linux/net/core/filter.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *      Jay Schulist <jschlst@samba.org>
  13 *      Alexei Starovoitov <ast@plumgrid.com>
  14 *      Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/types.h>
  22#include <linux/mm.h>
  23#include <linux/fcntl.h>
  24#include <linux/socket.h>
  25#include <linux/sock_diag.h>
  26#include <linux/in.h>
  27#include <linux/inet.h>
  28#include <linux/netdevice.h>
  29#include <linux/if_packet.h>
  30#include <linux/if_arp.h>
  31#include <linux/gfp.h>
  32#include <net/inet_common.h>
  33#include <net/ip.h>
  34#include <net/protocol.h>
  35#include <net/netlink.h>
  36#include <linux/skbuff.h>
  37#include <linux/skmsg.h>
  38#include <net/sock.h>
  39#include <net/flow_dissector.h>
  40#include <linux/errno.h>
  41#include <linux/timer.h>
  42#include <linux/uaccess.h>
  43#include <asm/unaligned.h>
  44#include <asm/cmpxchg.h>
  45#include <linux/filter.h>
  46#include <linux/ratelimit.h>
  47#include <linux/seccomp.h>
  48#include <linux/if_vlan.h>
  49#include <linux/bpf.h>
  50#include <net/sch_generic.h>
  51#include <net/cls_cgroup.h>
  52#include <net/dst_metadata.h>
  53#include <net/dst.h>
  54#include <net/sock_reuseport.h>
  55#include <net/busy_poll.h>
  56#include <net/tcp.h>
  57#include <net/xfrm.h>
  58#include <net/udp.h>
  59#include <linux/bpf_trace.h>
  60#include <net/xdp_sock.h>
  61#include <linux/inetdevice.h>
  62#include <net/inet_hashtables.h>
  63#include <net/inet6_hashtables.h>
  64#include <net/ip_fib.h>
  65#include <net/nexthop.h>
  66#include <net/flow.h>
  67#include <net/arp.h>
  68#include <net/ipv6.h>
  69#include <net/net_namespace.h>
  70#include <linux/seg6_local.h>
  71#include <net/seg6.h>
  72#include <net/seg6_local.h>
  73#include <net/lwtunnel.h>
  74#include <net/ipv6_stubs.h>
  75#include <net/bpf_sk_storage.h>
  76
  77/**
  78 *      sk_filter_trim_cap - run a packet through a socket filter
  79 *      @sk: sock associated with &sk_buff
  80 *      @skb: buffer to filter
  81 *      @cap: limit on how short the eBPF program may trim the packet
  82 *
  83 * Run the eBPF program and then cut skb->data to correct size returned by
  84 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
  85 * than pkt_len we keep whole skb->data. This is the socket level
  86 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
  87 * be accepted or -EPERM if the packet should be tossed.
  88 *
  89 */
  90int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
  91{
  92        int err;
  93        struct sk_filter *filter;
  94
  95        /*
  96         * If the skb was allocated from pfmemalloc reserves, only
  97         * allow SOCK_MEMALLOC sockets to use it as this socket is
  98         * helping free memory
  99         */
 100        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
 101                NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
 102                return -ENOMEM;
 103        }
 104        err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
 105        if (err)
 106                return err;
 107
 108        err = security_sock_rcv_skb(sk, skb);
 109        if (err)
 110                return err;
 111
 112        rcu_read_lock();
 113        filter = rcu_dereference(sk->sk_filter);
 114        if (filter) {
 115                struct sock *save_sk = skb->sk;
 116                unsigned int pkt_len;
 117
 118                skb->sk = sk;
 119                pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
 120                skb->sk = save_sk;
 121                err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
 122        }
 123        rcu_read_unlock();
 124
 125        return err;
 126}
 127EXPORT_SYMBOL(sk_filter_trim_cap);
 128
 129BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
 130{
 131        return skb_get_poff(skb);
 132}
 133
 134BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
 135{
 136        struct nlattr *nla;
 137
 138        if (skb_is_nonlinear(skb))
 139                return 0;
 140
 141        if (skb->len < sizeof(struct nlattr))
 142                return 0;
 143
 144        if (a > skb->len - sizeof(struct nlattr))
 145                return 0;
 146
 147        nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
 148        if (nla)
 149                return (void *) nla - (void *) skb->data;
 150
 151        return 0;
 152}
 153
 154BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
 155{
 156        struct nlattr *nla;
 157
 158        if (skb_is_nonlinear(skb))
 159                return 0;
 160
 161        if (skb->len < sizeof(struct nlattr))
 162                return 0;
 163
 164        if (a > skb->len - sizeof(struct nlattr))
 165                return 0;
 166
 167        nla = (struct nlattr *) &skb->data[a];
 168        if (nla->nla_len > skb->len - a)
 169                return 0;
 170
 171        nla = nla_find_nested(nla, x);
 172        if (nla)
 173                return (void *) nla - (void *) skb->data;
 174
 175        return 0;
 176}
 177
 178BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
 179           data, int, headlen, int, offset)
 180{
 181        u8 tmp, *ptr;
 182        const int len = sizeof(tmp);
 183
 184        if (offset >= 0) {
 185                if (headlen - offset >= len)
 186                        return *(u8 *)(data + offset);
 187                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 188                        return tmp;
 189        } else {
 190                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 191                if (likely(ptr))
 192                        return *(u8 *)ptr;
 193        }
 194
 195        return -EFAULT;
 196}
 197
 198BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
 199           int, offset)
 200{
 201        return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
 202                                         offset);
 203}
 204
 205BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
 206           data, int, headlen, int, offset)
 207{
 208        u16 tmp, *ptr;
 209        const int len = sizeof(tmp);
 210
 211        if (offset >= 0) {
 212                if (headlen - offset >= len)
 213                        return get_unaligned_be16(data + offset);
 214                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 215                        return be16_to_cpu(tmp);
 216        } else {
 217                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 218                if (likely(ptr))
 219                        return get_unaligned_be16(ptr);
 220        }
 221
 222        return -EFAULT;
 223}
 224
 225BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
 226           int, offset)
 227{
 228        return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
 229                                          offset);
 230}
 231
 232BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
 233           data, int, headlen, int, offset)
 234{
 235        u32 tmp, *ptr;
 236        const int len = sizeof(tmp);
 237
 238        if (likely(offset >= 0)) {
 239                if (headlen - offset >= len)
 240                        return get_unaligned_be32(data + offset);
 241                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 242                        return be32_to_cpu(tmp);
 243        } else {
 244                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 245                if (likely(ptr))
 246                        return get_unaligned_be32(ptr);
 247        }
 248
 249        return -EFAULT;
 250}
 251
 252BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
 253           int, offset)
 254{
 255        return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
 256                                          offset);
 257}
 258
 259BPF_CALL_0(bpf_get_raw_cpu_id)
 260{
 261        return raw_smp_processor_id();
 262}
 263
 264static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
 265        .func           = bpf_get_raw_cpu_id,
 266        .gpl_only       = false,
 267        .ret_type       = RET_INTEGER,
 268};
 269
 270static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
 271                              struct bpf_insn *insn_buf)
 272{
 273        struct bpf_insn *insn = insn_buf;
 274
 275        switch (skb_field) {
 276        case SKF_AD_MARK:
 277                BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
 278
 279                *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
 280                                      offsetof(struct sk_buff, mark));
 281                break;
 282
 283        case SKF_AD_PKTTYPE:
 284                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
 285                *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
 286#ifdef __BIG_ENDIAN_BITFIELD
 287                *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
 288#endif
 289                break;
 290
 291        case SKF_AD_QUEUE:
 292                BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
 293
 294                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 295                                      offsetof(struct sk_buff, queue_mapping));
 296                break;
 297
 298        case SKF_AD_VLAN_TAG:
 299                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
 300
 301                /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
 302                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 303                                      offsetof(struct sk_buff, vlan_tci));
 304                break;
 305        case SKF_AD_VLAN_TAG_PRESENT:
 306                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
 307                if (PKT_VLAN_PRESENT_BIT)
 308                        *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
 309                if (PKT_VLAN_PRESENT_BIT < 7)
 310                        *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
 311                break;
 312        }
 313
 314        return insn - insn_buf;
 315}
 316
 317static bool convert_bpf_extensions(struct sock_filter *fp,
 318                                   struct bpf_insn **insnp)
 319{
 320        struct bpf_insn *insn = *insnp;
 321        u32 cnt;
 322
 323        switch (fp->k) {
 324        case SKF_AD_OFF + SKF_AD_PROTOCOL:
 325                BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
 326
 327                /* A = *(u16 *) (CTX + offsetof(protocol)) */
 328                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 329                                      offsetof(struct sk_buff, protocol));
 330                /* A = ntohs(A) [emitting a nop or swap16] */
 331                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 332                break;
 333
 334        case SKF_AD_OFF + SKF_AD_PKTTYPE:
 335                cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
 336                insn += cnt - 1;
 337                break;
 338
 339        case SKF_AD_OFF + SKF_AD_IFINDEX:
 340        case SKF_AD_OFF + SKF_AD_HATYPE:
 341                BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
 342                BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
 343
 344                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
 345                                      BPF_REG_TMP, BPF_REG_CTX,
 346                                      offsetof(struct sk_buff, dev));
 347                /* if (tmp != 0) goto pc + 1 */
 348                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
 349                *insn++ = BPF_EXIT_INSN();
 350                if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
 351                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
 352                                            offsetof(struct net_device, ifindex));
 353                else
 354                        *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
 355                                            offsetof(struct net_device, type));
 356                break;
 357
 358        case SKF_AD_OFF + SKF_AD_MARK:
 359                cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
 360                insn += cnt - 1;
 361                break;
 362
 363        case SKF_AD_OFF + SKF_AD_RXHASH:
 364                BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
 365
 366                *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
 367                                    offsetof(struct sk_buff, hash));
 368                break;
 369
 370        case SKF_AD_OFF + SKF_AD_QUEUE:
 371                cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
 372                insn += cnt - 1;
 373                break;
 374
 375        case SKF_AD_OFF + SKF_AD_VLAN_TAG:
 376                cnt = convert_skb_access(SKF_AD_VLAN_TAG,
 377                                         BPF_REG_A, BPF_REG_CTX, insn);
 378                insn += cnt - 1;
 379                break;
 380
 381        case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
 382                cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
 383                                         BPF_REG_A, BPF_REG_CTX, insn);
 384                insn += cnt - 1;
 385                break;
 386
 387        case SKF_AD_OFF + SKF_AD_VLAN_TPID:
 388                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
 389
 390                /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
 391                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 392                                      offsetof(struct sk_buff, vlan_proto));
 393                /* A = ntohs(A) [emitting a nop or swap16] */
 394                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 395                break;
 396
 397        case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 398        case SKF_AD_OFF + SKF_AD_NLATTR:
 399        case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 400        case SKF_AD_OFF + SKF_AD_CPU:
 401        case SKF_AD_OFF + SKF_AD_RANDOM:
 402                /* arg1 = CTX */
 403                *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 404                /* arg2 = A */
 405                *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
 406                /* arg3 = X */
 407                *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
 408                /* Emit call(arg1=CTX, arg2=A, arg3=X) */
 409                switch (fp->k) {
 410                case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 411                        *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
 412                        break;
 413                case SKF_AD_OFF + SKF_AD_NLATTR:
 414                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
 415                        break;
 416                case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 417                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
 418                        break;
 419                case SKF_AD_OFF + SKF_AD_CPU:
 420                        *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
 421                        break;
 422                case SKF_AD_OFF + SKF_AD_RANDOM:
 423                        *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
 424                        bpf_user_rnd_init_once();
 425                        break;
 426                }
 427                break;
 428
 429        case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
 430                /* A ^= X */
 431                *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
 432                break;
 433
 434        default:
 435                /* This is just a dummy call to avoid letting the compiler
 436                 * evict __bpf_call_base() as an optimization. Placed here
 437                 * where no-one bothers.
 438                 */
 439                BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
 440                return false;
 441        }
 442
 443        *insnp = insn;
 444        return true;
 445}
 446
 447static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
 448{
 449        const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
 450        int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
 451        bool endian = BPF_SIZE(fp->code) == BPF_H ||
 452                      BPF_SIZE(fp->code) == BPF_W;
 453        bool indirect = BPF_MODE(fp->code) == BPF_IND;
 454        const int ip_align = NET_IP_ALIGN;
 455        struct bpf_insn *insn = *insnp;
 456        int offset = fp->k;
 457
 458        if (!indirect &&
 459            ((unaligned_ok && offset >= 0) ||
 460             (!unaligned_ok && offset >= 0 &&
 461              offset + ip_align >= 0 &&
 462              offset + ip_align % size == 0))) {
 463                bool ldx_off_ok = offset <= S16_MAX;
 464
 465                *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
 466                if (offset)
 467                        *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
 468                *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
 469                                      size, 2 + endian + (!ldx_off_ok * 2));
 470                if (ldx_off_ok) {
 471                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 472                                              BPF_REG_D, offset);
 473                } else {
 474                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
 475                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
 476                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 477                                              BPF_REG_TMP, 0);
 478                }
 479                if (endian)
 480                        *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
 481                *insn++ = BPF_JMP_A(8);
 482        }
 483
 484        *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 485        *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
 486        *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
 487        if (!indirect) {
 488                *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
 489        } else {
 490                *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
 491                if (fp->k)
 492                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
 493        }
 494
 495        switch (BPF_SIZE(fp->code)) {
 496        case BPF_B:
 497                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
 498                break;
 499        case BPF_H:
 500                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
 501                break;
 502        case BPF_W:
 503                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
 504                break;
 505        default:
 506                return false;
 507        }
 508
 509        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
 510        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 511        *insn   = BPF_EXIT_INSN();
 512
 513        *insnp = insn;
 514        return true;
 515}
 516
 517/**
 518 *      bpf_convert_filter - convert filter program
 519 *      @prog: the user passed filter program
 520 *      @len: the length of the user passed filter program
 521 *      @new_prog: allocated 'struct bpf_prog' or NULL
 522 *      @new_len: pointer to store length of converted program
 523 *      @seen_ld_abs: bool whether we've seen ld_abs/ind
 524 *
 525 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 526 * style extended BPF (eBPF).
 527 * Conversion workflow:
 528 *
 529 * 1) First pass for calculating the new program length:
 530 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
 531 *
 532 * 2) 2nd pass to remap in two passes: 1st pass finds new
 533 *    jump offsets, 2nd pass remapping:
 534 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
 535 */
 536static int bpf_convert_filter(struct sock_filter *prog, int len,
 537                              struct bpf_prog *new_prog, int *new_len,
 538                              bool *seen_ld_abs)
 539{
 540        int new_flen = 0, pass = 0, target, i, stack_off;
 541        struct bpf_insn *new_insn, *first_insn = NULL;
 542        struct sock_filter *fp;
 543        int *addrs = NULL;
 544        u8 bpf_src;
 545
 546        BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
 547        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
 548
 549        if (len <= 0 || len > BPF_MAXINSNS)
 550                return -EINVAL;
 551
 552        if (new_prog) {
 553                first_insn = new_prog->insnsi;
 554                addrs = kcalloc(len, sizeof(*addrs),
 555                                GFP_KERNEL | __GFP_NOWARN);
 556                if (!addrs)
 557                        return -ENOMEM;
 558        }
 559
 560do_pass:
 561        new_insn = first_insn;
 562        fp = prog;
 563
 564        /* Classic BPF related prologue emission. */
 565        if (new_prog) {
 566                /* Classic BPF expects A and X to be reset first. These need
 567                 * to be guaranteed to be the first two instructions.
 568                 */
 569                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 570                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
 571
 572                /* All programs must keep CTX in callee saved BPF_REG_CTX.
 573                 * In eBPF case it's done by the compiler, here we need to
 574                 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
 575                 */
 576                *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
 577                if (*seen_ld_abs) {
 578                        /* For packet access in classic BPF, cache skb->data
 579                         * in callee-saved BPF R8 and skb->len - skb->data_len
 580                         * (headlen) in BPF R9. Since classic BPF is read-only
 581                         * on CTX, we only need to cache it once.
 582                         */
 583                        *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
 584                                                  BPF_REG_D, BPF_REG_CTX,
 585                                                  offsetof(struct sk_buff, data));
 586                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
 587                                                  offsetof(struct sk_buff, len));
 588                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
 589                                                  offsetof(struct sk_buff, data_len));
 590                        *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
 591                }
 592        } else {
 593                new_insn += 3;
 594        }
 595
 596        for (i = 0; i < len; fp++, i++) {
 597                struct bpf_insn tmp_insns[32] = { };
 598                struct bpf_insn *insn = tmp_insns;
 599
 600                if (addrs)
 601                        addrs[i] = new_insn - first_insn;
 602
 603                switch (fp->code) {
 604                /* All arithmetic insns and skb loads map as-is. */
 605                case BPF_ALU | BPF_ADD | BPF_X:
 606                case BPF_ALU | BPF_ADD | BPF_K:
 607                case BPF_ALU | BPF_SUB | BPF_X:
 608                case BPF_ALU | BPF_SUB | BPF_K:
 609                case BPF_ALU | BPF_AND | BPF_X:
 610                case BPF_ALU | BPF_AND | BPF_K:
 611                case BPF_ALU | BPF_OR | BPF_X:
 612                case BPF_ALU | BPF_OR | BPF_K:
 613                case BPF_ALU | BPF_LSH | BPF_X:
 614                case BPF_ALU | BPF_LSH | BPF_K:
 615                case BPF_ALU | BPF_RSH | BPF_X:
 616                case BPF_ALU | BPF_RSH | BPF_K:
 617                case BPF_ALU | BPF_XOR | BPF_X:
 618                case BPF_ALU | BPF_XOR | BPF_K:
 619                case BPF_ALU | BPF_MUL | BPF_X:
 620                case BPF_ALU | BPF_MUL | BPF_K:
 621                case BPF_ALU | BPF_DIV | BPF_X:
 622                case BPF_ALU | BPF_DIV | BPF_K:
 623                case BPF_ALU | BPF_MOD | BPF_X:
 624                case BPF_ALU | BPF_MOD | BPF_K:
 625                case BPF_ALU | BPF_NEG:
 626                case BPF_LD | BPF_ABS | BPF_W:
 627                case BPF_LD | BPF_ABS | BPF_H:
 628                case BPF_LD | BPF_ABS | BPF_B:
 629                case BPF_LD | BPF_IND | BPF_W:
 630                case BPF_LD | BPF_IND | BPF_H:
 631                case BPF_LD | BPF_IND | BPF_B:
 632                        /* Check for overloaded BPF extension and
 633                         * directly convert it if found, otherwise
 634                         * just move on with mapping.
 635                         */
 636                        if (BPF_CLASS(fp->code) == BPF_LD &&
 637                            BPF_MODE(fp->code) == BPF_ABS &&
 638                            convert_bpf_extensions(fp, &insn))
 639                                break;
 640                        if (BPF_CLASS(fp->code) == BPF_LD &&
 641                            convert_bpf_ld_abs(fp, &insn)) {
 642                                *seen_ld_abs = true;
 643                                break;
 644                        }
 645
 646                        if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
 647                            fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
 648                                *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
 649                                /* Error with exception code on div/mod by 0.
 650                                 * For cBPF programs, this was always return 0.
 651                                 */
 652                                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
 653                                *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 654                                *insn++ = BPF_EXIT_INSN();
 655                        }
 656
 657                        *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
 658                        break;
 659
 660                /* Jump transformation cannot use BPF block macros
 661                 * everywhere as offset calculation and target updates
 662                 * require a bit more work than the rest, i.e. jump
 663                 * opcodes map as-is, but offsets need adjustment.
 664                 */
 665
 666#define BPF_EMIT_JMP                                                    \
 667        do {                                                            \
 668                const s32 off_min = S16_MIN, off_max = S16_MAX;         \
 669                s32 off;                                                \
 670                                                                        \
 671                if (target >= len || target < 0)                        \
 672                        goto err;                                       \
 673                off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
 674                /* Adjust pc relative offset for 2nd or 3rd insn. */    \
 675                off -= insn - tmp_insns;                                \
 676                /* Reject anything not fitting into insn->off. */       \
 677                if (off < off_min || off > off_max)                     \
 678                        goto err;                                       \
 679                insn->off = off;                                        \
 680        } while (0)
 681
 682                case BPF_JMP | BPF_JA:
 683                        target = i + fp->k + 1;
 684                        insn->code = fp->code;
 685                        BPF_EMIT_JMP;
 686                        break;
 687
 688                case BPF_JMP | BPF_JEQ | BPF_K:
 689                case BPF_JMP | BPF_JEQ | BPF_X:
 690                case BPF_JMP | BPF_JSET | BPF_K:
 691                case BPF_JMP | BPF_JSET | BPF_X:
 692                case BPF_JMP | BPF_JGT | BPF_K:
 693                case BPF_JMP | BPF_JGT | BPF_X:
 694                case BPF_JMP | BPF_JGE | BPF_K:
 695                case BPF_JMP | BPF_JGE | BPF_X:
 696                        if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
 697                                /* BPF immediates are signed, zero extend
 698                                 * immediate into tmp register and use it
 699                                 * in compare insn.
 700                                 */
 701                                *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
 702
 703                                insn->dst_reg = BPF_REG_A;
 704                                insn->src_reg = BPF_REG_TMP;
 705                                bpf_src = BPF_X;
 706                        } else {
 707                                insn->dst_reg = BPF_REG_A;
 708                                insn->imm = fp->k;
 709                                bpf_src = BPF_SRC(fp->code);
 710                                insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
 711                        }
 712
 713                        /* Common case where 'jump_false' is next insn. */
 714                        if (fp->jf == 0) {
 715                                insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 716                                target = i + fp->jt + 1;
 717                                BPF_EMIT_JMP;
 718                                break;
 719                        }
 720
 721                        /* Convert some jumps when 'jump_true' is next insn. */
 722                        if (fp->jt == 0) {
 723                                switch (BPF_OP(fp->code)) {
 724                                case BPF_JEQ:
 725                                        insn->code = BPF_JMP | BPF_JNE | bpf_src;
 726                                        break;
 727                                case BPF_JGT:
 728                                        insn->code = BPF_JMP | BPF_JLE | bpf_src;
 729                                        break;
 730                                case BPF_JGE:
 731                                        insn->code = BPF_JMP | BPF_JLT | bpf_src;
 732                                        break;
 733                                default:
 734                                        goto jmp_rest;
 735                                }
 736
 737                                target = i + fp->jf + 1;
 738                                BPF_EMIT_JMP;
 739                                break;
 740                        }
 741jmp_rest:
 742                        /* Other jumps are mapped into two insns: Jxx and JA. */
 743                        target = i + fp->jt + 1;
 744                        insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 745                        BPF_EMIT_JMP;
 746                        insn++;
 747
 748                        insn->code = BPF_JMP | BPF_JA;
 749                        target = i + fp->jf + 1;
 750                        BPF_EMIT_JMP;
 751                        break;
 752
 753                /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
 754                case BPF_LDX | BPF_MSH | BPF_B: {
 755                        struct sock_filter tmp = {
 756                                .code   = BPF_LD | BPF_ABS | BPF_B,
 757                                .k      = fp->k,
 758                        };
 759
 760                        *seen_ld_abs = true;
 761
 762                        /* X = A */
 763                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 764                        /* A = BPF_R0 = *(u8 *) (skb->data + K) */
 765                        convert_bpf_ld_abs(&tmp, &insn);
 766                        insn++;
 767                        /* A &= 0xf */
 768                        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
 769                        /* A <<= 2 */
 770                        *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
 771                        /* tmp = X */
 772                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
 773                        /* X = A */
 774                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 775                        /* A = tmp */
 776                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
 777                        break;
 778                }
 779                /* RET_K is remaped into 2 insns. RET_A case doesn't need an
 780                 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
 781                 */
 782                case BPF_RET | BPF_A:
 783                case BPF_RET | BPF_K:
 784                        if (BPF_RVAL(fp->code) == BPF_K)
 785                                *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
 786                                                        0, fp->k);
 787                        *insn = BPF_EXIT_INSN();
 788                        break;
 789
 790                /* Store to stack. */
 791                case BPF_ST:
 792                case BPF_STX:
 793                        stack_off = fp->k * 4  + 4;
 794                        *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
 795                                            BPF_ST ? BPF_REG_A : BPF_REG_X,
 796                                            -stack_off);
 797                        /* check_load_and_stores() verifies that classic BPF can
 798                         * load from stack only after write, so tracking
 799                         * stack_depth for ST|STX insns is enough
 800                         */
 801                        if (new_prog && new_prog->aux->stack_depth < stack_off)
 802                                new_prog->aux->stack_depth = stack_off;
 803                        break;
 804
 805                /* Load from stack. */
 806                case BPF_LD | BPF_MEM:
 807                case BPF_LDX | BPF_MEM:
 808                        stack_off = fp->k * 4  + 4;
 809                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
 810                                            BPF_REG_A : BPF_REG_X, BPF_REG_FP,
 811                                            -stack_off);
 812                        break;
 813
 814                /* A = K or X = K */
 815                case BPF_LD | BPF_IMM:
 816                case BPF_LDX | BPF_IMM:
 817                        *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
 818                                              BPF_REG_A : BPF_REG_X, fp->k);
 819                        break;
 820
 821                /* X = A */
 822                case BPF_MISC | BPF_TAX:
 823                        *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 824                        break;
 825
 826                /* A = X */
 827                case BPF_MISC | BPF_TXA:
 828                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
 829                        break;
 830
 831                /* A = skb->len or X = skb->len */
 832                case BPF_LD | BPF_W | BPF_LEN:
 833                case BPF_LDX | BPF_W | BPF_LEN:
 834                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
 835                                            BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
 836                                            offsetof(struct sk_buff, len));
 837                        break;
 838
 839                /* Access seccomp_data fields. */
 840                case BPF_LDX | BPF_ABS | BPF_W:
 841                        /* A = *(u32 *) (ctx + K) */
 842                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
 843                        break;
 844
 845                /* Unknown instruction. */
 846                default:
 847                        goto err;
 848                }
 849
 850                insn++;
 851                if (new_prog)
 852                        memcpy(new_insn, tmp_insns,
 853                               sizeof(*insn) * (insn - tmp_insns));
 854                new_insn += insn - tmp_insns;
 855        }
 856
 857        if (!new_prog) {
 858                /* Only calculating new length. */
 859                *new_len = new_insn - first_insn;
 860                if (*seen_ld_abs)
 861                        *new_len += 4; /* Prologue bits. */
 862                return 0;
 863        }
 864
 865        pass++;
 866        if (new_flen != new_insn - first_insn) {
 867                new_flen = new_insn - first_insn;
 868                if (pass > 2)
 869                        goto err;
 870                goto do_pass;
 871        }
 872
 873        kfree(addrs);
 874        BUG_ON(*new_len != new_flen);
 875        return 0;
 876err:
 877        kfree(addrs);
 878        return -EINVAL;
 879}
 880
 881/* Security:
 882 *
 883 * As we dont want to clear mem[] array for each packet going through
 884 * __bpf_prog_run(), we check that filter loaded by user never try to read
 885 * a cell if not previously written, and we check all branches to be sure
 886 * a malicious user doesn't try to abuse us.
 887 */
 888static int check_load_and_stores(const struct sock_filter *filter, int flen)
 889{
 890        u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
 891        int pc, ret = 0;
 892
 893        BUILD_BUG_ON(BPF_MEMWORDS > 16);
 894
 895        masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
 896        if (!masks)
 897                return -ENOMEM;
 898
 899        memset(masks, 0xff, flen * sizeof(*masks));
 900
 901        for (pc = 0; pc < flen; pc++) {
 902                memvalid &= masks[pc];
 903
 904                switch (filter[pc].code) {
 905                case BPF_ST:
 906                case BPF_STX:
 907                        memvalid |= (1 << filter[pc].k);
 908                        break;
 909                case BPF_LD | BPF_MEM:
 910                case BPF_LDX | BPF_MEM:
 911                        if (!(memvalid & (1 << filter[pc].k))) {
 912                                ret = -EINVAL;
 913                                goto error;
 914                        }
 915                        break;
 916                case BPF_JMP | BPF_JA:
 917                        /* A jump must set masks on target */
 918                        masks[pc + 1 + filter[pc].k] &= memvalid;
 919                        memvalid = ~0;
 920                        break;
 921                case BPF_JMP | BPF_JEQ | BPF_K:
 922                case BPF_JMP | BPF_JEQ | BPF_X:
 923                case BPF_JMP | BPF_JGE | BPF_K:
 924                case BPF_JMP | BPF_JGE | BPF_X:
 925                case BPF_JMP | BPF_JGT | BPF_K:
 926                case BPF_JMP | BPF_JGT | BPF_X:
 927                case BPF_JMP | BPF_JSET | BPF_K:
 928                case BPF_JMP | BPF_JSET | BPF_X:
 929                        /* A jump must set masks on targets */
 930                        masks[pc + 1 + filter[pc].jt] &= memvalid;
 931                        masks[pc + 1 + filter[pc].jf] &= memvalid;
 932                        memvalid = ~0;
 933                        break;
 934                }
 935        }
 936error:
 937        kfree(masks);
 938        return ret;
 939}
 940
 941static bool chk_code_allowed(u16 code_to_probe)
 942{
 943        static const bool codes[] = {
 944                /* 32 bit ALU operations */
 945                [BPF_ALU | BPF_ADD | BPF_K] = true,
 946                [BPF_ALU | BPF_ADD | BPF_X] = true,
 947                [BPF_ALU | BPF_SUB | BPF_K] = true,
 948                [BPF_ALU | BPF_SUB | BPF_X] = true,
 949                [BPF_ALU | BPF_MUL | BPF_K] = true,
 950                [BPF_ALU | BPF_MUL | BPF_X] = true,
 951                [BPF_ALU | BPF_DIV | BPF_K] = true,
 952                [BPF_ALU | BPF_DIV | BPF_X] = true,
 953                [BPF_ALU | BPF_MOD | BPF_K] = true,
 954                [BPF_ALU | BPF_MOD | BPF_X] = true,
 955                [BPF_ALU | BPF_AND | BPF_K] = true,
 956                [BPF_ALU | BPF_AND | BPF_X] = true,
 957                [BPF_ALU | BPF_OR | BPF_K] = true,
 958                [BPF_ALU | BPF_OR | BPF_X] = true,
 959                [BPF_ALU | BPF_XOR | BPF_K] = true,
 960                [BPF_ALU | BPF_XOR | BPF_X] = true,
 961                [BPF_ALU | BPF_LSH | BPF_K] = true,
 962                [BPF_ALU | BPF_LSH | BPF_X] = true,
 963                [BPF_ALU | BPF_RSH | BPF_K] = true,
 964                [BPF_ALU | BPF_RSH | BPF_X] = true,
 965                [BPF_ALU | BPF_NEG] = true,
 966                /* Load instructions */
 967                [BPF_LD | BPF_W | BPF_ABS] = true,
 968                [BPF_LD | BPF_H | BPF_ABS] = true,
 969                [BPF_LD | BPF_B | BPF_ABS] = true,
 970                [BPF_LD | BPF_W | BPF_LEN] = true,
 971                [BPF_LD | BPF_W | BPF_IND] = true,
 972                [BPF_LD | BPF_H | BPF_IND] = true,
 973                [BPF_LD | BPF_B | BPF_IND] = true,
 974                [BPF_LD | BPF_IMM] = true,
 975                [BPF_LD | BPF_MEM] = true,
 976                [BPF_LDX | BPF_W | BPF_LEN] = true,
 977                [BPF_LDX | BPF_B | BPF_MSH] = true,
 978                [BPF_LDX | BPF_IMM] = true,
 979                [BPF_LDX | BPF_MEM] = true,
 980                /* Store instructions */
 981                [BPF_ST] = true,
 982                [BPF_STX] = true,
 983                /* Misc instructions */
 984                [BPF_MISC | BPF_TAX] = true,
 985                [BPF_MISC | BPF_TXA] = true,
 986                /* Return instructions */
 987                [BPF_RET | BPF_K] = true,
 988                [BPF_RET | BPF_A] = true,
 989                /* Jump instructions */
 990                [BPF_JMP | BPF_JA] = true,
 991                [BPF_JMP | BPF_JEQ | BPF_K] = true,
 992                [BPF_JMP | BPF_JEQ | BPF_X] = true,
 993                [BPF_JMP | BPF_JGE | BPF_K] = true,
 994                [BPF_JMP | BPF_JGE | BPF_X] = true,
 995                [BPF_JMP | BPF_JGT | BPF_K] = true,
 996                [BPF_JMP | BPF_JGT | BPF_X] = true,
 997                [BPF_JMP | BPF_JSET | BPF_K] = true,
 998                [BPF_JMP | BPF_JSET | BPF_X] = true,
 999        };
1000
1001        if (code_to_probe >= ARRAY_SIZE(codes))
1002                return false;
1003
1004        return codes[code_to_probe];
1005}
1006
1007static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008                                unsigned int flen)
1009{
1010        if (filter == NULL)
1011                return false;
1012        if (flen == 0 || flen > BPF_MAXINSNS)
1013                return false;
1014
1015        return true;
1016}
1017
1018/**
1019 *      bpf_check_classic - verify socket filter code
1020 *      @filter: filter to verify
1021 *      @flen: length of filter
1022 *
1023 * Check the user's filter code. If we let some ugly
1024 * filter code slip through kaboom! The filter must contain
1025 * no references or jumps that are out of range, no illegal
1026 * instructions, and must end with a RET instruction.
1027 *
1028 * All jumps are forward as they are not signed.
1029 *
1030 * Returns 0 if the rule set is legal or -EINVAL if not.
1031 */
1032static int bpf_check_classic(const struct sock_filter *filter,
1033                             unsigned int flen)
1034{
1035        bool anc_found;
1036        int pc;
1037
1038        /* Check the filter code now */
1039        for (pc = 0; pc < flen; pc++) {
1040                const struct sock_filter *ftest = &filter[pc];
1041
1042                /* May we actually operate on this code? */
1043                if (!chk_code_allowed(ftest->code))
1044                        return -EINVAL;
1045
1046                /* Some instructions need special checks */
1047                switch (ftest->code) {
1048                case BPF_ALU | BPF_DIV | BPF_K:
1049                case BPF_ALU | BPF_MOD | BPF_K:
1050                        /* Check for division by zero */
1051                        if (ftest->k == 0)
1052                                return -EINVAL;
1053                        break;
1054                case BPF_ALU | BPF_LSH | BPF_K:
1055                case BPF_ALU | BPF_RSH | BPF_K:
1056                        if (ftest->k >= 32)
1057                                return -EINVAL;
1058                        break;
1059                case BPF_LD | BPF_MEM:
1060                case BPF_LDX | BPF_MEM:
1061                case BPF_ST:
1062                case BPF_STX:
1063                        /* Check for invalid memory addresses */
1064                        if (ftest->k >= BPF_MEMWORDS)
1065                                return -EINVAL;
1066                        break;
1067                case BPF_JMP | BPF_JA:
1068                        /* Note, the large ftest->k might cause loops.
1069                         * Compare this with conditional jumps below,
1070                         * where offsets are limited. --ANK (981016)
1071                         */
1072                        if (ftest->k >= (unsigned int)(flen - pc - 1))
1073                                return -EINVAL;
1074                        break;
1075                case BPF_JMP | BPF_JEQ | BPF_K:
1076                case BPF_JMP | BPF_JEQ | BPF_X:
1077                case BPF_JMP | BPF_JGE | BPF_K:
1078                case BPF_JMP | BPF_JGE | BPF_X:
1079                case BPF_JMP | BPF_JGT | BPF_K:
1080                case BPF_JMP | BPF_JGT | BPF_X:
1081                case BPF_JMP | BPF_JSET | BPF_K:
1082                case BPF_JMP | BPF_JSET | BPF_X:
1083                        /* Both conditionals must be safe */
1084                        if (pc + ftest->jt + 1 >= flen ||
1085                            pc + ftest->jf + 1 >= flen)
1086                                return -EINVAL;
1087                        break;
1088                case BPF_LD | BPF_W | BPF_ABS:
1089                case BPF_LD | BPF_H | BPF_ABS:
1090                case BPF_LD | BPF_B | BPF_ABS:
1091                        anc_found = false;
1092                        if (bpf_anc_helper(ftest) & BPF_ANC)
1093                                anc_found = true;
1094                        /* Ancillary operation unknown or unsupported */
1095                        if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096                                return -EINVAL;
1097                }
1098        }
1099
1100        /* Last instruction must be a RET code */
1101        switch (filter[flen - 1].code) {
1102        case BPF_RET | BPF_K:
1103        case BPF_RET | BPF_A:
1104                return check_load_and_stores(filter, flen);
1105        }
1106
1107        return -EINVAL;
1108}
1109
1110static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111                                      const struct sock_fprog *fprog)
1112{
1113        unsigned int fsize = bpf_classic_proglen(fprog);
1114        struct sock_fprog_kern *fkprog;
1115
1116        fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117        if (!fp->orig_prog)
1118                return -ENOMEM;
1119
1120        fkprog = fp->orig_prog;
1121        fkprog->len = fprog->len;
1122
1123        fkprog->filter = kmemdup(fp->insns, fsize,
1124                                 GFP_KERNEL | __GFP_NOWARN);
1125        if (!fkprog->filter) {
1126                kfree(fp->orig_prog);
1127                return -ENOMEM;
1128        }
1129
1130        return 0;
1131}
1132
1133static void bpf_release_orig_filter(struct bpf_prog *fp)
1134{
1135        struct sock_fprog_kern *fprog = fp->orig_prog;
1136
1137        if (fprog) {
1138                kfree(fprog->filter);
1139                kfree(fprog);
1140        }
1141}
1142
1143static void __bpf_prog_release(struct bpf_prog *prog)
1144{
1145        if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146                bpf_prog_put(prog);
1147        } else {
1148                bpf_release_orig_filter(prog);
1149                bpf_prog_free(prog);
1150        }
1151}
1152
1153static void __sk_filter_release(struct sk_filter *fp)
1154{
1155        __bpf_prog_release(fp->prog);
1156        kfree(fp);
1157}
1158
1159/**
1160 *      sk_filter_release_rcu - Release a socket filter by rcu_head
1161 *      @rcu: rcu_head that contains the sk_filter to free
1162 */
1163static void sk_filter_release_rcu(struct rcu_head *rcu)
1164{
1165        struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166
1167        __sk_filter_release(fp);
1168}
1169
1170/**
1171 *      sk_filter_release - release a socket filter
1172 *      @fp: filter to remove
1173 *
1174 *      Remove a filter from a socket and release its resources.
1175 */
1176static void sk_filter_release(struct sk_filter *fp)
1177{
1178        if (refcount_dec_and_test(&fp->refcnt))
1179                call_rcu(&fp->rcu, sk_filter_release_rcu);
1180}
1181
1182void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183{
1184        u32 filter_size = bpf_prog_size(fp->prog->len);
1185
1186        atomic_sub(filter_size, &sk->sk_omem_alloc);
1187        sk_filter_release(fp);
1188}
1189
1190/* try to charge the socket memory if there is space available
1191 * return true on success
1192 */
1193static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194{
1195        u32 filter_size = bpf_prog_size(fp->prog->len);
1196
1197        /* same check as in sock_kmalloc() */
1198        if (filter_size <= sysctl_optmem_max &&
1199            atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200                atomic_add(filter_size, &sk->sk_omem_alloc);
1201                return true;
1202        }
1203        return false;
1204}
1205
1206bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207{
1208        if (!refcount_inc_not_zero(&fp->refcnt))
1209                return false;
1210
1211        if (!__sk_filter_charge(sk, fp)) {
1212                sk_filter_release(fp);
1213                return false;
1214        }
1215        return true;
1216}
1217
1218static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219{
1220        struct sock_filter *old_prog;
1221        struct bpf_prog *old_fp;
1222        int err, new_len, old_len = fp->len;
1223        bool seen_ld_abs = false;
1224
1225        /* We are free to overwrite insns et al right here as it
1226         * won't be used at this point in time anymore internally
1227         * after the migration to the internal BPF instruction
1228         * representation.
1229         */
1230        BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231                     sizeof(struct bpf_insn));
1232
1233        /* Conversion cannot happen on overlapping memory areas,
1234         * so we need to keep the user BPF around until the 2nd
1235         * pass. At this time, the user BPF is stored in fp->insns.
1236         */
1237        old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238                           GFP_KERNEL | __GFP_NOWARN);
1239        if (!old_prog) {
1240                err = -ENOMEM;
1241                goto out_err;
1242        }
1243
1244        /* 1st pass: calculate the new program length. */
1245        err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246                                 &seen_ld_abs);
1247        if (err)
1248                goto out_err_free;
1249
1250        /* Expand fp for appending the new filter representation. */
1251        old_fp = fp;
1252        fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253        if (!fp) {
1254                /* The old_fp is still around in case we couldn't
1255                 * allocate new memory, so uncharge on that one.
1256                 */
1257                fp = old_fp;
1258                err = -ENOMEM;
1259                goto out_err_free;
1260        }
1261
1262        fp->len = new_len;
1263
1264        /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265        err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266                                 &seen_ld_abs);
1267        if (err)
1268                /* 2nd bpf_convert_filter() can fail only if it fails
1269                 * to allocate memory, remapping must succeed. Note,
1270                 * that at this time old_fp has already been released
1271                 * by krealloc().
1272                 */
1273                goto out_err_free;
1274
1275        fp = bpf_prog_select_runtime(fp, &err);
1276        if (err)
1277                goto out_err_free;
1278
1279        kfree(old_prog);
1280        return fp;
1281
1282out_err_free:
1283        kfree(old_prog);
1284out_err:
1285        __bpf_prog_release(fp);
1286        return ERR_PTR(err);
1287}
1288
1289static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290                                           bpf_aux_classic_check_t trans)
1291{
1292        int err;
1293
1294        fp->bpf_func = NULL;
1295        fp->jited = 0;
1296
1297        err = bpf_check_classic(fp->insns, fp->len);
1298        if (err) {
1299                __bpf_prog_release(fp);
1300                return ERR_PTR(err);
1301        }
1302
1303        /* There might be additional checks and transformations
1304         * needed on classic filters, f.e. in case of seccomp.
1305         */
1306        if (trans) {
1307                err = trans(fp->insns, fp->len);
1308                if (err) {
1309                        __bpf_prog_release(fp);
1310                        return ERR_PTR(err);
1311                }
1312        }
1313
1314        /* Probe if we can JIT compile the filter and if so, do
1315         * the compilation of the filter.
1316         */
1317        bpf_jit_compile(fp);
1318
1319        /* JIT compiler couldn't process this filter, so do the
1320         * internal BPF translation for the optimized interpreter.
1321         */
1322        if (!fp->jited)
1323                fp = bpf_migrate_filter(fp);
1324
1325        return fp;
1326}
1327
1328/**
1329 *      bpf_prog_create - create an unattached filter
1330 *      @pfp: the unattached filter that is created
1331 *      @fprog: the filter program
1332 *
1333 * Create a filter independent of any socket. We first run some
1334 * sanity checks on it to make sure it does not explode on us later.
1335 * If an error occurs or there is insufficient memory for the filter
1336 * a negative errno code is returned. On success the return is zero.
1337 */
1338int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339{
1340        unsigned int fsize = bpf_classic_proglen(fprog);
1341        struct bpf_prog *fp;
1342
1343        /* Make sure new filter is there and in the right amounts. */
1344        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345                return -EINVAL;
1346
1347        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348        if (!fp)
1349                return -ENOMEM;
1350
1351        memcpy(fp->insns, fprog->filter, fsize);
1352
1353        fp->len = fprog->len;
1354        /* Since unattached filters are not copied back to user
1355         * space through sk_get_filter(), we do not need to hold
1356         * a copy here, and can spare us the work.
1357         */
1358        fp->orig_prog = NULL;
1359
1360        /* bpf_prepare_filter() already takes care of freeing
1361         * memory in case something goes wrong.
1362         */
1363        fp = bpf_prepare_filter(fp, NULL);
1364        if (IS_ERR(fp))
1365                return PTR_ERR(fp);
1366
1367        *pfp = fp;
1368        return 0;
1369}
1370EXPORT_SYMBOL_GPL(bpf_prog_create);
1371
1372/**
1373 *      bpf_prog_create_from_user - create an unattached filter from user buffer
1374 *      @pfp: the unattached filter that is created
1375 *      @fprog: the filter program
1376 *      @trans: post-classic verifier transformation handler
1377 *      @save_orig: save classic BPF program
1378 *
1379 * This function effectively does the same as bpf_prog_create(), only
1380 * that it builds up its insns buffer from user space provided buffer.
1381 * It also allows for passing a bpf_aux_classic_check_t handler.
1382 */
1383int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384                              bpf_aux_classic_check_t trans, bool save_orig)
1385{
1386        unsigned int fsize = bpf_classic_proglen(fprog);
1387        struct bpf_prog *fp;
1388        int err;
1389
1390        /* Make sure new filter is there and in the right amounts. */
1391        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392                return -EINVAL;
1393
1394        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395        if (!fp)
1396                return -ENOMEM;
1397
1398        if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399                __bpf_prog_free(fp);
1400                return -EFAULT;
1401        }
1402
1403        fp->len = fprog->len;
1404        fp->orig_prog = NULL;
1405
1406        if (save_orig) {
1407                err = bpf_prog_store_orig_filter(fp, fprog);
1408                if (err) {
1409                        __bpf_prog_free(fp);
1410                        return -ENOMEM;
1411                }
1412        }
1413
1414        /* bpf_prepare_filter() already takes care of freeing
1415         * memory in case something goes wrong.
1416         */
1417        fp = bpf_prepare_filter(fp, trans);
1418        if (IS_ERR(fp))
1419                return PTR_ERR(fp);
1420
1421        *pfp = fp;
1422        return 0;
1423}
1424EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425
1426void bpf_prog_destroy(struct bpf_prog *fp)
1427{
1428        __bpf_prog_release(fp);
1429}
1430EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431
1432static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433{
1434        struct sk_filter *fp, *old_fp;
1435
1436        fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437        if (!fp)
1438                return -ENOMEM;
1439
1440        fp->prog = prog;
1441
1442        if (!__sk_filter_charge(sk, fp)) {
1443                kfree(fp);
1444                return -ENOMEM;
1445        }
1446        refcount_set(&fp->refcnt, 1);
1447
1448        old_fp = rcu_dereference_protected(sk->sk_filter,
1449                                           lockdep_sock_is_held(sk));
1450        rcu_assign_pointer(sk->sk_filter, fp);
1451
1452        if (old_fp)
1453                sk_filter_uncharge(sk, old_fp);
1454
1455        return 0;
1456}
1457
1458static
1459struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460{
1461        unsigned int fsize = bpf_classic_proglen(fprog);
1462        struct bpf_prog *prog;
1463        int err;
1464
1465        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466                return ERR_PTR(-EPERM);
1467
1468        /* Make sure new filter is there and in the right amounts. */
1469        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470                return ERR_PTR(-EINVAL);
1471
1472        prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473        if (!prog)
1474                return ERR_PTR(-ENOMEM);
1475
1476        if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477                __bpf_prog_free(prog);
1478                return ERR_PTR(-EFAULT);
1479        }
1480
1481        prog->len = fprog->len;
1482
1483        err = bpf_prog_store_orig_filter(prog, fprog);
1484        if (err) {
1485                __bpf_prog_free(prog);
1486                return ERR_PTR(-ENOMEM);
1487        }
1488
1489        /* bpf_prepare_filter() already takes care of freeing
1490         * memory in case something goes wrong.
1491         */
1492        return bpf_prepare_filter(prog, NULL);
1493}
1494
1495/**
1496 *      sk_attach_filter - attach a socket filter
1497 *      @fprog: the filter program
1498 *      @sk: the socket to use
1499 *
1500 * Attach the user's filter code. We first run some sanity checks on
1501 * it to make sure it does not explode on us later. If an error
1502 * occurs or there is insufficient memory for the filter a negative
1503 * errno code is returned. On success the return is zero.
1504 */
1505int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506{
1507        struct bpf_prog *prog = __get_filter(fprog, sk);
1508        int err;
1509
1510        if (IS_ERR(prog))
1511                return PTR_ERR(prog);
1512
1513        err = __sk_attach_prog(prog, sk);
1514        if (err < 0) {
1515                __bpf_prog_release(prog);
1516                return err;
1517        }
1518
1519        return 0;
1520}
1521EXPORT_SYMBOL_GPL(sk_attach_filter);
1522
1523int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524{
1525        struct bpf_prog *prog = __get_filter(fprog, sk);
1526        int err;
1527
1528        if (IS_ERR(prog))
1529                return PTR_ERR(prog);
1530
1531        if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532                err = -ENOMEM;
1533        else
1534                err = reuseport_attach_prog(sk, prog);
1535
1536        if (err)
1537                __bpf_prog_release(prog);
1538
1539        return err;
1540}
1541
1542static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543{
1544        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545                return ERR_PTR(-EPERM);
1546
1547        return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548}
1549
1550int sk_attach_bpf(u32 ufd, struct sock *sk)
1551{
1552        struct bpf_prog *prog = __get_bpf(ufd, sk);
1553        int err;
1554
1555        if (IS_ERR(prog))
1556                return PTR_ERR(prog);
1557
1558        err = __sk_attach_prog(prog, sk);
1559        if (err < 0) {
1560                bpf_prog_put(prog);
1561                return err;
1562        }
1563
1564        return 0;
1565}
1566
1567int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568{
1569        struct bpf_prog *prog;
1570        int err;
1571
1572        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573                return -EPERM;
1574
1575        prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576        if (PTR_ERR(prog) == -EINVAL)
1577                prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578        if (IS_ERR(prog))
1579                return PTR_ERR(prog);
1580
1581        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582                /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583                 * bpf prog (e.g. sockmap).  It depends on the
1584                 * limitation imposed by bpf_prog_load().
1585                 * Hence, sysctl_optmem_max is not checked.
1586                 */
1587                if ((sk->sk_type != SOCK_STREAM &&
1588                     sk->sk_type != SOCK_DGRAM) ||
1589                    (sk->sk_protocol != IPPROTO_UDP &&
1590                     sk->sk_protocol != IPPROTO_TCP) ||
1591                    (sk->sk_family != AF_INET &&
1592                     sk->sk_family != AF_INET6)) {
1593                        err = -ENOTSUPP;
1594                        goto err_prog_put;
1595                }
1596        } else {
1597                /* BPF_PROG_TYPE_SOCKET_FILTER */
1598                if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599                        err = -ENOMEM;
1600                        goto err_prog_put;
1601                }
1602        }
1603
1604        err = reuseport_attach_prog(sk, prog);
1605err_prog_put:
1606        if (err)
1607                bpf_prog_put(prog);
1608
1609        return err;
1610}
1611
1612void sk_reuseport_prog_free(struct bpf_prog *prog)
1613{
1614        if (!prog)
1615                return;
1616
1617        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618                bpf_prog_put(prog);
1619        else
1620                bpf_prog_destroy(prog);
1621}
1622
1623struct bpf_scratchpad {
1624        union {
1625                __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626                u8     buff[MAX_BPF_STACK];
1627        };
1628};
1629
1630static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631
1632static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633                                          unsigned int write_len)
1634{
1635        return skb_ensure_writable(skb, write_len);
1636}
1637
1638static inline int bpf_try_make_writable(struct sk_buff *skb,
1639                                        unsigned int write_len)
1640{
1641        int err = __bpf_try_make_writable(skb, write_len);
1642
1643        bpf_compute_data_pointers(skb);
1644        return err;
1645}
1646
1647static int bpf_try_make_head_writable(struct sk_buff *skb)
1648{
1649        return bpf_try_make_writable(skb, skb_headlen(skb));
1650}
1651
1652static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653{
1654        if (skb_at_tc_ingress(skb))
1655                skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656}
1657
1658static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659{
1660        if (skb_at_tc_ingress(skb))
1661                skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662}
1663
1664BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665           const void *, from, u32, len, u64, flags)
1666{
1667        void *ptr;
1668
1669        if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670                return -EINVAL;
1671        if (unlikely(offset > 0xffff))
1672                return -EFAULT;
1673        if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674                return -EFAULT;
1675
1676        ptr = skb->data + offset;
1677        if (flags & BPF_F_RECOMPUTE_CSUM)
1678                __skb_postpull_rcsum(skb, ptr, len, offset);
1679
1680        memcpy(ptr, from, len);
1681
1682        if (flags & BPF_F_RECOMPUTE_CSUM)
1683                __skb_postpush_rcsum(skb, ptr, len, offset);
1684        if (flags & BPF_F_INVALIDATE_HASH)
1685                skb_clear_hash(skb);
1686
1687        return 0;
1688}
1689
1690static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691        .func           = bpf_skb_store_bytes,
1692        .gpl_only       = false,
1693        .ret_type       = RET_INTEGER,
1694        .arg1_type      = ARG_PTR_TO_CTX,
1695        .arg2_type      = ARG_ANYTHING,
1696        .arg3_type      = ARG_PTR_TO_MEM,
1697        .arg4_type      = ARG_CONST_SIZE,
1698        .arg5_type      = ARG_ANYTHING,
1699};
1700
1701BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702           void *, to, u32, len)
1703{
1704        void *ptr;
1705
1706        if (unlikely(offset > 0xffff))
1707                goto err_clear;
1708
1709        ptr = skb_header_pointer(skb, offset, len, to);
1710        if (unlikely(!ptr))
1711                goto err_clear;
1712        if (ptr != to)
1713                memcpy(to, ptr, len);
1714
1715        return 0;
1716err_clear:
1717        memset(to, 0, len);
1718        return -EFAULT;
1719}
1720
1721static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722        .func           = bpf_skb_load_bytes,
1723        .gpl_only       = false,
1724        .ret_type       = RET_INTEGER,
1725        .arg1_type      = ARG_PTR_TO_CTX,
1726        .arg2_type      = ARG_ANYTHING,
1727        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1728        .arg4_type      = ARG_CONST_SIZE,
1729};
1730
1731BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732           const struct bpf_flow_dissector *, ctx, u32, offset,
1733           void *, to, u32, len)
1734{
1735        void *ptr;
1736
1737        if (unlikely(offset > 0xffff))
1738                goto err_clear;
1739
1740        if (unlikely(!ctx->skb))
1741                goto err_clear;
1742
1743        ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744        if (unlikely(!ptr))
1745                goto err_clear;
1746        if (ptr != to)
1747                memcpy(to, ptr, len);
1748
1749        return 0;
1750err_clear:
1751        memset(to, 0, len);
1752        return -EFAULT;
1753}
1754
1755static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756        .func           = bpf_flow_dissector_load_bytes,
1757        .gpl_only       = false,
1758        .ret_type       = RET_INTEGER,
1759        .arg1_type      = ARG_PTR_TO_CTX,
1760        .arg2_type      = ARG_ANYTHING,
1761        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1762        .arg4_type      = ARG_CONST_SIZE,
1763};
1764
1765BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766           u32, offset, void *, to, u32, len, u32, start_header)
1767{
1768        u8 *end = skb_tail_pointer(skb);
1769        u8 *net = skb_network_header(skb);
1770        u8 *mac = skb_mac_header(skb);
1771        u8 *ptr;
1772
1773        if (unlikely(offset > 0xffff || len > (end - mac)))
1774                goto err_clear;
1775
1776        switch (start_header) {
1777        case BPF_HDR_START_MAC:
1778                ptr = mac + offset;
1779                break;
1780        case BPF_HDR_START_NET:
1781                ptr = net + offset;
1782                break;
1783        default:
1784                goto err_clear;
1785        }
1786
1787        if (likely(ptr >= mac && ptr + len <= end)) {
1788                memcpy(to, ptr, len);
1789                return 0;
1790        }
1791
1792err_clear:
1793        memset(to, 0, len);
1794        return -EFAULT;
1795}
1796
1797static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798        .func           = bpf_skb_load_bytes_relative,
1799        .gpl_only       = false,
1800        .ret_type       = RET_INTEGER,
1801        .arg1_type      = ARG_PTR_TO_CTX,
1802        .arg2_type      = ARG_ANYTHING,
1803        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1804        .arg4_type      = ARG_CONST_SIZE,
1805        .arg5_type      = ARG_ANYTHING,
1806};
1807
1808BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809{
1810        /* Idea is the following: should the needed direct read/write
1811         * test fail during runtime, we can pull in more data and redo
1812         * again, since implicitly, we invalidate previous checks here.
1813         *
1814         * Or, since we know how much we need to make read/writeable,
1815         * this can be done once at the program beginning for direct
1816         * access case. By this we overcome limitations of only current
1817         * headroom being accessible.
1818         */
1819        return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820}
1821
1822static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823        .func           = bpf_skb_pull_data,
1824        .gpl_only       = false,
1825        .ret_type       = RET_INTEGER,
1826        .arg1_type      = ARG_PTR_TO_CTX,
1827        .arg2_type      = ARG_ANYTHING,
1828};
1829
1830BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831{
1832        return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833}
1834
1835static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836        .func           = bpf_sk_fullsock,
1837        .gpl_only       = false,
1838        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1839        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1840};
1841
1842static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843                                           unsigned int write_len)
1844{
1845        int err = __bpf_try_make_writable(skb, write_len);
1846
1847        bpf_compute_data_end_sk_skb(skb);
1848        return err;
1849}
1850
1851BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852{
1853        /* Idea is the following: should the needed direct read/write
1854         * test fail during runtime, we can pull in more data and redo
1855         * again, since implicitly, we invalidate previous checks here.
1856         *
1857         * Or, since we know how much we need to make read/writeable,
1858         * this can be done once at the program beginning for direct
1859         * access case. By this we overcome limitations of only current
1860         * headroom being accessible.
1861         */
1862        return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863}
1864
1865static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866        .func           = sk_skb_pull_data,
1867        .gpl_only       = false,
1868        .ret_type       = RET_INTEGER,
1869        .arg1_type      = ARG_PTR_TO_CTX,
1870        .arg2_type      = ARG_ANYTHING,
1871};
1872
1873BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874           u64, from, u64, to, u64, flags)
1875{
1876        __sum16 *ptr;
1877
1878        if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879                return -EINVAL;
1880        if (unlikely(offset > 0xffff || offset & 1))
1881                return -EFAULT;
1882        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883                return -EFAULT;
1884
1885        ptr = (__sum16 *)(skb->data + offset);
1886        switch (flags & BPF_F_HDR_FIELD_MASK) {
1887        case 0:
1888                if (unlikely(from != 0))
1889                        return -EINVAL;
1890
1891                csum_replace_by_diff(ptr, to);
1892                break;
1893        case 2:
1894                csum_replace2(ptr, from, to);
1895                break;
1896        case 4:
1897                csum_replace4(ptr, from, to);
1898                break;
1899        default:
1900                return -EINVAL;
1901        }
1902
1903        return 0;
1904}
1905
1906static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907        .func           = bpf_l3_csum_replace,
1908        .gpl_only       = false,
1909        .ret_type       = RET_INTEGER,
1910        .arg1_type      = ARG_PTR_TO_CTX,
1911        .arg2_type      = ARG_ANYTHING,
1912        .arg3_type      = ARG_ANYTHING,
1913        .arg4_type      = ARG_ANYTHING,
1914        .arg5_type      = ARG_ANYTHING,
1915};
1916
1917BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918           u64, from, u64, to, u64, flags)
1919{
1920        bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921        bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922        bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923        __sum16 *ptr;
1924
1925        if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926                               BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927                return -EINVAL;
1928        if (unlikely(offset > 0xffff || offset & 1))
1929                return -EFAULT;
1930        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931                return -EFAULT;
1932
1933        ptr = (__sum16 *)(skb->data + offset);
1934        if (is_mmzero && !do_mforce && !*ptr)
1935                return 0;
1936
1937        switch (flags & BPF_F_HDR_FIELD_MASK) {
1938        case 0:
1939                if (unlikely(from != 0))
1940                        return -EINVAL;
1941
1942                inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943                break;
1944        case 2:
1945                inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946                break;
1947        case 4:
1948                inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949                break;
1950        default:
1951                return -EINVAL;
1952        }
1953
1954        if (is_mmzero && !*ptr)
1955                *ptr = CSUM_MANGLED_0;
1956        return 0;
1957}
1958
1959static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960        .func           = bpf_l4_csum_replace,
1961        .gpl_only       = false,
1962        .ret_type       = RET_INTEGER,
1963        .arg1_type      = ARG_PTR_TO_CTX,
1964        .arg2_type      = ARG_ANYTHING,
1965        .arg3_type      = ARG_ANYTHING,
1966        .arg4_type      = ARG_ANYTHING,
1967        .arg5_type      = ARG_ANYTHING,
1968};
1969
1970BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971           __be32 *, to, u32, to_size, __wsum, seed)
1972{
1973        struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974        u32 diff_size = from_size + to_size;
1975        int i, j = 0;
1976
1977        /* This is quite flexible, some examples:
1978         *
1979         * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980         * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981         * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982         *
1983         * Even for diffing, from_size and to_size don't need to be equal.
1984         */
1985        if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986                     diff_size > sizeof(sp->diff)))
1987                return -EINVAL;
1988
1989        for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990                sp->diff[j] = ~from[i];
1991        for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992                sp->diff[j] = to[i];
1993
1994        return csum_partial(sp->diff, diff_size, seed);
1995}
1996
1997static const struct bpf_func_proto bpf_csum_diff_proto = {
1998        .func           = bpf_csum_diff,
1999        .gpl_only       = false,
2000        .pkt_access     = true,
2001        .ret_type       = RET_INTEGER,
2002        .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2003        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2004        .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2005        .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2006        .arg5_type      = ARG_ANYTHING,
2007};
2008
2009BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010{
2011        /* The interface is to be used in combination with bpf_csum_diff()
2012         * for direct packet writes. csum rotation for alignment as well
2013         * as emulating csum_sub() can be done from the eBPF program.
2014         */
2015        if (skb->ip_summed == CHECKSUM_COMPLETE)
2016                return (skb->csum = csum_add(skb->csum, csum));
2017
2018        return -ENOTSUPP;
2019}
2020
2021static const struct bpf_func_proto bpf_csum_update_proto = {
2022        .func           = bpf_csum_update,
2023        .gpl_only       = false,
2024        .ret_type       = RET_INTEGER,
2025        .arg1_type      = ARG_PTR_TO_CTX,
2026        .arg2_type      = ARG_ANYTHING,
2027};
2028
2029static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030{
2031        return dev_forward_skb(dev, skb);
2032}
2033
2034static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035                                      struct sk_buff *skb)
2036{
2037        int ret = ____dev_forward_skb(dev, skb);
2038
2039        if (likely(!ret)) {
2040                skb->dev = dev;
2041                ret = netif_rx(skb);
2042        }
2043
2044        return ret;
2045}
2046
2047static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048{
2049        int ret;
2050
2051        if (dev_xmit_recursion()) {
2052                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053                kfree_skb(skb);
2054                return -ENETDOWN;
2055        }
2056
2057        skb->dev = dev;
2058        skb->tstamp = 0;
2059
2060        dev_xmit_recursion_inc();
2061        ret = dev_queue_xmit(skb);
2062        dev_xmit_recursion_dec();
2063
2064        return ret;
2065}
2066
2067static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2068                                 u32 flags)
2069{
2070        unsigned int mlen = skb_network_offset(skb);
2071
2072        if (mlen) {
2073                __skb_pull(skb, mlen);
2074
2075                /* At ingress, the mac header has already been pulled once.
2076                 * At egress, skb_pospull_rcsum has to be done in case that
2077                 * the skb is originated from ingress (i.e. a forwarded skb)
2078                 * to ensure that rcsum starts at net header.
2079                 */
2080                if (!skb_at_tc_ingress(skb))
2081                        skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2082        }
2083        skb_pop_mac_header(skb);
2084        skb_reset_mac_len(skb);
2085        return flags & BPF_F_INGRESS ?
2086               __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2087}
2088
2089static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2090                                 u32 flags)
2091{
2092        /* Verify that a link layer header is carried */
2093        if (unlikely(skb->mac_header >= skb->network_header)) {
2094                kfree_skb(skb);
2095                return -ERANGE;
2096        }
2097
2098        bpf_push_mac_rcsum(skb);
2099        return flags & BPF_F_INGRESS ?
2100               __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2101}
2102
2103static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2104                          u32 flags)
2105{
2106        if (dev_is_mac_header_xmit(dev))
2107                return __bpf_redirect_common(skb, dev, flags);
2108        else
2109                return __bpf_redirect_no_mac(skb, dev, flags);
2110}
2111
2112BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2113{
2114        struct net_device *dev;
2115        struct sk_buff *clone;
2116        int ret;
2117
2118        if (unlikely(flags & ~(BPF_F_INGRESS)))
2119                return -EINVAL;
2120
2121        dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2122        if (unlikely(!dev))
2123                return -EINVAL;
2124
2125        clone = skb_clone(skb, GFP_ATOMIC);
2126        if (unlikely(!clone))
2127                return -ENOMEM;
2128
2129        /* For direct write, we need to keep the invariant that the skbs
2130         * we're dealing with need to be uncloned. Should uncloning fail
2131         * here, we need to free the just generated clone to unclone once
2132         * again.
2133         */
2134        ret = bpf_try_make_head_writable(skb);
2135        if (unlikely(ret)) {
2136                kfree_skb(clone);
2137                return -ENOMEM;
2138        }
2139
2140        return __bpf_redirect(clone, dev, flags);
2141}
2142
2143static const struct bpf_func_proto bpf_clone_redirect_proto = {
2144        .func           = bpf_clone_redirect,
2145        .gpl_only       = false,
2146        .ret_type       = RET_INTEGER,
2147        .arg1_type      = ARG_PTR_TO_CTX,
2148        .arg2_type      = ARG_ANYTHING,
2149        .arg3_type      = ARG_ANYTHING,
2150};
2151
2152DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2153EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2154
2155BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2156{
2157        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2158
2159        if (unlikely(flags & ~(BPF_F_INGRESS)))
2160                return TC_ACT_SHOT;
2161
2162        ri->flags = flags;
2163        ri->tgt_index = ifindex;
2164
2165        return TC_ACT_REDIRECT;
2166}
2167
2168int skb_do_redirect(struct sk_buff *skb)
2169{
2170        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2171        struct net_device *dev;
2172
2173        dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2174        ri->tgt_index = 0;
2175        if (unlikely(!dev)) {
2176                kfree_skb(skb);
2177                return -EINVAL;
2178        }
2179
2180        return __bpf_redirect(skb, dev, ri->flags);
2181}
2182
2183static const struct bpf_func_proto bpf_redirect_proto = {
2184        .func           = bpf_redirect,
2185        .gpl_only       = false,
2186        .ret_type       = RET_INTEGER,
2187        .arg1_type      = ARG_ANYTHING,
2188        .arg2_type      = ARG_ANYTHING,
2189};
2190
2191BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2192{
2193        msg->apply_bytes = bytes;
2194        return 0;
2195}
2196
2197static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2198        .func           = bpf_msg_apply_bytes,
2199        .gpl_only       = false,
2200        .ret_type       = RET_INTEGER,
2201        .arg1_type      = ARG_PTR_TO_CTX,
2202        .arg2_type      = ARG_ANYTHING,
2203};
2204
2205BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2206{
2207        msg->cork_bytes = bytes;
2208        return 0;
2209}
2210
2211static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2212        .func           = bpf_msg_cork_bytes,
2213        .gpl_only       = false,
2214        .ret_type       = RET_INTEGER,
2215        .arg1_type      = ARG_PTR_TO_CTX,
2216        .arg2_type      = ARG_ANYTHING,
2217};
2218
2219BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2220           u32, end, u64, flags)
2221{
2222        u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2223        u32 first_sge, last_sge, i, shift, bytes_sg_total;
2224        struct scatterlist *sge;
2225        u8 *raw, *to, *from;
2226        struct page *page;
2227
2228        if (unlikely(flags || end <= start))
2229                return -EINVAL;
2230
2231        /* First find the starting scatterlist element */
2232        i = msg->sg.start;
2233        do {
2234                offset += len;
2235                len = sk_msg_elem(msg, i)->length;
2236                if (start < offset + len)
2237                        break;
2238                sk_msg_iter_var_next(i);
2239        } while (i != msg->sg.end);
2240
2241        if (unlikely(start >= offset + len))
2242                return -EINVAL;
2243
2244        first_sge = i;
2245        /* The start may point into the sg element so we need to also
2246         * account for the headroom.
2247         */
2248        bytes_sg_total = start - offset + bytes;
2249        if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2250                goto out;
2251
2252        /* At this point we need to linearize multiple scatterlist
2253         * elements or a single shared page. Either way we need to
2254         * copy into a linear buffer exclusively owned by BPF. Then
2255         * place the buffer in the scatterlist and fixup the original
2256         * entries by removing the entries now in the linear buffer
2257         * and shifting the remaining entries. For now we do not try
2258         * to copy partial entries to avoid complexity of running out
2259         * of sg_entry slots. The downside is reading a single byte
2260         * will copy the entire sg entry.
2261         */
2262        do {
2263                copy += sk_msg_elem(msg, i)->length;
2264                sk_msg_iter_var_next(i);
2265                if (bytes_sg_total <= copy)
2266                        break;
2267        } while (i != msg->sg.end);
2268        last_sge = i;
2269
2270        if (unlikely(bytes_sg_total > copy))
2271                return -EINVAL;
2272
2273        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2274                           get_order(copy));
2275        if (unlikely(!page))
2276                return -ENOMEM;
2277
2278        raw = page_address(page);
2279        i = first_sge;
2280        do {
2281                sge = sk_msg_elem(msg, i);
2282                from = sg_virt(sge);
2283                len = sge->length;
2284                to = raw + poffset;
2285
2286                memcpy(to, from, len);
2287                poffset += len;
2288                sge->length = 0;
2289                put_page(sg_page(sge));
2290
2291                sk_msg_iter_var_next(i);
2292        } while (i != last_sge);
2293
2294        sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2295
2296        /* To repair sg ring we need to shift entries. If we only
2297         * had a single entry though we can just replace it and
2298         * be done. Otherwise walk the ring and shift the entries.
2299         */
2300        WARN_ON_ONCE(last_sge == first_sge);
2301        shift = last_sge > first_sge ?
2302                last_sge - first_sge - 1 :
2303                NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2304        if (!shift)
2305                goto out;
2306
2307        i = first_sge;
2308        sk_msg_iter_var_next(i);
2309        do {
2310                u32 move_from;
2311
2312                if (i + shift >= NR_MSG_FRAG_IDS)
2313                        move_from = i + shift - NR_MSG_FRAG_IDS;
2314                else
2315                        move_from = i + shift;
2316                if (move_from == msg->sg.end)
2317                        break;
2318
2319                msg->sg.data[i] = msg->sg.data[move_from];
2320                msg->sg.data[move_from].length = 0;
2321                msg->sg.data[move_from].page_link = 0;
2322                msg->sg.data[move_from].offset = 0;
2323                sk_msg_iter_var_next(i);
2324        } while (1);
2325
2326        msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2327                      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2328                      msg->sg.end - shift;
2329out:
2330        msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2331        msg->data_end = msg->data + bytes;
2332        return 0;
2333}
2334
2335static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2336        .func           = bpf_msg_pull_data,
2337        .gpl_only       = false,
2338        .ret_type       = RET_INTEGER,
2339        .arg1_type      = ARG_PTR_TO_CTX,
2340        .arg2_type      = ARG_ANYTHING,
2341        .arg3_type      = ARG_ANYTHING,
2342        .arg4_type      = ARG_ANYTHING,
2343};
2344
2345BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2346           u32, len, u64, flags)
2347{
2348        struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2349        u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2350        u8 *raw, *to, *from;
2351        struct page *page;
2352
2353        if (unlikely(flags))
2354                return -EINVAL;
2355
2356        /* First find the starting scatterlist element */
2357        i = msg->sg.start;
2358        do {
2359                offset += l;
2360                l = sk_msg_elem(msg, i)->length;
2361
2362                if (start < offset + l)
2363                        break;
2364                sk_msg_iter_var_next(i);
2365        } while (i != msg->sg.end);
2366
2367        if (start >= offset + l)
2368                return -EINVAL;
2369
2370        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2371
2372        /* If no space available will fallback to copy, we need at
2373         * least one scatterlist elem available to push data into
2374         * when start aligns to the beginning of an element or two
2375         * when it falls inside an element. We handle the start equals
2376         * offset case because its the common case for inserting a
2377         * header.
2378         */
2379        if (!space || (space == 1 && start != offset))
2380                copy = msg->sg.data[i].length;
2381
2382        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2383                           get_order(copy + len));
2384        if (unlikely(!page))
2385                return -ENOMEM;
2386
2387        if (copy) {
2388                int front, back;
2389
2390                raw = page_address(page);
2391
2392                psge = sk_msg_elem(msg, i);
2393                front = start - offset;
2394                back = psge->length - front;
2395                from = sg_virt(psge);
2396
2397                if (front)
2398                        memcpy(raw, from, front);
2399
2400                if (back) {
2401                        from += front;
2402                        to = raw + front + len;
2403
2404                        memcpy(to, from, back);
2405                }
2406
2407                put_page(sg_page(psge));
2408        } else if (start - offset) {
2409                psge = sk_msg_elem(msg, i);
2410                rsge = sk_msg_elem_cpy(msg, i);
2411
2412                psge->length = start - offset;
2413                rsge.length -= psge->length;
2414                rsge.offset += start;
2415
2416                sk_msg_iter_var_next(i);
2417                sg_unmark_end(psge);
2418                sg_unmark_end(&rsge);
2419                sk_msg_iter_next(msg, end);
2420        }
2421
2422        /* Slot(s) to place newly allocated data */
2423        new = i;
2424
2425        /* Shift one or two slots as needed */
2426        if (!copy) {
2427                sge = sk_msg_elem_cpy(msg, i);
2428
2429                sk_msg_iter_var_next(i);
2430                sg_unmark_end(&sge);
2431                sk_msg_iter_next(msg, end);
2432
2433                nsge = sk_msg_elem_cpy(msg, i);
2434                if (rsge.length) {
2435                        sk_msg_iter_var_next(i);
2436                        nnsge = sk_msg_elem_cpy(msg, i);
2437                }
2438
2439                while (i != msg->sg.end) {
2440                        msg->sg.data[i] = sge;
2441                        sge = nsge;
2442                        sk_msg_iter_var_next(i);
2443                        if (rsge.length) {
2444                                nsge = nnsge;
2445                                nnsge = sk_msg_elem_cpy(msg, i);
2446                        } else {
2447                                nsge = sk_msg_elem_cpy(msg, i);
2448                        }
2449                }
2450        }
2451
2452        /* Place newly allocated data buffer */
2453        sk_mem_charge(msg->sk, len);
2454        msg->sg.size += len;
2455        __clear_bit(new, &msg->sg.copy);
2456        sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2457        if (rsge.length) {
2458                get_page(sg_page(&rsge));
2459                sk_msg_iter_var_next(new);
2460                msg->sg.data[new] = rsge;
2461        }
2462
2463        sk_msg_compute_data_pointers(msg);
2464        return 0;
2465}
2466
2467static const struct bpf_func_proto bpf_msg_push_data_proto = {
2468        .func           = bpf_msg_push_data,
2469        .gpl_only       = false,
2470        .ret_type       = RET_INTEGER,
2471        .arg1_type      = ARG_PTR_TO_CTX,
2472        .arg2_type      = ARG_ANYTHING,
2473        .arg3_type      = ARG_ANYTHING,
2474        .arg4_type      = ARG_ANYTHING,
2475};
2476
2477static void sk_msg_shift_left(struct sk_msg *msg, int i)
2478{
2479        int prev;
2480
2481        do {
2482                prev = i;
2483                sk_msg_iter_var_next(i);
2484                msg->sg.data[prev] = msg->sg.data[i];
2485        } while (i != msg->sg.end);
2486
2487        sk_msg_iter_prev(msg, end);
2488}
2489
2490static void sk_msg_shift_right(struct sk_msg *msg, int i)
2491{
2492        struct scatterlist tmp, sge;
2493
2494        sk_msg_iter_next(msg, end);
2495        sge = sk_msg_elem_cpy(msg, i);
2496        sk_msg_iter_var_next(i);
2497        tmp = sk_msg_elem_cpy(msg, i);
2498
2499        while (i != msg->sg.end) {
2500                msg->sg.data[i] = sge;
2501                sk_msg_iter_var_next(i);
2502                sge = tmp;
2503                tmp = sk_msg_elem_cpy(msg, i);
2504        }
2505}
2506
2507BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2508           u32, len, u64, flags)
2509{
2510        u32 i = 0, l = 0, space, offset = 0;
2511        u64 last = start + len;
2512        int pop;
2513
2514        if (unlikely(flags))
2515                return -EINVAL;
2516
2517        /* First find the starting scatterlist element */
2518        i = msg->sg.start;
2519        do {
2520                offset += l;
2521                l = sk_msg_elem(msg, i)->length;
2522
2523                if (start < offset + l)
2524                        break;
2525                sk_msg_iter_var_next(i);
2526        } while (i != msg->sg.end);
2527
2528        /* Bounds checks: start and pop must be inside message */
2529        if (start >= offset + l || last >= msg->sg.size)
2530                return -EINVAL;
2531
2532        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2533
2534        pop = len;
2535        /* --------------| offset
2536         * -| start      |-------- len -------|
2537         *
2538         *  |----- a ----|-------- pop -------|----- b ----|
2539         *  |______________________________________________| length
2540         *
2541         *
2542         * a:   region at front of scatter element to save
2543         * b:   region at back of scatter element to save when length > A + pop
2544         * pop: region to pop from element, same as input 'pop' here will be
2545         *      decremented below per iteration.
2546         *
2547         * Two top-level cases to handle when start != offset, first B is non
2548         * zero and second B is zero corresponding to when a pop includes more
2549         * than one element.
2550         *
2551         * Then if B is non-zero AND there is no space allocate space and
2552         * compact A, B regions into page. If there is space shift ring to
2553         * the rigth free'ing the next element in ring to place B, leaving
2554         * A untouched except to reduce length.
2555         */
2556        if (start != offset) {
2557                struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2558                int a = start;
2559                int b = sge->length - pop - a;
2560
2561                sk_msg_iter_var_next(i);
2562
2563                if (pop < sge->length - a) {
2564                        if (space) {
2565                                sge->length = a;
2566                                sk_msg_shift_right(msg, i);
2567                                nsge = sk_msg_elem(msg, i);
2568                                get_page(sg_page(sge));
2569                                sg_set_page(nsge,
2570                                            sg_page(sge),
2571                                            b, sge->offset + pop + a);
2572                        } else {
2573                                struct page *page, *orig;
2574                                u8 *to, *from;
2575
2576                                page = alloc_pages(__GFP_NOWARN |
2577                                                   __GFP_COMP   | GFP_ATOMIC,
2578                                                   get_order(a + b));
2579                                if (unlikely(!page))
2580                                        return -ENOMEM;
2581
2582                                sge->length = a;
2583                                orig = sg_page(sge);
2584                                from = sg_virt(sge);
2585                                to = page_address(page);
2586                                memcpy(to, from, a);
2587                                memcpy(to + a, from + a + pop, b);
2588                                sg_set_page(sge, page, a + b, 0);
2589                                put_page(orig);
2590                        }
2591                        pop = 0;
2592                } else if (pop >= sge->length - a) {
2593                        sge->length = a;
2594                        pop -= (sge->length - a);
2595                }
2596        }
2597
2598        /* From above the current layout _must_ be as follows,
2599         *
2600         * -| offset
2601         * -| start
2602         *
2603         *  |---- pop ---|---------------- b ------------|
2604         *  |____________________________________________| length
2605         *
2606         * Offset and start of the current msg elem are equal because in the
2607         * previous case we handled offset != start and either consumed the
2608         * entire element and advanced to the next element OR pop == 0.
2609         *
2610         * Two cases to handle here are first pop is less than the length
2611         * leaving some remainder b above. Simply adjust the element's layout
2612         * in this case. Or pop >= length of the element so that b = 0. In this
2613         * case advance to next element decrementing pop.
2614         */
2615        while (pop) {
2616                struct scatterlist *sge = sk_msg_elem(msg, i);
2617
2618                if (pop < sge->length) {
2619                        sge->length -= pop;
2620                        sge->offset += pop;
2621                        pop = 0;
2622                } else {
2623                        pop -= sge->length;
2624                        sk_msg_shift_left(msg, i);
2625                }
2626                sk_msg_iter_var_next(i);
2627        }
2628
2629        sk_mem_uncharge(msg->sk, len - pop);
2630        msg->sg.size -= (len - pop);
2631        sk_msg_compute_data_pointers(msg);
2632        return 0;
2633}
2634
2635static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2636        .func           = bpf_msg_pop_data,
2637        .gpl_only       = false,
2638        .ret_type       = RET_INTEGER,
2639        .arg1_type      = ARG_PTR_TO_CTX,
2640        .arg2_type      = ARG_ANYTHING,
2641        .arg3_type      = ARG_ANYTHING,
2642        .arg4_type      = ARG_ANYTHING,
2643};
2644
2645BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2646{
2647        return task_get_classid(skb);
2648}
2649
2650static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2651        .func           = bpf_get_cgroup_classid,
2652        .gpl_only       = false,
2653        .ret_type       = RET_INTEGER,
2654        .arg1_type      = ARG_PTR_TO_CTX,
2655};
2656
2657BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2658{
2659        return dst_tclassid(skb);
2660}
2661
2662static const struct bpf_func_proto bpf_get_route_realm_proto = {
2663        .func           = bpf_get_route_realm,
2664        .gpl_only       = false,
2665        .ret_type       = RET_INTEGER,
2666        .arg1_type      = ARG_PTR_TO_CTX,
2667};
2668
2669BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2670{
2671        /* If skb_clear_hash() was called due to mangling, we can
2672         * trigger SW recalculation here. Later access to hash
2673         * can then use the inline skb->hash via context directly
2674         * instead of calling this helper again.
2675         */
2676        return skb_get_hash(skb);
2677}
2678
2679static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2680        .func           = bpf_get_hash_recalc,
2681        .gpl_only       = false,
2682        .ret_type       = RET_INTEGER,
2683        .arg1_type      = ARG_PTR_TO_CTX,
2684};
2685
2686BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2687{
2688        /* After all direct packet write, this can be used once for
2689         * triggering a lazy recalc on next skb_get_hash() invocation.
2690         */
2691        skb_clear_hash(skb);
2692        return 0;
2693}
2694
2695static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2696        .func           = bpf_set_hash_invalid,
2697        .gpl_only       = false,
2698        .ret_type       = RET_INTEGER,
2699        .arg1_type      = ARG_PTR_TO_CTX,
2700};
2701
2702BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2703{
2704        /* Set user specified hash as L4(+), so that it gets returned
2705         * on skb_get_hash() call unless BPF prog later on triggers a
2706         * skb_clear_hash().
2707         */
2708        __skb_set_sw_hash(skb, hash, true);
2709        return 0;
2710}
2711
2712static const struct bpf_func_proto bpf_set_hash_proto = {
2713        .func           = bpf_set_hash,
2714        .gpl_only       = false,
2715        .ret_type       = RET_INTEGER,
2716        .arg1_type      = ARG_PTR_TO_CTX,
2717        .arg2_type      = ARG_ANYTHING,
2718};
2719
2720BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2721           u16, vlan_tci)
2722{
2723        int ret;
2724
2725        if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2726                     vlan_proto != htons(ETH_P_8021AD)))
2727                vlan_proto = htons(ETH_P_8021Q);
2728
2729        bpf_push_mac_rcsum(skb);
2730        ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2731        bpf_pull_mac_rcsum(skb);
2732
2733        bpf_compute_data_pointers(skb);
2734        return ret;
2735}
2736
2737static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2738        .func           = bpf_skb_vlan_push,
2739        .gpl_only       = false,
2740        .ret_type       = RET_INTEGER,
2741        .arg1_type      = ARG_PTR_TO_CTX,
2742        .arg2_type      = ARG_ANYTHING,
2743        .arg3_type      = ARG_ANYTHING,
2744};
2745
2746BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2747{
2748        int ret;
2749
2750        bpf_push_mac_rcsum(skb);
2751        ret = skb_vlan_pop(skb);
2752        bpf_pull_mac_rcsum(skb);
2753
2754        bpf_compute_data_pointers(skb);
2755        return ret;
2756}
2757
2758static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2759        .func           = bpf_skb_vlan_pop,
2760        .gpl_only       = false,
2761        .ret_type       = RET_INTEGER,
2762        .arg1_type      = ARG_PTR_TO_CTX,
2763};
2764
2765static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2766{
2767        /* Caller already did skb_cow() with len as headroom,
2768         * so no need to do it here.
2769         */
2770        skb_push(skb, len);
2771        memmove(skb->data, skb->data + len, off);
2772        memset(skb->data + off, 0, len);
2773
2774        /* No skb_postpush_rcsum(skb, skb->data + off, len)
2775         * needed here as it does not change the skb->csum
2776         * result for checksum complete when summing over
2777         * zeroed blocks.
2778         */
2779        return 0;
2780}
2781
2782static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2783{
2784        /* skb_ensure_writable() is not needed here, as we're
2785         * already working on an uncloned skb.
2786         */
2787        if (unlikely(!pskb_may_pull(skb, off + len)))
2788                return -ENOMEM;
2789
2790        skb_postpull_rcsum(skb, skb->data + off, len);
2791        memmove(skb->data + len, skb->data, off);
2792        __skb_pull(skb, len);
2793
2794        return 0;
2795}
2796
2797static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2798{
2799        bool trans_same = skb->transport_header == skb->network_header;
2800        int ret;
2801
2802        /* There's no need for __skb_push()/__skb_pull() pair to
2803         * get to the start of the mac header as we're guaranteed
2804         * to always start from here under eBPF.
2805         */
2806        ret = bpf_skb_generic_push(skb, off, len);
2807        if (likely(!ret)) {
2808                skb->mac_header -= len;
2809                skb->network_header -= len;
2810                if (trans_same)
2811                        skb->transport_header = skb->network_header;
2812        }
2813
2814        return ret;
2815}
2816
2817static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2818{
2819        bool trans_same = skb->transport_header == skb->network_header;
2820        int ret;
2821
2822        /* Same here, __skb_push()/__skb_pull() pair not needed. */
2823        ret = bpf_skb_generic_pop(skb, off, len);
2824        if (likely(!ret)) {
2825                skb->mac_header += len;
2826                skb->network_header += len;
2827                if (trans_same)
2828                        skb->transport_header = skb->network_header;
2829        }
2830
2831        return ret;
2832}
2833
2834static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2835{
2836        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2837        u32 off = skb_mac_header_len(skb);
2838        int ret;
2839
2840        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2841                return -ENOTSUPP;
2842
2843        ret = skb_cow(skb, len_diff);
2844        if (unlikely(ret < 0))
2845                return ret;
2846
2847        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2848        if (unlikely(ret < 0))
2849                return ret;
2850
2851        if (skb_is_gso(skb)) {
2852                struct skb_shared_info *shinfo = skb_shinfo(skb);
2853
2854                /* SKB_GSO_TCPV4 needs to be changed into
2855                 * SKB_GSO_TCPV6.
2856                 */
2857                if (shinfo->gso_type & SKB_GSO_TCPV4) {
2858                        shinfo->gso_type &= ~SKB_GSO_TCPV4;
2859                        shinfo->gso_type |=  SKB_GSO_TCPV6;
2860                }
2861
2862                /* Due to IPv6 header, MSS needs to be downgraded. */
2863                skb_decrease_gso_size(shinfo, len_diff);
2864                /* Header must be checked, and gso_segs recomputed. */
2865                shinfo->gso_type |= SKB_GSO_DODGY;
2866                shinfo->gso_segs = 0;
2867        }
2868
2869        skb->protocol = htons(ETH_P_IPV6);
2870        skb_clear_hash(skb);
2871
2872        return 0;
2873}
2874
2875static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2876{
2877        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2878        u32 off = skb_mac_header_len(skb);
2879        int ret;
2880
2881        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2882                return -ENOTSUPP;
2883
2884        ret = skb_unclone(skb, GFP_ATOMIC);
2885        if (unlikely(ret < 0))
2886                return ret;
2887
2888        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2889        if (unlikely(ret < 0))
2890                return ret;
2891
2892        if (skb_is_gso(skb)) {
2893                struct skb_shared_info *shinfo = skb_shinfo(skb);
2894
2895                /* SKB_GSO_TCPV6 needs to be changed into
2896                 * SKB_GSO_TCPV4.
2897                 */
2898                if (shinfo->gso_type & SKB_GSO_TCPV6) {
2899                        shinfo->gso_type &= ~SKB_GSO_TCPV6;
2900                        shinfo->gso_type |=  SKB_GSO_TCPV4;
2901                }
2902
2903                /* Due to IPv4 header, MSS can be upgraded. */
2904                skb_increase_gso_size(shinfo, len_diff);
2905                /* Header must be checked, and gso_segs recomputed. */
2906                shinfo->gso_type |= SKB_GSO_DODGY;
2907                shinfo->gso_segs = 0;
2908        }
2909
2910        skb->protocol = htons(ETH_P_IP);
2911        skb_clear_hash(skb);
2912
2913        return 0;
2914}
2915
2916static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2917{
2918        __be16 from_proto = skb->protocol;
2919
2920        if (from_proto == htons(ETH_P_IP) &&
2921              to_proto == htons(ETH_P_IPV6))
2922                return bpf_skb_proto_4_to_6(skb);
2923
2924        if (from_proto == htons(ETH_P_IPV6) &&
2925              to_proto == htons(ETH_P_IP))
2926                return bpf_skb_proto_6_to_4(skb);
2927
2928        return -ENOTSUPP;
2929}
2930
2931BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2932           u64, flags)
2933{
2934        int ret;
2935
2936        if (unlikely(flags))
2937                return -EINVAL;
2938
2939        /* General idea is that this helper does the basic groundwork
2940         * needed for changing the protocol, and eBPF program fills the
2941         * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2942         * and other helpers, rather than passing a raw buffer here.
2943         *
2944         * The rationale is to keep this minimal and without a need to
2945         * deal with raw packet data. F.e. even if we would pass buffers
2946         * here, the program still needs to call the bpf_lX_csum_replace()
2947         * helpers anyway. Plus, this way we keep also separation of
2948         * concerns, since f.e. bpf_skb_store_bytes() should only take
2949         * care of stores.
2950         *
2951         * Currently, additional options and extension header space are
2952         * not supported, but flags register is reserved so we can adapt
2953         * that. For offloads, we mark packet as dodgy, so that headers
2954         * need to be verified first.
2955         */
2956        ret = bpf_skb_proto_xlat(skb, proto);
2957        bpf_compute_data_pointers(skb);
2958        return ret;
2959}
2960
2961static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2962        .func           = bpf_skb_change_proto,
2963        .gpl_only       = false,
2964        .ret_type       = RET_INTEGER,
2965        .arg1_type      = ARG_PTR_TO_CTX,
2966        .arg2_type      = ARG_ANYTHING,
2967        .arg3_type      = ARG_ANYTHING,
2968};
2969
2970BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2971{
2972        /* We only allow a restricted subset to be changed for now. */
2973        if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2974                     !skb_pkt_type_ok(pkt_type)))
2975                return -EINVAL;
2976
2977        skb->pkt_type = pkt_type;
2978        return 0;
2979}
2980
2981static const struct bpf_func_proto bpf_skb_change_type_proto = {
2982        .func           = bpf_skb_change_type,
2983        .gpl_only       = false,
2984        .ret_type       = RET_INTEGER,
2985        .arg1_type      = ARG_PTR_TO_CTX,
2986        .arg2_type      = ARG_ANYTHING,
2987};
2988
2989static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2990{
2991        switch (skb->protocol) {
2992        case htons(ETH_P_IP):
2993                return sizeof(struct iphdr);
2994        case htons(ETH_P_IPV6):
2995                return sizeof(struct ipv6hdr);
2996        default:
2997                return ~0U;
2998        }
2999}
3000
3001#define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3002                                         BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3003
3004#define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3005                                         BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3006                                         BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3007                                         BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3008                                         BPF_F_ADJ_ROOM_ENCAP_L2( \
3009                                          BPF_ADJ_ROOM_ENCAP_L2_MASK))
3010
3011static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3012                            u64 flags)
3013{
3014        u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3015        bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3016        u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3017        unsigned int gso_type = SKB_GSO_DODGY;
3018        int ret;
3019
3020        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3021                /* udp gso_size delineates datagrams, only allow if fixed */
3022                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3023                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3024                        return -ENOTSUPP;
3025        }
3026
3027        ret = skb_cow_head(skb, len_diff);
3028        if (unlikely(ret < 0))
3029                return ret;
3030
3031        if (encap) {
3032                if (skb->protocol != htons(ETH_P_IP) &&
3033                    skb->protocol != htons(ETH_P_IPV6))
3034                        return -ENOTSUPP;
3035
3036                if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3037                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3038                        return -EINVAL;
3039
3040                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3041                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3042                        return -EINVAL;
3043
3044                if (skb->encapsulation)
3045                        return -EALREADY;
3046
3047                mac_len = skb->network_header - skb->mac_header;
3048                inner_net = skb->network_header;
3049                if (inner_mac_len > len_diff)
3050                        return -EINVAL;
3051                inner_trans = skb->transport_header;
3052        }
3053
3054        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3055        if (unlikely(ret < 0))
3056                return ret;
3057
3058        if (encap) {
3059                skb->inner_mac_header = inner_net - inner_mac_len;
3060                skb->inner_network_header = inner_net;
3061                skb->inner_transport_header = inner_trans;
3062                skb_set_inner_protocol(skb, skb->protocol);
3063
3064                skb->encapsulation = 1;
3065                skb_set_network_header(skb, mac_len);
3066
3067                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3068                        gso_type |= SKB_GSO_UDP_TUNNEL;
3069                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3070                        gso_type |= SKB_GSO_GRE;
3071                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3072                        gso_type |= SKB_GSO_IPXIP6;
3073                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3074                        gso_type |= SKB_GSO_IPXIP4;
3075
3076                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3077                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3078                        int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3079                                        sizeof(struct ipv6hdr) :
3080                                        sizeof(struct iphdr);
3081
3082                        skb_set_transport_header(skb, mac_len + nh_len);
3083                }
3084
3085                /* Match skb->protocol to new outer l3 protocol */
3086                if (skb->protocol == htons(ETH_P_IP) &&
3087                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3088                        skb->protocol = htons(ETH_P_IPV6);
3089                else if (skb->protocol == htons(ETH_P_IPV6) &&
3090                         flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3091                        skb->protocol = htons(ETH_P_IP);
3092        }
3093
3094        if (skb_is_gso(skb)) {
3095                struct skb_shared_info *shinfo = skb_shinfo(skb);
3096
3097                /* Due to header grow, MSS needs to be downgraded. */
3098                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3099                        skb_decrease_gso_size(shinfo, len_diff);
3100
3101                /* Header must be checked, and gso_segs recomputed. */
3102                shinfo->gso_type |= gso_type;
3103                shinfo->gso_segs = 0;
3104        }
3105
3106        return 0;
3107}
3108
3109static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3110                              u64 flags)
3111{
3112        int ret;
3113
3114        if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3115                return -EINVAL;
3116
3117        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3118                /* udp gso_size delineates datagrams, only allow if fixed */
3119                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3120                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3121                        return -ENOTSUPP;
3122        }
3123
3124        ret = skb_unclone(skb, GFP_ATOMIC);
3125        if (unlikely(ret < 0))
3126                return ret;
3127
3128        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3129        if (unlikely(ret < 0))
3130                return ret;
3131
3132        if (skb_is_gso(skb)) {
3133                struct skb_shared_info *shinfo = skb_shinfo(skb);
3134
3135                /* Due to header shrink, MSS can be upgraded. */
3136                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3137                        skb_increase_gso_size(shinfo, len_diff);
3138
3139                /* Header must be checked, and gso_segs recomputed. */
3140                shinfo->gso_type |= SKB_GSO_DODGY;
3141                shinfo->gso_segs = 0;
3142        }
3143
3144        return 0;
3145}
3146
3147static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3148{
3149        return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3150                          SKB_MAX_ALLOC;
3151}
3152
3153BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3154           u32, mode, u64, flags)
3155{
3156        u32 len_cur, len_diff_abs = abs(len_diff);
3157        u32 len_min = bpf_skb_net_base_len(skb);
3158        u32 len_max = __bpf_skb_max_len(skb);
3159        __be16 proto = skb->protocol;
3160        bool shrink = len_diff < 0;
3161        u32 off;
3162        int ret;
3163
3164        if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3165                return -EINVAL;
3166        if (unlikely(len_diff_abs > 0xfffU))
3167                return -EFAULT;
3168        if (unlikely(proto != htons(ETH_P_IP) &&
3169                     proto != htons(ETH_P_IPV6)))
3170                return -ENOTSUPP;
3171
3172        off = skb_mac_header_len(skb);
3173        switch (mode) {
3174        case BPF_ADJ_ROOM_NET:
3175                off += bpf_skb_net_base_len(skb);
3176                break;
3177        case BPF_ADJ_ROOM_MAC:
3178                break;
3179        default:
3180                return -ENOTSUPP;
3181        }
3182
3183        len_cur = skb->len - skb_network_offset(skb);
3184        if ((shrink && (len_diff_abs >= len_cur ||
3185                        len_cur - len_diff_abs < len_min)) ||
3186            (!shrink && (skb->len + len_diff_abs > len_max &&
3187                         !skb_is_gso(skb))))
3188                return -ENOTSUPP;
3189
3190        ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3191                       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3192
3193        bpf_compute_data_pointers(skb);
3194        return ret;
3195}
3196
3197static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3198        .func           = bpf_skb_adjust_room,
3199        .gpl_only       = false,
3200        .ret_type       = RET_INTEGER,
3201        .arg1_type      = ARG_PTR_TO_CTX,
3202        .arg2_type      = ARG_ANYTHING,
3203        .arg3_type      = ARG_ANYTHING,
3204        .arg4_type      = ARG_ANYTHING,
3205};
3206
3207static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3208{
3209        u32 min_len = skb_network_offset(skb);
3210
3211        if (skb_transport_header_was_set(skb))
3212                min_len = skb_transport_offset(skb);
3213        if (skb->ip_summed == CHECKSUM_PARTIAL)
3214                min_len = skb_checksum_start_offset(skb) +
3215                          skb->csum_offset + sizeof(__sum16);
3216        return min_len;
3217}
3218
3219static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3220{
3221        unsigned int old_len = skb->len;
3222        int ret;
3223
3224        ret = __skb_grow_rcsum(skb, new_len);
3225        if (!ret)
3226                memset(skb->data + old_len, 0, new_len - old_len);
3227        return ret;
3228}
3229
3230static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3231{
3232        return __skb_trim_rcsum(skb, new_len);
3233}
3234
3235static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3236                                        u64 flags)
3237{
3238        u32 max_len = __bpf_skb_max_len(skb);
3239        u32 min_len = __bpf_skb_min_len(skb);
3240        int ret;
3241
3242        if (unlikely(flags || new_len > max_len || new_len < min_len))
3243                return -EINVAL;
3244        if (skb->encapsulation)
3245                return -ENOTSUPP;
3246
3247        /* The basic idea of this helper is that it's performing the
3248         * needed work to either grow or trim an skb, and eBPF program
3249         * rewrites the rest via helpers like bpf_skb_store_bytes(),
3250         * bpf_lX_csum_replace() and others rather than passing a raw
3251         * buffer here. This one is a slow path helper and intended
3252         * for replies with control messages.
3253         *
3254         * Like in bpf_skb_change_proto(), we want to keep this rather
3255         * minimal and without protocol specifics so that we are able
3256         * to separate concerns as in bpf_skb_store_bytes() should only
3257         * be the one responsible for writing buffers.
3258         *
3259         * It's really expected to be a slow path operation here for
3260         * control message replies, so we're implicitly linearizing,
3261         * uncloning and drop offloads from the skb by this.
3262         */
3263        ret = __bpf_try_make_writable(skb, skb->len);
3264        if (!ret) {
3265                if (new_len > skb->len)
3266                        ret = bpf_skb_grow_rcsum(skb, new_len);
3267                else if (new_len < skb->len)
3268                        ret = bpf_skb_trim_rcsum(skb, new_len);
3269                if (!ret && skb_is_gso(skb))
3270                        skb_gso_reset(skb);
3271        }
3272        return ret;
3273}
3274
3275BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3276           u64, flags)
3277{
3278        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3279
3280        bpf_compute_data_pointers(skb);
3281        return ret;
3282}
3283
3284static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3285        .func           = bpf_skb_change_tail,
3286        .gpl_only       = false,
3287        .ret_type       = RET_INTEGER,
3288        .arg1_type      = ARG_PTR_TO_CTX,
3289        .arg2_type      = ARG_ANYTHING,
3290        .arg3_type      = ARG_ANYTHING,
3291};
3292
3293BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3294           u64, flags)
3295{
3296        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3297
3298        bpf_compute_data_end_sk_skb(skb);
3299        return ret;
3300}
3301
3302static const struct bpf_func_proto sk_skb_change_tail_proto = {
3303        .func           = sk_skb_change_tail,
3304        .gpl_only       = false,
3305        .ret_type       = RET_INTEGER,
3306        .arg1_type      = ARG_PTR_TO_CTX,
3307        .arg2_type      = ARG_ANYTHING,
3308        .arg3_type      = ARG_ANYTHING,
3309};
3310
3311static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3312                                        u64 flags)
3313{
3314        u32 max_len = __bpf_skb_max_len(skb);
3315        u32 new_len = skb->len + head_room;
3316        int ret;
3317
3318        if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3319                     new_len < skb->len))
3320                return -EINVAL;
3321
3322        ret = skb_cow(skb, head_room);
3323        if (likely(!ret)) {
3324                /* Idea for this helper is that we currently only
3325                 * allow to expand on mac header. This means that
3326                 * skb->protocol network header, etc, stay as is.
3327                 * Compared to bpf_skb_change_tail(), we're more
3328                 * flexible due to not needing to linearize or
3329                 * reset GSO. Intention for this helper is to be
3330                 * used by an L3 skb that needs to push mac header
3331                 * for redirection into L2 device.
3332                 */
3333                __skb_push(skb, head_room);
3334                memset(skb->data, 0, head_room);
3335                skb_reset_mac_header(skb);
3336        }
3337
3338        return ret;
3339}
3340
3341BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3342           u64, flags)
3343{
3344        int ret = __bpf_skb_change_head(skb, head_room, flags);
3345
3346        bpf_compute_data_pointers(skb);
3347        return ret;
3348}
3349
3350static const struct bpf_func_proto bpf_skb_change_head_proto = {
3351        .func           = bpf_skb_change_head,
3352        .gpl_only       = false,
3353        .ret_type       = RET_INTEGER,
3354        .arg1_type      = ARG_PTR_TO_CTX,
3355        .arg2_type      = ARG_ANYTHING,
3356        .arg3_type      = ARG_ANYTHING,
3357};
3358
3359BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3360           u64, flags)
3361{
3362        int ret = __bpf_skb_change_head(skb, head_room, flags);
3363
3364        bpf_compute_data_end_sk_skb(skb);
3365        return ret;
3366}
3367
3368static const struct bpf_func_proto sk_skb_change_head_proto = {
3369        .func           = sk_skb_change_head,
3370        .gpl_only       = false,
3371        .ret_type       = RET_INTEGER,
3372        .arg1_type      = ARG_PTR_TO_CTX,
3373        .arg2_type      = ARG_ANYTHING,
3374        .arg3_type      = ARG_ANYTHING,
3375};
3376static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3377{
3378        return xdp_data_meta_unsupported(xdp) ? 0 :
3379               xdp->data - xdp->data_meta;
3380}
3381
3382BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3383{
3384        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3385        unsigned long metalen = xdp_get_metalen(xdp);
3386        void *data_start = xdp_frame_end + metalen;
3387        void *data = xdp->data + offset;
3388
3389        if (unlikely(data < data_start ||
3390                     data > xdp->data_end - ETH_HLEN))
3391                return -EINVAL;
3392
3393        if (metalen)
3394                memmove(xdp->data_meta + offset,
3395                        xdp->data_meta, metalen);
3396        xdp->data_meta += offset;
3397        xdp->data = data;
3398
3399        return 0;
3400}
3401
3402static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3403        .func           = bpf_xdp_adjust_head,
3404        .gpl_only       = false,
3405        .ret_type       = RET_INTEGER,
3406        .arg1_type      = ARG_PTR_TO_CTX,
3407        .arg2_type      = ARG_ANYTHING,
3408};
3409
3410BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3411{
3412        void *data_end = xdp->data_end + offset;
3413
3414        /* only shrinking is allowed for now. */
3415        if (unlikely(offset >= 0))
3416                return -EINVAL;
3417
3418        if (unlikely(data_end < xdp->data + ETH_HLEN))
3419                return -EINVAL;
3420
3421        xdp->data_end = data_end;
3422
3423        return 0;
3424}
3425
3426static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3427        .func           = bpf_xdp_adjust_tail,
3428        .gpl_only       = false,
3429        .ret_type       = RET_INTEGER,
3430        .arg1_type      = ARG_PTR_TO_CTX,
3431        .arg2_type      = ARG_ANYTHING,
3432};
3433
3434BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3435{
3436        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3437        void *meta = xdp->data_meta + offset;
3438        unsigned long metalen = xdp->data - meta;
3439
3440        if (xdp_data_meta_unsupported(xdp))
3441                return -ENOTSUPP;
3442        if (unlikely(meta < xdp_frame_end ||
3443                     meta > xdp->data))
3444                return -EINVAL;
3445        if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3446                     (metalen > 32)))
3447                return -EACCES;
3448
3449        xdp->data_meta = meta;
3450
3451        return 0;
3452}
3453
3454static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3455        .func           = bpf_xdp_adjust_meta,
3456        .gpl_only       = false,
3457        .ret_type       = RET_INTEGER,
3458        .arg1_type      = ARG_PTR_TO_CTX,
3459        .arg2_type      = ARG_ANYTHING,
3460};
3461
3462static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3463                            struct bpf_map *map, struct xdp_buff *xdp)
3464{
3465        switch (map->map_type) {
3466        case BPF_MAP_TYPE_DEVMAP:
3467        case BPF_MAP_TYPE_DEVMAP_HASH:
3468                return dev_map_enqueue(fwd, xdp, dev_rx);
3469        case BPF_MAP_TYPE_CPUMAP:
3470                return cpu_map_enqueue(fwd, xdp, dev_rx);
3471        case BPF_MAP_TYPE_XSKMAP:
3472                return __xsk_map_redirect(fwd, xdp);
3473        default:
3474                return -EBADRQC;
3475        }
3476        return 0;
3477}
3478
3479void xdp_do_flush(void)
3480{
3481        __dev_flush();
3482        __cpu_map_flush();
3483        __xsk_map_flush();
3484}
3485EXPORT_SYMBOL_GPL(xdp_do_flush);
3486
3487static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3488{
3489        switch (map->map_type) {
3490        case BPF_MAP_TYPE_DEVMAP:
3491                return __dev_map_lookup_elem(map, index);
3492        case BPF_MAP_TYPE_DEVMAP_HASH:
3493                return __dev_map_hash_lookup_elem(map, index);
3494        case BPF_MAP_TYPE_CPUMAP:
3495                return __cpu_map_lookup_elem(map, index);
3496        case BPF_MAP_TYPE_XSKMAP:
3497                return __xsk_map_lookup_elem(map, index);
3498        default:
3499                return NULL;
3500        }
3501}
3502
3503void bpf_clear_redirect_map(struct bpf_map *map)
3504{
3505        struct bpf_redirect_info *ri;
3506        int cpu;
3507
3508        for_each_possible_cpu(cpu) {
3509                ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3510                /* Avoid polluting remote cacheline due to writes if
3511                 * not needed. Once we pass this test, we need the
3512                 * cmpxchg() to make sure it hasn't been changed in
3513                 * the meantime by remote CPU.
3514                 */
3515                if (unlikely(READ_ONCE(ri->map) == map))
3516                        cmpxchg(&ri->map, map, NULL);
3517        }
3518}
3519
3520int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3521                    struct bpf_prog *xdp_prog)
3522{
3523        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3524        struct bpf_map *map = READ_ONCE(ri->map);
3525        u32 index = ri->tgt_index;
3526        void *fwd = ri->tgt_value;
3527        int err;
3528
3529        ri->tgt_index = 0;
3530        ri->tgt_value = NULL;
3531        WRITE_ONCE(ri->map, NULL);
3532
3533        if (unlikely(!map)) {
3534                fwd = dev_get_by_index_rcu(dev_net(dev), index);
3535                if (unlikely(!fwd)) {
3536                        err = -EINVAL;
3537                        goto err;
3538                }
3539
3540                err = dev_xdp_enqueue(fwd, xdp, dev);
3541        } else {
3542                err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3543        }
3544
3545        if (unlikely(err))
3546                goto err;
3547
3548        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3549        return 0;
3550err:
3551        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3552        return err;
3553}
3554EXPORT_SYMBOL_GPL(xdp_do_redirect);
3555
3556static int xdp_do_generic_redirect_map(struct net_device *dev,
3557                                       struct sk_buff *skb,
3558                                       struct xdp_buff *xdp,
3559                                       struct bpf_prog *xdp_prog,
3560                                       struct bpf_map *map)
3561{
3562        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3563        u32 index = ri->tgt_index;
3564        void *fwd = ri->tgt_value;
3565        int err = 0;
3566
3567        ri->tgt_index = 0;
3568        ri->tgt_value = NULL;
3569        WRITE_ONCE(ri->map, NULL);
3570
3571        if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3572            map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3573                struct bpf_dtab_netdev *dst = fwd;
3574
3575                err = dev_map_generic_redirect(dst, skb, xdp_prog);
3576                if (unlikely(err))
3577                        goto err;
3578        } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3579                struct xdp_sock *xs = fwd;
3580
3581                err = xsk_generic_rcv(xs, xdp);
3582                if (err)
3583                        goto err;
3584                consume_skb(skb);
3585        } else {
3586                /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3587                err = -EBADRQC;
3588                goto err;
3589        }
3590
3591        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3592        return 0;
3593err:
3594        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3595        return err;
3596}
3597
3598int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3599                            struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3600{
3601        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3602        struct bpf_map *map = READ_ONCE(ri->map);
3603        u32 index = ri->tgt_index;
3604        struct net_device *fwd;
3605        int err = 0;
3606
3607        if (map)
3608                return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3609                                                   map);
3610        ri->tgt_index = 0;
3611        fwd = dev_get_by_index_rcu(dev_net(dev), index);
3612        if (unlikely(!fwd)) {
3613                err = -EINVAL;
3614                goto err;
3615        }
3616
3617        err = xdp_ok_fwd_dev(fwd, skb->len);
3618        if (unlikely(err))
3619                goto err;
3620
3621        skb->dev = fwd;
3622        _trace_xdp_redirect(dev, xdp_prog, index);
3623        generic_xdp_tx(skb, xdp_prog);
3624        return 0;
3625err:
3626        _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3627        return err;
3628}
3629EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3630
3631BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3632{
3633        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3634
3635        if (unlikely(flags))
3636                return XDP_ABORTED;
3637
3638        ri->flags = flags;
3639        ri->tgt_index = ifindex;
3640        ri->tgt_value = NULL;
3641        WRITE_ONCE(ri->map, NULL);
3642
3643        return XDP_REDIRECT;
3644}
3645
3646static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3647        .func           = bpf_xdp_redirect,
3648        .gpl_only       = false,
3649        .ret_type       = RET_INTEGER,
3650        .arg1_type      = ARG_ANYTHING,
3651        .arg2_type      = ARG_ANYTHING,
3652};
3653
3654BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3655           u64, flags)
3656{
3657        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3658
3659        /* Lower bits of the flags are used as return code on lookup failure */
3660        if (unlikely(flags > XDP_TX))
3661                return XDP_ABORTED;
3662
3663        ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3664        if (unlikely(!ri->tgt_value)) {
3665                /* If the lookup fails we want to clear out the state in the
3666                 * redirect_info struct completely, so that if an eBPF program
3667                 * performs multiple lookups, the last one always takes
3668                 * precedence.
3669                 */
3670                WRITE_ONCE(ri->map, NULL);
3671                return flags;
3672        }
3673
3674        ri->flags = flags;
3675        ri->tgt_index = ifindex;
3676        WRITE_ONCE(ri->map, map);
3677
3678        return XDP_REDIRECT;
3679}
3680
3681static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3682        .func           = bpf_xdp_redirect_map,
3683        .gpl_only       = false,
3684        .ret_type       = RET_INTEGER,
3685        .arg1_type      = ARG_CONST_MAP_PTR,
3686        .arg2_type      = ARG_ANYTHING,
3687        .arg3_type      = ARG_ANYTHING,
3688};
3689
3690static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3691                                  unsigned long off, unsigned long len)
3692{
3693        void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3694
3695        if (unlikely(!ptr))
3696                return len;
3697        if (ptr != dst_buff)
3698                memcpy(dst_buff, ptr, len);
3699
3700        return 0;
3701}
3702
3703BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3704           u64, flags, void *, meta, u64, meta_size)
3705{
3706        u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3707
3708        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3709                return -EINVAL;
3710        if (unlikely(!skb || skb_size > skb->len))
3711                return -EFAULT;
3712
3713        return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3714                                bpf_skb_copy);
3715}
3716
3717static const struct bpf_func_proto bpf_skb_event_output_proto = {
3718        .func           = bpf_skb_event_output,
3719        .gpl_only       = true,
3720        .ret_type       = RET_INTEGER,
3721        .arg1_type      = ARG_PTR_TO_CTX,
3722        .arg2_type      = ARG_CONST_MAP_PTR,
3723        .arg3_type      = ARG_ANYTHING,
3724        .arg4_type      = ARG_PTR_TO_MEM,
3725        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3726};
3727
3728static int bpf_skb_output_btf_ids[5];
3729const struct bpf_func_proto bpf_skb_output_proto = {
3730        .func           = bpf_skb_event_output,
3731        .gpl_only       = true,
3732        .ret_type       = RET_INTEGER,
3733        .arg1_type      = ARG_PTR_TO_BTF_ID,
3734        .arg2_type      = ARG_CONST_MAP_PTR,
3735        .arg3_type      = ARG_ANYTHING,
3736        .arg4_type      = ARG_PTR_TO_MEM,
3737        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3738        .btf_id         = bpf_skb_output_btf_ids,
3739};
3740
3741static unsigned short bpf_tunnel_key_af(u64 flags)
3742{
3743        return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3744}
3745
3746BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3747           u32, size, u64, flags)
3748{
3749        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3750        u8 compat[sizeof(struct bpf_tunnel_key)];
3751        void *to_orig = to;
3752        int err;
3753
3754        if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3755                err = -EINVAL;
3756                goto err_clear;
3757        }
3758        if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3759                err = -EPROTO;
3760                goto err_clear;
3761        }
3762        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3763                err = -EINVAL;
3764                switch (size) {
3765                case offsetof(struct bpf_tunnel_key, tunnel_label):
3766                case offsetof(struct bpf_tunnel_key, tunnel_ext):
3767                        goto set_compat;
3768                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3769                        /* Fixup deprecated structure layouts here, so we have
3770                         * a common path later on.
3771                         */
3772                        if (ip_tunnel_info_af(info) != AF_INET)
3773                                goto err_clear;
3774set_compat:
3775                        to = (struct bpf_tunnel_key *)compat;
3776                        break;
3777                default:
3778                        goto err_clear;
3779                }
3780        }
3781
3782        to->tunnel_id = be64_to_cpu(info->key.tun_id);
3783        to->tunnel_tos = info->key.tos;
3784        to->tunnel_ttl = info->key.ttl;
3785        to->tunnel_ext = 0;
3786
3787        if (flags & BPF_F_TUNINFO_IPV6) {
3788                memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3789                       sizeof(to->remote_ipv6));
3790                to->tunnel_label = be32_to_cpu(info->key.label);
3791        } else {
3792                to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3793                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3794                to->tunnel_label = 0;
3795        }
3796
3797        if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3798                memcpy(to_orig, to, size);
3799
3800        return 0;
3801err_clear:
3802        memset(to_orig, 0, size);
3803        return err;
3804}
3805
3806static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3807        .func           = bpf_skb_get_tunnel_key,
3808        .gpl_only       = false,
3809        .ret_type       = RET_INTEGER,
3810        .arg1_type      = ARG_PTR_TO_CTX,
3811        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3812        .arg3_type      = ARG_CONST_SIZE,
3813        .arg4_type      = ARG_ANYTHING,
3814};
3815
3816BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3817{
3818        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3819        int err;
3820
3821        if (unlikely(!info ||
3822                     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3823                err = -ENOENT;
3824                goto err_clear;
3825        }
3826        if (unlikely(size < info->options_len)) {
3827                err = -ENOMEM;
3828                goto err_clear;
3829        }
3830
3831        ip_tunnel_info_opts_get(to, info);
3832        if (size > info->options_len)
3833                memset(to + info->options_len, 0, size - info->options_len);
3834
3835        return info->options_len;
3836err_clear:
3837        memset(to, 0, size);
3838        return err;
3839}
3840
3841static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3842        .func           = bpf_skb_get_tunnel_opt,
3843        .gpl_only       = false,
3844        .ret_type       = RET_INTEGER,
3845        .arg1_type      = ARG_PTR_TO_CTX,
3846        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3847        .arg3_type      = ARG_CONST_SIZE,
3848};
3849
3850static struct metadata_dst __percpu *md_dst;
3851
3852BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3853           const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3854{
3855        struct metadata_dst *md = this_cpu_ptr(md_dst);
3856        u8 compat[sizeof(struct bpf_tunnel_key)];
3857        struct ip_tunnel_info *info;
3858
3859        if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3860                               BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3861                return -EINVAL;
3862        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3863                switch (size) {
3864                case offsetof(struct bpf_tunnel_key, tunnel_label):
3865                case offsetof(struct bpf_tunnel_key, tunnel_ext):
3866                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3867                        /* Fixup deprecated structure layouts here, so we have
3868                         * a common path later on.
3869                         */
3870                        memcpy(compat, from, size);
3871                        memset(compat + size, 0, sizeof(compat) - size);
3872                        from = (const struct bpf_tunnel_key *) compat;
3873                        break;
3874                default:
3875                        return -EINVAL;
3876                }
3877        }
3878        if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3879                     from->tunnel_ext))
3880                return -EINVAL;
3881
3882        skb_dst_drop(skb);
3883        dst_hold((struct dst_entry *) md);
3884        skb_dst_set(skb, (struct dst_entry *) md);
3885
3886        info = &md->u.tun_info;
3887        memset(info, 0, sizeof(*info));
3888        info->mode = IP_TUNNEL_INFO_TX;
3889
3890        info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3891        if (flags & BPF_F_DONT_FRAGMENT)
3892                info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3893        if (flags & BPF_F_ZERO_CSUM_TX)
3894                info->key.tun_flags &= ~TUNNEL_CSUM;
3895        if (flags & BPF_F_SEQ_NUMBER)
3896                info->key.tun_flags |= TUNNEL_SEQ;
3897
3898        info->key.tun_id = cpu_to_be64(from->tunnel_id);
3899        info->key.tos = from->tunnel_tos;
3900        info->key.ttl = from->tunnel_ttl;
3901
3902        if (flags & BPF_F_TUNINFO_IPV6) {
3903                info->mode |= IP_TUNNEL_INFO_IPV6;
3904                memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3905                       sizeof(from->remote_ipv6));
3906                info->key.label = cpu_to_be32(from->tunnel_label) &
3907                                  IPV6_FLOWLABEL_MASK;
3908        } else {
3909                info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3910        }
3911
3912        return 0;
3913}
3914
3915static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3916        .func           = bpf_skb_set_tunnel_key,
3917        .gpl_only       = false,
3918        .ret_type       = RET_INTEGER,
3919        .arg1_type      = ARG_PTR_TO_CTX,
3920        .arg2_type      = ARG_PTR_TO_MEM,
3921        .arg3_type      = ARG_CONST_SIZE,
3922        .arg4_type      = ARG_ANYTHING,
3923};
3924
3925BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3926           const u8 *, from, u32, size)
3927{
3928        struct ip_tunnel_info *info = skb_tunnel_info(skb);
3929        const struct metadata_dst *md = this_cpu_ptr(md_dst);
3930
3931        if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3932                return -EINVAL;
3933        if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3934                return -ENOMEM;
3935
3936        ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3937
3938        return 0;
3939}
3940
3941static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3942        .func           = bpf_skb_set_tunnel_opt,
3943        .gpl_only       = false,
3944        .ret_type       = RET_INTEGER,
3945        .arg1_type      = ARG_PTR_TO_CTX,
3946        .arg2_type      = ARG_PTR_TO_MEM,
3947        .arg3_type      = ARG_CONST_SIZE,
3948};
3949
3950static const struct bpf_func_proto *
3951bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3952{
3953        if (!md_dst) {
3954                struct metadata_dst __percpu *tmp;
3955
3956                tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3957                                                METADATA_IP_TUNNEL,
3958                                                GFP_KERNEL);
3959                if (!tmp)
3960                        return NULL;
3961                if (cmpxchg(&md_dst, NULL, tmp))
3962                        metadata_dst_free_percpu(tmp);
3963        }
3964
3965        switch (which) {
3966        case BPF_FUNC_skb_set_tunnel_key:
3967                return &bpf_skb_set_tunnel_key_proto;
3968        case BPF_FUNC_skb_set_tunnel_opt:
3969                return &bpf_skb_set_tunnel_opt_proto;
3970        default:
3971                return NULL;
3972        }
3973}
3974
3975BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3976           u32, idx)
3977{
3978        struct bpf_array *array = container_of(map, struct bpf_array, map);
3979        struct cgroup *cgrp;
3980        struct sock *sk;
3981
3982        sk = skb_to_full_sk(skb);
3983        if (!sk || !sk_fullsock(sk))
3984                return -ENOENT;
3985        if (unlikely(idx >= array->map.max_entries))
3986                return -E2BIG;
3987
3988        cgrp = READ_ONCE(array->ptrs[idx]);
3989        if (unlikely(!cgrp))
3990                return -EAGAIN;
3991
3992        return sk_under_cgroup_hierarchy(sk, cgrp);
3993}
3994
3995static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3996        .func           = bpf_skb_under_cgroup,
3997        .gpl_only       = false,
3998        .ret_type       = RET_INTEGER,
3999        .arg1_type      = ARG_PTR_TO_CTX,
4000        .arg2_type      = ARG_CONST_MAP_PTR,
4001        .arg3_type      = ARG_ANYTHING,
4002};
4003
4004#ifdef CONFIG_SOCK_CGROUP_DATA
4005BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4006{
4007        struct sock *sk = skb_to_full_sk(skb);
4008        struct cgroup *cgrp;
4009
4010        if (!sk || !sk_fullsock(sk))
4011                return 0;
4012
4013        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4014        return cgroup_id(cgrp);
4015}
4016
4017static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4018        .func           = bpf_skb_cgroup_id,
4019        .gpl_only       = false,
4020        .ret_type       = RET_INTEGER,
4021        .arg1_type      = ARG_PTR_TO_CTX,
4022};
4023
4024BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4025           ancestor_level)
4026{
4027        struct sock *sk = skb_to_full_sk(skb);
4028        struct cgroup *ancestor;
4029        struct cgroup *cgrp;
4030
4031        if (!sk || !sk_fullsock(sk))
4032                return 0;
4033
4034        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4035        ancestor = cgroup_ancestor(cgrp, ancestor_level);
4036        if (!ancestor)
4037                return 0;
4038
4039        return cgroup_id(ancestor);
4040}
4041
4042static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4043        .func           = bpf_skb_ancestor_cgroup_id,
4044        .gpl_only       = false,
4045        .ret_type       = RET_INTEGER,
4046        .arg1_type      = ARG_PTR_TO_CTX,
4047        .arg2_type      = ARG_ANYTHING,
4048};
4049#endif
4050
4051static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4052                                  unsigned long off, unsigned long len)
4053{
4054        memcpy(dst_buff, src_buff + off, len);
4055        return 0;
4056}
4057
4058BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4059           u64, flags, void *, meta, u64, meta_size)
4060{
4061        u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4062
4063        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4064                return -EINVAL;
4065        if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4066                return -EFAULT;
4067
4068        return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4069                                xdp_size, bpf_xdp_copy);
4070}
4071
4072static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4073        .func           = bpf_xdp_event_output,
4074        .gpl_only       = true,
4075        .ret_type       = RET_INTEGER,
4076        .arg1_type      = ARG_PTR_TO_CTX,
4077        .arg2_type      = ARG_CONST_MAP_PTR,
4078        .arg3_type      = ARG_ANYTHING,
4079        .arg4_type      = ARG_PTR_TO_MEM,
4080        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4081};
4082
4083BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4084{
4085        return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4086}
4087
4088static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4089        .func           = bpf_get_socket_cookie,
4090        .gpl_only       = false,
4091        .ret_type       = RET_INTEGER,
4092        .arg1_type      = ARG_PTR_TO_CTX,
4093};
4094
4095BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4096{
4097        return sock_gen_cookie(ctx->sk);
4098}
4099
4100static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4101        .func           = bpf_get_socket_cookie_sock_addr,
4102        .gpl_only       = false,
4103        .ret_type       = RET_INTEGER,
4104        .arg1_type      = ARG_PTR_TO_CTX,
4105};
4106
4107BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4108{
4109        return sock_gen_cookie(ctx->sk);
4110}
4111
4112static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4113        .func           = bpf_get_socket_cookie_sock_ops,
4114        .gpl_only       = false,
4115        .ret_type       = RET_INTEGER,
4116        .arg1_type      = ARG_PTR_TO_CTX,
4117};
4118
4119BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4120{
4121        struct sock *sk = sk_to_full_sk(skb->sk);
4122        kuid_t kuid;
4123
4124        if (!sk || !sk_fullsock(sk))
4125                return overflowuid;
4126        kuid = sock_net_uid(sock_net(sk), sk);
4127        return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4128}
4129
4130static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4131        .func           = bpf_get_socket_uid,
4132        .gpl_only       = false,
4133        .ret_type       = RET_INTEGER,
4134        .arg1_type      = ARG_PTR_TO_CTX,
4135};
4136
4137BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4138           struct bpf_map *, map, u64, flags, void *, data, u64, size)
4139{
4140        if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4141                return -EINVAL;
4142
4143        return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4144}
4145
4146static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4147        .func           = bpf_sockopt_event_output,
4148        .gpl_only       = true,
4149        .ret_type       = RET_INTEGER,
4150        .arg1_type      = ARG_PTR_TO_CTX,
4151        .arg2_type      = ARG_CONST_MAP_PTR,
4152        .arg3_type      = ARG_ANYTHING,
4153        .arg4_type      = ARG_PTR_TO_MEM,
4154        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4155};
4156
4157BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4158           int, level, int, optname, char *, optval, int, optlen)
4159{
4160        struct sock *sk = bpf_sock->sk;
4161        int ret = 0;
4162        int val;
4163
4164        if (!sk_fullsock(sk))
4165                return -EINVAL;
4166
4167        if (level == SOL_SOCKET) {
4168                if (optlen != sizeof(int))
4169                        return -EINVAL;
4170                val = *((int *)optval);
4171
4172                /* Only some socketops are supported */
4173                switch (optname) {
4174                case SO_RCVBUF:
4175                        val = min_t(u32, val, sysctl_rmem_max);
4176                        sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4177                        WRITE_ONCE(sk->sk_rcvbuf,
4178                                   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4179                        break;
4180                case SO_SNDBUF:
4181                        val = min_t(u32, val, sysctl_wmem_max);
4182                        sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4183                        WRITE_ONCE(sk->sk_sndbuf,
4184                                   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4185                        break;
4186                case SO_MAX_PACING_RATE: /* 32bit version */
4187                        if (val != ~0U)
4188                                cmpxchg(&sk->sk_pacing_status,
4189                                        SK_PACING_NONE,
4190                                        SK_PACING_NEEDED);
4191                        sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4192                        sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4193                                                 sk->sk_max_pacing_rate);
4194                        break;
4195                case SO_PRIORITY:
4196                        sk->sk_priority = val;
4197                        break;
4198                case SO_RCVLOWAT:
4199                        if (val < 0)
4200                                val = INT_MAX;
4201                        WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4202                        break;
4203                case SO_MARK:
4204                        if (sk->sk_mark != val) {
4205                                sk->sk_mark = val;
4206                                sk_dst_reset(sk);
4207                        }
4208                        break;
4209                default:
4210                        ret = -EINVAL;
4211                }
4212#ifdef CONFIG_INET
4213        } else if (level == SOL_IP) {
4214                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4215                        return -EINVAL;
4216
4217                val = *((int *)optval);
4218                /* Only some options are supported */
4219                switch (optname) {
4220                case IP_TOS:
4221                        if (val < -1 || val > 0xff) {
4222                                ret = -EINVAL;
4223                        } else {
4224                                struct inet_sock *inet = inet_sk(sk);
4225
4226                                if (val == -1)
4227                                        val = 0;
4228                                inet->tos = val;
4229                        }
4230                        break;
4231                default:
4232                        ret = -EINVAL;
4233                }
4234#if IS_ENABLED(CONFIG_IPV6)
4235        } else if (level == SOL_IPV6) {
4236                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4237                        return -EINVAL;
4238
4239                val = *((int *)optval);
4240                /* Only some options are supported */
4241                switch (optname) {
4242                case IPV6_TCLASS:
4243                        if (val < -1 || val > 0xff) {
4244                                ret = -EINVAL;
4245                        } else {
4246                                struct ipv6_pinfo *np = inet6_sk(sk);
4247
4248                                if (val == -1)
4249                                        val = 0;
4250                                np->tclass = val;
4251                        }
4252                        break;
4253                default:
4254                        ret = -EINVAL;
4255                }
4256#endif
4257        } else if (level == SOL_TCP &&
4258                   sk->sk_prot->setsockopt == tcp_setsockopt) {
4259                if (optname == TCP_CONGESTION) {
4260                        char name[TCP_CA_NAME_MAX];
4261                        bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4262
4263                        strncpy(name, optval, min_t(long, optlen,
4264                                                    TCP_CA_NAME_MAX-1));
4265                        name[TCP_CA_NAME_MAX-1] = 0;
4266                        ret = tcp_set_congestion_control(sk, name, false,
4267                                                         reinit, true);
4268                } else {
4269                        struct tcp_sock *tp = tcp_sk(sk);
4270
4271                        if (optlen != sizeof(int))
4272                                return -EINVAL;
4273
4274                        val = *((int *)optval);
4275                        /* Only some options are supported */
4276                        switch (optname) {
4277                        case TCP_BPF_IW:
4278                                if (val <= 0 || tp->data_segs_out > tp->syn_data)
4279                                        ret = -EINVAL;
4280                                else
4281                                        tp->snd_cwnd = val;
4282                                break;
4283                        case TCP_BPF_SNDCWND_CLAMP:
4284                                if (val <= 0) {
4285                                        ret = -EINVAL;
4286                                } else {
4287                                        tp->snd_cwnd_clamp = val;
4288                                        tp->snd_ssthresh = val;
4289                                }
4290                                break;
4291                        case TCP_SAVE_SYN:
4292                                if (val < 0 || val > 1)
4293                                        ret = -EINVAL;
4294                                else
4295                                        tp->save_syn = val;
4296                                break;
4297                        default:
4298                                ret = -EINVAL;
4299                        }
4300                }
4301#endif
4302        } else {
4303                ret = -EINVAL;
4304        }
4305        return ret;
4306}
4307
4308static const struct bpf_func_proto bpf_setsockopt_proto = {
4309        .func           = bpf_setsockopt,
4310        .gpl_only       = false,
4311        .ret_type       = RET_INTEGER,
4312        .arg1_type      = ARG_PTR_TO_CTX,
4313        .arg2_type      = ARG_ANYTHING,
4314        .arg3_type      = ARG_ANYTHING,
4315        .arg4_type      = ARG_PTR_TO_MEM,
4316        .arg5_type      = ARG_CONST_SIZE,
4317};
4318
4319BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4320           int, level, int, optname, char *, optval, int, optlen)
4321{
4322        struct sock *sk = bpf_sock->sk;
4323
4324        if (!sk_fullsock(sk))
4325                goto err_clear;
4326#ifdef CONFIG_INET
4327        if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4328                struct inet_connection_sock *icsk;
4329                struct tcp_sock *tp;
4330
4331                switch (optname) {
4332                case TCP_CONGESTION:
4333                        icsk = inet_csk(sk);
4334
4335                        if (!icsk->icsk_ca_ops || optlen <= 1)
4336                                goto err_clear;
4337                        strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4338                        optval[optlen - 1] = 0;
4339                        break;
4340                case TCP_SAVED_SYN:
4341                        tp = tcp_sk(sk);
4342
4343                        if (optlen <= 0 || !tp->saved_syn ||
4344                            optlen > tp->saved_syn[0])
4345                                goto err_clear;
4346                        memcpy(optval, tp->saved_syn + 1, optlen);
4347                        break;
4348                default:
4349                        goto err_clear;
4350                }
4351        } else if (level == SOL_IP) {
4352                struct inet_sock *inet = inet_sk(sk);
4353
4354                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4355                        goto err_clear;
4356
4357                /* Only some options are supported */
4358                switch (optname) {
4359                case IP_TOS:
4360                        *((int *)optval) = (int)inet->tos;
4361                        break;
4362                default:
4363                        goto err_clear;
4364                }
4365#if IS_ENABLED(CONFIG_IPV6)
4366        } else if (level == SOL_IPV6) {
4367                struct ipv6_pinfo *np = inet6_sk(sk);
4368
4369                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4370                        goto err_clear;
4371
4372                /* Only some options are supported */
4373                switch (optname) {
4374                case IPV6_TCLASS:
4375                        *((int *)optval) = (int)np->tclass;
4376                        break;
4377                default:
4378                        goto err_clear;
4379                }
4380#endif
4381        } else {
4382                goto err_clear;
4383        }
4384        return 0;
4385#endif
4386err_clear:
4387        memset(optval, 0, optlen);
4388        return -EINVAL;
4389}
4390
4391static const struct bpf_func_proto bpf_getsockopt_proto = {
4392        .func           = bpf_getsockopt,
4393        .gpl_only       = false,
4394        .ret_type       = RET_INTEGER,
4395        .arg1_type      = ARG_PTR_TO_CTX,
4396        .arg2_type      = ARG_ANYTHING,
4397        .arg3_type      = ARG_ANYTHING,
4398        .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4399        .arg5_type      = ARG_CONST_SIZE,
4400};
4401
4402BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4403           int, argval)
4404{
4405        struct sock *sk = bpf_sock->sk;
4406        int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4407
4408        if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4409                return -EINVAL;
4410
4411        tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4412
4413        return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4414}
4415
4416static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4417        .func           = bpf_sock_ops_cb_flags_set,
4418        .gpl_only       = false,
4419        .ret_type       = RET_INTEGER,
4420        .arg1_type      = ARG_PTR_TO_CTX,
4421        .arg2_type      = ARG_ANYTHING,
4422};
4423
4424const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4425EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4426
4427BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4428           int, addr_len)
4429{
4430#ifdef CONFIG_INET
4431        struct sock *sk = ctx->sk;
4432        int err;
4433
4434        /* Binding to port can be expensive so it's prohibited in the helper.
4435         * Only binding to IP is supported.
4436         */
4437        err = -EINVAL;
4438        if (addr_len < offsetofend(struct sockaddr, sa_family))
4439                return err;
4440        if (addr->sa_family == AF_INET) {
4441                if (addr_len < sizeof(struct sockaddr_in))
4442                        return err;
4443                if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4444                        return err;
4445                return __inet_bind(sk, addr, addr_len, true, false);
4446#if IS_ENABLED(CONFIG_IPV6)
4447        } else if (addr->sa_family == AF_INET6) {
4448                if (addr_len < SIN6_LEN_RFC2133)
4449                        return err;
4450                if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4451                        return err;
4452                /* ipv6_bpf_stub cannot be NULL, since it's called from
4453                 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4454                 */
4455                return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4456#endif /* CONFIG_IPV6 */
4457        }
4458#endif /* CONFIG_INET */
4459
4460        return -EAFNOSUPPORT;
4461}
4462
4463static const struct bpf_func_proto bpf_bind_proto = {
4464        .func           = bpf_bind,
4465        .gpl_only       = false,
4466        .ret_type       = RET_INTEGER,
4467        .arg1_type      = ARG_PTR_TO_CTX,
4468        .arg2_type      = ARG_PTR_TO_MEM,
4469        .arg3_type      = ARG_CONST_SIZE,
4470};
4471
4472#ifdef CONFIG_XFRM
4473BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4474           struct bpf_xfrm_state *, to, u32, size, u64, flags)
4475{
4476        const struct sec_path *sp = skb_sec_path(skb);
4477        const struct xfrm_state *x;
4478
4479        if (!sp || unlikely(index >= sp->len || flags))
4480                goto err_clear;
4481
4482        x = sp->xvec[index];
4483
4484        if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4485                goto err_clear;
4486
4487        to->reqid = x->props.reqid;
4488        to->spi = x->id.spi;
4489        to->family = x->props.family;
4490        to->ext = 0;
4491
4492        if (to->family == AF_INET6) {
4493                memcpy(to->remote_ipv6, x->props.saddr.a6,
4494                       sizeof(to->remote_ipv6));
4495        } else {
4496                to->remote_ipv4 = x->props.saddr.a4;
4497                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4498        }
4499
4500        return 0;
4501err_clear:
4502        memset(to, 0, size);
4503        return -EINVAL;
4504}
4505
4506static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4507        .func           = bpf_skb_get_xfrm_state,
4508        .gpl_only       = false,
4509        .ret_type       = RET_INTEGER,
4510        .arg1_type      = ARG_PTR_TO_CTX,
4511        .arg2_type      = ARG_ANYTHING,
4512        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4513        .arg4_type      = ARG_CONST_SIZE,
4514        .arg5_type      = ARG_ANYTHING,
4515};
4516#endif
4517
4518#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4519static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4520                                  const struct neighbour *neigh,
4521                                  const struct net_device *dev)
4522{
4523        memcpy(params->dmac, neigh->ha, ETH_ALEN);
4524        memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4525        params->h_vlan_TCI = 0;
4526        params->h_vlan_proto = 0;
4527        params->ifindex = dev->ifindex;
4528
4529        return 0;
4530}
4531#endif
4532
4533#if IS_ENABLED(CONFIG_INET)
4534static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4535                               u32 flags, bool check_mtu)
4536{
4537        struct fib_nh_common *nhc;
4538        struct in_device *in_dev;
4539        struct neighbour *neigh;
4540        struct net_device *dev;
4541        struct fib_result res;
4542        struct flowi4 fl4;
4543        int err;
4544        u32 mtu;
4545
4546        dev = dev_get_by_index_rcu(net, params->ifindex);
4547        if (unlikely(!dev))
4548                return -ENODEV;
4549
4550        /* verify forwarding is enabled on this interface */
4551        in_dev = __in_dev_get_rcu(dev);
4552        if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4553                return BPF_FIB_LKUP_RET_FWD_DISABLED;
4554
4555        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4556                fl4.flowi4_iif = 1;
4557                fl4.flowi4_oif = params->ifindex;
4558        } else {
4559                fl4.flowi4_iif = params->ifindex;
4560                fl4.flowi4_oif = 0;
4561        }
4562        fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4563        fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4564        fl4.flowi4_flags = 0;
4565
4566        fl4.flowi4_proto = params->l4_protocol;
4567        fl4.daddr = params->ipv4_dst;
4568        fl4.saddr = params->ipv4_src;
4569        fl4.fl4_sport = params->sport;
4570        fl4.fl4_dport = params->dport;
4571
4572        if (flags & BPF_FIB_LOOKUP_DIRECT) {
4573                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4574                struct fib_table *tb;
4575
4576                tb = fib_get_table(net, tbid);
4577                if (unlikely(!tb))
4578                        return BPF_FIB_LKUP_RET_NOT_FWDED;
4579
4580                err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4581        } else {
4582                fl4.flowi4_mark = 0;
4583                fl4.flowi4_secid = 0;
4584                fl4.flowi4_tun_key.tun_id = 0;
4585                fl4.flowi4_uid = sock_net_uid(net, NULL);
4586
4587                err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4588        }
4589
4590        if (err) {
4591                /* map fib lookup errors to RTN_ type */
4592                if (err == -EINVAL)
4593                        return BPF_FIB_LKUP_RET_BLACKHOLE;
4594                if (err == -EHOSTUNREACH)
4595                        return BPF_FIB_LKUP_RET_UNREACHABLE;
4596                if (err == -EACCES)
4597                        return BPF_FIB_LKUP_RET_PROHIBIT;
4598
4599                return BPF_FIB_LKUP_RET_NOT_FWDED;
4600        }
4601
4602        if (res.type != RTN_UNICAST)
4603                return BPF_FIB_LKUP_RET_NOT_FWDED;
4604
4605        if (fib_info_num_path(res.fi) > 1)
4606                fib_select_path(net, &res, &fl4, NULL);
4607
4608        if (check_mtu) {
4609                mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4610                if (params->tot_len > mtu)
4611                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4612        }
4613
4614        nhc = res.nhc;
4615
4616        /* do not handle lwt encaps right now */
4617        if (nhc->nhc_lwtstate)
4618                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4619
4620        dev = nhc->nhc_dev;
4621
4622        params->rt_metric = res.fi->fib_priority;
4623
4624        /* xdp and cls_bpf programs are run in RCU-bh so
4625         * rcu_read_lock_bh is not needed here
4626         */
4627        if (likely(nhc->nhc_gw_family != AF_INET6)) {
4628                if (nhc->nhc_gw_family)
4629                        params->ipv4_dst = nhc->nhc_gw.ipv4;
4630
4631                neigh = __ipv4_neigh_lookup_noref(dev,
4632                                                 (__force u32)params->ipv4_dst);
4633        } else {
4634                struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4635
4636                params->family = AF_INET6;
4637                *dst = nhc->nhc_gw.ipv6;
4638                neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4639        }
4640
4641        if (!neigh)
4642                return BPF_FIB_LKUP_RET_NO_NEIGH;
4643
4644        return bpf_fib_set_fwd_params(params, neigh, dev);
4645}
4646#endif
4647
4648#if IS_ENABLED(CONFIG_IPV6)
4649static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4650                               u32 flags, bool check_mtu)
4651{
4652        struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4653        struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4654        struct fib6_result res = {};
4655        struct neighbour *neigh;
4656        struct net_device *dev;
4657        struct inet6_dev *idev;
4658        struct flowi6 fl6;
4659        int strict = 0;
4660        int oif, err;
4661        u32 mtu;
4662
4663        /* link local addresses are never forwarded */
4664        if (rt6_need_strict(dst) || rt6_need_strict(src))
4665                return BPF_FIB_LKUP_RET_NOT_FWDED;
4666
4667        dev = dev_get_by_index_rcu(net, params->ifindex);
4668        if (unlikely(!dev))
4669                return -ENODEV;
4670
4671        idev = __in6_dev_get_safely(dev);
4672        if (unlikely(!idev || !idev->cnf.forwarding))
4673                return BPF_FIB_LKUP_RET_FWD_DISABLED;
4674
4675        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4676                fl6.flowi6_iif = 1;
4677                oif = fl6.flowi6_oif = params->ifindex;
4678        } else {
4679                oif = fl6.flowi6_iif = params->ifindex;
4680                fl6.flowi6_oif = 0;
4681                strict = RT6_LOOKUP_F_HAS_SADDR;
4682        }
4683        fl6.flowlabel = params->flowinfo;
4684        fl6.flowi6_scope = 0;
4685        fl6.flowi6_flags = 0;
4686        fl6.mp_hash = 0;
4687
4688        fl6.flowi6_proto = params->l4_protocol;
4689        fl6.daddr = *dst;
4690        fl6.saddr = *src;
4691        fl6.fl6_sport = params->sport;
4692        fl6.fl6_dport = params->dport;
4693
4694        if (flags & BPF_FIB_LOOKUP_DIRECT) {
4695                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4696                struct fib6_table *tb;
4697
4698                tb = ipv6_stub->fib6_get_table(net, tbid);
4699                if (unlikely(!tb))
4700                        return BPF_FIB_LKUP_RET_NOT_FWDED;
4701
4702                err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4703                                                   strict);
4704        } else {
4705                fl6.flowi6_mark = 0;
4706                fl6.flowi6_secid = 0;
4707                fl6.flowi6_tun_key.tun_id = 0;
4708                fl6.flowi6_uid = sock_net_uid(net, NULL);
4709
4710                err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4711        }
4712
4713        if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4714                     res.f6i == net->ipv6.fib6_null_entry))
4715                return BPF_FIB_LKUP_RET_NOT_FWDED;
4716
4717        switch (res.fib6_type) {
4718        /* only unicast is forwarded */
4719        case RTN_UNICAST:
4720                break;
4721        case RTN_BLACKHOLE:
4722                return BPF_FIB_LKUP_RET_BLACKHOLE;
4723        case RTN_UNREACHABLE:
4724                return BPF_FIB_LKUP_RET_UNREACHABLE;
4725        case RTN_PROHIBIT:
4726                return BPF_FIB_LKUP_RET_PROHIBIT;
4727        default:
4728                return BPF_FIB_LKUP_RET_NOT_FWDED;
4729        }
4730
4731        ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4732                                    fl6.flowi6_oif != 0, NULL, strict);
4733
4734        if (check_mtu) {
4735                mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4736                if (params->tot_len > mtu)
4737                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4738        }
4739
4740        if (res.nh->fib_nh_lws)
4741                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4742
4743        if (res.nh->fib_nh_gw_family)
4744                *dst = res.nh->fib_nh_gw6;
4745
4746        dev = res.nh->fib_nh_dev;
4747        params->rt_metric = res.f6i->fib6_metric;
4748
4749        /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4750         * not needed here.
4751         */
4752        neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4753        if (!neigh)
4754                return BPF_FIB_LKUP_RET_NO_NEIGH;
4755
4756        return bpf_fib_set_fwd_params(params, neigh, dev);
4757}
4758#endif
4759
4760BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4761           struct bpf_fib_lookup *, params, int, plen, u32, flags)
4762{
4763        if (plen < sizeof(*params))
4764                return -EINVAL;
4765
4766        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4767                return -EINVAL;
4768
4769        switch (params->family) {
4770#if IS_ENABLED(CONFIG_INET)
4771        case AF_INET:
4772                return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4773                                           flags, true);
4774#endif
4775#if IS_ENABLED(CONFIG_IPV6)
4776        case AF_INET6:
4777                return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4778                                           flags, true);
4779#endif
4780        }
4781        return -EAFNOSUPPORT;
4782}
4783
4784static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4785        .func           = bpf_xdp_fib_lookup,
4786        .gpl_only       = true,
4787        .ret_type       = RET_INTEGER,
4788        .arg1_type      = ARG_PTR_TO_CTX,
4789        .arg2_type      = ARG_PTR_TO_MEM,
4790        .arg3_type      = ARG_CONST_SIZE,
4791        .arg4_type      = ARG_ANYTHING,
4792};
4793
4794BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4795           struct bpf_fib_lookup *, params, int, plen, u32, flags)
4796{
4797        struct net *net = dev_net(skb->dev);
4798        int rc = -EAFNOSUPPORT;
4799
4800        if (plen < sizeof(*params))
4801                return -EINVAL;
4802
4803        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4804                return -EINVAL;
4805
4806        switch (params->family) {
4807#if IS_ENABLED(CONFIG_INET)
4808        case AF_INET:
4809                rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4810                break;
4811#endif
4812#if IS_ENABLED(CONFIG_IPV6)
4813        case AF_INET6:
4814                rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4815                break;
4816#endif
4817        }
4818
4819        if (!rc) {
4820                struct net_device *dev;
4821
4822                dev = dev_get_by_index_rcu(net, params->ifindex);
4823                if (!is_skb_forwardable(dev, skb))
4824                        rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4825        }
4826
4827        return rc;
4828}
4829
4830static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4831        .func           = bpf_skb_fib_lookup,
4832        .gpl_only       = true,
4833        .ret_type       = RET_INTEGER,
4834        .arg1_type      = ARG_PTR_TO_CTX,
4835        .arg2_type      = ARG_PTR_TO_MEM,
4836        .arg3_type      = ARG_CONST_SIZE,
4837        .arg4_type      = ARG_ANYTHING,
4838};
4839
4840#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4841static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4842{
4843        int err;
4844        struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4845
4846        if (!seg6_validate_srh(srh, len))
4847                return -EINVAL;
4848
4849        switch (type) {
4850        case BPF_LWT_ENCAP_SEG6_INLINE:
4851                if (skb->protocol != htons(ETH_P_IPV6))
4852                        return -EBADMSG;
4853
4854                err = seg6_do_srh_inline(skb, srh);
4855                break;
4856        case BPF_LWT_ENCAP_SEG6:
4857                skb_reset_inner_headers(skb);
4858                skb->encapsulation = 1;
4859                err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4860                break;
4861        default:
4862                return -EINVAL;
4863        }
4864
4865        bpf_compute_data_pointers(skb);
4866        if (err)
4867                return err;
4868
4869        ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4870        skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4871
4872        return seg6_lookup_nexthop(skb, NULL, 0);
4873}
4874#endif /* CONFIG_IPV6_SEG6_BPF */
4875
4876#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4877static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4878                             bool ingress)
4879{
4880        return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4881}
4882#endif
4883
4884BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4885           u32, len)
4886{
4887        switch (type) {
4888#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4889        case BPF_LWT_ENCAP_SEG6:
4890        case BPF_LWT_ENCAP_SEG6_INLINE:
4891                return bpf_push_seg6_encap(skb, type, hdr, len);
4892#endif
4893#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4894        case BPF_LWT_ENCAP_IP:
4895                return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4896#endif
4897        default:
4898                return -EINVAL;
4899        }
4900}
4901
4902BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4903           void *, hdr, u32, len)
4904{
4905        switch (type) {
4906#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4907        case BPF_LWT_ENCAP_IP:
4908                return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4909#endif
4910        default:
4911                return -EINVAL;
4912        }
4913}
4914
4915static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4916        .func           = bpf_lwt_in_push_encap,
4917        .gpl_only       = false,
4918        .ret_type       = RET_INTEGER,
4919        .arg1_type      = ARG_PTR_TO_CTX,
4920        .arg2_type      = ARG_ANYTHING,
4921        .arg3_type      = ARG_PTR_TO_MEM,
4922        .arg4_type      = ARG_CONST_SIZE
4923};
4924
4925static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
4926        .func           = bpf_lwt_xmit_push_encap,
4927        .gpl_only       = false,
4928        .ret_type       = RET_INTEGER,
4929        .arg1_type      = ARG_PTR_TO_CTX,
4930        .arg2_type      = ARG_ANYTHING,
4931        .arg3_type      = ARG_PTR_TO_MEM,
4932        .arg4_type      = ARG_CONST_SIZE
4933};
4934
4935#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4936BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4937           const void *, from, u32, len)
4938{
4939        struct seg6_bpf_srh_state *srh_state =
4940                this_cpu_ptr(&seg6_bpf_srh_states);
4941        struct ipv6_sr_hdr *srh = srh_state->srh;
4942        void *srh_tlvs, *srh_end, *ptr;
4943        int srhoff = 0;
4944
4945        if (srh == NULL)
4946                return -EINVAL;
4947
4948        srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4949        srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4950
4951        ptr = skb->data + offset;
4952        if (ptr >= srh_tlvs && ptr + len <= srh_end)
4953                srh_state->valid = false;
4954        else if (ptr < (void *)&srh->flags ||
4955                 ptr + len > (void *)&srh->segments)
4956                return -EFAULT;
4957
4958        if (unlikely(bpf_try_make_writable(skb, offset + len)))
4959                return -EFAULT;
4960        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4961                return -EINVAL;
4962        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4963
4964        memcpy(skb->data + offset, from, len);
4965        return 0;
4966}
4967
4968static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4969        .func           = bpf_lwt_seg6_store_bytes,
4970        .gpl_only       = false,
4971        .ret_type       = RET_INTEGER,
4972        .arg1_type      = ARG_PTR_TO_CTX,
4973        .arg2_type      = ARG_ANYTHING,
4974        .arg3_type      = ARG_PTR_TO_MEM,
4975        .arg4_type      = ARG_CONST_SIZE
4976};
4977
4978static void bpf_update_srh_state(struct sk_buff *skb)
4979{
4980        struct seg6_bpf_srh_state *srh_state =
4981                this_cpu_ptr(&seg6_bpf_srh_states);
4982        int srhoff = 0;
4983
4984        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4985                srh_state->srh = NULL;
4986        } else {
4987                srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4988                srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4989                srh_state->valid = true;
4990        }
4991}
4992
4993BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4994           u32, action, void *, param, u32, param_len)
4995{
4996        struct seg6_bpf_srh_state *srh_state =
4997                this_cpu_ptr(&seg6_bpf_srh_states);
4998        int hdroff = 0;
4999        int err;
5000
5001        switch (action) {
5002        case SEG6_LOCAL_ACTION_END_X:
5003                if (!seg6_bpf_has_valid_srh(skb))
5004                        return -EBADMSG;
5005                if (param_len != sizeof(struct in6_addr))
5006                        return -EINVAL;
5007                return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5008        case SEG6_LOCAL_ACTION_END_T:
5009                if (!seg6_bpf_has_valid_srh(skb))
5010                        return -EBADMSG;
5011                if (param_len != sizeof(int))
5012                        return -EINVAL;
5013                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5014        case SEG6_LOCAL_ACTION_END_DT6:
5015                if (!seg6_bpf_has_valid_srh(skb))
5016                        return -EBADMSG;
5017                if (param_len != sizeof(int))
5018                        return -EINVAL;
5019
5020                if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5021                        return -EBADMSG;
5022                if (!pskb_pull(skb, hdroff))
5023                        return -EBADMSG;
5024
5025                skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5026                skb_reset_network_header(skb);
5027                skb_reset_transport_header(skb);
5028                skb->encapsulation = 0;
5029
5030                bpf_compute_data_pointers(skb);
5031                bpf_update_srh_state(skb);
5032                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5033        case SEG6_LOCAL_ACTION_END_B6:
5034                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5035                        return -EBADMSG;
5036                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5037                                          param, param_len);
5038                if (!err)
5039                        bpf_update_srh_state(skb);
5040
5041                return err;
5042        case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5043                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5044                        return -EBADMSG;
5045                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5046                                          param, param_len);
5047                if (!err)
5048                        bpf_update_srh_state(skb);
5049
5050                return err;
5051        default:
5052                return -EINVAL;
5053        }
5054}
5055
5056static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5057        .func           = bpf_lwt_seg6_action,
5058        .gpl_only       = false,
5059        .ret_type       = RET_INTEGER,
5060        .arg1_type      = ARG_PTR_TO_CTX,
5061        .arg2_type      = ARG_ANYTHING,
5062        .arg3_type      = ARG_PTR_TO_MEM,
5063        .arg4_type      = ARG_CONST_SIZE
5064};
5065
5066BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5067           s32, len)
5068{
5069        struct seg6_bpf_srh_state *srh_state =
5070                this_cpu_ptr(&seg6_bpf_srh_states);
5071        struct ipv6_sr_hdr *srh = srh_state->srh;
5072        void *srh_end, *srh_tlvs, *ptr;
5073        struct ipv6hdr *hdr;
5074        int srhoff = 0;
5075        int ret;
5076
5077        if (unlikely(srh == NULL))
5078                return -EINVAL;
5079
5080        srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5081                        ((srh->first_segment + 1) << 4));
5082        srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5083                        srh_state->hdrlen);
5084        ptr = skb->data + offset;
5085
5086        if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5087                return -EFAULT;
5088        if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5089                return -EFAULT;
5090
5091        if (len > 0) {
5092                ret = skb_cow_head(skb, len);
5093                if (unlikely(ret < 0))
5094                        return ret;
5095
5096                ret = bpf_skb_net_hdr_push(skb, offset, len);
5097        } else {
5098                ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5099        }
5100
5101        bpf_compute_data_pointers(skb);
5102        if (unlikely(ret < 0))
5103                return ret;
5104
5105        hdr = (struct ipv6hdr *)skb->data;
5106        hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5107
5108        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5109                return -EINVAL;
5110        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5111        srh_state->hdrlen += len;
5112        srh_state->valid = false;
5113        return 0;
5114}
5115
5116static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5117        .func           = bpf_lwt_seg6_adjust_srh,
5118        .gpl_only       = false,
5119        .ret_type       = RET_INTEGER,
5120        .arg1_type      = ARG_PTR_TO_CTX,
5121        .arg2_type      = ARG_ANYTHING,
5122        .arg3_type      = ARG_ANYTHING,
5123};
5124#endif /* CONFIG_IPV6_SEG6_BPF */
5125
5126#ifdef CONFIG_INET
5127static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5128                              int dif, int sdif, u8 family, u8 proto)
5129{
5130        bool refcounted = false;
5131        struct sock *sk = NULL;
5132
5133        if (family == AF_INET) {
5134                __be32 src4 = tuple->ipv4.saddr;
5135                __be32 dst4 = tuple->ipv4.daddr;
5136
5137                if (proto == IPPROTO_TCP)
5138                        sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5139                                           src4, tuple->ipv4.sport,
5140                                           dst4, tuple->ipv4.dport,
5141                                           dif, sdif, &refcounted);
5142                else
5143                        sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5144                                               dst4, tuple->ipv4.dport,
5145                                               dif, sdif, &udp_table, NULL);
5146#if IS_ENABLED(CONFIG_IPV6)
5147        } else {
5148                struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5149                struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5150
5151                if (proto == IPPROTO_TCP)
5152                        sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5153                                            src6, tuple->ipv6.sport,
5154                                            dst6, ntohs(tuple->ipv6.dport),
5155                                            dif, sdif, &refcounted);
5156                else if (likely(ipv6_bpf_stub))
5157                        sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5158                                                            src6, tuple->ipv6.sport,
5159                                                            dst6, tuple->ipv6.dport,
5160                                                            dif, sdif,
5161                                                            &udp_table, NULL);
5162#endif
5163        }
5164
5165        if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5166                WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5167                sk = NULL;
5168        }
5169        return sk;
5170}
5171
5172/* bpf_skc_lookup performs the core lookup for different types of sockets,
5173 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5174 * Returns the socket as an 'unsigned long' to simplify the casting in the
5175 * callers to satisfy BPF_CALL declarations.
5176 */
5177static struct sock *
5178__bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5179                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5180                 u64 flags)
5181{
5182        struct sock *sk = NULL;
5183        u8 family = AF_UNSPEC;
5184        struct net *net;
5185        int sdif;
5186
5187        if (len == sizeof(tuple->ipv4))
5188                family = AF_INET;
5189        else if (len == sizeof(tuple->ipv6))
5190                family = AF_INET6;
5191        else
5192                return NULL;
5193
5194        if (unlikely(family == AF_UNSPEC || flags ||
5195                     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5196                goto out;
5197
5198        if (family == AF_INET)
5199                sdif = inet_sdif(skb);
5200        else
5201                sdif = inet6_sdif(skb);
5202
5203        if ((s32)netns_id < 0) {
5204                net = caller_net;
5205                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5206        } else {
5207                net = get_net_ns_by_id(caller_net, netns_id);
5208                if (unlikely(!net))
5209                        goto out;
5210                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5211                put_net(net);
5212        }
5213
5214out:
5215        return sk;
5216}
5217
5218static struct sock *
5219__bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5220                struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5221                u64 flags)
5222{
5223        struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5224                                           ifindex, proto, netns_id, flags);
5225
5226        if (sk) {
5227                sk = sk_to_full_sk(sk);
5228                if (!sk_fullsock(sk)) {
5229                        sock_gen_put(sk);
5230                        return NULL;
5231                }
5232        }
5233
5234        return sk;
5235}
5236
5237static struct sock *
5238bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5239               u8 proto, u64 netns_id, u64 flags)
5240{
5241        struct net *caller_net;
5242        int ifindex;
5243
5244        if (skb->dev) {
5245                caller_net = dev_net(skb->dev);
5246                ifindex = skb->dev->ifindex;
5247        } else {
5248                caller_net = sock_net(skb->sk);
5249                ifindex = 0;
5250        }
5251
5252        return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5253                                netns_id, flags);
5254}
5255
5256static struct sock *
5257bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5258              u8 proto, u64 netns_id, u64 flags)
5259{
5260        struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5261                                         flags);
5262
5263        if (sk) {
5264                sk = sk_to_full_sk(sk);
5265                if (!sk_fullsock(sk)) {
5266                        sock_gen_put(sk);
5267                        return NULL;
5268                }
5269        }
5270
5271        return sk;
5272}
5273
5274BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5275           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5276{
5277        return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5278                                             netns_id, flags);
5279}
5280
5281static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5282        .func           = bpf_skc_lookup_tcp,
5283        .gpl_only       = false,
5284        .pkt_access     = true,
5285        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5286        .arg1_type      = ARG_PTR_TO_CTX,
5287        .arg2_type      = ARG_PTR_TO_MEM,
5288        .arg3_type      = ARG_CONST_SIZE,
5289        .arg4_type      = ARG_ANYTHING,
5290        .arg5_type      = ARG_ANYTHING,
5291};
5292
5293BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5294           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5295{
5296        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5297                                            netns_id, flags);
5298}
5299
5300static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5301        .func           = bpf_sk_lookup_tcp,
5302        .gpl_only       = false,
5303        .pkt_access     = true,
5304        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5305        .arg1_type      = ARG_PTR_TO_CTX,
5306        .arg2_type      = ARG_PTR_TO_MEM,
5307        .arg3_type      = ARG_CONST_SIZE,
5308        .arg4_type      = ARG_ANYTHING,
5309        .arg5_type      = ARG_ANYTHING,
5310};
5311
5312BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5313           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5314{
5315        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5316                                            netns_id, flags);
5317}
5318
5319static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5320        .func           = bpf_sk_lookup_udp,
5321        .gpl_only       = false,
5322        .pkt_access     = true,
5323        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5324        .arg1_type      = ARG_PTR_TO_CTX,
5325        .arg2_type      = ARG_PTR_TO_MEM,
5326        .arg3_type      = ARG_CONST_SIZE,
5327        .arg4_type      = ARG_ANYTHING,
5328        .arg5_type      = ARG_ANYTHING,
5329};
5330
5331BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5332{
5333        /* Only full sockets have sk->sk_flags. */
5334        if (!sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE))
5335                sock_gen_put(sk);
5336        return 0;
5337}
5338
5339static const struct bpf_func_proto bpf_sk_release_proto = {
5340        .func           = bpf_sk_release,
5341        .gpl_only       = false,
5342        .ret_type       = RET_INTEGER,
5343        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5344};
5345
5346BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5347           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5348{
5349        struct net *caller_net = dev_net(ctx->rxq->dev);
5350        int ifindex = ctx->rxq->dev->ifindex;
5351
5352        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5353                                              ifindex, IPPROTO_UDP, netns_id,
5354                                              flags);
5355}
5356
5357static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5358        .func           = bpf_xdp_sk_lookup_udp,
5359        .gpl_only       = false,
5360        .pkt_access     = true,
5361        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5362        .arg1_type      = ARG_PTR_TO_CTX,
5363        .arg2_type      = ARG_PTR_TO_MEM,
5364        .arg3_type      = ARG_CONST_SIZE,
5365        .arg4_type      = ARG_ANYTHING,
5366        .arg5_type      = ARG_ANYTHING,
5367};
5368
5369BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5370           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5371{
5372        struct net *caller_net = dev_net(ctx->rxq->dev);
5373        int ifindex = ctx->rxq->dev->ifindex;
5374
5375        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5376                                               ifindex, IPPROTO_TCP, netns_id,
5377                                               flags);
5378}
5379
5380static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5381        .func           = bpf_xdp_skc_lookup_tcp,
5382        .gpl_only       = false,
5383        .pkt_access     = true,
5384        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5385        .arg1_type      = ARG_PTR_TO_CTX,
5386        .arg2_type      = ARG_PTR_TO_MEM,
5387        .arg3_type      = ARG_CONST_SIZE,
5388        .arg4_type      = ARG_ANYTHING,
5389        .arg5_type      = ARG_ANYTHING,
5390};
5391
5392BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5393           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5394{
5395        struct net *caller_net = dev_net(ctx->rxq->dev);
5396        int ifindex = ctx->rxq->dev->ifindex;
5397
5398        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5399                                              ifindex, IPPROTO_TCP, netns_id,
5400                                              flags);
5401}
5402
5403static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5404        .func           = bpf_xdp_sk_lookup_tcp,
5405        .gpl_only       = false,
5406        .pkt_access     = true,
5407        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5408        .arg1_type      = ARG_PTR_TO_CTX,
5409        .arg2_type      = ARG_PTR_TO_MEM,
5410        .arg3_type      = ARG_CONST_SIZE,
5411        .arg4_type      = ARG_ANYTHING,
5412        .arg5_type      = ARG_ANYTHING,
5413};
5414
5415BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5416           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5417{
5418        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5419                                               sock_net(ctx->sk), 0,
5420                                               IPPROTO_TCP, netns_id, flags);
5421}
5422
5423static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5424        .func           = bpf_sock_addr_skc_lookup_tcp,
5425        .gpl_only       = false,
5426        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5427        .arg1_type      = ARG_PTR_TO_CTX,
5428        .arg2_type      = ARG_PTR_TO_MEM,
5429        .arg3_type      = ARG_CONST_SIZE,
5430        .arg4_type      = ARG_ANYTHING,
5431        .arg5_type      = ARG_ANYTHING,
5432};
5433
5434BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5435           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5436{
5437        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5438                                              sock_net(ctx->sk), 0, IPPROTO_TCP,
5439                                              netns_id, flags);
5440}
5441
5442static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5443        .func           = bpf_sock_addr_sk_lookup_tcp,
5444        .gpl_only       = false,
5445        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5446        .arg1_type      = ARG_PTR_TO_CTX,
5447        .arg2_type      = ARG_PTR_TO_MEM,
5448        .arg3_type      = ARG_CONST_SIZE,
5449        .arg4_type      = ARG_ANYTHING,
5450        .arg5_type      = ARG_ANYTHING,
5451};
5452
5453BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5454           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5455{
5456        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5457                                              sock_net(ctx->sk), 0, IPPROTO_UDP,
5458                                              netns_id, flags);
5459}
5460
5461static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5462        .func           = bpf_sock_addr_sk_lookup_udp,
5463        .gpl_only       = false,
5464        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5465        .arg1_type      = ARG_PTR_TO_CTX,
5466        .arg2_type      = ARG_PTR_TO_MEM,
5467        .arg3_type      = ARG_CONST_SIZE,
5468        .arg4_type      = ARG_ANYTHING,
5469        .arg5_type      = ARG_ANYTHING,
5470};
5471
5472bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5473                                  struct bpf_insn_access_aux *info)
5474{
5475        if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5476                                          icsk_retransmits))
5477                return false;
5478
5479        if (off % size != 0)
5480                return false;
5481
5482        switch (off) {
5483        case offsetof(struct bpf_tcp_sock, bytes_received):
5484        case offsetof(struct bpf_tcp_sock, bytes_acked):
5485                return size == sizeof(__u64);
5486        default:
5487                return size == sizeof(__u32);
5488        }
5489}
5490
5491u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5492                                    const struct bpf_insn *si,
5493                                    struct bpf_insn *insn_buf,
5494                                    struct bpf_prog *prog, u32 *target_size)
5495{
5496        struct bpf_insn *insn = insn_buf;
5497
5498#define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
5499        do {                                                            \
5500                BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
5501                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
5502                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5503                                      si->dst_reg, si->src_reg,         \
5504                                      offsetof(struct tcp_sock, FIELD)); \
5505        } while (0)
5506
5507#define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
5508        do {                                                            \
5509                BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
5510                                          FIELD) >                      \
5511                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
5512                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
5513                                        struct inet_connection_sock,    \
5514                                        FIELD),                         \
5515                                      si->dst_reg, si->src_reg,         \
5516                                      offsetof(                         \
5517                                        struct inet_connection_sock,    \
5518                                        FIELD));                        \
5519        } while (0)
5520
5521        if (insn > insn_buf)
5522                return insn - insn_buf;
5523
5524        switch (si->off) {
5525        case offsetof(struct bpf_tcp_sock, rtt_min):
5526                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5527                             sizeof(struct minmax));
5528                BUILD_BUG_ON(sizeof(struct minmax) <
5529                             sizeof(struct minmax_sample));
5530
5531                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5532                                      offsetof(struct tcp_sock, rtt_min) +
5533                                      offsetof(struct minmax_sample, v));
5534                break;
5535        case offsetof(struct bpf_tcp_sock, snd_cwnd):
5536                BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5537                break;
5538        case offsetof(struct bpf_tcp_sock, srtt_us):
5539                BPF_TCP_SOCK_GET_COMMON(srtt_us);
5540                break;
5541        case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5542                BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5543                break;
5544        case offsetof(struct bpf_tcp_sock, rcv_nxt):
5545                BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5546                break;
5547        case offsetof(struct bpf_tcp_sock, snd_nxt):
5548                BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5549                break;
5550        case offsetof(struct bpf_tcp_sock, snd_una):
5551                BPF_TCP_SOCK_GET_COMMON(snd_una);
5552                break;
5553        case offsetof(struct bpf_tcp_sock, mss_cache):
5554                BPF_TCP_SOCK_GET_COMMON(mss_cache);
5555                break;
5556        case offsetof(struct bpf_tcp_sock, ecn_flags):
5557                BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5558                break;
5559        case offsetof(struct bpf_tcp_sock, rate_delivered):
5560                BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5561                break;
5562        case offsetof(struct bpf_tcp_sock, rate_interval_us):
5563                BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5564                break;
5565        case offsetof(struct bpf_tcp_sock, packets_out):
5566                BPF_TCP_SOCK_GET_COMMON(packets_out);
5567                break;
5568        case offsetof(struct bpf_tcp_sock, retrans_out):
5569                BPF_TCP_SOCK_GET_COMMON(retrans_out);
5570                break;
5571        case offsetof(struct bpf_tcp_sock, total_retrans):
5572                BPF_TCP_SOCK_GET_COMMON(total_retrans);
5573                break;
5574        case offsetof(struct bpf_tcp_sock, segs_in):
5575                BPF_TCP_SOCK_GET_COMMON(segs_in);
5576                break;
5577        case offsetof(struct bpf_tcp_sock, data_segs_in):
5578                BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5579                break;
5580        case offsetof(struct bpf_tcp_sock, segs_out):
5581                BPF_TCP_SOCK_GET_COMMON(segs_out);
5582                break;
5583        case offsetof(struct bpf_tcp_sock, data_segs_out):
5584                BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5585                break;
5586        case offsetof(struct bpf_tcp_sock, lost_out):
5587                BPF_TCP_SOCK_GET_COMMON(lost_out);
5588                break;
5589        case offsetof(struct bpf_tcp_sock, sacked_out):
5590                BPF_TCP_SOCK_GET_COMMON(sacked_out);
5591                break;
5592        case offsetof(struct bpf_tcp_sock, bytes_received):
5593                BPF_TCP_SOCK_GET_COMMON(bytes_received);
5594                break;
5595        case offsetof(struct bpf_tcp_sock, bytes_acked):
5596                BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5597                break;
5598        case offsetof(struct bpf_tcp_sock, dsack_dups):
5599                BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5600                break;
5601        case offsetof(struct bpf_tcp_sock, delivered):
5602                BPF_TCP_SOCK_GET_COMMON(delivered);
5603                break;
5604        case offsetof(struct bpf_tcp_sock, delivered_ce):
5605                BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5606                break;
5607        case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5608                BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5609                break;
5610        }
5611
5612        return insn - insn_buf;
5613}
5614
5615BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5616{
5617        if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5618                return (unsigned long)sk;
5619
5620        return (unsigned long)NULL;
5621}
5622
5623const struct bpf_func_proto bpf_tcp_sock_proto = {
5624        .func           = bpf_tcp_sock,
5625        .gpl_only       = false,
5626        .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
5627        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5628};
5629
5630BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5631{
5632        sk = sk_to_full_sk(sk);
5633
5634        if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5635                return (unsigned long)sk;
5636
5637        return (unsigned long)NULL;
5638}
5639
5640static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5641        .func           = bpf_get_listener_sock,
5642        .gpl_only       = false,
5643        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5644        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5645};
5646
5647BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5648{
5649        unsigned int iphdr_len;
5650
5651        if (skb->protocol == cpu_to_be16(ETH_P_IP))
5652                iphdr_len = sizeof(struct iphdr);
5653        else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5654                iphdr_len = sizeof(struct ipv6hdr);
5655        else
5656                return 0;
5657
5658        if (skb_headlen(skb) < iphdr_len)
5659                return 0;
5660
5661        if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5662                return 0;
5663
5664        return INET_ECN_set_ce(skb);
5665}
5666
5667bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5668                                  struct bpf_insn_access_aux *info)
5669{
5670        if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5671                return false;
5672
5673        if (off % size != 0)
5674                return false;
5675
5676        switch (off) {
5677        default:
5678                return size == sizeof(__u32);
5679        }
5680}
5681
5682u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5683                                    const struct bpf_insn *si,
5684                                    struct bpf_insn *insn_buf,
5685                                    struct bpf_prog *prog, u32 *target_size)
5686{
5687        struct bpf_insn *insn = insn_buf;
5688
5689#define BPF_XDP_SOCK_GET(FIELD)                                         \
5690        do {                                                            \
5691                BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
5692                             sizeof_field(struct bpf_xdp_sock, FIELD)); \
5693                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5694                                      si->dst_reg, si->src_reg,         \
5695                                      offsetof(struct xdp_sock, FIELD)); \
5696        } while (0)
5697
5698        switch (si->off) {
5699        case offsetof(struct bpf_xdp_sock, queue_id):
5700                BPF_XDP_SOCK_GET(queue_id);
5701                break;
5702        }
5703
5704        return insn - insn_buf;
5705}
5706
5707static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5708        .func           = bpf_skb_ecn_set_ce,
5709        .gpl_only       = false,
5710        .ret_type       = RET_INTEGER,
5711        .arg1_type      = ARG_PTR_TO_CTX,
5712};
5713
5714BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5715           struct tcphdr *, th, u32, th_len)
5716{
5717#ifdef CONFIG_SYN_COOKIES
5718        u32 cookie;
5719        int ret;
5720
5721        if (unlikely(th_len < sizeof(*th)))
5722                return -EINVAL;
5723
5724        /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5725        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5726                return -EINVAL;
5727
5728        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5729                return -EINVAL;
5730
5731        if (!th->ack || th->rst || th->syn)
5732                return -ENOENT;
5733
5734        if (tcp_synq_no_recent_overflow(sk))
5735                return -ENOENT;
5736
5737        cookie = ntohl(th->ack_seq) - 1;
5738
5739        switch (sk->sk_family) {
5740        case AF_INET:
5741                if (unlikely(iph_len < sizeof(struct iphdr)))
5742                        return -EINVAL;
5743
5744                ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5745                break;
5746
5747#if IS_BUILTIN(CONFIG_IPV6)
5748        case AF_INET6:
5749                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5750                        return -EINVAL;
5751
5752                ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5753                break;
5754#endif /* CONFIG_IPV6 */
5755
5756        default:
5757                return -EPROTONOSUPPORT;
5758        }
5759
5760        if (ret > 0)
5761                return 0;
5762
5763        return -ENOENT;
5764#else
5765        return -ENOTSUPP;
5766#endif
5767}
5768
5769static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5770        .func           = bpf_tcp_check_syncookie,
5771        .gpl_only       = true,
5772        .pkt_access     = true,
5773        .ret_type       = RET_INTEGER,
5774        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5775        .arg2_type      = ARG_PTR_TO_MEM,
5776        .arg3_type      = ARG_CONST_SIZE,
5777        .arg4_type      = ARG_PTR_TO_MEM,
5778        .arg5_type      = ARG_CONST_SIZE,
5779};
5780
5781BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5782           struct tcphdr *, th, u32, th_len)
5783{
5784#ifdef CONFIG_SYN_COOKIES
5785        u32 cookie;
5786        u16 mss;
5787
5788        if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5789                return -EINVAL;
5790
5791        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5792                return -EINVAL;
5793
5794        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5795                return -ENOENT;
5796
5797        if (!th->syn || th->ack || th->fin || th->rst)
5798                return -EINVAL;
5799
5800        if (unlikely(iph_len < sizeof(struct iphdr)))
5801                return -EINVAL;
5802
5803        /* Both struct iphdr and struct ipv6hdr have the version field at the
5804         * same offset so we can cast to the shorter header (struct iphdr).
5805         */
5806        switch (((struct iphdr *)iph)->version) {
5807        case 4:
5808                if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5809                        return -EINVAL;
5810
5811                mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5812                break;
5813
5814#if IS_BUILTIN(CONFIG_IPV6)
5815        case 6:
5816                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5817                        return -EINVAL;
5818
5819                if (sk->sk_family != AF_INET6)
5820                        return -EINVAL;
5821
5822                mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5823                break;
5824#endif /* CONFIG_IPV6 */
5825
5826        default:
5827                return -EPROTONOSUPPORT;
5828        }
5829        if (mss == 0)
5830                return -ENOENT;
5831
5832        return cookie | ((u64)mss << 32);
5833#else
5834        return -EOPNOTSUPP;
5835#endif /* CONFIG_SYN_COOKIES */
5836}
5837
5838static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5839        .func           = bpf_tcp_gen_syncookie,
5840        .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
5841        .pkt_access     = true,
5842        .ret_type       = RET_INTEGER,
5843        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5844        .arg2_type      = ARG_PTR_TO_MEM,
5845        .arg3_type      = ARG_CONST_SIZE,
5846        .arg4_type      = ARG_PTR_TO_MEM,
5847        .arg5_type      = ARG_CONST_SIZE,
5848};
5849
5850#endif /* CONFIG_INET */
5851
5852bool bpf_helper_changes_pkt_data(void *func)
5853{
5854        if (func == bpf_skb_vlan_push ||
5855            func == bpf_skb_vlan_pop ||
5856            func == bpf_skb_store_bytes ||
5857            func == bpf_skb_change_proto ||
5858            func == bpf_skb_change_head ||
5859            func == sk_skb_change_head ||
5860            func == bpf_skb_change_tail ||
5861            func == sk_skb_change_tail ||
5862            func == bpf_skb_adjust_room ||
5863            func == bpf_skb_pull_data ||
5864            func == sk_skb_pull_data ||
5865            func == bpf_clone_redirect ||
5866            func == bpf_l3_csum_replace ||
5867            func == bpf_l4_csum_replace ||
5868            func == bpf_xdp_adjust_head ||
5869            func == bpf_xdp_adjust_meta ||
5870            func == bpf_msg_pull_data ||
5871            func == bpf_msg_push_data ||
5872            func == bpf_msg_pop_data ||
5873            func == bpf_xdp_adjust_tail ||
5874#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5875            func == bpf_lwt_seg6_store_bytes ||
5876            func == bpf_lwt_seg6_adjust_srh ||
5877            func == bpf_lwt_seg6_action ||
5878#endif
5879            func == bpf_lwt_in_push_encap ||
5880            func == bpf_lwt_xmit_push_encap)
5881                return true;
5882
5883        return false;
5884}
5885
5886const struct bpf_func_proto *
5887bpf_base_func_proto(enum bpf_func_id func_id)
5888{
5889        switch (func_id) {
5890        case BPF_FUNC_map_lookup_elem:
5891                return &bpf_map_lookup_elem_proto;
5892        case BPF_FUNC_map_update_elem:
5893                return &bpf_map_update_elem_proto;
5894        case BPF_FUNC_map_delete_elem:
5895                return &bpf_map_delete_elem_proto;
5896        case BPF_FUNC_map_push_elem:
5897                return &bpf_map_push_elem_proto;
5898        case BPF_FUNC_map_pop_elem:
5899                return &bpf_map_pop_elem_proto;
5900        case BPF_FUNC_map_peek_elem:
5901                return &bpf_map_peek_elem_proto;
5902        case BPF_FUNC_get_prandom_u32:
5903                return &bpf_get_prandom_u32_proto;
5904        case BPF_FUNC_get_smp_processor_id:
5905                return &bpf_get_raw_smp_processor_id_proto;
5906        case BPF_FUNC_get_numa_node_id:
5907                return &bpf_get_numa_node_id_proto;
5908        case BPF_FUNC_tail_call:
5909                return &bpf_tail_call_proto;
5910        case BPF_FUNC_ktime_get_ns:
5911                return &bpf_ktime_get_ns_proto;
5912        default:
5913                break;
5914        }
5915
5916        if (!capable(CAP_SYS_ADMIN))
5917                return NULL;
5918
5919        switch (func_id) {
5920        case BPF_FUNC_spin_lock:
5921                return &bpf_spin_lock_proto;
5922        case BPF_FUNC_spin_unlock:
5923                return &bpf_spin_unlock_proto;
5924        case BPF_FUNC_trace_printk:
5925                return bpf_get_trace_printk_proto();
5926        case BPF_FUNC_jiffies64:
5927                return &bpf_jiffies64_proto;
5928        default:
5929                return NULL;
5930        }
5931}
5932
5933static const struct bpf_func_proto *
5934sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5935{
5936        switch (func_id) {
5937        /* inet and inet6 sockets are created in a process
5938         * context so there is always a valid uid/gid
5939         */
5940        case BPF_FUNC_get_current_uid_gid:
5941                return &bpf_get_current_uid_gid_proto;
5942        case BPF_FUNC_get_local_storage:
5943                return &bpf_get_local_storage_proto;
5944        default:
5945                return bpf_base_func_proto(func_id);
5946        }
5947}
5948
5949static const struct bpf_func_proto *
5950sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5951{
5952        switch (func_id) {
5953        /* inet and inet6 sockets are created in a process
5954         * context so there is always a valid uid/gid
5955         */
5956        case BPF_FUNC_get_current_uid_gid:
5957                return &bpf_get_current_uid_gid_proto;
5958        case BPF_FUNC_bind:
5959                switch (prog->expected_attach_type) {
5960                case BPF_CGROUP_INET4_CONNECT:
5961                case BPF_CGROUP_INET6_CONNECT:
5962                        return &bpf_bind_proto;
5963                default:
5964                        return NULL;
5965                }
5966        case BPF_FUNC_get_socket_cookie:
5967                return &bpf_get_socket_cookie_sock_addr_proto;
5968        case BPF_FUNC_get_local_storage:
5969                return &bpf_get_local_storage_proto;
5970#ifdef CONFIG_INET
5971        case BPF_FUNC_sk_lookup_tcp:
5972                return &bpf_sock_addr_sk_lookup_tcp_proto;
5973        case BPF_FUNC_sk_lookup_udp:
5974                return &bpf_sock_addr_sk_lookup_udp_proto;
5975        case BPF_FUNC_sk_release:
5976                return &bpf_sk_release_proto;
5977        case BPF_FUNC_skc_lookup_tcp:
5978                return &bpf_sock_addr_skc_lookup_tcp_proto;
5979#endif /* CONFIG_INET */
5980        case BPF_FUNC_sk_storage_get:
5981                return &bpf_sk_storage_get_proto;
5982        case BPF_FUNC_sk_storage_delete:
5983                return &bpf_sk_storage_delete_proto;
5984        default:
5985                return bpf_base_func_proto(func_id);
5986        }
5987}
5988
5989static const struct bpf_func_proto *
5990sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5991{
5992        switch (func_id) {
5993        case BPF_FUNC_skb_load_bytes:
5994                return &bpf_skb_load_bytes_proto;
5995        case BPF_FUNC_skb_load_bytes_relative:
5996                return &bpf_skb_load_bytes_relative_proto;
5997        case BPF_FUNC_get_socket_cookie:
5998                return &bpf_get_socket_cookie_proto;
5999        case BPF_FUNC_get_socket_uid:
6000                return &bpf_get_socket_uid_proto;
6001        case BPF_FUNC_perf_event_output:
6002                return &bpf_skb_event_output_proto;
6003        default:
6004                return bpf_base_func_proto(func_id);
6005        }
6006}
6007
6008const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6009const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6010
6011static const struct bpf_func_proto *
6012cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6013{
6014        switch (func_id) {
6015        case BPF_FUNC_get_local_storage:
6016                return &bpf_get_local_storage_proto;
6017        case BPF_FUNC_sk_fullsock:
6018                return &bpf_sk_fullsock_proto;
6019        case BPF_FUNC_sk_storage_get:
6020                return &bpf_sk_storage_get_proto;
6021        case BPF_FUNC_sk_storage_delete:
6022                return &bpf_sk_storage_delete_proto;
6023        case BPF_FUNC_perf_event_output:
6024                return &bpf_skb_event_output_proto;
6025#ifdef CONFIG_SOCK_CGROUP_DATA
6026        case BPF_FUNC_skb_cgroup_id:
6027                return &bpf_skb_cgroup_id_proto;
6028#endif
6029#ifdef CONFIG_INET
6030        case BPF_FUNC_tcp_sock:
6031                return &bpf_tcp_sock_proto;
6032        case BPF_FUNC_get_listener_sock:
6033                return &bpf_get_listener_sock_proto;
6034        case BPF_FUNC_skb_ecn_set_ce:
6035                return &bpf_skb_ecn_set_ce_proto;
6036#endif
6037        default:
6038                return sk_filter_func_proto(func_id, prog);
6039        }
6040}
6041
6042static const struct bpf_func_proto *
6043tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6044{
6045        switch (func_id) {
6046        case BPF_FUNC_skb_store_bytes:
6047                return &bpf_skb_store_bytes_proto;
6048        case BPF_FUNC_skb_load_bytes:
6049                return &bpf_skb_load_bytes_proto;
6050        case BPF_FUNC_skb_load_bytes_relative:
6051                return &bpf_skb_load_bytes_relative_proto;
6052        case BPF_FUNC_skb_pull_data:
6053                return &bpf_skb_pull_data_proto;
6054        case BPF_FUNC_csum_diff:
6055                return &bpf_csum_diff_proto;
6056        case BPF_FUNC_csum_update:
6057                return &bpf_csum_update_proto;
6058        case BPF_FUNC_l3_csum_replace:
6059                return &bpf_l3_csum_replace_proto;
6060        case BPF_FUNC_l4_csum_replace:
6061                return &bpf_l4_csum_replace_proto;
6062        case BPF_FUNC_clone_redirect:
6063                return &bpf_clone_redirect_proto;
6064        case BPF_FUNC_get_cgroup_classid:
6065                return &bpf_get_cgroup_classid_proto;
6066        case BPF_FUNC_skb_vlan_push:
6067                return &bpf_skb_vlan_push_proto;
6068        case BPF_FUNC_skb_vlan_pop:
6069                return &bpf_skb_vlan_pop_proto;
6070        case BPF_FUNC_skb_change_proto:
6071                return &bpf_skb_change_proto_proto;
6072        case BPF_FUNC_skb_change_type:
6073                return &bpf_skb_change_type_proto;
6074        case BPF_FUNC_skb_adjust_room:
6075                return &bpf_skb_adjust_room_proto;
6076        case BPF_FUNC_skb_change_tail:
6077                return &bpf_skb_change_tail_proto;
6078        case BPF_FUNC_skb_get_tunnel_key:
6079                return &bpf_skb_get_tunnel_key_proto;
6080        case BPF_FUNC_skb_set_tunnel_key:
6081                return bpf_get_skb_set_tunnel_proto(func_id);
6082        case BPF_FUNC_skb_get_tunnel_opt:
6083                return &bpf_skb_get_tunnel_opt_proto;
6084        case BPF_FUNC_skb_set_tunnel_opt:
6085                return bpf_get_skb_set_tunnel_proto(func_id);
6086        case BPF_FUNC_redirect:
6087                return &bpf_redirect_proto;
6088        case BPF_FUNC_get_route_realm:
6089                return &bpf_get_route_realm_proto;
6090        case BPF_FUNC_get_hash_recalc:
6091                return &bpf_get_hash_recalc_proto;
6092        case BPF_FUNC_set_hash_invalid:
6093                return &bpf_set_hash_invalid_proto;
6094        case BPF_FUNC_set_hash:
6095                return &bpf_set_hash_proto;
6096        case BPF_FUNC_perf_event_output:
6097                return &bpf_skb_event_output_proto;
6098        case BPF_FUNC_get_smp_processor_id:
6099                return &bpf_get_smp_processor_id_proto;
6100        case BPF_FUNC_skb_under_cgroup:
6101                return &bpf_skb_under_cgroup_proto;
6102        case BPF_FUNC_get_socket_cookie:
6103                return &bpf_get_socket_cookie_proto;
6104        case BPF_FUNC_get_socket_uid:
6105                return &bpf_get_socket_uid_proto;
6106        case BPF_FUNC_fib_lookup:
6107                return &bpf_skb_fib_lookup_proto;
6108        case BPF_FUNC_sk_fullsock:
6109                return &bpf_sk_fullsock_proto;
6110        case BPF_FUNC_sk_storage_get:
6111                return &bpf_sk_storage_get_proto;
6112        case BPF_FUNC_sk_storage_delete:
6113                return &bpf_sk_storage_delete_proto;
6114#ifdef CONFIG_XFRM
6115        case BPF_FUNC_skb_get_xfrm_state:
6116                return &bpf_skb_get_xfrm_state_proto;
6117#endif
6118#ifdef CONFIG_SOCK_CGROUP_DATA
6119        case BPF_FUNC_skb_cgroup_id:
6120                return &bpf_skb_cgroup_id_proto;
6121        case BPF_FUNC_skb_ancestor_cgroup_id:
6122                return &bpf_skb_ancestor_cgroup_id_proto;
6123#endif
6124#ifdef CONFIG_INET
6125        case BPF_FUNC_sk_lookup_tcp:
6126                return &bpf_sk_lookup_tcp_proto;
6127        case BPF_FUNC_sk_lookup_udp:
6128                return &bpf_sk_lookup_udp_proto;
6129        case BPF_FUNC_sk_release:
6130                return &bpf_sk_release_proto;
6131        case BPF_FUNC_tcp_sock:
6132                return &bpf_tcp_sock_proto;
6133        case BPF_FUNC_get_listener_sock:
6134                return &bpf_get_listener_sock_proto;
6135        case BPF_FUNC_skc_lookup_tcp:
6136                return &bpf_skc_lookup_tcp_proto;
6137        case BPF_FUNC_tcp_check_syncookie:
6138                return &bpf_tcp_check_syncookie_proto;
6139        case BPF_FUNC_skb_ecn_set_ce:
6140                return &bpf_skb_ecn_set_ce_proto;
6141        case BPF_FUNC_tcp_gen_syncookie:
6142                return &bpf_tcp_gen_syncookie_proto;
6143#endif
6144        default:
6145                return bpf_base_func_proto(func_id);
6146        }
6147}
6148
6149static const struct bpf_func_proto *
6150xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6151{
6152        switch (func_id) {
6153        case BPF_FUNC_perf_event_output:
6154                return &bpf_xdp_event_output_proto;
6155        case BPF_FUNC_get_smp_processor_id:
6156                return &bpf_get_smp_processor_id_proto;
6157        case BPF_FUNC_csum_diff:
6158                return &bpf_csum_diff_proto;
6159        case BPF_FUNC_xdp_adjust_head:
6160                return &bpf_xdp_adjust_head_proto;
6161        case BPF_FUNC_xdp_adjust_meta:
6162                return &bpf_xdp_adjust_meta_proto;
6163        case BPF_FUNC_redirect:
6164                return &bpf_xdp_redirect_proto;
6165        case BPF_FUNC_redirect_map:
6166                return &bpf_xdp_redirect_map_proto;
6167        case BPF_FUNC_xdp_adjust_tail:
6168                return &bpf_xdp_adjust_tail_proto;
6169        case BPF_FUNC_fib_lookup:
6170                return &bpf_xdp_fib_lookup_proto;
6171#ifdef CONFIG_INET
6172        case BPF_FUNC_sk_lookup_udp:
6173                return &bpf_xdp_sk_lookup_udp_proto;
6174        case BPF_FUNC_sk_lookup_tcp:
6175                return &bpf_xdp_sk_lookup_tcp_proto;
6176        case BPF_FUNC_sk_release:
6177                return &bpf_sk_release_proto;
6178        case BPF_FUNC_skc_lookup_tcp:
6179                return &bpf_xdp_skc_lookup_tcp_proto;
6180        case BPF_FUNC_tcp_check_syncookie:
6181                return &bpf_tcp_check_syncookie_proto;
6182        case BPF_FUNC_tcp_gen_syncookie:
6183                return &bpf_tcp_gen_syncookie_proto;
6184#endif
6185        default:
6186                return bpf_base_func_proto(func_id);
6187        }
6188}
6189
6190const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6191const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6192
6193static const struct bpf_func_proto *
6194sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6195{
6196        switch (func_id) {
6197        case BPF_FUNC_setsockopt:
6198                return &bpf_setsockopt_proto;
6199        case BPF_FUNC_getsockopt:
6200                return &bpf_getsockopt_proto;
6201        case BPF_FUNC_sock_ops_cb_flags_set:
6202                return &bpf_sock_ops_cb_flags_set_proto;
6203        case BPF_FUNC_sock_map_update:
6204                return &bpf_sock_map_update_proto;
6205        case BPF_FUNC_sock_hash_update:
6206                return &bpf_sock_hash_update_proto;
6207        case BPF_FUNC_get_socket_cookie:
6208                return &bpf_get_socket_cookie_sock_ops_proto;
6209        case BPF_FUNC_get_local_storage:
6210                return &bpf_get_local_storage_proto;
6211        case BPF_FUNC_perf_event_output:
6212                return &bpf_sockopt_event_output_proto;
6213        case BPF_FUNC_sk_storage_get:
6214                return &bpf_sk_storage_get_proto;
6215        case BPF_FUNC_sk_storage_delete:
6216                return &bpf_sk_storage_delete_proto;
6217#ifdef CONFIG_INET
6218        case BPF_FUNC_tcp_sock:
6219                return &bpf_tcp_sock_proto;
6220#endif /* CONFIG_INET */
6221        default:
6222                return bpf_base_func_proto(func_id);
6223        }
6224}
6225
6226const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6227const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6228
6229static const struct bpf_func_proto *
6230sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6231{
6232        switch (func_id) {
6233        case BPF_FUNC_msg_redirect_map:
6234                return &bpf_msg_redirect_map_proto;
6235        case BPF_FUNC_msg_redirect_hash:
6236                return &bpf_msg_redirect_hash_proto;
6237        case BPF_FUNC_msg_apply_bytes:
6238                return &bpf_msg_apply_bytes_proto;
6239        case BPF_FUNC_msg_cork_bytes:
6240                return &bpf_msg_cork_bytes_proto;
6241        case BPF_FUNC_msg_pull_data:
6242                return &bpf_msg_pull_data_proto;
6243        case BPF_FUNC_msg_push_data:
6244                return &bpf_msg_push_data_proto;
6245        case BPF_FUNC_msg_pop_data:
6246                return &bpf_msg_pop_data_proto;
6247        default:
6248                return bpf_base_func_proto(func_id);
6249        }
6250}
6251
6252const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6253const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6254
6255static const struct bpf_func_proto *
6256sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6257{
6258        switch (func_id) {
6259        case BPF_FUNC_skb_store_bytes:
6260                return &bpf_skb_store_bytes_proto;
6261        case BPF_FUNC_skb_load_bytes:
6262                return &bpf_skb_load_bytes_proto;
6263        case BPF_FUNC_skb_pull_data:
6264                return &sk_skb_pull_data_proto;
6265        case BPF_FUNC_skb_change_tail:
6266                return &sk_skb_change_tail_proto;
6267        case BPF_FUNC_skb_change_head:
6268                return &sk_skb_change_head_proto;
6269        case BPF_FUNC_get_socket_cookie:
6270                return &bpf_get_socket_cookie_proto;
6271        case BPF_FUNC_get_socket_uid:
6272                return &bpf_get_socket_uid_proto;
6273        case BPF_FUNC_sk_redirect_map:
6274                return &bpf_sk_redirect_map_proto;
6275        case BPF_FUNC_sk_redirect_hash:
6276                return &bpf_sk_redirect_hash_proto;
6277        case BPF_FUNC_perf_event_output:
6278                return &bpf_skb_event_output_proto;
6279#ifdef CONFIG_INET
6280        case BPF_FUNC_sk_lookup_tcp:
6281                return &bpf_sk_lookup_tcp_proto;
6282        case BPF_FUNC_sk_lookup_udp:
6283                return &bpf_sk_lookup_udp_proto;
6284        case BPF_FUNC_sk_release:
6285                return &bpf_sk_release_proto;
6286        case BPF_FUNC_skc_lookup_tcp:
6287                return &bpf_skc_lookup_tcp_proto;
6288#endif
6289        default:
6290                return bpf_base_func_proto(func_id);
6291        }
6292}
6293
6294static const struct bpf_func_proto *
6295flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6296{
6297        switch (func_id) {
6298        case BPF_FUNC_skb_load_bytes:
6299                return &bpf_flow_dissector_load_bytes_proto;
6300        default:
6301                return bpf_base_func_proto(func_id);
6302        }
6303}
6304
6305static const struct bpf_func_proto *
6306lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6307{
6308        switch (func_id) {
6309        case BPF_FUNC_skb_load_bytes:
6310                return &bpf_skb_load_bytes_proto;
6311        case BPF_FUNC_skb_pull_data:
6312                return &bpf_skb_pull_data_proto;
6313        case BPF_FUNC_csum_diff:
6314                return &bpf_csum_diff_proto;
6315        case BPF_FUNC_get_cgroup_classid:
6316                return &bpf_get_cgroup_classid_proto;
6317        case BPF_FUNC_get_route_realm:
6318                return &bpf_get_route_realm_proto;
6319        case BPF_FUNC_get_hash_recalc:
6320                return &bpf_get_hash_recalc_proto;
6321        case BPF_FUNC_perf_event_output:
6322                return &bpf_skb_event_output_proto;
6323        case BPF_FUNC_get_smp_processor_id:
6324                return &bpf_get_smp_processor_id_proto;
6325        case BPF_FUNC_skb_under_cgroup:
6326                return &bpf_skb_under_cgroup_proto;
6327        default:
6328                return bpf_base_func_proto(func_id);
6329        }
6330}
6331
6332static const struct bpf_func_proto *
6333lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6334{
6335        switch (func_id) {
6336        case BPF_FUNC_lwt_push_encap:
6337                return &bpf_lwt_in_push_encap_proto;
6338        default:
6339                return lwt_out_func_proto(func_id, prog);
6340        }
6341}
6342
6343static const struct bpf_func_proto *
6344lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6345{
6346        switch (func_id) {
6347        case BPF_FUNC_skb_get_tunnel_key:
6348                return &bpf_skb_get_tunnel_key_proto;
6349        case BPF_FUNC_skb_set_tunnel_key:
6350                return bpf_get_skb_set_tunnel_proto(func_id);
6351        case BPF_FUNC_skb_get_tunnel_opt:
6352                return &bpf_skb_get_tunnel_opt_proto;
6353        case BPF_FUNC_skb_set_tunnel_opt:
6354                return bpf_get_skb_set_tunnel_proto(func_id);
6355        case BPF_FUNC_redirect:
6356                return &bpf_redirect_proto;
6357        case BPF_FUNC_clone_redirect:
6358                return &bpf_clone_redirect_proto;
6359        case BPF_FUNC_skb_change_tail:
6360                return &bpf_skb_change_tail_proto;
6361        case BPF_FUNC_skb_change_head:
6362                return &bpf_skb_change_head_proto;
6363        case BPF_FUNC_skb_store_bytes:
6364                return &bpf_skb_store_bytes_proto;
6365        case BPF_FUNC_csum_update:
6366                return &bpf_csum_update_proto;
6367        case BPF_FUNC_l3_csum_replace:
6368                return &bpf_l3_csum_replace_proto;
6369        case BPF_FUNC_l4_csum_replace:
6370                return &bpf_l4_csum_replace_proto;
6371        case BPF_FUNC_set_hash_invalid:
6372                return &bpf_set_hash_invalid_proto;
6373        case BPF_FUNC_lwt_push_encap:
6374                return &bpf_lwt_xmit_push_encap_proto;
6375        default:
6376                return lwt_out_func_proto(func_id, prog);
6377        }
6378}
6379
6380static const struct bpf_func_proto *
6381lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6382{
6383        switch (func_id) {
6384#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6385        case BPF_FUNC_lwt_seg6_store_bytes:
6386                return &bpf_lwt_seg6_store_bytes_proto;
6387        case BPF_FUNC_lwt_seg6_action:
6388                return &bpf_lwt_seg6_action_proto;
6389        case BPF_FUNC_lwt_seg6_adjust_srh:
6390                return &bpf_lwt_seg6_adjust_srh_proto;
6391#endif
6392        default:
6393                return lwt_out_func_proto(func_id, prog);
6394        }
6395}
6396
6397static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6398                                    const struct bpf_prog *prog,
6399                                    struct bpf_insn_access_aux *info)
6400{
6401        const int size_default = sizeof(__u32);
6402
6403        if (off < 0 || off >= sizeof(struct __sk_buff))
6404                return false;
6405
6406        /* The verifier guarantees that size > 0. */
6407        if (off % size != 0)
6408                return false;
6409
6410        switch (off) {
6411        case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6412                if (off + size > offsetofend(struct __sk_buff, cb[4]))
6413                        return false;
6414                break;
6415        case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6416        case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6417        case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6418        case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6419        case bpf_ctx_range(struct __sk_buff, data):
6420        case bpf_ctx_range(struct __sk_buff, data_meta):
6421        case bpf_ctx_range(struct __sk_buff, data_end):
6422                if (size != size_default)
6423                        return false;
6424                break;
6425        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6426                return false;
6427        case bpf_ctx_range(struct __sk_buff, tstamp):
6428                if (size != sizeof(__u64))
6429                        return false;
6430                break;
6431        case offsetof(struct __sk_buff, sk):
6432                if (type == BPF_WRITE || size != sizeof(__u64))
6433                        return false;
6434                info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6435                break;
6436        default:
6437                /* Only narrow read access allowed for now. */
6438                if (type == BPF_WRITE) {
6439                        if (size != size_default)
6440                                return false;
6441                } else {
6442                        bpf_ctx_record_field_size(info, size_default);
6443                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6444                                return false;
6445                }
6446        }
6447
6448        return true;
6449}
6450
6451static bool sk_filter_is_valid_access(int off, int size,
6452                                      enum bpf_access_type type,
6453                                      const struct bpf_prog *prog,
6454                                      struct bpf_insn_access_aux *info)
6455{
6456        switch (off) {
6457        case bpf_ctx_range(struct __sk_buff, tc_classid):
6458        case bpf_ctx_range(struct __sk_buff, data):
6459        case bpf_ctx_range(struct __sk_buff, data_meta):
6460        case bpf_ctx_range(struct __sk_buff, data_end):
6461        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6462        case bpf_ctx_range(struct __sk_buff, tstamp):
6463        case bpf_ctx_range(struct __sk_buff, wire_len):
6464                return false;
6465        }
6466
6467        if (type == BPF_WRITE) {
6468                switch (off) {
6469                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6470                        break;
6471                default:
6472                        return false;
6473                }
6474        }
6475
6476        return bpf_skb_is_valid_access(off, size, type, prog, info);
6477}
6478
6479static bool cg_skb_is_valid_access(int off, int size,
6480                                   enum bpf_access_type type,
6481                                   const struct bpf_prog *prog,
6482                                   struct bpf_insn_access_aux *info)
6483{
6484        switch (off) {
6485        case bpf_ctx_range(struct __sk_buff, tc_classid):
6486        case bpf_ctx_range(struct __sk_buff, data_meta):
6487        case bpf_ctx_range(struct __sk_buff, wire_len):
6488                return false;
6489        case bpf_ctx_range(struct __sk_buff, data):
6490        case bpf_ctx_range(struct __sk_buff, data_end):
6491                if (!capable(CAP_SYS_ADMIN))
6492                        return false;
6493                break;
6494        }
6495
6496        if (type == BPF_WRITE) {
6497                switch (off) {
6498                case bpf_ctx_range(struct __sk_buff, mark):
6499                case bpf_ctx_range(struct __sk_buff, priority):
6500                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6501                        break;
6502                case bpf_ctx_range(struct __sk_buff, tstamp):
6503                        if (!capable(CAP_SYS_ADMIN))
6504                                return false;
6505                        break;
6506                default:
6507                        return false;
6508                }
6509        }
6510
6511        switch (off) {
6512        case bpf_ctx_range(struct __sk_buff, data):
6513                info->reg_type = PTR_TO_PACKET;
6514                break;
6515        case bpf_ctx_range(struct __sk_buff, data_end):
6516                info->reg_type = PTR_TO_PACKET_END;
6517                break;
6518        }
6519
6520        return bpf_skb_is_valid_access(off, size, type, prog, info);
6521}
6522
6523static bool lwt_is_valid_access(int off, int size,
6524                                enum bpf_access_type type,
6525                                const struct bpf_prog *prog,
6526                                struct bpf_insn_access_aux *info)
6527{
6528        switch (off) {
6529        case bpf_ctx_range(struct __sk_buff, tc_classid):
6530        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6531        case bpf_ctx_range(struct __sk_buff, data_meta):
6532        case bpf_ctx_range(struct __sk_buff, tstamp):
6533        case bpf_ctx_range(struct __sk_buff, wire_len):
6534                return false;
6535        }
6536
6537        if (type == BPF_WRITE) {
6538                switch (off) {
6539                case bpf_ctx_range(struct __sk_buff, mark):
6540                case bpf_ctx_range(struct __sk_buff, priority):
6541                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6542                        break;
6543                default:
6544                        return false;
6545                }
6546        }
6547
6548        switch (off) {
6549        case bpf_ctx_range(struct __sk_buff, data):
6550                info->reg_type = PTR_TO_PACKET;
6551                break;
6552        case bpf_ctx_range(struct __sk_buff, data_end):
6553                info->reg_type = PTR_TO_PACKET_END;
6554                break;
6555        }
6556
6557        return bpf_skb_is_valid_access(off, size, type, prog, info);
6558}
6559
6560/* Attach type specific accesses */
6561static bool __sock_filter_check_attach_type(int off,
6562                                            enum bpf_access_type access_type,
6563                                            enum bpf_attach_type attach_type)
6564{
6565        switch (off) {
6566        case offsetof(struct bpf_sock, bound_dev_if):
6567        case offsetof(struct bpf_sock, mark):
6568        case offsetof(struct bpf_sock, priority):
6569                switch (attach_type) {
6570                case BPF_CGROUP_INET_SOCK_CREATE:
6571                        goto full_access;
6572                default:
6573                        return false;
6574                }
6575        case bpf_ctx_range(struct bpf_sock, src_ip4):
6576                switch (attach_type) {
6577                case BPF_CGROUP_INET4_POST_BIND:
6578                        goto read_only;
6579                default:
6580                        return false;
6581                }
6582        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6583                switch (attach_type) {
6584                case BPF_CGROUP_INET6_POST_BIND:
6585                        goto read_only;
6586                default:
6587                        return false;
6588                }
6589        case bpf_ctx_range(struct bpf_sock, src_port):
6590                switch (attach_type) {
6591                case BPF_CGROUP_INET4_POST_BIND:
6592                case BPF_CGROUP_INET6_POST_BIND:
6593                        goto read_only;
6594                default:
6595                        return false;
6596                }
6597        }
6598read_only:
6599        return access_type == BPF_READ;
6600full_access:
6601        return true;
6602}
6603
6604bool bpf_sock_common_is_valid_access(int off, int size,
6605                                     enum bpf_access_type type,
6606                                     struct bpf_insn_access_aux *info)
6607{
6608        switch (off) {
6609        case bpf_ctx_range_till(struct bpf_sock, type, priority):
6610                return false;
6611        default:
6612                return bpf_sock_is_valid_access(off, size, type, info);
6613        }
6614}
6615
6616bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6617                              struct bpf_insn_access_aux *info)
6618{
6619        const int size_default = sizeof(__u32);
6620
6621        if (off < 0 || off >= sizeof(struct bpf_sock))
6622                return false;
6623        if (off % size != 0)
6624                return false;
6625
6626        switch (off) {
6627        case offsetof(struct bpf_sock, state):
6628        case offsetof(struct bpf_sock, family):
6629        case offsetof(struct bpf_sock, type):
6630        case offsetof(struct bpf_sock, protocol):
6631        case offsetof(struct bpf_sock, dst_port):
6632        case offsetof(struct bpf_sock, src_port):
6633        case bpf_ctx_range(struct bpf_sock, src_ip4):
6634        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6635        case bpf_ctx_range(struct bpf_sock, dst_ip4):
6636        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6637                bpf_ctx_record_field_size(info, size_default);
6638                return bpf_ctx_narrow_access_ok(off, size, size_default);
6639        }
6640
6641        return size == size_default;
6642}
6643
6644static bool sock_filter_is_valid_access(int off, int size,
6645                                        enum bpf_access_type type,
6646                                        const struct bpf_prog *prog,
6647                                        struct bpf_insn_access_aux *info)
6648{
6649        if (!bpf_sock_is_valid_access(off, size, type, info))
6650                return false;
6651        return __sock_filter_check_attach_type(off, type,
6652                                               prog->expected_attach_type);
6653}
6654
6655static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6656                             const struct bpf_prog *prog)
6657{
6658        /* Neither direct read nor direct write requires any preliminary
6659         * action.
6660         */
6661        return 0;
6662}
6663
6664static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6665                                const struct bpf_prog *prog, int drop_verdict)
6666{
6667        struct bpf_insn *insn = insn_buf;
6668
6669        if (!direct_write)
6670                return 0;
6671
6672        /* if (!skb->cloned)
6673         *       goto start;
6674         *
6675         * (Fast-path, otherwise approximation that we might be
6676         *  a clone, do the rest in helper.)
6677         */
6678        *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6679        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6680        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6681
6682        /* ret = bpf_skb_pull_data(skb, 0); */
6683        *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6684        *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6685        *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6686                               BPF_FUNC_skb_pull_data);
6687        /* if (!ret)
6688         *      goto restore;
6689         * return TC_ACT_SHOT;
6690         */
6691        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6692        *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6693        *insn++ = BPF_EXIT_INSN();
6694
6695        /* restore: */
6696        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6697        /* start: */
6698        *insn++ = prog->insnsi[0];
6699
6700        return insn - insn_buf;
6701}
6702
6703static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6704                          struct bpf_insn *insn_buf)
6705{
6706        bool indirect = BPF_MODE(orig->code) == BPF_IND;
6707        struct bpf_insn *insn = insn_buf;
6708
6709        /* We're guaranteed here that CTX is in R6. */
6710        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6711        if (!indirect) {
6712                *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6713        } else {
6714                *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6715                if (orig->imm)
6716                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6717        }
6718
6719        switch (BPF_SIZE(orig->code)) {
6720        case BPF_B:
6721                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6722                break;
6723        case BPF_H:
6724                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6725                break;
6726        case BPF_W:
6727                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6728                break;
6729        }
6730
6731        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6732        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6733        *insn++ = BPF_EXIT_INSN();
6734
6735        return insn - insn_buf;
6736}
6737
6738static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6739                               const struct bpf_prog *prog)
6740{
6741        return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6742}
6743
6744static bool tc_cls_act_is_valid_access(int off, int size,
6745                                       enum bpf_access_type type,
6746                                       const struct bpf_prog *prog,
6747                                       struct bpf_insn_access_aux *info)
6748{
6749        if (type == BPF_WRITE) {
6750                switch (off) {
6751                case bpf_ctx_range(struct __sk_buff, mark):
6752                case bpf_ctx_range(struct __sk_buff, tc_index):
6753                case bpf_ctx_range(struct __sk_buff, priority):
6754                case bpf_ctx_range(struct __sk_buff, tc_classid):
6755                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6756                case bpf_ctx_range(struct __sk_buff, tstamp):
6757                case bpf_ctx_range(struct __sk_buff, queue_mapping):
6758                        break;
6759                default:
6760                        return false;
6761                }
6762        }
6763
6764        switch (off) {
6765        case bpf_ctx_range(struct __sk_buff, data):
6766                info->reg_type = PTR_TO_PACKET;
6767                break;
6768        case bpf_ctx_range(struct __sk_buff, data_meta):
6769                info->reg_type = PTR_TO_PACKET_META;
6770                break;
6771        case bpf_ctx_range(struct __sk_buff, data_end):
6772                info->reg_type = PTR_TO_PACKET_END;
6773                break;
6774        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6775                return false;
6776        }
6777
6778        return bpf_skb_is_valid_access(off, size, type, prog, info);
6779}
6780
6781static bool __is_valid_xdp_access(int off, int size)
6782{
6783        if (off < 0 || off >= sizeof(struct xdp_md))
6784                return false;
6785        if (off % size != 0)
6786                return false;
6787        if (size != sizeof(__u32))
6788                return false;
6789
6790        return true;
6791}
6792
6793static bool xdp_is_valid_access(int off, int size,
6794                                enum bpf_access_type type,
6795                                const struct bpf_prog *prog,
6796                                struct bpf_insn_access_aux *info)
6797{
6798        if (type == BPF_WRITE) {
6799                if (bpf_prog_is_dev_bound(prog->aux)) {
6800                        switch (off) {
6801                        case offsetof(struct xdp_md, rx_queue_index):
6802                                return __is_valid_xdp_access(off, size);
6803                        }
6804                }
6805                return false;
6806        }
6807
6808        switch (off) {
6809        case offsetof(struct xdp_md, data):
6810                info->reg_type = PTR_TO_PACKET;
6811                break;
6812        case offsetof(struct xdp_md, data_meta):
6813                info->reg_type = PTR_TO_PACKET_META;
6814                break;
6815        case offsetof(struct xdp_md, data_end):
6816                info->reg_type = PTR_TO_PACKET_END;
6817                break;
6818        }
6819
6820        return __is_valid_xdp_access(off, size);
6821}
6822
6823void bpf_warn_invalid_xdp_action(u32 act)
6824{
6825        const u32 act_max = XDP_REDIRECT;
6826
6827        WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6828                  act > act_max ? "Illegal" : "Driver unsupported",
6829                  act);
6830}
6831EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6832
6833static bool sock_addr_is_valid_access(int off, int size,
6834                                      enum bpf_access_type type,
6835                                      const struct bpf_prog *prog,
6836                                      struct bpf_insn_access_aux *info)
6837{
6838        const int size_default = sizeof(__u32);
6839
6840        if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6841                return false;
6842        if (off % size != 0)
6843                return false;
6844
6845        /* Disallow access to IPv6 fields from IPv4 contex and vise
6846         * versa.
6847         */
6848        switch (off) {
6849        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6850                switch (prog->expected_attach_type) {
6851                case BPF_CGROUP_INET4_BIND:
6852                case BPF_CGROUP_INET4_CONNECT:
6853                case BPF_CGROUP_UDP4_SENDMSG:
6854                case BPF_CGROUP_UDP4_RECVMSG:
6855                        break;
6856                default:
6857                        return false;
6858                }
6859                break;
6860        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6861                switch (prog->expected_attach_type) {
6862                case BPF_CGROUP_INET6_BIND:
6863                case BPF_CGROUP_INET6_CONNECT:
6864                case BPF_CGROUP_UDP6_SENDMSG:
6865                case BPF_CGROUP_UDP6_RECVMSG:
6866                        break;
6867                default:
6868                        return false;
6869                }
6870                break;
6871        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6872                switch (prog->expected_attach_type) {
6873                case BPF_CGROUP_UDP4_SENDMSG:
6874                        break;
6875                default:
6876                        return false;
6877                }
6878                break;
6879        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6880                                msg_src_ip6[3]):
6881                switch (prog->expected_attach_type) {
6882                case BPF_CGROUP_UDP6_SENDMSG:
6883                        break;
6884                default:
6885                        return false;
6886                }
6887                break;
6888        }
6889
6890        switch (off) {
6891        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6892        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6893        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6894        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6895                                msg_src_ip6[3]):
6896                if (type == BPF_READ) {
6897                        bpf_ctx_record_field_size(info, size_default);
6898
6899                        if (bpf_ctx_wide_access_ok(off, size,
6900                                                   struct bpf_sock_addr,
6901                                                   user_ip6))
6902                                return true;
6903
6904                        if (bpf_ctx_wide_access_ok(off, size,
6905                                                   struct bpf_sock_addr,
6906                                                   msg_src_ip6))
6907                                return true;
6908
6909                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6910                                return false;
6911                } else {
6912                        if (bpf_ctx_wide_access_ok(off, size,
6913                                                   struct bpf_sock_addr,
6914                                                   user_ip6))
6915                                return true;
6916
6917                        if (bpf_ctx_wide_access_ok(off, size,
6918                                                   struct bpf_sock_addr,
6919                                                   msg_src_ip6))
6920                                return true;
6921
6922                        if (size != size_default)
6923                                return false;
6924                }
6925                break;
6926        case bpf_ctx_range(struct bpf_sock_addr, user_port):
6927                if (size != size_default)
6928                        return false;
6929                break;
6930        case offsetof(struct bpf_sock_addr, sk):
6931                if (type != BPF_READ)
6932                        return false;
6933                if (size != sizeof(__u64))
6934                        return false;
6935                info->reg_type = PTR_TO_SOCKET;
6936                break;
6937        default:
6938                if (type == BPF_READ) {
6939                        if (size != size_default)
6940                                return false;
6941                } else {
6942                        return false;
6943                }
6944        }
6945
6946        return true;
6947}
6948
6949static bool sock_ops_is_valid_access(int off, int size,
6950                                     enum bpf_access_type type,
6951                                     const struct bpf_prog *prog,
6952                                     struct bpf_insn_access_aux *info)
6953{
6954        const int size_default = sizeof(__u32);
6955
6956        if (off < 0 || off >= sizeof(struct bpf_sock_ops))
6957                return false;
6958
6959        /* The verifier guarantees that size > 0. */
6960        if (off % size != 0)
6961                return false;
6962
6963        if (type == BPF_WRITE) {
6964                switch (off) {
6965                case offsetof(struct bpf_sock_ops, reply):
6966                case offsetof(struct bpf_sock_ops, sk_txhash):
6967                        if (size != size_default)
6968                                return false;
6969                        break;
6970                default:
6971                        return false;
6972                }
6973        } else {
6974                switch (off) {
6975                case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
6976                                        bytes_acked):
6977                        if (size != sizeof(__u64))
6978                                return false;
6979                        break;
6980                case offsetof(struct bpf_sock_ops, sk):
6981                        if (size != sizeof(__u64))
6982                                return false;
6983                        info->reg_type = PTR_TO_SOCKET_OR_NULL;
6984                        break;
6985                default:
6986                        if (size != size_default)
6987                                return false;
6988                        break;
6989                }
6990        }
6991
6992        return true;
6993}
6994
6995static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
6996                           const struct bpf_prog *prog)
6997{
6998        return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
6999}
7000
7001static bool sk_skb_is_valid_access(int off, int size,
7002                                   enum bpf_access_type type,
7003                                   const struct bpf_prog *prog,
7004                                   struct bpf_insn_access_aux *info)
7005{
7006        switch (off) {
7007        case bpf_ctx_range(struct __sk_buff, tc_classid):
7008        case bpf_ctx_range(struct __sk_buff, data_meta):
7009        case bpf_ctx_range(struct __sk_buff, tstamp):
7010        case bpf_ctx_range(struct __sk_buff, wire_len):
7011                return false;
7012        }
7013
7014        if (type == BPF_WRITE) {
7015                switch (off) {
7016                case bpf_ctx_range(struct __sk_buff, tc_index):
7017                case bpf_ctx_range(struct __sk_buff, priority):
7018                        break;
7019                default:
7020                        return false;
7021                }
7022        }
7023
7024        switch (off) {
7025        case bpf_ctx_range(struct __sk_buff, mark):
7026                return false;
7027        case bpf_ctx_range(struct __sk_buff, data):
7028                info->reg_type = PTR_TO_PACKET;
7029                break;
7030        case bpf_ctx_range(struct __sk_buff, data_end):
7031                info->reg_type = PTR_TO_PACKET_END;
7032                break;
7033        }
7034
7035        return bpf_skb_is_valid_access(off, size, type, prog, info);
7036}
7037
7038static bool sk_msg_is_valid_access(int off, int size,
7039                                   enum bpf_access_type type,
7040                                   const struct bpf_prog *prog,
7041                                   struct bpf_insn_access_aux *info)
7042{
7043        if (type == BPF_WRITE)
7044                return false;
7045
7046        if (off % size != 0)
7047                return false;
7048
7049        switch (off) {
7050        case offsetof(struct sk_msg_md, data):
7051                info->reg_type = PTR_TO_PACKET;
7052                if (size != sizeof(__u64))
7053                        return false;
7054                break;
7055        case offsetof(struct sk_msg_md, data_end):
7056                info->reg_type = PTR_TO_PACKET_END;
7057                if (size != sizeof(__u64))
7058                        return false;
7059                break;
7060        case bpf_ctx_range(struct sk_msg_md, family):
7061        case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7062        case bpf_ctx_range(struct sk_msg_md, local_ip4):
7063        case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7064        case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7065        case bpf_ctx_range(struct sk_msg_md, remote_port):
7066        case bpf_ctx_range(struct sk_msg_md, local_port):
7067        case bpf_ctx_range(struct sk_msg_md, size):
7068                if (size != sizeof(__u32))
7069                        return false;
7070                break;
7071        default:
7072                return false;
7073        }
7074        return true;
7075}
7076
7077static bool flow_dissector_is_valid_access(int off, int size,
7078                                           enum bpf_access_type type,
7079                                           const struct bpf_prog *prog,
7080                                           struct bpf_insn_access_aux *info)
7081{
7082        const int size_default = sizeof(__u32);
7083
7084        if (off < 0 || off >= sizeof(struct __sk_buff))
7085                return false;
7086
7087        if (type == BPF_WRITE)
7088                return false;
7089
7090        switch (off) {
7091        case bpf_ctx_range(struct __sk_buff, data):
7092                if (size != size_default)
7093                        return false;
7094                info->reg_type = PTR_TO_PACKET;
7095                return true;
7096        case bpf_ctx_range(struct __sk_buff, data_end):
7097                if (size != size_default)
7098                        return false;
7099                info->reg_type = PTR_TO_PACKET_END;
7100                return true;
7101        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7102                if (size != sizeof(__u64))
7103                        return false;
7104                info->reg_type = PTR_TO_FLOW_KEYS;
7105                return true;
7106        default:
7107                return false;
7108        }
7109}
7110
7111static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7112                                             const struct bpf_insn *si,
7113                                             struct bpf_insn *insn_buf,
7114                                             struct bpf_prog *prog,
7115                                             u32 *target_size)
7116
7117{
7118        struct bpf_insn *insn = insn_buf;
7119
7120        switch (si->off) {
7121        case offsetof(struct __sk_buff, data):
7122                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7123                                      si->dst_reg, si->src_reg,
7124                                      offsetof(struct bpf_flow_dissector, data));
7125                break;
7126
7127        case offsetof(struct __sk_buff, data_end):
7128                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7129                                      si->dst_reg, si->src_reg,
7130                                      offsetof(struct bpf_flow_dissector, data_end));
7131                break;
7132
7133        case offsetof(struct __sk_buff, flow_keys):
7134                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7135                                      si->dst_reg, si->src_reg,
7136                                      offsetof(struct bpf_flow_dissector, flow_keys));
7137                break;
7138        }
7139
7140        return insn - insn_buf;
7141}
7142
7143static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7144                                  const struct bpf_insn *si,
7145                                  struct bpf_insn *insn_buf,
7146                                  struct bpf_prog *prog, u32 *target_size)
7147{
7148        struct bpf_insn *insn = insn_buf;
7149        int off;
7150
7151        switch (si->off) {
7152        case offsetof(struct __sk_buff, len):
7153                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7154                                      bpf_target_off(struct sk_buff, len, 4,
7155                                                     target_size));
7156                break;
7157
7158        case offsetof(struct __sk_buff, protocol):
7159                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7160                                      bpf_target_off(struct sk_buff, protocol, 2,
7161                                                     target_size));
7162                break;
7163
7164        case offsetof(struct __sk_buff, vlan_proto):
7165                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7166                                      bpf_target_off(struct sk_buff, vlan_proto, 2,
7167                                                     target_size));
7168                break;
7169
7170        case offsetof(struct __sk_buff, priority):
7171                if (type == BPF_WRITE)
7172                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7173                                              bpf_target_off(struct sk_buff, priority, 4,
7174                                                             target_size));
7175                else
7176                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7177                                              bpf_target_off(struct sk_buff, priority, 4,
7178                                                             target_size));
7179                break;
7180
7181        case offsetof(struct __sk_buff, ingress_ifindex):
7182                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7183                                      bpf_target_off(struct sk_buff, skb_iif, 4,
7184                                                     target_size));
7185                break;
7186
7187        case offsetof(struct __sk_buff, ifindex):
7188                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7189                                      si->dst_reg, si->src_reg,
7190                                      offsetof(struct sk_buff, dev));
7191                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7192                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7193                                      bpf_target_off(struct net_device, ifindex, 4,
7194                                                     target_size));
7195                break;
7196
7197        case offsetof(struct __sk_buff, hash):
7198                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7199                                      bpf_target_off(struct sk_buff, hash, 4,
7200                                                     target_size));
7201                break;
7202
7203        case offsetof(struct __sk_buff, mark):
7204                if (type == BPF_WRITE)
7205                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7206                                              bpf_target_off(struct sk_buff, mark, 4,
7207                                                             target_size));
7208                else
7209                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7210                                              bpf_target_off(struct sk_buff, mark, 4,
7211                                                             target_size));
7212                break;
7213
7214        case offsetof(struct __sk_buff, pkt_type):
7215                *target_size = 1;
7216                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7217                                      PKT_TYPE_OFFSET());
7218                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7219#ifdef __BIG_ENDIAN_BITFIELD
7220                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7221#endif
7222                break;
7223
7224        case offsetof(struct __sk_buff, queue_mapping):
7225                if (type == BPF_WRITE) {
7226                        *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7227                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7228                                              bpf_target_off(struct sk_buff,
7229                                                             queue_mapping,
7230                                                             2, target_size));
7231                } else {
7232                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7233                                              bpf_target_off(struct sk_buff,
7234                                                             queue_mapping,
7235                                                             2, target_size));
7236                }
7237                break;
7238
7239        case offsetof(struct __sk_buff, vlan_present):
7240                *target_size = 1;
7241                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7242                                      PKT_VLAN_PRESENT_OFFSET());
7243                if (PKT_VLAN_PRESENT_BIT)
7244                        *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7245                if (PKT_VLAN_PRESENT_BIT < 7)
7246                        *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7247                break;
7248
7249        case offsetof(struct __sk_buff, vlan_tci):
7250                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7251                                      bpf_target_off(struct sk_buff, vlan_tci, 2,
7252                                                     target_size));
7253                break;
7254
7255        case offsetof(struct __sk_buff, cb[0]) ...
7256             offsetofend(struct __sk_buff, cb[4]) - 1:
7257                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7258                BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7259                              offsetof(struct qdisc_skb_cb, data)) %
7260                             sizeof(__u64));
7261
7262                prog->cb_access = 1;
7263                off  = si->off;
7264                off -= offsetof(struct __sk_buff, cb[0]);
7265                off += offsetof(struct sk_buff, cb);
7266                off += offsetof(struct qdisc_skb_cb, data);
7267                if (type == BPF_WRITE)
7268                        *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7269                                              si->src_reg, off);
7270                else
7271                        *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7272                                              si->src_reg, off);
7273                break;
7274
7275        case offsetof(struct __sk_buff, tc_classid):
7276                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7277
7278                off  = si->off;
7279                off -= offsetof(struct __sk_buff, tc_classid);
7280                off += offsetof(struct sk_buff, cb);
7281                off += offsetof(struct qdisc_skb_cb, tc_classid);
7282                *target_size = 2;
7283                if (type == BPF_WRITE)
7284                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7285                                              si->src_reg, off);
7286                else
7287                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7288                                              si->src_reg, off);
7289                break;
7290
7291        case offsetof(struct __sk_buff, data):
7292                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7293                                      si->dst_reg, si->src_reg,
7294                                      offsetof(struct sk_buff, data));
7295                break;
7296
7297        case offsetof(struct __sk_buff, data_meta):
7298                off  = si->off;
7299                off -= offsetof(struct __sk_buff, data_meta);
7300                off += offsetof(struct sk_buff, cb);
7301                off += offsetof(struct bpf_skb_data_end, data_meta);
7302                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7303                                      si->src_reg, off);
7304                break;
7305
7306        case offsetof(struct __sk_buff, data_end):
7307                off  = si->off;
7308                off -= offsetof(struct __sk_buff, data_end);
7309                off += offsetof(struct sk_buff, cb);
7310                off += offsetof(struct bpf_skb_data_end, data_end);
7311                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7312                                      si->src_reg, off);
7313                break;
7314
7315        case offsetof(struct __sk_buff, tc_index):
7316#ifdef CONFIG_NET_SCHED
7317                if (type == BPF_WRITE)
7318                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7319                                              bpf_target_off(struct sk_buff, tc_index, 2,
7320                                                             target_size));
7321                else
7322                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7323                                              bpf_target_off(struct sk_buff, tc_index, 2,
7324                                                             target_size));
7325#else
7326                *target_size = 2;
7327                if (type == BPF_WRITE)
7328                        *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7329                else
7330                        *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7331#endif
7332                break;
7333
7334        case offsetof(struct __sk_buff, napi_id):
7335#if defined(CONFIG_NET_RX_BUSY_POLL)
7336                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7337                                      bpf_target_off(struct sk_buff, napi_id, 4,
7338                                                     target_size));
7339                *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7340                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7341#else
7342                *target_size = 4;
7343                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7344#endif
7345                break;
7346        case offsetof(struct __sk_buff, family):
7347                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7348
7349                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7350                                      si->dst_reg, si->src_reg,
7351                                      offsetof(struct sk_buff, sk));
7352                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7353                                      bpf_target_off(struct sock_common,
7354                                                     skc_family,
7355                                                     2, target_size));
7356                break;
7357        case offsetof(struct __sk_buff, remote_ip4):
7358                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7359
7360                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7361                                      si->dst_reg, si->src_reg,
7362                                      offsetof(struct sk_buff, sk));
7363                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7364                                      bpf_target_off(struct sock_common,
7365                                                     skc_daddr,
7366                                                     4, target_size));
7367                break;
7368        case offsetof(struct __sk_buff, local_ip4):
7369                BUILD_BUG_ON(sizeof_field(struct sock_common,
7370                                          skc_rcv_saddr) != 4);
7371
7372                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7373                                      si->dst_reg, si->src_reg,
7374                                      offsetof(struct sk_buff, sk));
7375                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7376                                      bpf_target_off(struct sock_common,
7377                                                     skc_rcv_saddr,
7378                                                     4, target_size));
7379                break;
7380        case offsetof(struct __sk_buff, remote_ip6[0]) ...
7381             offsetof(struct __sk_buff, remote_ip6[3]):
7382#if IS_ENABLED(CONFIG_IPV6)
7383                BUILD_BUG_ON(sizeof_field(struct sock_common,
7384                                          skc_v6_daddr.s6_addr32[0]) != 4);
7385
7386                off = si->off;
7387                off -= offsetof(struct __sk_buff, remote_ip6[0]);
7388
7389                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7390                                      si->dst_reg, si->src_reg,
7391                                      offsetof(struct sk_buff, sk));
7392                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7393                                      offsetof(struct sock_common,
7394                                               skc_v6_daddr.s6_addr32[0]) +
7395                                      off);
7396#else
7397                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7398#endif
7399                break;
7400        case offsetof(struct __sk_buff, local_ip6[0]) ...
7401             offsetof(struct __sk_buff, local_ip6[3]):
7402#if IS_ENABLED(CONFIG_IPV6)
7403                BUILD_BUG_ON(sizeof_field(struct sock_common,
7404                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7405
7406                off = si->off;
7407                off -= offsetof(struct __sk_buff, local_ip6[0]);
7408
7409                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7410                                      si->dst_reg, si->src_reg,
7411                                      offsetof(struct sk_buff, sk));
7412                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7413                                      offsetof(struct sock_common,
7414                                               skc_v6_rcv_saddr.s6_addr32[0]) +
7415                                      off);
7416#else
7417                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7418#endif
7419                break;
7420
7421        case offsetof(struct __sk_buff, remote_port):
7422                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7423
7424                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7425                                      si->dst_reg, si->src_reg,
7426                                      offsetof(struct sk_buff, sk));
7427                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7428                                      bpf_target_off(struct sock_common,
7429                                                     skc_dport,
7430                                                     2, target_size));
7431#ifndef __BIG_ENDIAN_BITFIELD
7432                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7433#endif
7434                break;
7435
7436        case offsetof(struct __sk_buff, local_port):
7437                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7438
7439                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7440                                      si->dst_reg, si->src_reg,
7441                                      offsetof(struct sk_buff, sk));
7442                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7443                                      bpf_target_off(struct sock_common,
7444                                                     skc_num, 2, target_size));
7445                break;
7446
7447        case offsetof(struct __sk_buff, tstamp):
7448                BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7449
7450                if (type == BPF_WRITE)
7451                        *insn++ = BPF_STX_MEM(BPF_DW,
7452                                              si->dst_reg, si->src_reg,
7453                                              bpf_target_off(struct sk_buff,
7454                                                             tstamp, 8,
7455                                                             target_size));
7456                else
7457                        *insn++ = BPF_LDX_MEM(BPF_DW,
7458                                              si->dst_reg, si->src_reg,
7459                                              bpf_target_off(struct sk_buff,
7460                                                             tstamp, 8,
7461                                                             target_size));
7462                break;
7463
7464        case offsetof(struct __sk_buff, gso_segs):
7465                /* si->dst_reg = skb_shinfo(SKB); */
7466#ifdef NET_SKBUFF_DATA_USES_OFFSET
7467                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7468                                      BPF_REG_AX, si->src_reg,
7469                                      offsetof(struct sk_buff, end));
7470                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7471                                      si->dst_reg, si->src_reg,
7472                                      offsetof(struct sk_buff, head));
7473                *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7474#else
7475                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7476                                      si->dst_reg, si->src_reg,
7477                                      offsetof(struct sk_buff, end));
7478#endif
7479                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7480                                      si->dst_reg, si->dst_reg,
7481                                      bpf_target_off(struct skb_shared_info,
7482                                                     gso_segs, 2,
7483                                                     target_size));
7484                break;
7485        case offsetof(struct __sk_buff, wire_len):
7486                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7487
7488                off = si->off;
7489                off -= offsetof(struct __sk_buff, wire_len);
7490                off += offsetof(struct sk_buff, cb);
7491                off += offsetof(struct qdisc_skb_cb, pkt_len);
7492                *target_size = 4;
7493                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7494                break;
7495
7496        case offsetof(struct __sk_buff, sk):
7497                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7498                                      si->dst_reg, si->src_reg,
7499                                      offsetof(struct sk_buff, sk));
7500                break;
7501        }
7502
7503        return insn - insn_buf;
7504}
7505
7506u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7507                                const struct bpf_insn *si,
7508                                struct bpf_insn *insn_buf,
7509                                struct bpf_prog *prog, u32 *target_size)
7510{
7511        struct bpf_insn *insn = insn_buf;
7512        int off;
7513
7514        switch (si->off) {
7515        case offsetof(struct bpf_sock, bound_dev_if):
7516                BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7517
7518                if (type == BPF_WRITE)
7519                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7520                                        offsetof(struct sock, sk_bound_dev_if));
7521                else
7522                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7523                                      offsetof(struct sock, sk_bound_dev_if));
7524                break;
7525
7526        case offsetof(struct bpf_sock, mark):
7527                BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7528
7529                if (type == BPF_WRITE)
7530                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7531                                        offsetof(struct sock, sk_mark));
7532                else
7533                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7534                                      offsetof(struct sock, sk_mark));
7535                break;
7536
7537        case offsetof(struct bpf_sock, priority):
7538                BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7539
7540                if (type == BPF_WRITE)
7541                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7542                                        offsetof(struct sock, sk_priority));
7543                else
7544                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7545                                      offsetof(struct sock, sk_priority));
7546                break;
7547
7548        case offsetof(struct bpf_sock, family):
7549                *insn++ = BPF_LDX_MEM(
7550                        BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7551                        si->dst_reg, si->src_reg,
7552                        bpf_target_off(struct sock_common,
7553                                       skc_family,
7554                                       sizeof_field(struct sock_common,
7555                                                    skc_family),
7556                                       target_size));
7557                break;
7558
7559        case offsetof(struct bpf_sock, type):
7560                *insn++ = BPF_LDX_MEM(
7561                        BPF_FIELD_SIZEOF(struct sock, sk_type),
7562                        si->dst_reg, si->src_reg,
7563                        bpf_target_off(struct sock, sk_type,
7564                                       sizeof_field(struct sock, sk_type),
7565                                       target_size));
7566                break;
7567
7568        case offsetof(struct bpf_sock, protocol):
7569                *insn++ = BPF_LDX_MEM(
7570                        BPF_FIELD_SIZEOF(struct sock, sk_protocol),
7571                        si->dst_reg, si->src_reg,
7572                        bpf_target_off(struct sock, sk_protocol,
7573                                       sizeof_field(struct sock, sk_protocol),
7574                                       target_size));
7575                break;
7576
7577        case offsetof(struct bpf_sock, src_ip4):
7578                *insn++ = BPF_LDX_MEM(
7579                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7580                        bpf_target_off(struct sock_common, skc_rcv_saddr,
7581                                       sizeof_field(struct sock_common,
7582                                                    skc_rcv_saddr),
7583                                       target_size));
7584                break;
7585
7586        case offsetof(struct bpf_sock, dst_ip4):
7587                *insn++ = BPF_LDX_MEM(
7588                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7589                        bpf_target_off(struct sock_common, skc_daddr,
7590                                       sizeof_field(struct sock_common,
7591                                                    skc_daddr),
7592                                       target_size));
7593                break;
7594
7595        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7596#if IS_ENABLED(CONFIG_IPV6)
7597                off = si->off;
7598                off -= offsetof(struct bpf_sock, src_ip6[0]);
7599                *insn++ = BPF_LDX_MEM(
7600                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7601                        bpf_target_off(
7602                                struct sock_common,
7603                                skc_v6_rcv_saddr.s6_addr32[0],
7604                                sizeof_field(struct sock_common,
7605                                             skc_v6_rcv_saddr.s6_addr32[0]),
7606                                target_size) + off);
7607#else
7608                (void)off;
7609                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7610#endif
7611                break;
7612
7613        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7614#if IS_ENABLED(CONFIG_IPV6)
7615                off = si->off;
7616                off -= offsetof(struct bpf_sock, dst_ip6[0]);
7617                *insn++ = BPF_LDX_MEM(
7618                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7619                        bpf_target_off(struct sock_common,
7620                                       skc_v6_daddr.s6_addr32[0],
7621                                       sizeof_field(struct sock_common,
7622                                                    skc_v6_daddr.s6_addr32[0]),
7623                                       target_size) + off);
7624#else
7625                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7626                *target_size = 4;
7627#endif
7628                break;
7629
7630        case offsetof(struct bpf_sock, src_port):
7631                *insn++ = BPF_LDX_MEM(
7632                        BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7633                        si->dst_reg, si->src_reg,
7634                        bpf_target_off(struct sock_common, skc_num,
7635                                       sizeof_field(struct sock_common,
7636                                                    skc_num),
7637                                       target_size));
7638                break;
7639
7640        case offsetof(struct bpf_sock, dst_port):
7641                *insn++ = BPF_LDX_MEM(
7642                        BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7643                        si->dst_reg, si->src_reg,
7644                        bpf_target_off(struct sock_common, skc_dport,
7645                                       sizeof_field(struct sock_common,
7646                                                    skc_dport),
7647                                       target_size));
7648                break;
7649
7650        case offsetof(struct bpf_sock, state):
7651                *insn++ = BPF_LDX_MEM(
7652                        BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7653                        si->dst_reg, si->src_reg,
7654                        bpf_target_off(struct sock_common, skc_state,
7655                                       sizeof_field(struct sock_common,
7656                                                    skc_state),
7657                                       target_size));
7658                break;
7659        }
7660
7661        return insn - insn_buf;
7662}
7663
7664static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7665                                         const struct bpf_insn *si,
7666                                         struct bpf_insn *insn_buf,
7667                                         struct bpf_prog *prog, u32 *target_size)
7668{
7669        struct bpf_insn *insn = insn_buf;
7670
7671        switch (si->off) {
7672        case offsetof(struct __sk_buff, ifindex):
7673                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7674                                      si->dst_reg, si->src_reg,
7675                                      offsetof(struct sk_buff, dev));
7676                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7677                                      bpf_target_off(struct net_device, ifindex, 4,
7678                                                     target_size));
7679                break;
7680        default:
7681                return bpf_convert_ctx_access(type, si, insn_buf, prog,
7682                                              target_size);
7683        }
7684
7685        return insn - insn_buf;
7686}
7687
7688static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7689                                  const struct bpf_insn *si,
7690                                  struct bpf_insn *insn_buf,
7691                                  struct bpf_prog *prog, u32 *target_size)
7692{
7693        struct bpf_insn *insn = insn_buf;
7694
7695        switch (si->off) {
7696        case offsetof(struct xdp_md, data):
7697                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7698                                      si->dst_reg, si->src_reg,
7699                                      offsetof(struct xdp_buff, data));
7700                break;
7701        case offsetof(struct xdp_md, data_meta):
7702                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7703                                      si->dst_reg, si->src_reg,
7704                                      offsetof(struct xdp_buff, data_meta));
7705                break;
7706        case offsetof(struct xdp_md, data_end):
7707                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7708                                      si->dst_reg, si->src_reg,
7709                                      offsetof(struct xdp_buff, data_end));
7710                break;
7711        case offsetof(struct xdp_md, ingress_ifindex):
7712                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7713                                      si->dst_reg, si->src_reg,
7714                                      offsetof(struct xdp_buff, rxq));
7715                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7716                                      si->dst_reg, si->dst_reg,
7717                                      offsetof(struct xdp_rxq_info, dev));
7718                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7719                                      offsetof(struct net_device, ifindex));
7720                break;
7721        case offsetof(struct xdp_md, rx_queue_index):
7722                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7723                                      si->dst_reg, si->src_reg,
7724                                      offsetof(struct xdp_buff, rxq));
7725                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7726                                      offsetof(struct xdp_rxq_info,
7727                                               queue_index));
7728                break;
7729        }
7730
7731        return insn - insn_buf;
7732}
7733
7734/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7735 * context Structure, F is Field in context structure that contains a pointer
7736 * to Nested Structure of type NS that has the field NF.
7737 *
7738 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7739 * sure that SIZE is not greater than actual size of S.F.NF.
7740 *
7741 * If offset OFF is provided, the load happens from that offset relative to
7742 * offset of NF.
7743 */
7744#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
7745        do {                                                                   \
7746                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7747                                      si->src_reg, offsetof(S, F));            \
7748                *insn++ = BPF_LDX_MEM(                                         \
7749                        SIZE, si->dst_reg, si->dst_reg,                        \
7750                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
7751                                       target_size)                            \
7752                                + OFF);                                        \
7753        } while (0)
7754
7755#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
7756        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
7757                                             BPF_FIELD_SIZEOF(NS, NF), 0)
7758
7759/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7760 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7761 *
7762 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7763 * "register" since two registers available in convert_ctx_access are not
7764 * enough: we can't override neither SRC, since it contains value to store, nor
7765 * DST since it contains pointer to context that may be used by later
7766 * instructions. But we need a temporary place to save pointer to nested
7767 * structure whose field we want to store to.
7768 */
7769#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
7770        do {                                                                   \
7771                int tmp_reg = BPF_REG_9;                                       \
7772                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7773                        --tmp_reg;                                             \
7774                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7775                        --tmp_reg;                                             \
7776                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
7777                                      offsetof(S, TF));                        \
7778                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
7779                                      si->dst_reg, offsetof(S, F));            \
7780                *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
7781                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
7782                                       target_size)                            \
7783                                + OFF);                                        \
7784                *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
7785                                      offsetof(S, TF));                        \
7786        } while (0)
7787
7788#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7789                                                      TF)                      \
7790        do {                                                                   \
7791                if (type == BPF_WRITE) {                                       \
7792                        SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7793                                                         OFF, TF);             \
7794                } else {                                                       \
7795                        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
7796                                S, NS, F, NF, SIZE, OFF);  \
7797                }                                                              \
7798        } while (0)
7799
7800#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
7801        SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
7802                S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7803
7804static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7805                                        const struct bpf_insn *si,
7806                                        struct bpf_insn *insn_buf,
7807                                        struct bpf_prog *prog, u32 *target_size)
7808{
7809        struct bpf_insn *insn = insn_buf;
7810        int off;
7811
7812        switch (si->off) {
7813        case offsetof(struct bpf_sock_addr, user_family):
7814                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7815                                            struct sockaddr, uaddr, sa_family);
7816                break;
7817
7818        case offsetof(struct bpf_sock_addr, user_ip4):
7819                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7820                        struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7821                        sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7822                break;
7823
7824        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7825                off = si->off;
7826                off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7827                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7828                        struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7829                        sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7830                        tmp_reg);
7831                break;
7832
7833        case offsetof(struct bpf_sock_addr, user_port):
7834                /* To get port we need to know sa_family first and then treat
7835                 * sockaddr as either sockaddr_in or sockaddr_in6.
7836                 * Though we can simplify since port field has same offset and
7837                 * size in both structures.
7838                 * Here we check this invariant and use just one of the
7839                 * structures if it's true.
7840                 */
7841                BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7842                             offsetof(struct sockaddr_in6, sin6_port));
7843                BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
7844                             sizeof_field(struct sockaddr_in6, sin6_port));
7845                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7846                                                     struct sockaddr_in6, uaddr,
7847                                                     sin6_port, tmp_reg);
7848                break;
7849
7850        case offsetof(struct bpf_sock_addr, family):
7851                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7852                                            struct sock, sk, sk_family);
7853                break;
7854
7855        case offsetof(struct bpf_sock_addr, type):
7856                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7857                                            struct sock, sk, sk_type);
7858                break;
7859
7860        case offsetof(struct bpf_sock_addr, protocol):
7861                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7862                                            struct sock, sk, sk_protocol);
7863                break;
7864
7865        case offsetof(struct bpf_sock_addr, msg_src_ip4):
7866                /* Treat t_ctx as struct in_addr for msg_src_ip4. */
7867                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7868                        struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7869                        s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7870                break;
7871
7872        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7873                                msg_src_ip6[3]):
7874                off = si->off;
7875                off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7876                /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7877                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7878                        struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7879                        s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7880                break;
7881        case offsetof(struct bpf_sock_addr, sk):
7882                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
7883                                      si->dst_reg, si->src_reg,
7884                                      offsetof(struct bpf_sock_addr_kern, sk));
7885                break;
7886        }
7887
7888        return insn - insn_buf;
7889}
7890
7891static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7892                                       const struct bpf_insn *si,
7893                                       struct bpf_insn *insn_buf,
7894                                       struct bpf_prog *prog,
7895                                       u32 *target_size)
7896{
7897        struct bpf_insn *insn = insn_buf;
7898        int off;
7899
7900/* Helper macro for adding read access to tcp_sock or sock fields. */
7901#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7902        do {                                                                  \
7903                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
7904                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
7905                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7906                                                struct bpf_sock_ops_kern,     \
7907                                                is_fullsock),                 \
7908                                      si->dst_reg, si->src_reg,               \
7909                                      offsetof(struct bpf_sock_ops_kern,      \
7910                                               is_fullsock));                 \
7911                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
7912                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7913                                                struct bpf_sock_ops_kern, sk),\
7914                                      si->dst_reg, si->src_reg,               \
7915                                      offsetof(struct bpf_sock_ops_kern, sk));\
7916                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
7917                                                       OBJ_FIELD),            \
7918                                      si->dst_reg, si->dst_reg,               \
7919                                      offsetof(OBJ, OBJ_FIELD));              \
7920        } while (0)
7921
7922#define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
7923                SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
7924
7925/* Helper macro for adding write access to tcp_sock or sock fields.
7926 * The macro is called with two registers, dst_reg which contains a pointer
7927 * to ctx (context) and src_reg which contains the value that should be
7928 * stored. However, we need an additional register since we cannot overwrite
7929 * dst_reg because it may be used later in the program.
7930 * Instead we "borrow" one of the other register. We first save its value
7931 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
7932 * it at the end of the macro.
7933 */
7934#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7935        do {                                                                  \
7936                int reg = BPF_REG_9;                                          \
7937                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
7938                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
7939                if (si->dst_reg == reg || si->src_reg == reg)                 \
7940                        reg--;                                                \
7941                if (si->dst_reg == reg || si->src_reg == reg)                 \
7942                        reg--;                                                \
7943                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
7944                                      offsetof(struct bpf_sock_ops_kern,      \
7945                                               temp));                        \
7946                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7947                                                struct bpf_sock_ops_kern,     \
7948                                                is_fullsock),                 \
7949                                      reg, si->dst_reg,                       \
7950                                      offsetof(struct bpf_sock_ops_kern,      \
7951                                               is_fullsock));                 \
7952                *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
7953                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7954                                                struct bpf_sock_ops_kern, sk),\
7955                                      reg, si->dst_reg,                       \
7956                                      offsetof(struct bpf_sock_ops_kern, sk));\
7957                *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
7958                                      reg, si->src_reg,                       \
7959                                      offsetof(OBJ, OBJ_FIELD));              \
7960                *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
7961                                      offsetof(struct bpf_sock_ops_kern,      \
7962                                               temp));                        \
7963        } while (0)
7964
7965#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
7966        do {                                                                  \
7967                if (TYPE == BPF_WRITE)                                        \
7968                        SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7969                else                                                          \
7970                        SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7971        } while (0)
7972
7973        if (insn > insn_buf)
7974                return insn - insn_buf;
7975
7976        switch (si->off) {
7977        case offsetof(struct bpf_sock_ops, op) ...
7978             offsetof(struct bpf_sock_ops, replylong[3]):
7979                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
7980                             sizeof_field(struct bpf_sock_ops_kern, op));
7981                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
7982                             sizeof_field(struct bpf_sock_ops_kern, reply));
7983                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
7984                             sizeof_field(struct bpf_sock_ops_kern, replylong));
7985                off = si->off;
7986                off -= offsetof(struct bpf_sock_ops, op);
7987                off += offsetof(struct bpf_sock_ops_kern, op);
7988                if (type == BPF_WRITE)
7989                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7990                                              off);
7991                else
7992                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7993                                              off);
7994                break;
7995
7996        case offsetof(struct bpf_sock_ops, family):
7997                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7998
7999                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8000                                              struct bpf_sock_ops_kern, sk),
8001                                      si->dst_reg, si->src_reg,
8002                                      offsetof(struct bpf_sock_ops_kern, sk));
8003                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8004                                      offsetof(struct sock_common, skc_family));
8005                break;
8006
8007        case offsetof(struct bpf_sock_ops, remote_ip4):
8008                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8009
8010                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8011                                                struct bpf_sock_ops_kern, sk),
8012                                      si->dst_reg, si->src_reg,
8013                                      offsetof(struct bpf_sock_ops_kern, sk));
8014                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8015                                      offsetof(struct sock_common, skc_daddr));
8016                break;
8017
8018        case offsetof(struct bpf_sock_ops, local_ip4):
8019                BUILD_BUG_ON(sizeof_field(struct sock_common,
8020                                          skc_rcv_saddr) != 4);
8021
8022                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8023                                              struct bpf_sock_ops_kern, sk),
8024                                      si->dst_reg, si->src_reg,
8025                                      offsetof(struct bpf_sock_ops_kern, sk));
8026                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8027                                      offsetof(struct sock_common,
8028                                               skc_rcv_saddr));
8029                break;
8030
8031        case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8032             offsetof(struct bpf_sock_ops, remote_ip6[3]):
8033#if IS_ENABLED(CONFIG_IPV6)
8034                BUILD_BUG_ON(sizeof_field(struct sock_common,
8035                                          skc_v6_daddr.s6_addr32[0]) != 4);
8036
8037                off = si->off;
8038                off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8039                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8040                                                struct bpf_sock_ops_kern, sk),
8041                                      si->dst_reg, si->src_reg,
8042                                      offsetof(struct bpf_sock_ops_kern, sk));
8043                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8044                                      offsetof(struct sock_common,
8045                                               skc_v6_daddr.s6_addr32[0]) +
8046                                      off);
8047#else
8048                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8049#endif
8050                break;
8051
8052        case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8053             offsetof(struct bpf_sock_ops, local_ip6[3]):
8054#if IS_ENABLED(CONFIG_IPV6)
8055                BUILD_BUG_ON(sizeof_field(struct sock_common,
8056                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8057
8058                off = si->off;
8059                off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8060                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8061                                                struct bpf_sock_ops_kern, sk),
8062                                      si->dst_reg, si->src_reg,
8063                                      offsetof(struct bpf_sock_ops_kern, sk));
8064                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8065                                      offsetof(struct sock_common,
8066                                               skc_v6_rcv_saddr.s6_addr32[0]) +
8067                                      off);
8068#else
8069                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8070#endif
8071                break;
8072
8073        case offsetof(struct bpf_sock_ops, remote_port):
8074                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8075
8076                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8077                                                struct bpf_sock_ops_kern, sk),
8078                                      si->dst_reg, si->src_reg,
8079                                      offsetof(struct bpf_sock_ops_kern, sk));
8080                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8081                                      offsetof(struct sock_common, skc_dport));
8082#ifndef __BIG_ENDIAN_BITFIELD
8083                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8084#endif
8085                break;
8086
8087        case offsetof(struct bpf_sock_ops, local_port):
8088                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8089
8090                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8091                                                struct bpf_sock_ops_kern, sk),
8092                                      si->dst_reg, si->src_reg,
8093                                      offsetof(struct bpf_sock_ops_kern, sk));
8094                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8095                                      offsetof(struct sock_common, skc_num));
8096                break;
8097
8098        case offsetof(struct bpf_sock_ops, is_fullsock):
8099                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8100                                                struct bpf_sock_ops_kern,
8101                                                is_fullsock),
8102                                      si->dst_reg, si->src_reg,
8103                                      offsetof(struct bpf_sock_ops_kern,
8104                                               is_fullsock));
8105                break;
8106
8107        case offsetof(struct bpf_sock_ops, state):
8108                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8109
8110                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8111                                                struct bpf_sock_ops_kern, sk),
8112                                      si->dst_reg, si->src_reg,
8113                                      offsetof(struct bpf_sock_ops_kern, sk));
8114                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8115                                      offsetof(struct sock_common, skc_state));
8116                break;
8117
8118        case offsetof(struct bpf_sock_ops, rtt_min):
8119                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8120                             sizeof(struct minmax));
8121                BUILD_BUG_ON(sizeof(struct minmax) <
8122                             sizeof(struct minmax_sample));
8123
8124                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8125                                                struct bpf_sock_ops_kern, sk),
8126                                      si->dst_reg, si->src_reg,
8127                                      offsetof(struct bpf_sock_ops_kern, sk));
8128                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8129                                      offsetof(struct tcp_sock, rtt_min) +
8130                                      sizeof_field(struct minmax_sample, t));
8131                break;
8132
8133        case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8134                SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8135                                   struct tcp_sock);
8136                break;
8137
8138        case offsetof(struct bpf_sock_ops, sk_txhash):
8139                SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8140                                          struct sock, type);
8141                break;
8142        case offsetof(struct bpf_sock_ops, snd_cwnd):
8143                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8144                break;
8145        case offsetof(struct bpf_sock_ops, srtt_us):
8146                SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8147                break;
8148        case offsetof(struct bpf_sock_ops, snd_ssthresh):
8149                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8150                break;
8151        case offsetof(struct bpf_sock_ops, rcv_nxt):
8152                SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8153                break;
8154        case offsetof(struct bpf_sock_ops, snd_nxt):
8155                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8156                break;
8157        case offsetof(struct bpf_sock_ops, snd_una):
8158                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8159                break;
8160        case offsetof(struct bpf_sock_ops, mss_cache):
8161                SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8162                break;
8163        case offsetof(struct bpf_sock_ops, ecn_flags):
8164                SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8165                break;
8166        case offsetof(struct bpf_sock_ops, rate_delivered):
8167                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8168                break;
8169        case offsetof(struct bpf_sock_ops, rate_interval_us):
8170                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8171                break;
8172        case offsetof(struct bpf_sock_ops, packets_out):
8173                SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8174                break;
8175        case offsetof(struct bpf_sock_ops, retrans_out):
8176                SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8177                break;
8178        case offsetof(struct bpf_sock_ops, total_retrans):
8179                SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8180                break;
8181        case offsetof(struct bpf_sock_ops, segs_in):
8182                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8183                break;
8184        case offsetof(struct bpf_sock_ops, data_segs_in):
8185                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8186                break;
8187        case offsetof(struct bpf_sock_ops, segs_out):
8188                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8189                break;
8190        case offsetof(struct bpf_sock_ops, data_segs_out):
8191                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8192                break;
8193        case offsetof(struct bpf_sock_ops, lost_out):
8194                SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8195                break;
8196        case offsetof(struct bpf_sock_ops, sacked_out):
8197                SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8198                break;
8199        case offsetof(struct bpf_sock_ops, bytes_received):
8200                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8201                break;
8202        case offsetof(struct bpf_sock_ops, bytes_acked):
8203                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8204                break;
8205        case offsetof(struct bpf_sock_ops, sk):
8206                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8207                                                struct bpf_sock_ops_kern,
8208                                                is_fullsock),
8209                                      si->dst_reg, si->src_reg,
8210                                      offsetof(struct bpf_sock_ops_kern,
8211                                               is_fullsock));
8212                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8213                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8214                                                struct bpf_sock_ops_kern, sk),
8215                                      si->dst_reg, si->src_reg,
8216                                      offsetof(struct bpf_sock_ops_kern, sk));
8217                break;
8218        }
8219        return insn - insn_buf;
8220}
8221
8222static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8223                                     const struct bpf_insn *si,
8224                                     struct bpf_insn *insn_buf,
8225                                     struct bpf_prog *prog, u32 *target_size)
8226{
8227        struct bpf_insn *insn = insn_buf;
8228        int off;
8229
8230        switch (si->off) {
8231        case offsetof(struct __sk_buff, data_end):
8232                off  = si->off;
8233                off -= offsetof(struct __sk_buff, data_end);
8234                off += offsetof(struct sk_buff, cb);
8235                off += offsetof(struct tcp_skb_cb, bpf.data_end);
8236                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8237                                      si->src_reg, off);
8238                break;
8239        default:
8240                return bpf_convert_ctx_access(type, si, insn_buf, prog,
8241                                              target_size);
8242        }
8243
8244        return insn - insn_buf;
8245}
8246
8247static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8248                                     const struct bpf_insn *si,
8249                                     struct bpf_insn *insn_buf,
8250                                     struct bpf_prog *prog, u32 *target_size)
8251{
8252        struct bpf_insn *insn = insn_buf;
8253#if IS_ENABLED(CONFIG_IPV6)
8254        int off;
8255#endif
8256
8257        /* convert ctx uses the fact sg element is first in struct */
8258        BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8259
8260        switch (si->off) {
8261        case offsetof(struct sk_msg_md, data):
8262                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8263                                      si->dst_reg, si->src_reg,
8264                                      offsetof(struct sk_msg, data));
8265                break;
8266        case offsetof(struct sk_msg_md, data_end):
8267                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8268                                      si->dst_reg, si->src_reg,
8269                                      offsetof(struct sk_msg, data_end));
8270                break;
8271        case offsetof(struct sk_msg_md, family):
8272                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8273
8274                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8275                                              struct sk_msg, sk),
8276                                      si->dst_reg, si->src_reg,
8277                                      offsetof(struct sk_msg, sk));
8278                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8279                                      offsetof(struct sock_common, skc_family));
8280                break;
8281
8282        case offsetof(struct sk_msg_md, remote_ip4):
8283                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8284
8285                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8286                                                struct sk_msg, sk),
8287                                      si->dst_reg, si->src_reg,
8288                                      offsetof(struct sk_msg, sk));
8289                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8290                                      offsetof(struct sock_common, skc_daddr));
8291                break;
8292
8293        case offsetof(struct sk_msg_md, local_ip4):
8294                BUILD_BUG_ON(sizeof_field(struct sock_common,
8295                                          skc_rcv_saddr) != 4);
8296
8297                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8298                                              struct sk_msg, sk),
8299                                      si->dst_reg, si->src_reg,
8300                                      offsetof(struct sk_msg, sk));
8301                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8302                                      offsetof(struct sock_common,
8303                                               skc_rcv_saddr));
8304                break;
8305
8306        case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8307             offsetof(struct sk_msg_md, remote_ip6[3]):
8308#if IS_ENABLED(CONFIG_IPV6)
8309                BUILD_BUG_ON(sizeof_field(struct sock_common,
8310                                          skc_v6_daddr.s6_addr32[0]) != 4);
8311
8312                off = si->off;
8313                off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8314                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8315                                                struct sk_msg, sk),
8316                                      si->dst_reg, si->src_reg,
8317                                      offsetof(struct sk_msg, sk));
8318                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8319                                      offsetof(struct sock_common,
8320                                               skc_v6_daddr.s6_addr32[0]) +
8321                                      off);
8322#else
8323                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8324#endif
8325                break;
8326
8327        case offsetof(struct sk_msg_md, local_ip6[0]) ...
8328             offsetof(struct sk_msg_md, local_ip6[3]):
8329#if IS_ENABLED(CONFIG_IPV6)
8330                BUILD_BUG_ON(sizeof_field(struct sock_common,
8331                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8332
8333                off = si->off;
8334                off -= offsetof(struct sk_msg_md, local_ip6[0]);
8335                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8336                                                struct sk_msg, sk),
8337                                      si->dst_reg, si->src_reg,
8338                                      offsetof(struct sk_msg, sk));
8339                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8340                                      offsetof(struct sock_common,
8341                                               skc_v6_rcv_saddr.s6_addr32[0]) +
8342                                      off);
8343#else
8344                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8345#endif
8346                break;
8347
8348        case offsetof(struct sk_msg_md, remote_port):
8349                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8350
8351                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8352                                                struct sk_msg, sk),
8353                                      si->dst_reg, si->src_reg,
8354                                      offsetof(struct sk_msg, sk));
8355                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8356                                      offsetof(struct sock_common, skc_dport));
8357#ifndef __BIG_ENDIAN_BITFIELD
8358                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8359#endif
8360                break;
8361
8362        case offsetof(struct sk_msg_md, local_port):
8363                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8364
8365                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8366                                                struct sk_msg, sk),
8367                                      si->dst_reg, si->src_reg,
8368                                      offsetof(struct sk_msg, sk));
8369                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8370                                      offsetof(struct sock_common, skc_num));
8371                break;
8372
8373        case offsetof(struct sk_msg_md, size):
8374                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8375                                      si->dst_reg, si->src_reg,
8376                                      offsetof(struct sk_msg_sg, size));
8377                break;
8378        }
8379
8380        return insn - insn_buf;
8381}
8382
8383const struct bpf_verifier_ops sk_filter_verifier_ops = {
8384        .get_func_proto         = sk_filter_func_proto,
8385        .is_valid_access        = sk_filter_is_valid_access,
8386        .convert_ctx_access     = bpf_convert_ctx_access,
8387        .gen_ld_abs             = bpf_gen_ld_abs,
8388};
8389
8390const struct bpf_prog_ops sk_filter_prog_ops = {
8391        .test_run               = bpf_prog_test_run_skb,
8392};
8393
8394const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8395        .get_func_proto         = tc_cls_act_func_proto,
8396        .is_valid_access        = tc_cls_act_is_valid_access,
8397        .convert_ctx_access     = tc_cls_act_convert_ctx_access,
8398        .gen_prologue           = tc_cls_act_prologue,
8399        .gen_ld_abs             = bpf_gen_ld_abs,
8400};
8401
8402const struct bpf_prog_ops tc_cls_act_prog_ops = {
8403        .test_run               = bpf_prog_test_run_skb,
8404};
8405
8406const struct bpf_verifier_ops xdp_verifier_ops = {
8407        .get_func_proto         = xdp_func_proto,
8408        .is_valid_access        = xdp_is_valid_access,
8409        .convert_ctx_access     = xdp_convert_ctx_access,
8410        .gen_prologue           = bpf_noop_prologue,
8411};
8412
8413const struct bpf_prog_ops xdp_prog_ops = {
8414        .test_run               = bpf_prog_test_run_xdp,
8415};
8416
8417const struct bpf_verifier_ops cg_skb_verifier_ops = {
8418        .get_func_proto         = cg_skb_func_proto,
8419        .is_valid_access        = cg_skb_is_valid_access,
8420        .convert_ctx_access     = bpf_convert_ctx_access,
8421};
8422
8423const struct bpf_prog_ops cg_skb_prog_ops = {
8424        .test_run               = bpf_prog_test_run_skb,
8425};
8426
8427const struct bpf_verifier_ops lwt_in_verifier_ops = {
8428        .get_func_proto         = lwt_in_func_proto,
8429        .is_valid_access        = lwt_is_valid_access,
8430        .convert_ctx_access     = bpf_convert_ctx_access,
8431};
8432
8433const struct bpf_prog_ops lwt_in_prog_ops = {
8434        .test_run               = bpf_prog_test_run_skb,
8435};
8436
8437const struct bpf_verifier_ops lwt_out_verifier_ops = {
8438        .get_func_proto         = lwt_out_func_proto,
8439        .is_valid_access        = lwt_is_valid_access,
8440        .convert_ctx_access     = bpf_convert_ctx_access,
8441};
8442
8443const struct bpf_prog_ops lwt_out_prog_ops = {
8444        .test_run               = bpf_prog_test_run_skb,
8445};
8446
8447const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8448        .get_func_proto         = lwt_xmit_func_proto,
8449        .is_valid_access        = lwt_is_valid_access,
8450        .convert_ctx_access     = bpf_convert_ctx_access,
8451        .gen_prologue           = tc_cls_act_prologue,
8452};
8453
8454const struct bpf_prog_ops lwt_xmit_prog_ops = {
8455        .test_run               = bpf_prog_test_run_skb,
8456};
8457
8458const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8459        .get_func_proto         = lwt_seg6local_func_proto,
8460        .is_valid_access        = lwt_is_valid_access,
8461        .convert_ctx_access     = bpf_convert_ctx_access,
8462};
8463
8464const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8465        .test_run               = bpf_prog_test_run_skb,
8466};
8467
8468const struct bpf_verifier_ops cg_sock_verifier_ops = {
8469        .get_func_proto         = sock_filter_func_proto,
8470        .is_valid_access        = sock_filter_is_valid_access,
8471        .convert_ctx_access     = bpf_sock_convert_ctx_access,
8472};
8473
8474const struct bpf_prog_ops cg_sock_prog_ops = {
8475};
8476
8477const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8478        .get_func_proto         = sock_addr_func_proto,
8479        .is_valid_access        = sock_addr_is_valid_access,
8480        .convert_ctx_access     = sock_addr_convert_ctx_access,
8481};
8482
8483const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8484};
8485
8486const struct bpf_verifier_ops sock_ops_verifier_ops = {
8487        .get_func_proto         = sock_ops_func_proto,
8488        .is_valid_access        = sock_ops_is_valid_access,
8489        .convert_ctx_access     = sock_ops_convert_ctx_access,
8490};
8491
8492const struct bpf_prog_ops sock_ops_prog_ops = {
8493};
8494
8495const struct bpf_verifier_ops sk_skb_verifier_ops = {
8496        .get_func_proto         = sk_skb_func_proto,
8497        .is_valid_access        = sk_skb_is_valid_access,
8498        .convert_ctx_access     = sk_skb_convert_ctx_access,
8499        .gen_prologue           = sk_skb_prologue,
8500};
8501
8502const struct bpf_prog_ops sk_skb_prog_ops = {
8503};
8504
8505const struct bpf_verifier_ops sk_msg_verifier_ops = {
8506        .get_func_proto         = sk_msg_func_proto,
8507        .is_valid_access        = sk_msg_is_valid_access,
8508        .convert_ctx_access     = sk_msg_convert_ctx_access,
8509        .gen_prologue           = bpf_noop_prologue,
8510};
8511
8512const struct bpf_prog_ops sk_msg_prog_ops = {
8513};
8514
8515const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8516        .get_func_proto         = flow_dissector_func_proto,
8517        .is_valid_access        = flow_dissector_is_valid_access,
8518        .convert_ctx_access     = flow_dissector_convert_ctx_access,
8519};
8520
8521const struct bpf_prog_ops flow_dissector_prog_ops = {
8522        .test_run               = bpf_prog_test_run_flow_dissector,
8523};
8524
8525int sk_detach_filter(struct sock *sk)
8526{
8527        int ret = -ENOENT;
8528        struct sk_filter *filter;
8529
8530        if (sock_flag(sk, SOCK_FILTER_LOCKED))
8531                return -EPERM;
8532
8533        filter = rcu_dereference_protected(sk->sk_filter,
8534                                           lockdep_sock_is_held(sk));
8535        if (filter) {
8536                RCU_INIT_POINTER(sk->sk_filter, NULL);
8537                sk_filter_uncharge(sk, filter);
8538                ret = 0;
8539        }
8540
8541        return ret;
8542}
8543EXPORT_SYMBOL_GPL(sk_detach_filter);
8544
8545int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8546                  unsigned int len)
8547{
8548        struct sock_fprog_kern *fprog;
8549        struct sk_filter *filter;
8550        int ret = 0;
8551
8552        lock_sock(sk);
8553        filter = rcu_dereference_protected(sk->sk_filter,
8554                                           lockdep_sock_is_held(sk));
8555        if (!filter)
8556                goto out;
8557
8558        /* We're copying the filter that has been originally attached,
8559         * so no conversion/decode needed anymore. eBPF programs that
8560         * have no original program cannot be dumped through this.
8561         */
8562        ret = -EACCES;
8563        fprog = filter->prog->orig_prog;
8564        if (!fprog)
8565                goto out;
8566
8567        ret = fprog->len;
8568        if (!len)
8569                /* User space only enquires number of filter blocks. */
8570                goto out;
8571
8572        ret = -EINVAL;
8573        if (len < fprog->len)
8574                goto out;
8575
8576        ret = -EFAULT;
8577        if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8578                goto out;
8579
8580        /* Instead of bytes, the API requests to return the number
8581         * of filter blocks.
8582         */
8583        ret = fprog->len;
8584out:
8585        release_sock(sk);
8586        return ret;
8587}
8588
8589#ifdef CONFIG_INET
8590static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8591                                    struct sock_reuseport *reuse,
8592                                    struct sock *sk, struct sk_buff *skb,
8593                                    u32 hash)
8594{
8595        reuse_kern->skb = skb;
8596        reuse_kern->sk = sk;
8597        reuse_kern->selected_sk = NULL;
8598        reuse_kern->data_end = skb->data + skb_headlen(skb);
8599        reuse_kern->hash = hash;
8600        reuse_kern->reuseport_id = reuse->reuseport_id;
8601        reuse_kern->bind_inany = reuse->bind_inany;
8602}
8603
8604struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8605                                  struct bpf_prog *prog, struct sk_buff *skb,
8606                                  u32 hash)
8607{
8608        struct sk_reuseport_kern reuse_kern;
8609        enum sk_action action;
8610
8611        bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8612        action = BPF_PROG_RUN(prog, &reuse_kern);
8613
8614        if (action == SK_PASS)
8615                return reuse_kern.selected_sk;
8616        else
8617                return ERR_PTR(-ECONNREFUSED);
8618}
8619
8620BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8621           struct bpf_map *, map, void *, key, u32, flags)
8622{
8623        struct sock_reuseport *reuse;
8624        struct sock *selected_sk;
8625
8626        selected_sk = map->ops->map_lookup_elem(map, key);
8627        if (!selected_sk)
8628                return -ENOENT;
8629
8630        reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8631        if (!reuse)
8632                /* selected_sk is unhashed (e.g. by close()) after the
8633                 * above map_lookup_elem().  Treat selected_sk has already
8634                 * been removed from the map.
8635                 */
8636                return -ENOENT;
8637
8638        if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8639                struct sock *sk;
8640
8641                if (unlikely(!reuse_kern->reuseport_id))
8642                        /* There is a small race between adding the
8643                         * sk to the map and setting the
8644                         * reuse_kern->reuseport_id.
8645                         * Treat it as the sk has not been added to
8646                         * the bpf map yet.
8647                         */
8648                        return -ENOENT;
8649
8650                sk = reuse_kern->sk;
8651                if (sk->sk_protocol != selected_sk->sk_protocol)
8652                        return -EPROTOTYPE;
8653                else if (sk->sk_family != selected_sk->sk_family)
8654                        return -EAFNOSUPPORT;
8655
8656                /* Catch all. Likely bound to a different sockaddr. */
8657                return -EBADFD;
8658        }
8659
8660        reuse_kern->selected_sk = selected_sk;
8661
8662        return 0;
8663}
8664
8665static const struct bpf_func_proto sk_select_reuseport_proto = {
8666        .func           = sk_select_reuseport,
8667        .gpl_only       = false,
8668        .ret_type       = RET_INTEGER,
8669        .arg1_type      = ARG_PTR_TO_CTX,
8670        .arg2_type      = ARG_CONST_MAP_PTR,
8671        .arg3_type      = ARG_PTR_TO_MAP_KEY,
8672        .arg4_type      = ARG_ANYTHING,
8673};
8674
8675BPF_CALL_4(sk_reuseport_load_bytes,
8676           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8677           void *, to, u32, len)
8678{
8679        return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8680}
8681
8682static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8683        .func           = sk_reuseport_load_bytes,
8684        .gpl_only       = false,
8685        .ret_type       = RET_INTEGER,
8686        .arg1_type      = ARG_PTR_TO_CTX,
8687        .arg2_type      = ARG_ANYTHING,
8688        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8689        .arg4_type      = ARG_CONST_SIZE,
8690};
8691
8692BPF_CALL_5(sk_reuseport_load_bytes_relative,
8693           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8694           void *, to, u32, len, u32, start_header)
8695{
8696        return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8697                                               len, start_header);
8698}
8699
8700static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8701        .func           = sk_reuseport_load_bytes_relative,
8702        .gpl_only       = false,
8703        .ret_type       = RET_INTEGER,
8704        .arg1_type      = ARG_PTR_TO_CTX,
8705        .arg2_type      = ARG_ANYTHING,
8706        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8707        .arg4_type      = ARG_CONST_SIZE,
8708        .arg5_type      = ARG_ANYTHING,
8709};
8710
8711static const struct bpf_func_proto *
8712sk_reuseport_func_proto(enum bpf_func_id func_id,
8713                        const struct bpf_prog *prog)
8714{
8715        switch (func_id) {
8716        case BPF_FUNC_sk_select_reuseport:
8717                return &sk_select_reuseport_proto;
8718        case BPF_FUNC_skb_load_bytes:
8719                return &sk_reuseport_load_bytes_proto;
8720        case BPF_FUNC_skb_load_bytes_relative:
8721                return &sk_reuseport_load_bytes_relative_proto;
8722        default:
8723                return bpf_base_func_proto(func_id);
8724        }
8725}
8726
8727static bool
8728sk_reuseport_is_valid_access(int off, int size,
8729                             enum bpf_access_type type,
8730                             const struct bpf_prog *prog,
8731                             struct bpf_insn_access_aux *info)
8732{
8733        const u32 size_default = sizeof(__u32);
8734
8735        if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8736            off % size || type != BPF_READ)
8737                return false;
8738
8739        switch (off) {
8740        case offsetof(struct sk_reuseport_md, data):
8741                info->reg_type = PTR_TO_PACKET;
8742                return size == sizeof(__u64);
8743
8744        case offsetof(struct sk_reuseport_md, data_end):
8745                info->reg_type = PTR_TO_PACKET_END;
8746                return size == sizeof(__u64);
8747
8748        case offsetof(struct sk_reuseport_md, hash):
8749                return size == size_default;
8750
8751        /* Fields that allow narrowing */
8752        case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8753                if (size < sizeof_field(struct sk_buff, protocol))
8754                        return false;
8755                /* fall through */
8756        case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8757        case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8758        case bpf_ctx_range(struct sk_reuseport_md, len):
8759                bpf_ctx_record_field_size(info, size_default);
8760                return bpf_ctx_narrow_access_ok(off, size, size_default);
8761
8762        default:
8763                return false;
8764        }
8765}
8766
8767#define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
8768        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8769                              si->dst_reg, si->src_reg,                 \
8770                              bpf_target_off(struct sk_reuseport_kern, F, \
8771                                             sizeof_field(struct sk_reuseport_kern, F), \
8772                                             target_size));             \
8773        })
8774
8775#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
8776        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
8777                                    struct sk_buff,                     \
8778                                    skb,                                \
8779                                    SKB_FIELD)
8780
8781#define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
8782        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
8783                                    struct sock,                        \
8784                                    sk,                                 \
8785                                    SK_FIELD)
8786
8787static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8788                                           const struct bpf_insn *si,
8789                                           struct bpf_insn *insn_buf,
8790                                           struct bpf_prog *prog,
8791                                           u32 *target_size)
8792{
8793        struct bpf_insn *insn = insn_buf;
8794
8795        switch (si->off) {
8796        case offsetof(struct sk_reuseport_md, data):
8797                SK_REUSEPORT_LOAD_SKB_FIELD(data);
8798                break;
8799
8800        case offsetof(struct sk_reuseport_md, len):
8801                SK_REUSEPORT_LOAD_SKB_FIELD(len);
8802                break;
8803
8804        case offsetof(struct sk_reuseport_md, eth_protocol):
8805                SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8806                break;
8807
8808        case offsetof(struct sk_reuseport_md, ip_protocol):
8809                SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
8810                break;
8811
8812        case offsetof(struct sk_reuseport_md, data_end):
8813                SK_REUSEPORT_LOAD_FIELD(data_end);
8814                break;
8815
8816        case offsetof(struct sk_reuseport_md, hash):
8817                SK_REUSEPORT_LOAD_FIELD(hash);
8818                break;
8819
8820        case offsetof(struct sk_reuseport_md, bind_inany):
8821                SK_REUSEPORT_LOAD_FIELD(bind_inany);
8822                break;
8823        }
8824
8825        return insn - insn_buf;
8826}
8827
8828const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8829        .get_func_proto         = sk_reuseport_func_proto,
8830        .is_valid_access        = sk_reuseport_is_valid_access,
8831        .convert_ctx_access     = sk_reuseport_convert_ctx_access,
8832};
8833
8834const struct bpf_prog_ops sk_reuseport_prog_ops = {
8835};
8836#endif /* CONFIG_INET */
8837
8838DEFINE_BPF_DISPATCHER(bpf_dispatcher_xdp)
8839
8840void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
8841{
8842        bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(bpf_dispatcher_xdp),
8843                                   prev_prog, prog);
8844}
8845