                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 261                        else
 262                                page_dup_rmap(new, true);
 263                } else
 264#endif
 265                {
 266                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 267
 268                        if (PageAnon(new))
 269                                page_add_anon_rmap(new, vma, pvmw.address, false);
 270                        else
 271                                page_add_file_rmap(new, false);
 272                }
 273                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 274                        mlock_vma_page(new);
 275
 276                if (PageTransHuge(page) && PageMlocked(page))
 277                        clear_page_mlock(page);
 278
 279                /* No need to invalidate - it was non-present before */
 280                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 281        }
 282
 283        return true;
 284}
 285
 286/*
 287 * Get rid of all migration entries and replace them by
 288 * references to the indicated page.
 289 */
 290void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 291{
 292        struct rmap_walk_control rwc = {
 293                .rmap_one = remove_migration_pte,
 294                .arg = old,
 295        };
 296
 297        if (locked)
 298                rmap_walk_locked(new, &rwc);
 299        else
 300                rmap_walk(new, &rwc);
 301}
 302
 303/*
 304 * Something used the pte of a page under migration. We need to
 305 * get to the page and wait until migration is finished.
 306 * When we return from this function the fault will be retried.
 307 */
 308void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 309                                spinlock_t *ptl)
 310{
 311        pte_t pte;
 312        swp_entry_t entry;
 313        struct page *page;
 314
 315        spin_lock(ptl);
 316        pte = *ptep;
 317        if (!is_swap_pte(pte))
 318                goto out;
 319
 320        entry = pte_to_swp_entry(pte);
 321        if (!is_migration_entry(entry))
 322                goto out;
 323
 324        page = migration_entry_to_page(entry);
 325
 326        /*
 327         * Once page cache replacement of page migration started, page_count
 328         * is zero; but we must not call put_and_wait_on_page_locked() without
 329         * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 330         */
 331        if (!get_page_unless_zero(page))
 332                goto out;
 333        pte_unmap_unlock(ptep, ptl);
 334        put_and_wait_on_page_locked(page);
 335        return;
 336out:
 337        pte_unmap_unlock(ptep, ptl);
 338}
 339
 340void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 341                                unsigned long address)
 342{
 343        spinlock_t *ptl = pte_lockptr(mm, pmd);
 344        pte_t *ptep = pte_offset_map(pmd, address);
 345        __migration_entry_wait(mm, ptep, ptl);
 346}
 347
 348void migration_entry_wait_huge(struct vm_area_struct *vma,
 349                struct mm_struct *mm, pte_t *pte)
 350{
 351        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 352        __migration_entry_wait(mm, pte, ptl);
 353}
 354
 355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 357{
 358        spinlock_t *ptl;
 359        struct page *page;
 360
 361        ptl = pmd_lock(mm, pmd);
 362        if (!is_pmd_migration_entry(*pmd))
 363                goto unlock;
 364        page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 365        if (!get_page_unless_zero(page))
 366                goto unlock;
 367        spin_unlock(ptl);
 368        put_and_wait_on_page_locked(page);
 369        return;
 370unlock:
 371        spin_unlock(ptl);
 372}
 373#endif
 374
 375static int expected_page_refs(struct address_space *mapping, struct page *page)
 376{
 377        int expected_count = 1;
 378
 379        /*
 380         * Device public or private pages have an extra refcount as they are
 381         * ZONE_DEVICE pages.
 382         */
 383        expected_count += is_device_private_page(page);
 384        if (mapping)
 385                expected_count += hpage_nr_pages(page) + page_has_private(page);
 386
 387        return expected_count;
 388}
 389
 390/*
 391 * Replace the page in the mapping.
 392 *
 393 * The number of remaining references must be:
 394 * 1 for anonymous pages without a mapping
 395 * 2 for pages with a mapping
 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 397 */
 398int migrate_page_move_mapping(struct address_space *mapping,
 399                struct page *newpage, struct page *page, int extra_count)
 400{
 401        XA_STATE(xas, &mapping->i_pages, page_index(page));
 402        struct zone *oldzone, *newzone;
 403        int dirty;
 404        int expected_count = expected_page_refs(mapping, page) + extra_count;
 405
 406        if (!mapping) {
 407                /* Anonymous page without mapping */
 408                if (page_count(page) != expected_count)
 409                        return -EAGAIN;
 410
 411                /* No turning back from here */
 412                newpage->index = page->index;
 413                newpage->mapping = page->mapping;
 414                if (PageSwapBacked(page))
 415                        __SetPageSwapBacked(newpage);
 416
 417                return MIGRATEPAGE_SUCCESS;
 418        }
 419
 420        oldzone = page_zone(page);
 421        newzone = page_zone(newpage);
 422
 423        xas_lock_irq(&xas);
 424        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 425                xas_unlock_irq(&xas);
 426                return -EAGAIN;
 427        }
 428
 429        if (!page_ref_freeze(page, expected_count)) {
 430                xas_unlock_irq(&xas);
 431                return -EAGAIN;
 432        }
 433
 434        /*
 435         * Now we know that no one else is looking at the page:
 436         * no turning back from here.
 437         */
 438        newpage->index = page->index;
 439        newpage->mapping = page->mapping;
 440        page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 441        if (PageSwapBacked(page)) {
 442                __SetPageSwapBacked(newpage);
 443                if (PageSwapCache(page)) {
 444                        SetPageSwapCache(newpage);
 445                        set_page_private(newpage, page_private(page));
 446                }
 447        } else {
 448                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 449        }
 450
 451        /* Move dirty while page refs frozen and newpage not yet exposed */
 452        dirty = PageDirty(page);
 453        if (dirty) {
 454                ClearPageDirty(page);
 455                SetPageDirty(newpage);
 456        }
 457
 458        xas_store(&xas, newpage);
 459        if (PageTransHuge(page)) {
 460                int i;
 461
 462                for (i = 1; i < HPAGE_PMD_NR; i++) {
 463                        xas_next(&xas);
 464                        xas_store(&xas, newpage);
 465                }
 466        }
 467
 468        /*
 469         * Drop cache reference from old page by unfreezing
 470         * to one less reference.
 471         * We know this isn't the last reference.
 472         */
 473        page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 474
 475        xas_unlock(&xas);
 476        /* Leave irq disabled to prevent preemption while updating stats */
 477
 478        /*
 479         * If moved to a different zone then also account
 480         * the page for that zone. Other VM counters will be
 481         * taken care of when we establish references to the
 482         * new page and drop references to the old page.
 483         *
 484         * Note that anonymous pages are accounted for
 485         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 486         * are mapped to swap space.
 487         */
 488        if (newzone != oldzone) {
 489                __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 490                __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 491                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 492                        __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 493                        __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 494                }
 495                if (dirty && mapping_cap_account_dirty(mapping)) {
 496                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 497                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 498                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 499                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 500                }
 501        }
 502        local_irq_enable();
 503
 504        return MIGRATEPAGE_SUCCESS;
 505}
 506EXPORT_SYMBOL(migrate_page_move_mapping);
 507
 508/*
 509 * The expected number of remaining references is the same as that
 510 * of migrate_page_move_mapping().
 511 */
 512int migrate_huge_page_move_mapping(struct address_space *mapping,
 513                                   struct page *newpage, struct page *page)
 514{
 515        XA_STATE(xas, &mapping->i_pages, page_index(page));
 516        int expected_count;
 517
 518        xas_lock_irq(&xas);
 519        expected_count = 2 + page_has_private(page);
 520        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 521                xas_unlock_irq(&xas);
 522                return -EAGAIN;
 523        }
 524
 525        if (!page_ref_freeze(page, expected_count)) {
 526                xas_unlock_irq(&xas);
 527                return -EAGAIN;
 528        }
 529
 530        newpage->index = page->index;
 531        newpage->mapping = page->mapping;
 532
 533        get_page(newpage);
 534
 535        xas_store(&xas, newpage);
 536
 537        page_ref_unfreeze(page, expected_count - 1);
 538
 539        xas_unlock_irq(&xas);
 540
 541        return MIGRATEPAGE_SUCCESS;
 542}
 543
 544/*
 545 * Gigantic pages are so large that we do not guarantee that page++ pointer
 546 * arithmetic will work across the entire page.  We need something more
 547 * specialized.
 548 */
 549static void __copy_gigantic_page(struct page *dst, struct page *src,
 550                                int nr_pages)
 551{
 552        int i;
 553        struct page *dst_base = dst;
 554        struct page *src_base = src;
 555
 556        for (i = 0; i < nr_pages; ) {
 557                cond_resched();
 558                copy_highpage(dst, src);
 559
 560                i++;
 561                dst = mem_map_next(dst, dst_base, i);
 562                src = mem_map_next(src, src_base, i);
 563        }
 564}
 565
 566static void copy_huge_page(struct page *dst, struct page *src)
 567{
 568        int i;
 569        int nr_pages;
 570
 571        if (PageHuge(src)) {
 572                /* hugetlbfs page */
 573                struct hstate *h = page_hstate(src);
 574                nr_pages = pages_per_huge_page(h);
 575
 576                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 577                        __copy_gigantic_page(dst, src, nr_pages);
 578                        return;
 579                }
 580        } else {
 581                /* thp page */
 582                BUG_ON(!PageTransHuge(src));
 583                nr_pages = hpage_nr_pages(src);
 584        }
 585
 586        for (i = 0; i < nr_pages; i++) {
 587                cond_resched();
 588                copy_highpage(dst + i, src + i);
 589        }
 590}
 591
 592/*
 593 * Copy the page to its new location
 594 */
 595void migrate_page_states(struct page *newpage, struct page *page)
 596{
 597        int cpupid;
 598
 599        if (PageError(page))
 600                SetPageError(newpage);
 601        if (PageReferenced(page))
 602                SetPageReferenced(newpage);
 603        if (PageUptodate(page))
 604                SetPageUptodate(newpage);
 605        if (TestClearPageActive(page)) {
 606                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 607                SetPageActive(newpage);
 608        } else if (TestClearPageUnevictable(page))
 609                SetPageUnevictable(newpage);
 610        if (PageWorkingset(page))
 611                SetPageWorkingset(newpage);
 612        if (PageChecked(page))
 613                SetPageChecked(newpage);
 614        if (PageMappedToDisk(page))
 615                SetPageMappedToDisk(newpage);
 616
 617        /* Move dirty on pages not done by migrate_page_move_mapping() */
 618        if (PageDirty(page))
 619                SetPageDirty(newpage);
 620
 621        if (page_is_young(page))
 622                set_page_young(newpage);
 623        if (page_is_idle(page))
 624                set_page_idle(newpage);
 625
 626        /*
 627         * Copy NUMA information to the new page, to prevent over-eager
 628         * future migrations of this same page.
 629         */
 630        cpupid = page_cpupid_xchg_last(page, -1);
 631        page_cpupid_xchg_last(newpage, cpupid);
 632
 633        ksm_migrate_page(newpage, page);
 634        /*
 635         * Please do not reorder this without considering how mm/ksm.c's
 636         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 637         */
 638        if (PageSwapCache(page))
 639                ClearPageSwapCache(page);
 640        ClearPagePrivate(page);
 641        set_page_private(page, 0);
 642
 643        /*
 644         * If any waiters have accumulated on the new page then
 645         * wake them up.
 646         */
 647        if (PageWriteback(newpage))
 648                end_page_writeback(newpage);
 649
 650        copy_page_owner(page, newpage);
 651
 652        mem_cgroup_migrate(page, newpage);
 653}
 654EXPORT_SYMBOL(migrate_page_states);
 655
 656void migrate_page_copy(struct page *newpage, struct page *page)
 657{
 658        if (PageHuge(page) || PageTransHuge(page))
 659                copy_huge_page(newpage, page);
 660        else
 661                copy_highpage(newpage, page);
 662
 663        migrate_page_states(newpage, page);
 664}
 665EXPORT_SYMBOL(migrate_page_copy);
 666
 667/************************************************************
 668 *                    Migration functions
 669 ***********************************************************/
 670
 671/*
 672 * Common logic to directly migrate a single LRU page suitable for
 673 * pages that do not use PagePrivate/PagePrivate2.
 674 *
 675 * Pages are locked upon entry and exit.
 676 */
 677int migrate_page(struct address_space *mapping,
 678                struct page *newpage, struct page *page,
 679                enum migrate_mode mode)
 680{
 681        int rc;
 682
 683        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 684
 685        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 686
 687        if (rc != MIGRATEPAGE_SUCCESS)
 688                return rc;
 689
 690        if (mode != MIGRATE_SYNC_NO_COPY)
 691                migrate_page_copy(newpage, page);
 692        else
 693                migrate_page_states(newpage, page);
 694        return MIGRATEPAGE_SUCCESS;
 695}
 696EXPORT_SYMBOL(migrate_page);
 697
 698#ifdef CONFIG_BLOCK
 699/* Returns true if all buffers are successfully locked */
 700static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 701                                                        enum migrate_mode mode)
 702{
 703        struct buffer_head *bh = head;
 704
 705        /* Simple case, sync compaction */
 706        if (mode != MIGRATE_ASYNC) {
 707                do {
 708                        lock_buffer(bh);
 709                        bh = bh->b_this_page;
 710
 711                } while (bh != head);
 712
 713                return true;
 714        }
 715
 716        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 717        do {
 718                if (!trylock_buffer(bh)) {
 719                        /*
 720                         * We failed to lock the buffer and cannot stall in
 721                         * async migration. Release the taken locks
 722                         */
 723                        struct buffer_head *failed_bh = bh;
 724                        bh = head;
 725                        while (bh != failed_bh) {
 726                                unlock_buffer(bh);
 727                                bh = bh->b_this_page;
 728                        }
 729                        return false;
 730                }
 731
 732                bh = bh->b_this_page;
 733        } while (bh != head);
 734        return true;
 735}
 736
 737static int __buffer_migrate_page(struct address_space *mapping,
 738                struct page *newpage, struct page *page, enum migrate_mode mode,
 739                bool check_refs)
 740{
 741        struct buffer_head *bh, *head;
 742        int rc;
 743        int expected_count;
 744
 745        if (!page_has_buffers(page))
 746                return migrate_page(mapping, newpage, page, mode);
 747
 748        /* Check whether page does not have extra refs before we do more work */
 749        expected_count = expected_page_refs(mapping, page);
 750        if (page_count(page) != expected_count)
 751                return -EAGAIN;
 752
 753        head = page_buffers(page);
 754        if (!buffer_migrate_lock_buffers(head, mode))
 755                return -EAGAIN;
 756
 757        if (check_refs) {
 758                bool busy;
 759                bool invalidated = false;
 760
 761recheck_buffers:
 762                busy = false;
 763                spin_lock(&mapping->private_lock);
 764                bh = head;
 765                do {
 766                        if (atomic_read(&bh->b_count)) {
 767                                busy = true;
 768                                break;
 769                        }
 770                        bh = bh->b_this_page;
 771                } while (bh != head);
 772                if (busy) {
 773                        if (invalidated) {
 774                                rc = -EAGAIN;
 775                                goto unlock_buffers;
 776                        }
 777                        spin_unlock(&mapping->private_lock);
 778                        invalidate_bh_lrus();
 779                        invalidated = true;
 780                        goto recheck_buffers;
 781                }
 782        }
 783
 784        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 785        if (rc != MIGRATEPAGE_SUCCESS)
 786                goto unlock_buffers;
 787
 788        ClearPagePrivate(page);
 789        set_page_private(newpage, page_private(page));
 790        set_page_private(page, 0);
 791        put_page(page);
 792        get_page(newpage);
 793
 794        bh = head;
 795        do {
 796                set_bh_page(bh, newpage, bh_offset(bh));
 797                bh = bh->b_this_page;
 798
 799        } while (bh != head);
 800
 801        SetPagePrivate(newpage);
 802
 803        if (mode != MIGRATE_SYNC_NO_COPY)
 804                migrate_page_copy(newpage, page);
 805        else
 806                migrate_page_states(newpage, page);
 807
 808        rc = MIGRATEPAGE_SUCCESS;
 809unlock_buffers:
 810        if (check_refs)
 811                spin_unlock(&mapping->private_lock);
 812        bh = head;
 813        do {
 814                unlock_buffer(bh);
 815                bh = bh->b_this_page;
 816
 817        } while (bh != head);
 818
 819        return rc;
 820}
 821
 822/*
 823 * Migration function for pages with buffers. This function can only be used
 824 * if the underlying filesystem guarantees that no other references to "page"
 825 * exist. For example attached buffer heads are accessed only under page lock.
 826 */
 827int buffer_migrate_page(struct address_space *mapping,
 828                struct page *newpage, struct page *page, enum migrate_mode mode)
 829{
 830        return __buffer_migrate_page(mapping, newpage, page, mode, false);
 831}
 832EXPORT_SYMBOL(buffer_migrate_page);
 833
 834/*
 835 * Same as above except that this variant is more careful and checks that there
 836 * are also no buffer head references. This function is the right one for
 837 * mappings where buffer heads are directly looked up and referenced (such as
 838 * block device mappings).
 839 */
 840int buffer_migrate_page_norefs(struct address_space *mapping,
 841                struct page *newpage, struct page *page, enum migrate_mode mode)
 842{
 843        return __buffer_migrate_page(mapping, newpage, page, mode, true);
 844}
 845#endif
 846
 847/*
 848 * Writeback a page to clean the dirty state
 849 */
 850static int writeout(struct address_space *mapping, struct page *page)
 851{
 852        struct writeback_control wbc = {
 853                .sync_mode = WB_SYNC_NONE,
 854                .nr_to_write = 1,
 855                .range_start = 0,
 856                .range_end = LLONG_MAX,
 857                .for_reclaim = 1
 858        };
 859        int rc;
 860
 861        if (!mapping->a_ops->writepage)
 862                /* No write method for the address space */
 863                return -EINVAL;
 864
 865        if (!clear_page_dirty_for_io(page))
 866                /* Someone else already triggered a write */
 867                return -EAGAIN;
 868
 869        /*
 870         * A dirty page may imply that the underlying filesystem has
 871         * the page on some queue. So the page must be clean for
 872         * migration. Writeout may mean we loose the lock and the
 873         * page state is no longer what we checked for earlier.
 874         * At this point we know that the migration attempt cannot
 875         * be successful.
 876         */
 877        remove_migration_ptes(page, page, false);
 878
 879        rc = mapping->a_ops->writepage(page, &wbc);
 880
 881        if (rc != AOP_WRITEPAGE_ACTIVATE)
 882                /* unlocked. Relock */
 883                lock_page(page);
 884
 885        return (rc < 0) ? -EIO : -EAGAIN;
 886}
 887
 888/*
 889 * Default handling if a filesystem does not provide a migration function.
 890 */
 891static int fallback_migrate_page(struct address_space *mapping,
 892        struct page *newpage, struct page *page, enum migrate_mode mode)
 893{
 894        if (PageDirty(page)) {
 895                /* Only writeback pages in full synchronous migration */
 896                switch (mode) {
 897                case MIGRATE_SYNC:
 898                case MIGRATE_SYNC_NO_COPY:
 899                        break;
 900                default:
 901                        return -EBUSY;
 902                }
 903                return writeout(mapping, page);
 904        }
 905
 906        /*
 907         * Buffers may be managed in a filesystem specific way.
 908         * We must have no buffers or drop them.
 909         */
 910        if (page_has_private(page) &&
 911            !try_to_release_page(page, GFP_KERNEL))
 912                return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 913
 914        return migrate_page(mapping, newpage, page, mode);
 915}
 916
 917/*
 918 * Move a page to a newly allocated page
 919 * The page is locked and all ptes have been successfully removed.
 920 *
 921 * The new page will have replaced the old page if this function
 922 * is successful.
 923 *
 924 * Return value:
 925 *   < 0 - error code
 926 *  MIGRATEPAGE_SUCCESS - success
 927 */
 928static int move_to_new_page(struct page *newpage, struct page *page,
 929                                enum migrate_mode mode)
 930{
 931        struct address_space *mapping;
 932        int rc = -EAGAIN;
 933        bool is_lru = !__PageMovable(page);
 934
 935        VM_BUG_ON_PAGE(!PageLocked(page), page);
 936        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 937
 938        mapping = page_mapping(page);
 939
 940        if (likely(is_lru)) {
 941                if (!mapping)
 942                        rc = migrate_page(mapping, newpage, page, mode);
 943                else if (mapping->a_ops->migratepage)
 944                        /*
 945                         * Most pages have a mapping and most filesystems
 946                         * provide a migratepage callback. Anonymous pages
 947                         * are part of swap space which also has its own
 948                         * migratepage callback. This is the most common path
 949                         * for page migration.
 950                         */
 951                        rc = mapping->a_ops->migratepage(mapping, newpage,
 952                                                        page, mode);
 953                else
 954                        rc = fallback_migrate_page(mapping, newpage,
 955                                                        page, mode);
 956        } else {
 957                /*
 958                 * In case of non-lru page, it could be released after
 959                 * isolation step. In that case, we shouldn't try migration.
 960                 */
 961                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 962                if (!PageMovable(page)) {
 963                        rc = MIGRATEPAGE_SUCCESS;
 964                        __ClearPageIsolated(page);
 965                        goto out;
 966                }
 967
 968                rc = mapping->a_ops->migratepage(mapping, newpage,
 969                                                page, mode);
 970                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 971                        !PageIsolated(page));
 972        }
 973
 974        /*
 975         * When successful, old pagecache page->mapping must be cleared before
 976         * page is freed; but stats require that PageAnon be left as PageAnon.
 977         */
 978        if (rc == MIGRATEPAGE_SUCCESS) {
 979                if (__PageMovable(page)) {
 980                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 981
 982                        /*
 983                         * We clear PG_movable under page_lock so any compactor
 984                         * cannot try to migrate this page.
 985                         */
 986                        __ClearPageIsolated(page);
 987                }
 988
 989                /*
 990                 * Anonymous and movable page->mapping will be cleared by
 991                 * free_pages_prepare so don't reset it here for keeping
 992                 * the type to work PageAnon, for example.
 993                 */
 994                if (!PageMappingFlags(page))
 995                        page->mapping = NULL;
 996
 997                if (likely(!is_zone_device_page(newpage)))
 998                        flush_dcache_page(newpage);
 999
1000        }
1001out:
1002        return rc;
1003}
1004
1005static int __unmap_and_move(struct page *page, struct page *newpage,
1006                                int force, enum migrate_mode mode)
1007{
1008        int rc = -EAGAIN;
1009        int page_was_mapped = 0;
1010        struct anon_vma *anon_vma = NULL;
1011        bool is_lru = !__PageMovable(page);
1012
1013        if (!trylock_page(page)) {
1014                if (!force || mode == MIGRATE_ASYNC)
1015                        goto out;
1016
1017                /*
1018                 * It's not safe for direct compaction to call lock_page.
1019                 * For example, during page readahead pages are added locked
1020                 * to the LRU. Later, when the IO completes the pages are
1021                 * marked uptodate and unlocked. However, the queueing
1022                 * could be merging multiple pages for one bio (e.g.
1023                 * mpage_readpages). If an allocation happens for the
1024                 * second or third page, the process can end up locking
1025                 * the same page twice and deadlocking. Rather than
1026                 * trying to be clever about what pages can be locked,
1027                 * avoid the use of lock_page for direct compaction
1028                 * altogether.
1029                 */
1030                if (current->flags & PF_MEMALLOC)
1031                        goto out;
1032
1033                lock_page(page);
1034        }
1035
1036        if (PageWriteback(page)) {
1037                /*
1038                 * Only in the case of a full synchronous migration is it
1039                 * necessary to wait for PageWriteback. In the async case,
1040                 * the retry loop is too short and in the sync-light case,
1041                 * the overhead of stalling is too much
1042                 */
1043                switch (mode) {
1044                case MIGRATE_SYNC:
1045                case MIGRATE_SYNC_NO_COPY:
1046                        break;
1047                default:
1048                        rc = -EBUSY;
1049                        goto out_unlock;
1050                }
1051                if (!force)
1052                        goto out_unlock;
1053                wait_on_page_writeback(page);
1054        }
1055
1056        /*
1057         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058         * we cannot notice that anon_vma is freed while we migrates a page.
1059         * This get_anon_vma() delays freeing anon_vma pointer until the end
1060         * of migration. File cache pages are no problem because of page_lock()
1061         * File Caches may use write_page() or lock_page() in migration, then,
1062         * just care Anon page here.
1063         *
1064         * Only page_get_anon_vma() understands the subtleties of
1065         * getting a hold on an anon_vma from outside one of its mms.
1066         * But if we cannot get anon_vma, then we won't need it anyway,
1067         * because that implies that the anon page is no longer mapped
1068         * (and cannot be remapped so long as we hold the page lock).
1069         */
1070        if (PageAnon(page) && !PageKsm(page))
1071                anon_vma = page_get_anon_vma(page);
1072
1073        /*
1074         * Block others from accessing the new page when we get around to
1075         * establishing additional references. We are usually the only one
1076         * holding a reference to newpage at this point. We used to have a BUG
1077         * here if trylock_page(newpage) fails, but would like to allow for
1078         * cases where there might be a race with the previous use of newpage.
1079         * This is much like races on refcount of oldpage: just don't BUG().
1080         */
1081        if (unlikely(!trylock_page(newpage)))
1082                goto out_unlock;
1083
1084        if (unlikely(!is_lru)) {
1085                rc = move_to_new_page(newpage, page, mode);
1086                goto out_unlock_both;
1087        }
1088
1089        /*
1090         * Corner case handling:
1091         * 1. When a new swap-cache page is read into, it is added to the LRU
1092         * and treated as swapcache but it has no rmap yet.
1093         * Calling try_to_unmap() against a page->mapping==NULL page will
1094         * trigger a BUG.  So handle it here.
1095         * 2. An orphaned page (see truncate_complete_page) might have
1096         * fs-private metadata. The page can be picked up due to memory
1097         * offlining.  Everywhere else except page reclaim, the page is
1098         * invisible to the vm, so the page can not be migrated.  So try to
1099         * free the metadata, so the page can be freed.
1100         */
1101        if (!page->mapping) {
1102                VM_BUG_ON_PAGE(PageAnon(page), page);
1103                if (page_has_private(page)) {
1104                        try_to_free_buffers(page);
1105                        goto out_unlock_both;
1106                }
1107        } else if (page_mapped(page)) {
1108                /* Establish migration ptes */
1109                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110                                page);
1111                try_to_unmap(page,
1112                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1113                page_was_mapped = 1;
1114        }
1115
1116        if (!page_mapped(page))
1117                rc = move_to_new_page(newpage, page, mode);
1118
1119        if (page_was_mapped)
1120                remove_migration_ptes(page,
1121                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122
1123out_unlock_both:
1124        unlock_page(newpage);
1125out_unlock:
1126        /* Drop an anon_vma reference if we took one */
1127        if (anon_vma)
1128                put_anon_vma(anon_vma);
1129        unlock_page(page);
1130out:
1131        /*
1132         * If migration is successful, decrease refcount of the newpage
1133         * which will not free the page because new page owner increased
1134         * refcounter. As well, if it is LRU page, add the page to LRU
1135         * list in here. Use the old state of the isolated source page to
1136         * determine if we migrated a LRU page. newpage was already unlocked
1137         * and possibly modified by its owner - don't rely on the page
1138         * state.
1139         */
1140        if (rc == MIGRATEPAGE_SUCCESS) {
1141                if (unlikely(!is_lru))
1142                        put_page(newpage);
1143                else
1144                        putback_lru_page(newpage);
1145        }
1146
1147        return rc;
1148}
1149
1150/*
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1152 * around it.
1153 */
1154#if defined(CONFIG_ARM) && \
1155        defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156#define ICE_noinline noinline
1157#else
1158#define ICE_noinline
1159#endif
1160
1161/*
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1164 */
1165static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166                                   free_page_t put_new_page,
1167                                   unsigned long private, struct page *page,
1168                                   int force, enum migrate_mode mode,
1169                                   enum migrate_reason reason)
1170{
1171        int rc = MIGRATEPAGE_SUCCESS;
1172        struct page *newpage = NULL;
1173
1174        if (!thp_migration_supported() && PageTransHuge(page))
1175                return -ENOMEM;
1176
1177        if (page_count(page) == 1) {
1178                /* page was freed from under us. So we are done. */
1179                ClearPageActive(page);
1180                ClearPageUnevictable(page);
1181                if (unlikely(__PageMovable(page))) {
1182                        lock_page(page);
1183                        if (!PageMovable(page))
1184                                __ClearPageIsolated(page);
1185                        unlock_page(page);
1186                }
1187                goto out;
1188        }
1189
1190        newpage = get_new_page(page, private);
1191        if (!newpage)
1192                return -ENOMEM;
1193
1194        rc = __unmap_and_move(page, newpage, force, mode);
1195        if (rc == MIGRATEPAGE_SUCCESS)
1196                set_page_owner_migrate_reason(newpage, reason);
1197
1198out:
1199        if (rc != -EAGAIN) {
1200                /*
1201                 * A page that has been migrated has all references
1202                 * removed and will be freed. A page that has not been
1203                 * migrated will have kept its references and be restored.
1204                 */
1205                list_del(&page->lru);
1206
1207                /*
1208                 * Compaction can migrate also non-LRU pages which are
1209                 * not accounted to NR_ISOLATED_*. They can be recognized
1210                 * as __PageMovable
1211                 */
1212                if (likely(!__PageMovable(page)))
1213                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214                                        page_is_file_cache(page), -hpage_nr_pages(page));
1215        }
1216
1217        /*
1218         * If migration is successful, releases reference grabbed during
1219         * isolation. Otherwise, restore the page to right list unless
1220         * we want to retry.
1221         */
1222        if (rc == MIGRATEPAGE_SUCCESS) {
1223                put_page(page);
1224                if (reason == MR_MEMORY_FAILURE) {
1225                        /*
1226                         * Set PG_HWPoison on just freed page
1227                         * intentionally. Although it's rather weird,
1228                         * it's how HWPoison flag works at the moment.
1229                         */
1230                        if (set_hwpoison_free_buddy_page(page))
1231                                num_poisoned_pages_inc();
1232                }
1233        } else {
1234                if (rc != -EAGAIN) {
1235                        if (likely(!__PageMovable(page))) {
1236                                putback_lru_page(page);
1237                                goto put_new;
1238                        }
1239
1240                        lock_page(page);
1241                        if (PageMovable(page))
1242                                putback_movable_page(page);
1243                        else
1244                                __ClearPageIsolated(page);
1245                        unlock_page(page);
1246                        put_page(page);
1247                }
1248put_new:
1249                if (put_new_page)
1250                        put_new_page(newpage, private);
1251                else
1252                        put_page(newpage);
1253        }
1254
1255        return rc;
1256}
1257
1258/*
1259 * Counterpart of unmap_and_move_page() for hugepage migration.
1260 *
1261 * This function doesn't wait the completion of hugepage I/O
1262 * because there is no race between I/O and migration for hugepage.
1263 * Note that currently hugepage I/O occurs only in direct I/O
1264 * where no lock is held and PG_writeback is irrelevant,
1265 * and writeback status of all subpages are counted in the reference
1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267 * under direct I/O, the reference of the head page is 512 and a bit more.)
1268 * This means that when we try to migrate hugepage whose subpages are
1269 * doing direct I/O, some references remain after try_to_unmap() and
1270 * hugepage migration fails without data corruption.
1271 *
1272 * There is also no race when direct I/O is issued on the page under migration,
1273 * because then pte is replaced with migration swap entry and direct I/O code
1274 * will wait in the page fault for migration to complete.
1275 */
1276static int unmap_and_move_huge_page(new_page_t get_new_page,
1277                                free_page_t put_new_page, unsigned long private,
1278                                struct page *hpage, int force,
1279                                enum migrate_mode mode, int reason)
1280{
1281        int rc = -EAGAIN;
1282        int page_was_mapped = 0;
1283        struct page *new_hpage;
1284        struct anon_vma *anon_vma = NULL;
1285
1286        /*
1287         * Migratability of hugepages depends on architectures and their size.
1288         * This check is necessary because some callers of hugepage migration
1289         * like soft offline and memory hotremove don't walk through page
1290         * tables or check whether the hugepage is pmd-based or not before
1291         * kicking migration.
1292         */
1293        if (!hugepage_migration_supported(page_hstate(hpage))) {
1294                putback_active_hugepage(hpage);
1295                return -ENOSYS;
1296        }
1297
1298        new_hpage = get_new_page(hpage, private);
1299        if (!new_hpage)
1300                return -ENOMEM;
1301
1302        if (!trylock_page(hpage)) {
1303                if (!force)
1304                        goto out;
1305                switch (mode) {
1306                case MIGRATE_SYNC:
1307                case MIGRATE_SYNC_NO_COPY:
1308                        break;
1309                default:
1310                        goto out;
1311                }
1312                lock_page(hpage);
1313        }
1314
1315        /*
1316         * Check for pages which are in the process of being freed.  Without
1317         * page_mapping() set, hugetlbfs specific move page routine will not
1318         * be called and we could leak usage counts for subpools.
1319         */
1320        if (page_private(hpage) && !page_mapping(hpage)) {
1321                rc = -EBUSY;
1322                goto out_unlock;
1323        }
1324
1325        if (PageAnon(hpage))
1326                anon_vma = page_get_anon_vma(hpage);
1327
1328        if (unlikely(!trylock_page(new_hpage)))
1329                goto put_anon;
1330
1331        if (page_mapped(hpage)) {
1332                try_to_unmap(hpage,
1333                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1334                page_was_mapped = 1;
1335        }
1336
1337        if (!page_mapped(hpage))
1338                rc = move_to_new_page(new_hpage, hpage, mode);
1339
1340        if (page_was_mapped)
1341                remove_migration_ptes(hpage,
1342                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1343
1344        unlock_page(new_hpage);
1345
1346put_anon:
1347        if (anon_vma)
1348                put_anon_vma(anon_vma);
1349
1350        if (rc == MIGRATEPAGE_SUCCESS) {
1351                move_hugetlb_state(hpage, new_hpage, reason);
1352                put_new_page = NULL;
1353        }
1354
1355out_unlock:
1356        unlock_page(hpage);
1357out:
1358        if (rc != -EAGAIN)
1359                putback_active_hugepage(hpage);
1360
1361        /*
1362         * If migration was not successful and there's a freeing callback, use
1363         * it.  Otherwise, put_page() will drop the reference grabbed during
1364         * isolation.
1365         */
1366        if (put_new_page)
1367                put_new_page(new_hpage, private);
1368        else
1369                putback_active_hugepage(new_hpage);
1370
1371        return rc;
1372}
1373
1374/*
1375 * migrate_pages - migrate the pages specified in a list, to the free pages
1376 *                 supplied as the target for the page migration
1377 *
1378 * @from:               The list of pages to be migrated.
1379 * @get_new_page:       The function used to allocate free pages to be used
1380 *                      as the target of the page migration.
1381 * @put_new_page:       The function used to free target pages if migration
1382 *                      fails, or NULL if no special handling is necessary.
1383 * @private:            Private data to be passed on to get_new_page()
1384 * @mode:               The migration mode that specifies the constraints for
1385 *                      page migration, if any.
1386 * @reason:             The reason for page migration.
1387 *
1388 * The function returns after 10 attempts or if no pages are movable any more
1389 * because the list has become empty or no retryable pages exist any more.
1390 * The caller should call putback_movable_pages() to return pages to the LRU
1391 * or free list only if ret != 0.
1392 *
1393 * Returns the number of pages that were not migrated, or an error code.
1394 */
1395int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396                free_page_t put_new_page, unsigned long private,
1397                enum migrate_mode mode, int reason)
1398{
1399        int retry = 1;
1400        int nr_failed = 0;
1401        int nr_succeeded = 0;
1402        int pass = 0;
1403        struct page *page;
1404        struct page *page2;
1405        int swapwrite = current->flags & PF_SWAPWRITE;
1406        int rc;
1407
1408        if (!swapwrite)
1409                current->flags |= PF_SWAPWRITE;
1410
1411        for(pass = 0; pass < 10 && retry; pass++) {
1412                retry = 0;
1413
1414                list_for_each_entry_safe(page, page2, from, lru) {
1415retry:
1416                        cond_resched();
1417
1418                        if (PageHuge(page))
1419                                rc = unmap_and_move_huge_page(get_new_page,
1420                                                put_new_page, private, page,
1421                                                pass > 2, mode, reason);
1422                        else
1423                                rc = unmap_and_move(get_new_page, put_new_page,
1424                                                private, page, pass > 2, mode,
1425                                                reason);
1426
1427                        switch(rc) {
1428                        case -ENOMEM:
1429                                /*
1430                                 * THP migration might be unsupported or the
1431                                 * allocation could've failed so we should
1432                                 * retry on the same page with the THP split
1433                                 * to base pages.
1434                                 *
1435                                 * Head page is retried immediately and tail
1436                                 * pages are added to the tail of the list so
1437                                 * we encounter them after the rest of the list
1438                                 * is processed.
1439                                 */
1440                                if (PageTransHuge(page) && !PageHuge(page)) {
1441                                        lock_page(page);
1442                                        rc = split_huge_page_to_list(page, from);
1443                                        unlock_page(page);
1444                                        if (!rc) {
1445                                                list_safe_reset_next(page, page2, lru);
1446                                                goto retry;
1447                                        }
1448                                }
1449                                nr_failed++;
1450                                goto out;
1451                        case -EAGAIN:
1452                                retry++;
1453                                break;
1454                        case MIGRATEPAGE_SUCCESS:
1455                                nr_succeeded++;
1456                                break;
1457                        default:
1458                                /*
1459                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1460                                 * unlike -EAGAIN case, the failed page is
1461                                 * removed from migration page list and not
1462                                 * retried in the next outer loop.
1463                                 */
1464                                nr_failed++;
1465                                break;
1466                        }
1467                }
1468        }
1469        nr_failed += retry;
1470        rc = nr_failed;
1471out:
1472        if (nr_succeeded)
1473                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1474        if (nr_failed)
1475                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1476        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1477
1478        if (!swapwrite)
1479                current->flags &= ~PF_SWAPWRITE;
1480
1481        return rc;
1482}
1483
1484#ifdef CONFIG_NUMA
1485
1486static int store_status(int __user *status, int start, int value, int nr)
1487{
1488        while (nr-- > 0) {
1489                if (put_user(value, status + start))
1490                        return -EFAULT;
1491                start++;
1492        }
1493
1494        return 0;
1495}
1496
1497static int do_move_pages_to_node(struct mm_struct *mm,
1498                struct list_head *pagelist, int node)
1499{
1500        int err;
1501
1502        if (list_empty(pagelist))
1503                return 0;
1504
1505        err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1506                        MIGRATE_SYNC, MR_SYSCALL);
1507        if (err)
1508                putback_movable_pages(pagelist);
1509        return err;
1510}
1511
1512/*
1513 * Resolves the given address to a struct page, isolates it from the LRU and
1514 * puts it to the given pagelist.
1515 * Returns:
1516 *     errno - if the page cannot be found/isolated
1517 *     0 - when it doesn't have to be migrated because it is already on the
1518 *         target node
1519 *     1 - when it has been queued
1520 */
1521static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1522                int node, struct list_head *pagelist, bool migrate_all)
1523{
1524        struct vm_area_struct *vma;
1525        struct page *page;
1526        unsigned int follflags;
1527        int err;
1528
1529        down_read(&mm->mmap_sem);
1530        err = -EFAULT;
1531        vma = find_vma(mm, addr);
1532        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1533                goto out;
1534
1535        /* FOLL_DUMP to ignore special (like zero) pages */
1536        follflags = FOLL_GET | FOLL_DUMP;
1537        page = follow_page(vma, addr, follflags);
1538
1539        err = PTR_ERR(page);
1540        if (IS_ERR(page))
1541                goto out;
1542
1543        err = -ENOENT;
1544        if (!page)
1545                goto out;
1546
1547        err = 0;
1548        if (page_to_nid(page) == node)
1549                goto out_putpage;
1550
1551        err = -EACCES;
1552        if (page_mapcount(page) > 1 && !migrate_all)
1553                goto out_putpage;
1554
1555        if (PageHuge(page)) {
1556                if (PageHead(page)) {
1557                        isolate_huge_page(page, pagelist);
1558                        err = 1;
1559                }
1560        } else {
1561                struct page *head;
1562
1563                head = compound_head(page);
1564                err = isolate_lru_page(head);
1565                if (err)
1566                        goto out_putpage;
1567
1568                err = 1;
1569                list_add_tail(&head->lru, pagelist);
1570                mod_node_page_state(page_pgdat(head),
1571                        NR_ISOLATED_ANON + page_is_file_cache(head),
1572                        hpage_nr_pages(head));
1573        }
1574out_putpage:
1575        /*
1576         * Either remove the duplicate refcount from
1577         * isolate_lru_page() or drop the page ref if it was
1578         * not isolated.
1579         */
1580        put_page(page);
1581out:
1582        up_read(&mm->mmap_sem);
1583        return err;
1584}
1585
1586/*
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1589 */
1590static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591                         unsigned long nr_pages,
1592                         const void __user * __user *pages,
1593                         const int __user *nodes,
1594                         int __user *status, int flags)
1595{
1596        int current_node = NUMA_NO_NODE;
1597        LIST_HEAD(pagelist);
1598        int start, i;
1599        int err = 0, err1;
1600
1601        migrate_prep();
1602
1603        for (i = start = 0; i < nr_pages; i++) {
1604                const void __user *p;
1605                unsigned long addr;
1606                int node;
1607
1608                err = -EFAULT;
1609                if (get_user(p, pages + i))
1610                        goto out_flush;
1611                if (get_user(node, nodes + i))
1612                        goto out_flush;
1613                addr = (unsigned long)untagged_addr(p);
1614
1615                err = -ENODEV;
1616                if (node < 0 || node >= MAX_NUMNODES)
1617                        goto out_flush;
1618                if (!node_state(node, N_MEMORY))
1619                        goto out_flush;
1620
1621                err = -EACCES;
1622                if (!node_isset(node, task_nodes))
1623                        goto out_flush;
1624
1625                if (current_node == NUMA_NO_NODE) {
1626                        current_node = node;
1627                        start = i;
1628                } else if (node != current_node) {
1629                        err = do_move_pages_to_node(mm, &pagelist, current_node);
1630                        if (err) {
1631                                /*
1632                                 * Positive err means the number of failed
1633                                 * pages to migrate.  Since we are going to
1634                                 * abort and return the number of non-migrated
1635                                 * pages, so need to incude the rest of the
1636                                 * nr_pages that have not been attempted as
1637                                 * well.
1638                                 */
1639                                if (err > 0)
1640                                        err += nr_pages - i - 1;
1641                                goto out;
1642                        }
1643                        err = store_status(status, start, current_node, i - start);
1644                        if (err)
1645                                goto out;
1646                        start = i;
1647                        current_node = node;
1648                }
1649
1650                /*
1651                 * Errors in the page lookup or isolation are not fatal and we simply
1652                 * report them via status
1653                 */
1654                err = add_page_for_migration(mm, addr, current_node,
1655                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1656
1657                if (!err) {
1658                        /* The page is already on the target node */
1659                        err = store_status(status, i, current_node, 1);
1660                        if (err)
1661                                goto out_flush;
1662                        continue;
1663                } else if (err > 0) {
1664                        /* The page is successfully queued for migration */
1665                        continue;
1666                }
1667
1668                err = store_status(status, i, err, 1);
1669                if (err)
1670                        goto out_flush;
1671
1672                err = do_move_pages_to_node(mm, &pagelist, current_node);
1673                if (err) {
1674                        if (err > 0)
1675                                err += nr_pages - i - 1;
1676                        goto out;
1677                }
1678                if (i > start) {
1679                        err = store_status(status, start, current_node, i - start);
1680                        if (err)
1681                                goto out;
1682                }
1683                current_node = NUMA_NO_NODE;
1684        }
1685out_flush:
1686        if (list_empty(&pagelist))
1687                return err;
1688
1689        /* Make sure we do not overwrite the existing error */
1690        err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1691        /*
1692         * Don't have to report non-attempted pages here since:
1693         *     - If the above loop is done gracefully all pages have been
1694         *       attempted.
1695         *     - If the above loop is aborted it means a fatal error
1696         *       happened, should return ret.
1697         */
1698        if (!err1)
1699                err1 = store_status(status, start, current_node, i - start);
1700        if (err >= 0)
1701                err = err1;
1702out:
1703        return err;
1704}
1705
1706/*
1707 * Determine the nodes of an array of pages and store it in an array of status.
1708 */
1709static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1710                                const void __user **pages, int *status)
1711{
1712        unsigned long i;
1713
1714        down_read(&mm->mmap_sem);
1715
1716        for (i = 0; i < nr_pages; i++) {
1717                unsigned long addr = (unsigned long)(*pages);
1718                struct vm_area_struct *vma;
1719                struct page *page;
1720                int err = -EFAULT;
1721
1722                vma = find_vma(mm, addr);
1723                if (!vma || addr < vma->vm_start)
1724                        goto set_status;
1725
1726                /* FOLL_DUMP to ignore special (like zero) pages */
1727                page = follow_page(vma, addr, FOLL_DUMP);
1728
1729                err = PTR_ERR(page);
1730                if (IS_ERR(page))
1731                        goto set_status;
1732
1733                err = page ? page_to_nid(page) : -ENOENT;
1734set_status:
1735                *status = err;
1736
1737                pages++;
1738                status++;
1739        }
1740
1741        up_read(&mm->mmap_sem);
1742}
1743
1744/*
1745 * Determine the nodes of a user array of pages and store it in
1746 * a user array of status.
1747 */
1748static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1749                         const void __user * __user *pages,
1750                         int __user *status)
1751{
1752#define DO_PAGES_STAT_CHUNK_NR 16
1753        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1754        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1755
1756        while (nr_pages) {
1757                unsigned long chunk_nr;
1758
1759                chunk_nr = nr_pages;
1760                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1761                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1762
1763                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1764                        break;
1765
1766                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1767
1768                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1769                        break;
1770
1771                pages += chunk_nr;
1772                status += chunk_nr;
1773                nr_pages -= chunk_nr;
1774        }
1775        return nr_pages ? -EFAULT : 0;
1776}
1777
1778/*
1779 * Move a list of pages in the address space of the currently executing
1780 * process.
1781 */
1782static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1783                             const void __user * __user *pages,
1784                             const int __user *nodes,
1785                             int __user *status, int flags)
1786{
1787        struct task_struct *task;
1788        struct mm_struct *mm;
1789        int err;
1790        nodemask_t task_nodes;
1791
1792        /* Check flags */
1793        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1794                return -EINVAL;
1795
1796        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1797                return -EPERM;
1798
1799        /* Find the mm_struct */
1800        rcu_read_lock();
1801        task = pid ? find_task_by_vpid(pid) : current;
1802        if (!task) {
1803                rcu_read_unlock();
1804                return -ESRCH;
1805        }
1806        get_task_struct(task);
1807
1808        /*
1809         * Check if this process has the right to modify the specified
1810         * process. Use the regular "ptrace_may_access()" checks.
1811         */
1812        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1813                rcu_read_unlock();
1814                err = -EPERM;
1815                goto out;
1816        }
1817        rcu_read_unlock();
1818
1819        err = security_task_movememory(task);
1820        if (err)
1821                goto out;
1822
1823        task_nodes = cpuset_mems_allowed(task);
1824        mm = get_task_mm(task);
1825        put_task_struct(task);
1826
1827        if (!mm)
1828                return -EINVAL;
1829
1830        if (nodes)
1831                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1832                                    nodes, status, flags);
1833        else
1834                err = do_pages_stat(mm, nr_pages, pages, status);
1835
1836        mmput(mm);
1837        return err;
1838
1839out:
1840        put_task_struct(task);
1841        return err;
1842}
1843
1844SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1845                const void __user * __user *, pages,
1846                const int __user *, nodes,
1847                int __user *, status, int, flags)
1848{
1849        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1850}
1851
1852#ifdef CONFIG_COMPAT
1853COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1854                       compat_uptr_t __user *, pages32,
1855                       const int __user *, nodes,
1856                       int __user *, status,
1857                       int, flags)
1858{
1859        const void __user * __user *pages;
1860        int i;
1861
1862        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1863        for (i = 0; i < nr_pages; i++) {
1864                compat_uptr_t p;
1865
1866                if (get_user(p, pages32 + i) ||
1867                        put_user(compat_ptr(p), pages + i))
1868                        return -EFAULT;
1869        }
1870        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1871}
1872#endif /* CONFIG_COMPAT */
1873
1874#ifdef CONFIG_NUMA_BALANCING
1875/*
1876 * Returns true if this is a safe migration target node for misplaced NUMA
1877 * pages. Currently it only checks the watermarks which crude
1878 */
1879static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1880                                   unsigned long nr_migrate_pages)
1881{
1882        int z;
1883
1884        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1885                struct zone *zone = pgdat->node_zones + z;
1886
1887                if (!populated_zone(zone))
1888                        continue;
1889
1890                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1891                if (!zone_watermark_ok(zone, 0,
1892                                       high_wmark_pages(zone) +
1893                                       nr_migrate_pages,
1894                                       ZONE_MOVABLE, 0))
1895                        continue;
1896                return true;
1897        }
1898        return false;
1899}
1900
1901static struct page *alloc_misplaced_dst_page(struct page *page,
1902                                           unsigned long data)
1903{
1904        int nid = (int) data;
1905        struct page *newpage;
1906
1907        newpage = __alloc_pages_node(nid,
1908                                         (GFP_HIGHUSER_MOVABLE |
1909                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1910                                          __GFP_NORETRY | __GFP_NOWARN) &
1911                                         ~__GFP_RECLAIM, 0);
1912
1913        return newpage;
1914}
1915
1916static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1917{
1918        int page_lru;
1919
1920        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1921
1922        /* Avoid migrating to a node that is nearly full */
1923        if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1924                return 0;
1925
1926        if (isolate_lru_page(page))
1927                return 0;
1928
1929        /*
1930         * migrate_misplaced_transhuge_page() skips page migration's usual
1931         * check on page_count(), so we must do it here, now that the page
1932         * has been isolated: a GUP pin, or any other pin, prevents migration.
1933         * The expected page count is 3: 1 for page's mapcount and 1 for the
1934         * caller's pin and 1 for the reference taken by isolate_lru_page().
1935         */
1936        if (PageTransHuge(page) && page_count(page) != 3) {
1937                putback_lru_page(page);
1938                return 0;
1939        }
1940
1941        page_lru = page_is_file_cache(page);
1942        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1943                                hpage_nr_pages(page));
1944
1945        /*
1946         * Isolating the page has taken another reference, so the
1947         * caller's reference can be safely dropped without the page
1948         * disappearing underneath us during migration.
1949         */
1950        put_page(page);
1951        return 1;
1952}
1953
1954bool pmd_trans_migrating(pmd_t pmd)
1955{
1956        struct page *page = pmd_page(pmd);
1957        return PageLocked(page);
1958}
1959
1960/*
1961 * Attempt to migrate a misplaced page to the specified destination
1962 * node. Caller is expected to have an elevated reference count on
1963 * the page that will be dropped by this function before returning.
1964 */
1965int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1966                           int node)
1967{
1968        pg_data_t *pgdat = NODE_DATA(node);
1969        int isolated;
1970        int nr_remaining;
1971        LIST_HEAD(migratepages);
1972
1973        /*
1974         * Don't migrate file pages that are mapped in multiple processes
1975         * with execute permissions as they are probably shared libraries.
1976         */
1977        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1978            (vma->vm_flags & VM_EXEC))
1979                goto out;
1980
1981        /*
1982         * Also do not migrate dirty pages as not all filesystems can move
1983         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1984         */
1985        if (page_is_file_cache(page) && PageDirty(page))
1986                goto out;
1987
1988        isolated = numamigrate_isolate_page(pgdat, page);
1989        if (!isolated)
1990                goto out;
1991
1992        list_add(&page->lru, &migratepages);
1993        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1994                                     NULL, node, MIGRATE_ASYNC,
1995                                     MR_NUMA_MISPLACED);
1996        if (nr_remaining) {
1997                if (!list_empty(&migratepages)) {
1998                        list_del(&page->lru);
1999                        dec_node_page_state(page, NR_ISOLATED_ANON +
2000                                        page_is_file_cache(page));
2001                        putback_lru_page(page);
2002                }
2003                isolated = 0;
2004        } else
2005                count_vm_numa_event(NUMA_PAGE_MIGRATE);
2006        BUG_ON(!list_empty(&migratepages));
2007        return isolated;
2008
2009out:
2010        put_page(page);
2011        return 0;
2012}
2013#endif /* CONFIG_NUMA_BALANCING */
2014
2015#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2016/*
2017 * Migrates a THP to a given target node. page must be locked and is unlocked
2018 * before returning.
2019 */
2020int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2021                                struct vm_area_struct *vma,
2022                                pmd_t *pmd, pmd_t entry,
2023                                unsigned long address,
2024                                struct page *page, int node)
2025{
2026        spinlock_t *ptl;
2027        pg_data_t *pgdat = NODE_DATA(node);
2028        int isolated = 0;
2029        struct page *new_page = NULL;
2030        int page_lru = page_is_file_cache(page);
2031        unsigned long start = address & HPAGE_PMD_MASK;
2032
2033        new_page = alloc_pages_node(node,
2034                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2035                HPAGE_PMD_ORDER);
2036        if (!new_page)
2037                goto out_fail;
2038        prep_transhuge_page(new_page);
2039
2040        isolated = numamigrate_isolate_page(pgdat, page);
2041        if (!isolated) {
2042                put_page(new_page);
2043                goto out_fail;
2044        }
2045
2046        /* Prepare a page as a migration target */
2047        __SetPageLocked(new_page);
2048        if (PageSwapBacked(page))
2049                __SetPageSwapBacked(new_page);
2050
2051        /* anon mapping, we can simply copy page->mapping to the new page: */
2052        new_page->mapping = page->mapping;
2053        new_page->index = page->index;
2054        /* flush the cache before copying using the kernel virtual address */
2055        flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2056        migrate_page_copy(new_page, page);
2057        WARN_ON(PageLRU(new_page));
2058
2059        /* Recheck the target PMD */
2060        ptl = pmd_lock(mm, pmd);
2061        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2062                spin_unlock(ptl);
2063
2064                /* Reverse changes made by migrate_page_copy() */
2065                if (TestClearPageActive(new_page))
2066                        SetPageActive(page);
2067                if (TestClearPageUnevictable(new_page))
2068                        SetPageUnevictable(page);
2069
2070                unlock_page(new_page);
2071                put_page(new_page);             /* Free it */
2072
2073                /* Retake the callers reference and putback on LRU */
2074                get_page(page);
2075                putback_lru_page(page);
2076                mod_node_page_state(page_pgdat(page),
2077                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2078
2079                goto out_unlock;
2080        }
2081
2082        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2083        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2084
2085        /*
2086         * Overwrite the old entry under pagetable lock and establish
2087         * the new PTE. Any parallel GUP will either observe the old
2088         * page blocking on the page lock, block on the page table
2089         * lock or observe the new page. The SetPageUptodate on the
2090         * new page and page_add_new_anon_rmap guarantee the copy is
2091         * visible before the pagetable update.
2092         */
2093        page_add_anon_rmap(new_page, vma, start, true);
2094        /*
2095         * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2096         * has already been flushed globally.  So no TLB can be currently
2097         * caching this non present pmd mapping.  There's no need to clear the
2098         * pmd before doing set_pmd_at(), nor to flush the TLB after
2099         * set_pmd_at().  Clearing the pmd here would introduce a race
2100         * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2101         * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2102         * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2103         * pmd.
2104         */
2105        set_pmd_at(mm, start, pmd, entry);
2106        update_mmu_cache_pmd(vma, address, &entry);
2107
2108        page_ref_unfreeze(page, 2);
2109        mlock_migrate_page(new_page, page);
2110        page_remove_rmap(page, true);
2111        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2112
2113        spin_unlock(ptl);
2114
2115        /* Take an "isolate" reference and put new page on the LRU. */
2116        get_page(new_page);
2117        putback_lru_page(new_page);
2118
2119        unlock_page(new_page);
2120        unlock_page(page);
2121        put_page(page);                 /* Drop the rmap reference */
2122        put_page(page);                 /* Drop the LRU isolation reference */
2123
2124        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2125        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2126
2127        mod_node_page_state(page_pgdat(page),
2128                        NR_ISOLATED_ANON + page_lru,
2129                        -HPAGE_PMD_NR);
2130        return isolated;
2131
2132out_fail:
2133        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2134        ptl = pmd_lock(mm, pmd);
2135        if (pmd_same(*pmd, entry)) {
2136                entry = pmd_modify(entry, vma->vm_page_prot);
2137                set_pmd_at(mm, start, pmd, entry);
2138                update_mmu_cache_pmd(vma, address, &entry);
2139        }
2140        spin_unlock(ptl);
2141
2142out_unlock:
2143        unlock_page(page);
2144        put_page(page);
2145        return 0;
2146}
2147#endif /* CONFIG_NUMA_BALANCING */
2148
2149#endif /* CONFIG_NUMA */
2150
2151#ifdef CONFIG_DEVICE_PRIVATE
2152static int migrate_vma_collect_hole(unsigned long start,
2153                                    unsigned long end,
2154                                    __always_unused int depth,
2155                                    struct mm_walk *walk)
2156{
2157        struct migrate_vma *migrate = walk->private;
2158        unsigned long addr;
2159
2160        for (addr = start; addr < end; addr += PAGE_SIZE) {
2161                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2162                migrate->dst[migrate->npages] = 0;
2163                migrate->npages++;
2164                migrate->cpages++;
2165        }
2166
2167        return 0;
2168}
2169
2170static int migrate_vma_collect_skip(unsigned long start,
2171                                    unsigned long end,
2172                                    struct mm_walk *walk)
2173{
2174        struct migrate_vma *migrate = walk->private;
2175        unsigned long addr;
2176
2177        for (addr = start; addr < end; addr += PAGE_SIZE) {
2178                migrate->dst[migrate->npages] = 0;
2179                migrate->src[migrate->npages++] = 0;
2180        }
2181
2182        return 0;
2183}
2184
2185static int migrate_vma_collect_pmd(pmd_t *pmdp,
2186                                   unsigned long start,
2187                                   unsigned long end,
2188                                   struct mm_walk *walk)
2189{
2190        struct migrate_vma *migrate = walk->private;
2191        struct vm_area_struct *vma = walk->vma;
2192        struct mm_struct *mm = vma->vm_mm;
2193        unsigned long addr = start, unmapped = 0;
2194        spinlock_t *ptl;
2195        pte_t *ptep;
2196
2197again:
2198        if (pmd_none(*pmdp))
2199                return migrate_vma_collect_hole(start, end, -1, walk);
2200
2201        if (pmd_trans_huge(*pmdp)) {
2202                struct page *page;
2203
2204                ptl = pmd_lock(mm, pmdp);
2205                if (unlikely(!pmd_trans_huge(*pmdp))) {
2206                        spin_unlock(ptl);
2207                        goto again;
2208                }
2209
2210                page = pmd_page(*pmdp);
2211                if (is_huge_zero_page(page)) {
2212                        spin_unlock(ptl);
2213                        split_huge_pmd(vma, pmdp, addr);
2214                        if (pmd_trans_unstable(pmdp))
2215                                return migrate_vma_collect_skip(start, end,
2216                                                                walk);
2217                } else {
2218                        int ret;
2219
2220                        get_page(page);
2221                        spin_unlock(ptl);
2222                        if (unlikely(!trylock_page(page)))
2223                                return migrate_vma_collect_skip(start, end,
2224                                                                walk);
2225                        ret = split_huge_page(page);
2226                        unlock_page(page);
2227                        put_page(page);
2228                        if (ret)
2229                                return migrate_vma_collect_skip(start, end,
2230                                                                walk);
2231                        if (pmd_none(*pmdp))
2232                                return migrate_vma_collect_hole(start, end, -1,
2233                                                                walk);
2234                }
2235        }
2236
2237        if (unlikely(pmd_bad(*pmdp)))
2238                return migrate_vma_collect_skip(start, end, walk);
2239
2240        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2241        arch_enter_lazy_mmu_mode();
2242
2243        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2244                unsigned long mpfn, pfn;
2245                struct page *page;
2246                swp_entry_t entry;
2247                pte_t pte;
2248
2249                pte = *ptep;
2250
2251                if (pte_none(pte)) {
2252                        mpfn = MIGRATE_PFN_MIGRATE;
2253                        migrate->cpages++;
2254                        goto next;
2255                }
2256
2257                if (!pte_present(pte)) {
2258                        mpfn = 0;
2259
2260                        /*
2261                         * Only care about unaddressable device page special
2262                         * page table entry. Other special swap entries are not
2263                         * migratable, and we ignore regular swapped page.
2264                         */
2265                        entry = pte_to_swp_entry(pte);
2266                        if (!is_device_private_entry(entry))
2267                                goto next;
2268
2269                        page = device_private_entry_to_page(entry);
2270                        mpfn = migrate_pfn(page_to_pfn(page)) |
2271                                        MIGRATE_PFN_MIGRATE;
2272                        if (is_write_device_private_entry(entry))
2273                                mpfn |= MIGRATE_PFN_WRITE;
2274                } else {
2275                        pfn = pte_pfn(pte);
2276                        if (is_zero_pfn(pfn)) {
2277                                mpfn = MIGRATE_PFN_MIGRATE;
2278                                migrate->cpages++;
2279                                goto next;
2280                        }
2281                        page = vm_normal_page(migrate->vma, addr, pte);
2282                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2283                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2284                }
2285
2286                /* FIXME support THP */
2287                if (!page || !page->mapping || PageTransCompound(page)) {
2288                        mpfn = 0;
2289                        goto next;
2290                }
2291
2292                /*
2293                 * By getting a reference on the page we pin it and that blocks
2294                 * any kind of migration. Side effect is that it "freezes" the
2295                 * pte.
2296                 *
2297                 * We drop this reference after isolating the page from the lru
2298                 * for non device page (device page are not on the lru and thus
2299                 * can't be dropped from it).
2300                 */
2301                get_page(page);
2302                migrate->cpages++;
2303
2304                /*
2305                 * Optimize for the common case where page is only mapped once
2306                 * in one process. If we can lock the page, then we can safely
2307                 * set up a special migration page table entry now.
2308                 */
2309                if (trylock_page(page)) {
2310                        pte_t swp_pte;
2311
2312                        mpfn |= MIGRATE_PFN_LOCKED;
2313                        ptep_get_and_clear(mm, addr, ptep);
2314
2315                        /* Setup special migration page table entry */
2316                        entry = make_migration_entry(page, mpfn &
2317                                                     MIGRATE_PFN_WRITE);
2318                        swp_pte = swp_entry_to_pte(entry);
2319                        if (pte_soft_dirty(pte))
2320                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
2321                        set_pte_at(mm, addr, ptep, swp_pte);
2322
2323                        /*
2324                         * This is like regular unmap: we remove the rmap and
2325                         * drop page refcount. Page won't be freed, as we took
2326                         * a reference just above.
2327                         */
2328                        page_remove_rmap(page, false);
2329                        put_page(page);
2330
2331                        if (pte_present(pte))
2332                                unmapped++;
2333                }
2334
2335next:
2336                migrate->dst[migrate->npages] = 0;
2337                migrate->src[migrate->npages++] = mpfn;
2338        }
2339        arch_leave_lazy_mmu_mode();
2340        pte_unmap_unlock(ptep - 1, ptl);
2341
2342        /* Only flush the TLB if we actually modified any entries */
2343        if (unmapped)
2344                flush_tlb_range(walk->vma, start, end);
2345
2346        return 0;
2347}
2348
2349static const struct mm_walk_ops migrate_vma_walk_ops = {
2350        .pmd_entry              = migrate_vma_collect_pmd,
2351        .pte_hole               = migrate_vma_collect_hole,
2352};
2353
2354/*
2355 * migrate_vma_collect() - collect pages over a range of virtual addresses
2356 * @migrate: migrate struct containing all migration information
2357 *
2358 * This will walk the CPU page table. For each virtual address backed by a
2359 * valid page, it updates the src array and takes a reference on the page, in
2360 * order to pin the page until we lock it and unmap it.
2361 */
2362static void migrate_vma_collect(struct migrate_vma *migrate)
2363{
2364        struct mmu_notifier_range range;
2365
2366        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2367                        migrate->vma->vm_mm, migrate->start, migrate->end);
2368        mmu_notifier_invalidate_range_start(&range);
2369
2370        walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2371                        &migrate_vma_walk_ops, migrate);
2372
2373        mmu_notifier_invalidate_range_end(&range);
2374        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2375}
2376
2377/*
2378 * migrate_vma_check_page() - check if page is pinned or not
2379 * @page: struct page to check
2380 *
2381 * Pinned pages cannot be migrated. This is the same test as in
2382 * migrate_page_move_mapping(), except that here we allow migration of a
2383 * ZONE_DEVICE page.
2384 */
2385static bool migrate_vma_check_page(struct page *page)
2386{
2387        /*
2388         * One extra ref because caller holds an extra reference, either from
2389         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2390         * a device page.
2391         */
2392        int extra = 1;
2393
2394        /*
2395         * FIXME support THP (transparent huge page), it is bit more complex to
2396         * check them than regular pages, because they can be mapped with a pmd
2397         * or with a pte (split pte mapping).
2398         */
2399        if (PageCompound(page))
2400                return false;
2401
2402        /* Page from ZONE_DEVICE have one extra reference */
2403        if (is_zone_device_page(page)) {
2404                /*
2405                 * Private page can never be pin as they have no valid pte and
2406                 * GUP will fail for those. Yet if there is a pending migration
2407                 * a thread might try to wait on the pte migration entry and
2408                 * will bump the page reference count. Sadly there is no way to
2409                 * differentiate a regular pin from migration wait. Hence to
2410                 * avoid 2 racing thread trying to migrate back to CPU to enter
2411                 * infinite loop (one stoping migration because the other is
2412                 * waiting on pte migration entry). We always return true here.
2413                 *
2414                 * FIXME proper solution is to rework migration_entry_wait() so
2415                 * it does not need to take a reference on page.
2416                 */
2417                return is_device_private_page(page);
2418        }
2419
2420        /* For file back page */
2421        if (page_mapping(page))
2422                extra += 1 + page_has_private(page);
2423
2424        if ((page_count(page) - extra) > page_mapcount(page))
2425                return false;
2426
2427        return true;
2428}
2429
2430/*
2431 * migrate_vma_prepare() - lock pages and isolate them from the lru
2432 * @migrate: migrate struct containing all migration information
2433 *
2434 * This locks pages that have been collected by migrate_vma_collect(). Once each
2435 * page is locked it is isolated from the lru (for non-device pages). Finally,
2436 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2437 * migrated by concurrent kernel threads.
2438 */
2439static void migrate_vma_prepare(struct migrate_vma *migrate)
2440{
2441        const unsigned long npages = migrate->npages;
2442        const unsigned long start = migrate->start;
2443        unsigned long addr, i, restore = 0;
2444        bool allow_drain = true;
2445
2446        lru_add_drain();
2447
2448        for (i = 0; (i < npages) && migrate->cpages; i++) {
2449                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2450                bool remap = true;
2451
2452                if (!page)
2453                        continue;
2454
2455                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2456                        /*
2457                         * Because we are migrating several pages there can be
2458                         * a deadlock between 2 concurrent migration where each
2459                         * are waiting on each other page lock.
2460                         *
2461                         * Make migrate_vma() a best effort thing and backoff
2462                         * for any page we can not lock right away.
2463                         */
2464                        if (!trylock_page(page)) {
2465                                migrate->src[i] = 0;
2466                                migrate->cpages--;
2467                                put_page(page);
2468                                continue;
2469                        }
2470                        remap = false;
2471                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2472                }
2473
2474                /* ZONE_DEVICE pages are not on LRU */
2475                if (!is_zone_device_page(page)) {
2476                        if (!PageLRU(page) && allow_drain) {
2477                                /* Drain CPU's pagevec */
2478                                lru_add_drain_all();
2479                                allow_drain = false;
2480                        }
2481
2482                        if (isolate_lru_page(page)) {
2483                                if (remap) {
2484                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2485                                        migrate->cpages--;
2486                                        restore++;
2487                                } else {
2488                                        migrate->src[i] = 0;
2489                                        unlock_page(page);
2490                                        migrate->cpages--;
2491                                        put_page(page);
2492                                }
2493                                continue;
2494                        }
2495
2496                        /* Drop the reference we took in collect */
2497                        put_page(page);
2498                }
2499
2500                if (!migrate_vma_check_page(page)) {
2501                        if (remap) {
2502                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2503                                migrate->cpages--;
2504                                restore++;
2505
2506                                if (!is_zone_device_page(page)) {
2507                                        get_page(page);
2508                                        putback_lru_page(page);
2509                                }
2510                        } else {
2511                                migrate->src[i] = 0;
2512                                unlock_page(page);
2513                                migrate->cpages--;
2514
2515                                if (!is_zone_device_page(page))
2516                                        putback_lru_page(page);
2517                                else
2518                                        put_page(page);
2519                        }
2520                }
2521        }
2522
2523        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2524                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2525
2526                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2527                        continue;
2528
2529                remove_migration_pte(page, migrate->vma, addr, page);
2530
2531                migrate->src[i] = 0;
2532                unlock_page(page);
2533                put_page(page);
2534                restore--;
2535        }
2536}
2537
2538/*
2539 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2540 * @migrate: migrate struct containing all migration information
2541 *
2542 * Replace page mapping (CPU page table pte) with a special migration pte entry
2543 * and check again if it has been pinned. Pinned pages are restored because we
2544 * cannot migrate them.
2545 *
2546 * This is the last step before we call the device driver callback to allocate
2547 * destination memory and copy contents of original page over to new page.
2548 */
2549static void migrate_vma_unmap(struct migrate_vma *migrate)
2550{
2551        int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2552        const unsigned long npages = migrate->npages;
2553        const unsigned long start = migrate->start;
2554        unsigned long addr, i, restore = 0;
2555
2556        for (i = 0; i < npages; i++) {
2557                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2558
2559                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2560                        continue;
2561
2562                if (page_mapped(page)) {
2563                        try_to_unmap(page, flags);
2564                        if (page_mapped(page))
2565                                goto restore;
2566                }
2567
2568                if (migrate_vma_check_page(page))
2569                        continue;
2570
2571restore:
2572                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2573                migrate->cpages--;
2574                restore++;
2575        }
2576
2577        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2578                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579
2580                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581                        continue;
2582
2583                remove_migration_ptes(page, page, false);
2584
2585                migrate->src[i] = 0;
2586                unlock_page(page);
2587                restore--;
2588
2589                if (is_zone_device_page(page))
2590                        put_page(page);
2591                else
2592                        putback_lru_page(page);
2593        }
2594}
2595
2596/**
2597 * migrate_vma_setup() - prepare to migrate a range of memory
2598 * @args: contains the vma, start, and and pfns arrays for the migration
2599 *
2600 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2601 * without an error.
2602 *
2603 * Prepare to migrate a range of memory virtual address range by collecting all
2604 * the pages backing each virtual address in the range, saving them inside the
2605 * src array.  Then lock those pages and unmap them. Once the pages are locked
2606 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2607 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2608 * corresponding src array entry.  Then restores any pages that are pinned, by
2609 * remapping and unlocking those pages.
2610 *
2611 * The caller should then allocate destination memory and copy source memory to
2612 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2613 * flag set).  Once these are allocated and copied, the caller must update each
2614 * corresponding entry in the dst array with the pfn value of the destination
2615 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2616 * (destination pages must have their struct pages locked, via lock_page()).
2617 *
2618 * Note that the caller does not have to migrate all the pages that are marked
2619 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2620 * device memory to system memory.  If the caller cannot migrate a device page
2621 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2622 * consequences for the userspace process, so it must be avoided if at all
2623 * possible.
2624 *
2625 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2626 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2627 * allowing the caller to allocate device memory for those unback virtual
2628 * address.  For this the caller simply has to allocate device memory and
2629 * properly set the destination entry like for regular migration.  Note that
2630 * this can still fails and thus inside the device driver must check if the
2631 * migration was successful for those entries after calling migrate_vma_pages()
2632 * just like for regular migration.
2633 *
2634 * After that, the callers must call migrate_vma_pages() to go over each entry
2635 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2636 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2637 * then migrate_vma_pages() to migrate struct page information from the source
2638 * struct page to the destination struct page.  If it fails to migrate the
2639 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2640 * src array.
2641 *
2642 * At this point all successfully migrated pages have an entry in the src
2643 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2644 * array entry with MIGRATE_PFN_VALID flag set.
2645 *
2646 * Once migrate_vma_pages() returns the caller may inspect which pages were
2647 * successfully migrated, and which were not.  Successfully migrated pages will
2648 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2649 *
2650 * It is safe to update device page table after migrate_vma_pages() because
2651 * both destination and source page are still locked, and the mmap_sem is held
2652 * in read mode (hence no one can unmap the range being migrated).
2653 *
2654 * Once the caller is done cleaning up things and updating its page table (if it
2655 * chose to do so, this is not an obligation) it finally calls
2656 * migrate_vma_finalize() to update the CPU page table to point to new pages
2657 * for successfully migrated pages or otherwise restore the CPU page table to
2658 * point to the original source pages.
2659 */
2660int migrate_vma_setup(struct migrate_vma *args)
2661{
2662        long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2663
2664        args->start &= PAGE_MASK;
2665        args->end &= PAGE_MASK;
2666        if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2667            (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2668                return -EINVAL;
2669        if (nr_pages <= 0)
2670                return -EINVAL;
2671        if (args->start < args->vma->vm_start ||
2672            args->start >= args->vma->vm_end)
2673                return -EINVAL;
2674        if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2675                return -EINVAL;
2676        if (!args->src || !args->dst)
2677                return -EINVAL;
2678
2679        memset(args->src, 0, sizeof(*args->src) * nr_pages);
2680        args->cpages = 0;
2681        args->npages = 0;
2682
2683        migrate_vma_collect(args);
2684
2685        if (args->cpages)
2686                migrate_vma_prepare(args);
2687        if (args->cpages)
2688                migrate_vma_unmap(args);
2689
2690        /*
2691         * At this point pages are locked and unmapped, and thus they have
2692         * stable content and can safely be copied to destination memory that
2693         * is allocated by the drivers.
2694         */
2695        return 0;
2696
2697}
2698EXPORT_SYMBOL(migrate_vma_setup);
2699
2700/*
2701 * This code closely matches the code in:
2702 *   __handle_mm_fault()
2703 *     handle_pte_fault()
2704 *       do_anonymous_page()
2705 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2706 * private page.
2707 */
2708static void migrate_vma_insert_page(struct migrate_vma *migrate,
2709                                    unsigned long addr,
2710                                    struct page *page,
2711                                    unsigned long *src,
2712                                    unsigned long *dst)
2713{
2714        struct vm_area_struct *vma = migrate->vma;
2715        struct mm_struct *mm = vma->vm_mm;
2716        struct mem_cgroup *memcg;
2717        bool flush = false;
2718        spinlock_t *ptl;
2719        pte_t entry;
2720        pgd_t *pgdp;
2721        p4d_t *p4dp;
2722        pud_t *pudp;
2723        pmd_t *pmdp;
2724        pte_t *ptep;
2725
2726        /* Only allow populating anonymous memory */
2727        if (!vma_is_anonymous(vma))
2728                goto abort;
2729
2730        pgdp = pgd_offset(mm, addr);
2731        p4dp = p4d_alloc(mm, pgdp, addr);
2732        if (!p4dp)
2733                goto abort;
2734        pudp = pud_alloc(mm, p4dp, addr);
2735        if (!pudp)
2736                goto abort;
2737        pmdp = pmd_alloc(mm, pudp, addr);
2738        if (!pmdp)
2739                goto abort;
2740
2741        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2742                goto abort;
2743
2744        /*
2745         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2746         * pte_offset_map() on pmds where a huge pmd might be created
2747         * from a different thread.
2748         *
2749         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2750         * parallel threads are excluded by other means.
2751         *
2752         * Here we only have down_read(mmap_sem).
2753         */
2754        if (pte_alloc(mm, pmdp))
2755                goto abort;
2756
2757        /* See the comment in pte_alloc_one_map() */
2758        if (unlikely(pmd_trans_unstable(pmdp)))
2759                goto abort;
2760
2761        if (unlikely(anon_vma_prepare(vma)))
2762                goto abort;
2763        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2764                goto abort;
2765
2766        /*
2767         * The memory barrier inside __SetPageUptodate makes sure that
2768         * preceding stores to the page contents become visible before
2769         * the set_pte_at() write.
2770         */
2771        __SetPageUptodate(page);
2772
2773        if (is_zone_device_page(page)) {
2774                if (is_device_private_page(page)) {
2775                        swp_entry_t swp_entry;
2776
2777                        swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2778                        entry = swp_entry_to_pte(swp_entry);
2779                }
2780        } else {
2781                entry = mk_pte(page, vma->vm_page_prot);
2782                if (vma->vm_flags & VM_WRITE)
2783                        entry = pte_mkwrite(pte_mkdirty(entry));
2784        }
2785
2786        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2787
2788        if (check_stable_address_space(mm))
2789                goto unlock_abort;
2790
2791        if (pte_present(*ptep)) {
2792                unsigned long pfn = pte_pfn(*ptep);
2793
2794                if (!is_zero_pfn(pfn))
2795                        goto unlock_abort;
2796                flush = true;
2797        } else if (!pte_none(*ptep))
2798                goto unlock_abort;
2799
2800        /*
2801         * Check for userfaultfd but do not deliver the fault. Instead,
2802         * just back off.
2803         */
2804        if (userfaultfd_missing(vma))
2805                goto unlock_abort;
2806
2807        inc_mm_counter(mm, MM_ANONPAGES);
2808        page_add_new_anon_rmap(page, vma, addr, false);
2809        mem_cgroup_commit_charge(page, memcg, false, false);
2810        if (!is_zone_device_page(page))
2811                lru_cache_add_active_or_unevictable(page, vma);
2812        get_page(page);
2813
2814        if (flush) {
2815                flush_cache_page(vma, addr, pte_pfn(*ptep));
2816                ptep_clear_flush_notify(vma, addr, ptep);
2817                set_pte_at_notify(mm, addr, ptep, entry);
2818                update_mmu_cache(vma, addr, ptep);
2819        } else {
2820                /* No need to invalidate - it was non-present before */
2821                set_pte_at(mm, addr, ptep, entry);
2822                update_mmu_cache(vma, addr, ptep);
2823        }
2824
2825        pte_unmap_unlock(ptep, ptl);
2826        *src = MIGRATE_PFN_MIGRATE;
2827        return;
2828
2829unlock_abort:
2830        pte_unmap_unlock(ptep, ptl);
2831        mem_cgroup_cancel_charge(page, memcg, false);
2832abort:
2833        *src &= ~MIGRATE_PFN_MIGRATE;
2834}
2835
2836/**
2837 * migrate_vma_pages() - migrate meta-data from src page to dst page
2838 * @migrate: migrate struct containing all migration information
2839 *
2840 * This migrates struct page meta-data from source struct page to destination
2841 * struct page. This effectively finishes the migration from source page to the
2842 * destination page.
2843 */
2844void migrate_vma_pages(struct migrate_vma *migrate)
2845{
2846        const unsigned long npages = migrate->npages;
2847        const unsigned long start = migrate->start;
2848        struct mmu_notifier_range range;
2849        unsigned long addr, i;
2850        bool notified = false;
2851
2852        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2853                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2854                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2855                struct address_space *mapping;
2856                int r;
2857
2858                if (!newpage) {
2859                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2860                        continue;
2861                }
2862
2863                if (!page) {
2864                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2865                                continue;
2866                        if (!notified) {
2867                                notified = true;
2868
2869                                mmu_notifier_range_init(&range,
2870                                                        MMU_NOTIFY_CLEAR, 0,
2871                                                        NULL,
2872                                                        migrate->vma->vm_mm,
2873                                                        addr, migrate->end);
2874                                mmu_notifier_invalidate_range_start(&range);
2875                        }
2876                        migrate_vma_insert_page(migrate, addr, newpage,
2877                                                &migrate->src[i],
2878                                                &migrate->dst[i]);
2879                        continue;
2880                }
2881
2882                mapping = page_mapping(page);
2883
2884                if (is_zone_device_page(newpage)) {
2885                        if (is_device_private_page(newpage)) {
2886                                /*
2887                                 * For now only support private anonymous when
2888                                 * migrating to un-addressable device memory.
2889                                 */
2890                                if (mapping) {
2891                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2892                                        continue;
2893                                }
2894                        } else {
2895                                /*
2896                                 * Other types of ZONE_DEVICE page are not
2897                                 * supported.
2898                                 */
2899                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2900                                continue;
2901                        }
2902                }
2903
2904                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2905                if (r != MIGRATEPAGE_SUCCESS)
2906                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2907        }
2908
2909        /*
2910         * No need to double call mmu_notifier->invalidate_range() callback as
2911         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2912         * did already call it.
2913         */
2914        if (notified)
2915                mmu_notifier_invalidate_range_only_end(&range);
2916}
2917EXPORT_SYMBOL(migrate_vma_pages);
2918
2919/**
2920 * migrate_vma_finalize() - restore CPU page table entry
2921 * @migrate: migrate struct containing all migration information
2922 *
2923 * This replaces the special migration pte entry with either a mapping to the
2924 * new page if migration was successful for that page, or to the original page
2925 * otherwise.
2926 *
2927 * This also unlocks the pages and puts them back on the lru, or drops the extra
2928 * refcount, for device pages.
2929 */
2930void migrate_vma_finalize(struct migrate_vma *migrate)
2931{
2932        const unsigned long npages = migrate->npages;
2933        unsigned long i;
2934
2935        for (i = 0; i < npages; i++) {
2936                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2937                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2938
2939                if (!page) {
2940                        if (newpage) {
2941                                unlock_page(newpage);
2942                                put_page(newpage);
2943                        }
2944                        continue;
2945                }
2946
2947                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2948                        if (newpage) {
2949                                unlock_page(newpage);
2950                                put_page(newpage);
2951                        }
2952                        newpage = page;
2953                }
2954
2955                remove_migration_ptes(page, newpage, false);
2956                unlock_page(page);
2957                migrate->cpages--;
2958
2959                if (is_zone_device_page(page))
2960                        put_page(page);
2961                else
2962                        putback_lru_page(page);
2963
2964                if (newpage != page) {
2965                        unlock_page(newpage);
2966                        if (is_zone_device_page(newpage))
2967                                put_page(newpage);
2968                        else
2969                                putback_lru_page(newpage);
2970                }
2971        }
2972}
2973EXPORT_SYMBOL(migrate_vma_finalize);
2974#endif /* CONFIG_DEVICE_PRIVATE */
2975