linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
  36
  37#include <linux/ctype.h>
  38#include <symbol/kallsyms.h>
  39#include <linux/mman.h>
  40#include <linux/string.h>
  41#include <linux/zalloc.h>
  42
  43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  44
  45static struct dso *machine__kernel_dso(struct machine *machine)
  46{
  47        return machine->vmlinux_map->dso;
  48}
  49
  50static void dsos__init(struct dsos *dsos)
  51{
  52        INIT_LIST_HEAD(&dsos->head);
  53        dsos->root = RB_ROOT;
  54        init_rwsem(&dsos->lock);
  55}
  56
  57static void machine__threads_init(struct machine *machine)
  58{
  59        int i;
  60
  61        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  62                struct threads *threads = &machine->threads[i];
  63                threads->entries = RB_ROOT_CACHED;
  64                init_rwsem(&threads->lock);
  65                threads->nr = 0;
  66                INIT_LIST_HEAD(&threads->dead);
  67                threads->last_match = NULL;
  68        }
  69}
  70
  71static int machine__set_mmap_name(struct machine *machine)
  72{
  73        if (machine__is_host(machine))
  74                machine->mmap_name = strdup("[kernel.kallsyms]");
  75        else if (machine__is_default_guest(machine))
  76                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  77        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  78                          machine->pid) < 0)
  79                machine->mmap_name = NULL;
  80
  81        return machine->mmap_name ? 0 : -ENOMEM;
  82}
  83
  84int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  85{
  86        int err = -ENOMEM;
  87
  88        memset(machine, 0, sizeof(*machine));
  89        maps__init(&machine->kmaps, machine);
  90        RB_CLEAR_NODE(&machine->rb_node);
  91        dsos__init(&machine->dsos);
  92
  93        machine__threads_init(machine);
  94
  95        machine->vdso_info = NULL;
  96        machine->env = NULL;
  97
  98        machine->pid = pid;
  99
 100        machine->id_hdr_size = 0;
 101        machine->kptr_restrict_warned = false;
 102        machine->comm_exec = false;
 103        machine->kernel_start = 0;
 104        machine->vmlinux_map = NULL;
 105
 106        machine->root_dir = strdup(root_dir);
 107        if (machine->root_dir == NULL)
 108                return -ENOMEM;
 109
 110        if (machine__set_mmap_name(machine))
 111                goto out;
 112
 113        if (pid != HOST_KERNEL_ID) {
 114                struct thread *thread = machine__findnew_thread(machine, -1,
 115                                                                pid);
 116                char comm[64];
 117
 118                if (thread == NULL)
 119                        goto out;
 120
 121                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 122                thread__set_comm(thread, comm, 0);
 123                thread__put(thread);
 124        }
 125
 126        machine->current_tid = NULL;
 127        err = 0;
 128
 129out:
 130        if (err) {
 131                zfree(&machine->root_dir);
 132                zfree(&machine->mmap_name);
 133        }
 134        return 0;
 135}
 136
 137struct machine *machine__new_host(void)
 138{
 139        struct machine *machine = malloc(sizeof(*machine));
 140
 141        if (machine != NULL) {
 142                machine__init(machine, "", HOST_KERNEL_ID);
 143
 144                if (machine__create_kernel_maps(machine) < 0)
 145                        goto out_delete;
 146        }
 147
 148        return machine;
 149out_delete:
 150        free(machine);
 151        return NULL;
 152}
 153
 154struct machine *machine__new_kallsyms(void)
 155{
 156        struct machine *machine = machine__new_host();
 157        /*
 158         * FIXME:
 159         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 160         *    ask for not using the kcore parsing code, once this one is fixed
 161         *    to create a map per module.
 162         */
 163        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 164                machine__delete(machine);
 165                machine = NULL;
 166        }
 167
 168        return machine;
 169}
 170
 171static void dsos__purge(struct dsos *dsos)
 172{
 173        struct dso *pos, *n;
 174
 175        down_write(&dsos->lock);
 176
 177        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 178                RB_CLEAR_NODE(&pos->rb_node);
 179                pos->root = NULL;
 180                list_del_init(&pos->node);
 181                dso__put(pos);
 182        }
 183
 184        up_write(&dsos->lock);
 185}
 186
 187static void dsos__exit(struct dsos *dsos)
 188{
 189        dsos__purge(dsos);
 190        exit_rwsem(&dsos->lock);
 191}
 192
 193void machine__delete_threads(struct machine *machine)
 194{
 195        struct rb_node *nd;
 196        int i;
 197
 198        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 199                struct threads *threads = &machine->threads[i];
 200                down_write(&threads->lock);
 201                nd = rb_first_cached(&threads->entries);
 202                while (nd) {
 203                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 204
 205                        nd = rb_next(nd);
 206                        __machine__remove_thread(machine, t, false);
 207                }
 208                up_write(&threads->lock);
 209        }
 210}
 211
 212void machine__exit(struct machine *machine)
 213{
 214        int i;
 215
 216        if (machine == NULL)
 217                return;
 218
 219        machine__destroy_kernel_maps(machine);
 220        maps__exit(&machine->kmaps);
 221        dsos__exit(&machine->dsos);
 222        machine__exit_vdso(machine);
 223        zfree(&machine->root_dir);
 224        zfree(&machine->mmap_name);
 225        zfree(&machine->current_tid);
 226
 227        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 228                struct threads *threads = &machine->threads[i];
 229                struct thread *thread, *n;
 230                /*
 231                 * Forget about the dead, at this point whatever threads were
 232                 * left in the dead lists better have a reference count taken
 233                 * by who is using them, and then, when they drop those references
 234                 * and it finally hits zero, thread__put() will check and see that
 235                 * its not in the dead threads list and will not try to remove it
 236                 * from there, just calling thread__delete() straight away.
 237                 */
 238                list_for_each_entry_safe(thread, n, &threads->dead, node)
 239                        list_del_init(&thread->node);
 240
 241                exit_rwsem(&threads->lock);
 242        }
 243}
 244
 245void machine__delete(struct machine *machine)
 246{
 247        if (machine) {
 248                machine__exit(machine);
 249                free(machine);
 250        }
 251}
 252
 253void machines__init(struct machines *machines)
 254{
 255        machine__init(&machines->host, "", HOST_KERNEL_ID);
 256        machines->guests = RB_ROOT_CACHED;
 257}
 258
 259void machines__exit(struct machines *machines)
 260{
 261        machine__exit(&machines->host);
 262        /* XXX exit guest */
 263}
 264
 265struct machine *machines__add(struct machines *machines, pid_t pid,
 266                              const char *root_dir)
 267{
 268        struct rb_node **p = &machines->guests.rb_root.rb_node;
 269        struct rb_node *parent = NULL;
 270        struct machine *pos, *machine = malloc(sizeof(*machine));
 271        bool leftmost = true;
 272
 273        if (machine == NULL)
 274                return NULL;
 275
 276        if (machine__init(machine, root_dir, pid) != 0) {
 277                free(machine);
 278                return NULL;
 279        }
 280
 281        while (*p != NULL) {
 282                parent = *p;
 283                pos = rb_entry(parent, struct machine, rb_node);
 284                if (pid < pos->pid)
 285                        p = &(*p)->rb_left;
 286                else {
 287                        p = &(*p)->rb_right;
 288                        leftmost = false;
 289                }
 290        }
 291
 292        rb_link_node(&machine->rb_node, parent, p);
 293        rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 294
 295        return machine;
 296}
 297
 298void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 299{
 300        struct rb_node *nd;
 301
 302        machines->host.comm_exec = comm_exec;
 303
 304        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 305                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 306
 307                machine->comm_exec = comm_exec;
 308        }
 309}
 310
 311struct machine *machines__find(struct machines *machines, pid_t pid)
 312{
 313        struct rb_node **p = &machines->guests.rb_root.rb_node;
 314        struct rb_node *parent = NULL;
 315        struct machine *machine;
 316        struct machine *default_machine = NULL;
 317
 318        if (pid == HOST_KERNEL_ID)
 319                return &machines->host;
 320
 321        while (*p != NULL) {
 322                parent = *p;
 323                machine = rb_entry(parent, struct machine, rb_node);
 324                if (pid < machine->pid)
 325                        p = &(*p)->rb_left;
 326                else if (pid > machine->pid)
 327                        p = &(*p)->rb_right;
 328                else
 329                        return machine;
 330                if (!machine->pid)
 331                        default_machine = machine;
 332        }
 333
 334        return default_machine;
 335}
 336
 337struct machine *machines__findnew(struct machines *machines, pid_t pid)
 338{
 339        char path[PATH_MAX];
 340        const char *root_dir = "";
 341        struct machine *machine = machines__find(machines, pid);
 342
 343        if (machine && (machine->pid == pid))
 344                goto out;
 345
 346        if ((pid != HOST_KERNEL_ID) &&
 347            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 348            (symbol_conf.guestmount)) {
 349                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 350                if (access(path, R_OK)) {
 351                        static struct strlist *seen;
 352
 353                        if (!seen)
 354                                seen = strlist__new(NULL, NULL);
 355
 356                        if (!strlist__has_entry(seen, path)) {
 357                                pr_err("Can't access file %s\n", path);
 358                                strlist__add(seen, path);
 359                        }
 360                        machine = NULL;
 361                        goto out;
 362                }
 363                root_dir = path;
 364        }
 365
 366        machine = machines__add(machines, pid, root_dir);
 367out:
 368        return machine;
 369}
 370
 371void machines__process_guests(struct machines *machines,
 372                              machine__process_t process, void *data)
 373{
 374        struct rb_node *nd;
 375
 376        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 377                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 378                process(pos, data);
 379        }
 380}
 381
 382void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 383{
 384        struct rb_node *node;
 385        struct machine *machine;
 386
 387        machines->host.id_hdr_size = id_hdr_size;
 388
 389        for (node = rb_first_cached(&machines->guests); node;
 390             node = rb_next(node)) {
 391                machine = rb_entry(node, struct machine, rb_node);
 392                machine->id_hdr_size = id_hdr_size;
 393        }
 394
 395        return;
 396}
 397
 398static void machine__update_thread_pid(struct machine *machine,
 399                                       struct thread *th, pid_t pid)
 400{
 401        struct thread *leader;
 402
 403        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 404                return;
 405
 406        th->pid_ = pid;
 407
 408        if (th->pid_ == th->tid)
 409                return;
 410
 411        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 412        if (!leader)
 413                goto out_err;
 414
 415        if (!leader->maps)
 416                leader->maps = maps__new(machine);
 417
 418        if (!leader->maps)
 419                goto out_err;
 420
 421        if (th->maps == leader->maps)
 422                return;
 423
 424        if (th->maps) {
 425                /*
 426                 * Maps are created from MMAP events which provide the pid and
 427                 * tid.  Consequently there never should be any maps on a thread
 428                 * with an unknown pid.  Just print an error if there are.
 429                 */
 430                if (!maps__empty(th->maps))
 431                        pr_err("Discarding thread maps for %d:%d\n",
 432                               th->pid_, th->tid);
 433                maps__put(th->maps);
 434        }
 435
 436        th->maps = maps__get(leader->maps);
 437out_put:
 438        thread__put(leader);
 439        return;
 440out_err:
 441        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 442        goto out_put;
 443}
 444
 445/*
 446 * Front-end cache - TID lookups come in blocks,
 447 * so most of the time we dont have to look up
 448 * the full rbtree:
 449 */
 450static struct thread*
 451__threads__get_last_match(struct threads *threads, struct machine *machine,
 452                          int pid, int tid)
 453{
 454        struct thread *th;
 455
 456        th = threads->last_match;
 457        if (th != NULL) {
 458                if (th->tid == tid) {
 459                        machine__update_thread_pid(machine, th, pid);
 460                        return thread__get(th);
 461                }
 462
 463                threads->last_match = NULL;
 464        }
 465
 466        return NULL;
 467}
 468
 469static struct thread*
 470threads__get_last_match(struct threads *threads, struct machine *machine,
 471                        int pid, int tid)
 472{
 473        struct thread *th = NULL;
 474
 475        if (perf_singlethreaded)
 476                th = __threads__get_last_match(threads, machine, pid, tid);
 477
 478        return th;
 479}
 480
 481static void
 482__threads__set_last_match(struct threads *threads, struct thread *th)
 483{
 484        threads->last_match = th;
 485}
 486
 487static void
 488threads__set_last_match(struct threads *threads, struct thread *th)
 489{
 490        if (perf_singlethreaded)
 491                __threads__set_last_match(threads, th);
 492}
 493
 494/*
 495 * Caller must eventually drop thread->refcnt returned with a successful
 496 * lookup/new thread inserted.
 497 */
 498static struct thread *____machine__findnew_thread(struct machine *machine,
 499                                                  struct threads *threads,
 500                                                  pid_t pid, pid_t tid,
 501                                                  bool create)
 502{
 503        struct rb_node **p = &threads->entries.rb_root.rb_node;
 504        struct rb_node *parent = NULL;
 505        struct thread *th;
 506        bool leftmost = true;
 507
 508        th = threads__get_last_match(threads, machine, pid, tid);
 509        if (th)
 510                return th;
 511
 512        while (*p != NULL) {
 513                parent = *p;
 514                th = rb_entry(parent, struct thread, rb_node);
 515
 516                if (th->tid == tid) {
 517                        threads__set_last_match(threads, th);
 518                        machine__update_thread_pid(machine, th, pid);
 519                        return thread__get(th);
 520                }
 521
 522                if (tid < th->tid)
 523                        p = &(*p)->rb_left;
 524                else {
 525                        p = &(*p)->rb_right;
 526                        leftmost = false;
 527                }
 528        }
 529
 530        if (!create)
 531                return NULL;
 532
 533        th = thread__new(pid, tid);
 534        if (th != NULL) {
 535                rb_link_node(&th->rb_node, parent, p);
 536                rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 537
 538                /*
 539                 * We have to initialize maps separately after rb tree is updated.
 540                 *
 541                 * The reason is that we call machine__findnew_thread
 542                 * within thread__init_maps to find the thread
 543                 * leader and that would screwed the rb tree.
 544                 */
 545                if (thread__init_maps(th, machine)) {
 546                        rb_erase_cached(&th->rb_node, &threads->entries);
 547                        RB_CLEAR_NODE(&th->rb_node);
 548                        thread__put(th);
 549                        return NULL;
 550                }
 551                /*
 552                 * It is now in the rbtree, get a ref
 553                 */
 554                thread__get(th);
 555                threads__set_last_match(threads, th);
 556                ++threads->nr;
 557        }
 558
 559        return th;
 560}
 561
 562struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 563{
 564        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 565}
 566
 567struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 568                                       pid_t tid)
 569{
 570        struct threads *threads = machine__threads(machine, tid);
 571        struct thread *th;
 572
 573        down_write(&threads->lock);
 574        th = __machine__findnew_thread(machine, pid, tid);
 575        up_write(&threads->lock);
 576        return th;
 577}
 578
 579struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 580                                    pid_t tid)
 581{
 582        struct threads *threads = machine__threads(machine, tid);
 583        struct thread *th;
 584
 585        down_read(&threads->lock);
 586        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 587        up_read(&threads->lock);
 588        return th;
 589}
 590
 591struct comm *machine__thread_exec_comm(struct machine *machine,
 592                                       struct thread *thread)
 593{
 594        if (machine->comm_exec)
 595                return thread__exec_comm(thread);
 596        else
 597                return thread__comm(thread);
 598}
 599
 600int machine__process_comm_event(struct machine *machine, union perf_event *event,
 601                                struct perf_sample *sample)
 602{
 603        struct thread *thread = machine__findnew_thread(machine,
 604                                                        event->comm.pid,
 605                                                        event->comm.tid);
 606        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 607        int err = 0;
 608
 609        if (exec)
 610                machine->comm_exec = true;
 611
 612        if (dump_trace)
 613                perf_event__fprintf_comm(event, stdout);
 614
 615        if (thread == NULL ||
 616            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 617                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 618                err = -1;
 619        }
 620
 621        thread__put(thread);
 622
 623        return err;
 624}
 625
 626int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 627                                      union perf_event *event,
 628                                      struct perf_sample *sample __maybe_unused)
 629{
 630        struct thread *thread = machine__findnew_thread(machine,
 631                                                        event->namespaces.pid,
 632                                                        event->namespaces.tid);
 633        int err = 0;
 634
 635        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 636                  "\nWARNING: kernel seems to support more namespaces than perf"
 637                  " tool.\nTry updating the perf tool..\n\n");
 638
 639        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 640                  "\nWARNING: perf tool seems to support more namespaces than"
 641                  " the kernel.\nTry updating the kernel..\n\n");
 642
 643        if (dump_trace)
 644                perf_event__fprintf_namespaces(event, stdout);
 645
 646        if (thread == NULL ||
 647            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 648                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 649                err = -1;
 650        }
 651
 652        thread__put(thread);
 653
 654        return err;
 655}
 656
 657int machine__process_lost_event(struct machine *machine __maybe_unused,
 658                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 659{
 660        dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 661                    event->lost.id, event->lost.lost);
 662        return 0;
 663}
 664
 665int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 666                                        union perf_event *event, struct perf_sample *sample)
 667{
 668        dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 669                    sample->id, event->lost_samples.lost);
 670        return 0;
 671}
 672
 673static struct dso *machine__findnew_module_dso(struct machine *machine,
 674                                               struct kmod_path *m,
 675                                               const char *filename)
 676{
 677        struct dso *dso;
 678
 679        down_write(&machine->dsos.lock);
 680
 681        dso = __dsos__find(&machine->dsos, m->name, true);
 682        if (!dso) {
 683                dso = __dsos__addnew(&machine->dsos, m->name);
 684                if (dso == NULL)
 685                        goto out_unlock;
 686
 687                dso__set_module_info(dso, m, machine);
 688                dso__set_long_name(dso, strdup(filename), true);
 689                dso->kernel = DSO_TYPE_KERNEL;
 690        }
 691
 692        dso__get(dso);
 693out_unlock:
 694        up_write(&machine->dsos.lock);
 695        return dso;
 696}
 697
 698int machine__process_aux_event(struct machine *machine __maybe_unused,
 699                               union perf_event *event)
 700{
 701        if (dump_trace)
 702                perf_event__fprintf_aux(event, stdout);
 703        return 0;
 704}
 705
 706int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 707                                        union perf_event *event)
 708{
 709        if (dump_trace)
 710                perf_event__fprintf_itrace_start(event, stdout);
 711        return 0;
 712}
 713
 714int machine__process_switch_event(struct machine *machine __maybe_unused,
 715                                  union perf_event *event)
 716{
 717        if (dump_trace)
 718                perf_event__fprintf_switch(event, stdout);
 719        return 0;
 720}
 721
 722static int machine__process_ksymbol_register(struct machine *machine,
 723                                             union perf_event *event,
 724                                             struct perf_sample *sample __maybe_unused)
 725{
 726        struct symbol *sym;
 727        struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
 728
 729        if (!map) {
 730                struct dso *dso = dso__new(event->ksymbol.name);
 731
 732                if (dso) {
 733                        dso->kernel = DSO_TYPE_KERNEL;
 734                        map = map__new2(0, dso);
 735                }
 736
 737                if (!dso || !map) {
 738                        dso__put(dso);
 739                        return -ENOMEM;
 740                }
 741
 742                map->start = event->ksymbol.addr;
 743                map->end = map->start + event->ksymbol.len;
 744                maps__insert(&machine->kmaps, map);
 745        }
 746
 747        sym = symbol__new(map->map_ip(map, map->start),
 748                          event->ksymbol.len,
 749                          0, 0, event->ksymbol.name);
 750        if (!sym)
 751                return -ENOMEM;
 752        dso__insert_symbol(map->dso, sym);
 753        return 0;
 754}
 755
 756static int machine__process_ksymbol_unregister(struct machine *machine,
 757                                               union perf_event *event,
 758                                               struct perf_sample *sample __maybe_unused)
 759{
 760        struct map *map;
 761
 762        map = maps__find(&machine->kmaps, event->ksymbol.addr);
 763        if (map)
 764                maps__remove(&machine->kmaps, map);
 765
 766        return 0;
 767}
 768
 769int machine__process_ksymbol(struct machine *machine __maybe_unused,
 770                             union perf_event *event,
 771                             struct perf_sample *sample)
 772{
 773        if (dump_trace)
 774                perf_event__fprintf_ksymbol(event, stdout);
 775
 776        if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 777                return machine__process_ksymbol_unregister(machine, event,
 778                                                           sample);
 779        return machine__process_ksymbol_register(machine, event, sample);
 780}
 781
 782static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
 783                                              const char *filename)
 784{
 785        struct map *map = NULL;
 786        struct kmod_path m;
 787        struct dso *dso;
 788
 789        if (kmod_path__parse_name(&m, filename))
 790                return NULL;
 791
 792        dso = machine__findnew_module_dso(machine, &m, filename);
 793        if (dso == NULL)
 794                goto out;
 795
 796        map = map__new2(start, dso);
 797        if (map == NULL)
 798                goto out;
 799
 800        maps__insert(&machine->kmaps, map);
 801
 802        /* Put the map here because maps__insert alread got it */
 803        map__put(map);
 804out:
 805        /* put the dso here, corresponding to  machine__findnew_module_dso */
 806        dso__put(dso);
 807        zfree(&m.name);
 808        return map;
 809}
 810
 811size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 812{
 813        struct rb_node *nd;
 814        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 815
 816        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 817                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 818                ret += __dsos__fprintf(&pos->dsos.head, fp);
 819        }
 820
 821        return ret;
 822}
 823
 824size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 825                                     bool (skip)(struct dso *dso, int parm), int parm)
 826{
 827        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 828}
 829
 830size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 831                                     bool (skip)(struct dso *dso, int parm), int parm)
 832{
 833        struct rb_node *nd;
 834        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 835
 836        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 837                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 838                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 839        }
 840        return ret;
 841}
 842
 843size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 844{
 845        int i;
 846        size_t printed = 0;
 847        struct dso *kdso = machine__kernel_dso(machine);
 848
 849        if (kdso->has_build_id) {
 850                char filename[PATH_MAX];
 851                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 852                                           false))
 853                        printed += fprintf(fp, "[0] %s\n", filename);
 854        }
 855
 856        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 857                printed += fprintf(fp, "[%d] %s\n",
 858                                   i + kdso->has_build_id, vmlinux_path[i]);
 859
 860        return printed;
 861}
 862
 863size_t machine__fprintf(struct machine *machine, FILE *fp)
 864{
 865        struct rb_node *nd;
 866        size_t ret;
 867        int i;
 868
 869        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 870                struct threads *threads = &machine->threads[i];
 871
 872                down_read(&threads->lock);
 873
 874                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 875
 876                for (nd = rb_first_cached(&threads->entries); nd;
 877                     nd = rb_next(nd)) {
 878                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 879
 880                        ret += thread__fprintf(pos, fp);
 881                }
 882
 883                up_read(&threads->lock);
 884        }
 885        return ret;
 886}
 887
 888static struct dso *machine__get_kernel(struct machine *machine)
 889{
 890        const char *vmlinux_name = machine->mmap_name;
 891        struct dso *kernel;
 892
 893        if (machine__is_host(machine)) {
 894                if (symbol_conf.vmlinux_name)
 895                        vmlinux_name = symbol_conf.vmlinux_name;
 896
 897                kernel = machine__findnew_kernel(machine, vmlinux_name,
 898                                                 "[kernel]", DSO_TYPE_KERNEL);
 899        } else {
 900                if (symbol_conf.default_guest_vmlinux_name)
 901                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 902
 903                kernel = machine__findnew_kernel(machine, vmlinux_name,
 904                                                 "[guest.kernel]",
 905                                                 DSO_TYPE_GUEST_KERNEL);
 906        }
 907
 908        if (kernel != NULL && (!kernel->has_build_id))
 909                dso__read_running_kernel_build_id(kernel, machine);
 910
 911        return kernel;
 912}
 913
 914struct process_args {
 915        u64 start;
 916};
 917
 918void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 919                                    size_t bufsz)
 920{
 921        if (machine__is_default_guest(machine))
 922                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 923        else
 924                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 925}
 926
 927const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 928
 929/* Figure out the start address of kernel map from /proc/kallsyms.
 930 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 931 * symbol_name if it's not that important.
 932 */
 933static int machine__get_running_kernel_start(struct machine *machine,
 934                                             const char **symbol_name,
 935                                             u64 *start, u64 *end)
 936{
 937        char filename[PATH_MAX];
 938        int i, err = -1;
 939        const char *name;
 940        u64 addr = 0;
 941
 942        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 943
 944        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 945                return 0;
 946
 947        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 948                err = kallsyms__get_function_start(filename, name, &addr);
 949                if (!err)
 950                        break;
 951        }
 952
 953        if (err)
 954                return -1;
 955
 956        if (symbol_name)
 957                *symbol_name = name;
 958
 959        *start = addr;
 960
 961        err = kallsyms__get_function_start(filename, "_etext", &addr);
 962        if (!err)
 963                *end = addr;
 964
 965        return 0;
 966}
 967
 968int machine__create_extra_kernel_map(struct machine *machine,
 969                                     struct dso *kernel,
 970                                     struct extra_kernel_map *xm)
 971{
 972        struct kmap *kmap;
 973        struct map *map;
 974
 975        map = map__new2(xm->start, kernel);
 976        if (!map)
 977                return -1;
 978
 979        map->end   = xm->end;
 980        map->pgoff = xm->pgoff;
 981
 982        kmap = map__kmap(map);
 983
 984        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
 985
 986        maps__insert(&machine->kmaps, map);
 987
 988        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
 989                  kmap->name, map->start, map->end);
 990
 991        map__put(map);
 992
 993        return 0;
 994}
 995
 996static u64 find_entry_trampoline(struct dso *dso)
 997{
 998        /* Duplicates are removed so lookup all aliases */
 999        const char *syms[] = {
1000                "_entry_trampoline",
1001                "__entry_trampoline_start",
1002                "entry_SYSCALL_64_trampoline",
1003        };
1004        struct symbol *sym = dso__first_symbol(dso);
1005        unsigned int i;
1006
1007        for (; sym; sym = dso__next_symbol(sym)) {
1008                if (sym->binding != STB_GLOBAL)
1009                        continue;
1010                for (i = 0; i < ARRAY_SIZE(syms); i++) {
1011                        if (!strcmp(sym->name, syms[i]))
1012                                return sym->start;
1013                }
1014        }
1015
1016        return 0;
1017}
1018
1019/*
1020 * These values can be used for kernels that do not have symbols for the entry
1021 * trampolines in kallsyms.
1022 */
1023#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1024#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1025#define X86_64_ENTRY_TRAMPOLINE         0x6000
1026
1027/* Map x86_64 PTI entry trampolines */
1028int machine__map_x86_64_entry_trampolines(struct machine *machine,
1029                                          struct dso *kernel)
1030{
1031        struct maps *kmaps = &machine->kmaps;
1032        int nr_cpus_avail, cpu;
1033        bool found = false;
1034        struct map *map;
1035        u64 pgoff;
1036
1037        /*
1038         * In the vmlinux case, pgoff is a virtual address which must now be
1039         * mapped to a vmlinux offset.
1040         */
1041        maps__for_each_entry(kmaps, map) {
1042                struct kmap *kmap = __map__kmap(map);
1043                struct map *dest_map;
1044
1045                if (!kmap || !is_entry_trampoline(kmap->name))
1046                        continue;
1047
1048                dest_map = maps__find(kmaps, map->pgoff);
1049                if (dest_map != map)
1050                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1051                found = true;
1052        }
1053        if (found || machine->trampolines_mapped)
1054                return 0;
1055
1056        pgoff = find_entry_trampoline(kernel);
1057        if (!pgoff)
1058                return 0;
1059
1060        nr_cpus_avail = machine__nr_cpus_avail(machine);
1061
1062        /* Add a 1 page map for each CPU's entry trampoline */
1063        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1064                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1065                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1066                         X86_64_ENTRY_TRAMPOLINE;
1067                struct extra_kernel_map xm = {
1068                        .start = va,
1069                        .end   = va + page_size,
1070                        .pgoff = pgoff,
1071                };
1072
1073                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1074
1075                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1076                        return -1;
1077        }
1078
1079        machine->trampolines_mapped = nr_cpus_avail;
1080
1081        return 0;
1082}
1083
1084int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1085                                             struct dso *kernel __maybe_unused)
1086{
1087        return 0;
1088}
1089
1090static int
1091__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1092{
1093        /* In case of renewal the kernel map, destroy previous one */
1094        machine__destroy_kernel_maps(machine);
1095
1096        machine->vmlinux_map = map__new2(0, kernel);
1097        if (machine->vmlinux_map == NULL)
1098                return -1;
1099
1100        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1101        maps__insert(&machine->kmaps, machine->vmlinux_map);
1102        return 0;
1103}
1104
1105void machine__destroy_kernel_maps(struct machine *machine)
1106{
1107        struct kmap *kmap;
1108        struct map *map = machine__kernel_map(machine);
1109
1110        if (map == NULL)
1111                return;
1112
1113        kmap = map__kmap(map);
1114        maps__remove(&machine->kmaps, map);
1115        if (kmap && kmap->ref_reloc_sym) {
1116                zfree((char **)&kmap->ref_reloc_sym->name);
1117                zfree(&kmap->ref_reloc_sym);
1118        }
1119
1120        map__zput(machine->vmlinux_map);
1121}
1122
1123int machines__create_guest_kernel_maps(struct machines *machines)
1124{
1125        int ret = 0;
1126        struct dirent **namelist = NULL;
1127        int i, items = 0;
1128        char path[PATH_MAX];
1129        pid_t pid;
1130        char *endp;
1131
1132        if (symbol_conf.default_guest_vmlinux_name ||
1133            symbol_conf.default_guest_modules ||
1134            symbol_conf.default_guest_kallsyms) {
1135                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1136        }
1137
1138        if (symbol_conf.guestmount) {
1139                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1140                if (items <= 0)
1141                        return -ENOENT;
1142                for (i = 0; i < items; i++) {
1143                        if (!isdigit(namelist[i]->d_name[0])) {
1144                                /* Filter out . and .. */
1145                                continue;
1146                        }
1147                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1148                        if ((*endp != '\0') ||
1149                            (endp == namelist[i]->d_name) ||
1150                            (errno == ERANGE)) {
1151                                pr_debug("invalid directory (%s). Skipping.\n",
1152                                         namelist[i]->d_name);
1153                                continue;
1154                        }
1155                        sprintf(path, "%s/%s/proc/kallsyms",
1156                                symbol_conf.guestmount,
1157                                namelist[i]->d_name);
1158                        ret = access(path, R_OK);
1159                        if (ret) {
1160                                pr_debug("Can't access file %s\n", path);
1161                                goto failure;
1162                        }
1163                        machines__create_kernel_maps(machines, pid);
1164                }
1165failure:
1166                free(namelist);
1167        }
1168
1169        return ret;
1170}
1171
1172void machines__destroy_kernel_maps(struct machines *machines)
1173{
1174        struct rb_node *next = rb_first_cached(&machines->guests);
1175
1176        machine__destroy_kernel_maps(&machines->host);
1177
1178        while (next) {
1179                struct machine *pos = rb_entry(next, struct machine, rb_node);
1180
1181                next = rb_next(&pos->rb_node);
1182                rb_erase_cached(&pos->rb_node, &machines->guests);
1183                machine__delete(pos);
1184        }
1185}
1186
1187int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1188{
1189        struct machine *machine = machines__findnew(machines, pid);
1190
1191        if (machine == NULL)
1192                return -1;
1193
1194        return machine__create_kernel_maps(machine);
1195}
1196
1197int machine__load_kallsyms(struct machine *machine, const char *filename)
1198{
1199        struct map *map = machine__kernel_map(machine);
1200        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1201
1202        if (ret > 0) {
1203                dso__set_loaded(map->dso);
1204                /*
1205                 * Since /proc/kallsyms will have multiple sessions for the
1206                 * kernel, with modules between them, fixup the end of all
1207                 * sections.
1208                 */
1209                maps__fixup_end(&machine->kmaps);
1210        }
1211
1212        return ret;
1213}
1214
1215int machine__load_vmlinux_path(struct machine *machine)
1216{
1217        struct map *map = machine__kernel_map(machine);
1218        int ret = dso__load_vmlinux_path(map->dso, map);
1219
1220        if (ret > 0)
1221                dso__set_loaded(map->dso);
1222
1223        return ret;
1224}
1225
1226static char *get_kernel_version(const char *root_dir)
1227{
1228        char version[PATH_MAX];
1229        FILE *file;
1230        char *name, *tmp;
1231        const char *prefix = "Linux version ";
1232
1233        sprintf(version, "%s/proc/version", root_dir);
1234        file = fopen(version, "r");
1235        if (!file)
1236                return NULL;
1237
1238        tmp = fgets(version, sizeof(version), file);
1239        fclose(file);
1240        if (!tmp)
1241                return NULL;
1242
1243        name = strstr(version, prefix);
1244        if (!name)
1245                return NULL;
1246        name += strlen(prefix);
1247        tmp = strchr(name, ' ');
1248        if (tmp)
1249                *tmp = '\0';
1250
1251        return strdup(name);
1252}
1253
1254static bool is_kmod_dso(struct dso *dso)
1255{
1256        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1257               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1258}
1259
1260static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1261{
1262        char *long_name;
1263        struct map *map = maps__find_by_name(maps, m->name);
1264
1265        if (map == NULL)
1266                return 0;
1267
1268        long_name = strdup(path);
1269        if (long_name == NULL)
1270                return -ENOMEM;
1271
1272        dso__set_long_name(map->dso, long_name, true);
1273        dso__kernel_module_get_build_id(map->dso, "");
1274
1275        /*
1276         * Full name could reveal us kmod compression, so
1277         * we need to update the symtab_type if needed.
1278         */
1279        if (m->comp && is_kmod_dso(map->dso)) {
1280                map->dso->symtab_type++;
1281                map->dso->comp = m->comp;
1282        }
1283
1284        return 0;
1285}
1286
1287static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1288{
1289        struct dirent *dent;
1290        DIR *dir = opendir(dir_name);
1291        int ret = 0;
1292
1293        if (!dir) {
1294                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1295                return -1;
1296        }
1297
1298        while ((dent = readdir(dir)) != NULL) {
1299                char path[PATH_MAX];
1300                struct stat st;
1301
1302                /*sshfs might return bad dent->d_type, so we have to stat*/
1303                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1304                if (stat(path, &st))
1305                        continue;
1306
1307                if (S_ISDIR(st.st_mode)) {
1308                        if (!strcmp(dent->d_name, ".") ||
1309                            !strcmp(dent->d_name, ".."))
1310                                continue;
1311
1312                        /* Do not follow top-level source and build symlinks */
1313                        if (depth == 0) {
1314                                if (!strcmp(dent->d_name, "source") ||
1315                                    !strcmp(dent->d_name, "build"))
1316                                        continue;
1317                        }
1318
1319                        ret = maps__set_modules_path_dir(maps, path, depth + 1);
1320                        if (ret < 0)
1321                                goto out;
1322                } else {
1323                        struct kmod_path m;
1324
1325                        ret = kmod_path__parse_name(&m, dent->d_name);
1326                        if (ret)
1327                                goto out;
1328
1329                        if (m.kmod)
1330                                ret = maps__set_module_path(maps, path, &m);
1331
1332                        zfree(&m.name);
1333
1334                        if (ret)
1335                                goto out;
1336                }
1337        }
1338
1339out:
1340        closedir(dir);
1341        return ret;
1342}
1343
1344static int machine__set_modules_path(struct machine *machine)
1345{
1346        char *version;
1347        char modules_path[PATH_MAX];
1348
1349        version = get_kernel_version(machine->root_dir);
1350        if (!version)
1351                return -1;
1352
1353        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1354                 machine->root_dir, version);
1355        free(version);
1356
1357        return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1358}
1359int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1360                                u64 *size __maybe_unused,
1361                                const char *name __maybe_unused)
1362{
1363        return 0;
1364}
1365
1366static int machine__create_module(void *arg, const char *name, u64 start,
1367                                  u64 size)
1368{
1369        struct machine *machine = arg;
1370        struct map *map;
1371
1372        if (arch__fix_module_text_start(&start, &size, name) < 0)
1373                return -1;
1374
1375        map = machine__addnew_module_map(machine, start, name);
1376        if (map == NULL)
1377                return -1;
1378        map->end = start + size;
1379
1380        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1381
1382        return 0;
1383}
1384
1385static int machine__create_modules(struct machine *machine)
1386{
1387        const char *modules;
1388        char path[PATH_MAX];
1389
1390        if (machine__is_default_guest(machine)) {
1391                modules = symbol_conf.default_guest_modules;
1392        } else {
1393                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1394                modules = path;
1395        }
1396
1397        if (symbol__restricted_filename(modules, "/proc/modules"))
1398                return -1;
1399
1400        if (modules__parse(modules, machine, machine__create_module))
1401                return -1;
1402
1403        if (!machine__set_modules_path(machine))
1404                return 0;
1405
1406        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1407
1408        return 0;
1409}
1410
1411static void machine__set_kernel_mmap(struct machine *machine,
1412                                     u64 start, u64 end)
1413{
1414        machine->vmlinux_map->start = start;
1415        machine->vmlinux_map->end   = end;
1416        /*
1417         * Be a bit paranoid here, some perf.data file came with
1418         * a zero sized synthesized MMAP event for the kernel.
1419         */
1420        if (start == 0 && end == 0)
1421                machine->vmlinux_map->end = ~0ULL;
1422}
1423
1424static void machine__update_kernel_mmap(struct machine *machine,
1425                                     u64 start, u64 end)
1426{
1427        struct map *map = machine__kernel_map(machine);
1428
1429        map__get(map);
1430        maps__remove(&machine->kmaps, map);
1431
1432        machine__set_kernel_mmap(machine, start, end);
1433
1434        maps__insert(&machine->kmaps, map);
1435        map__put(map);
1436}
1437
1438int machine__create_kernel_maps(struct machine *machine)
1439{
1440        struct dso *kernel = machine__get_kernel(machine);
1441        const char *name = NULL;
1442        struct map *map;
1443        u64 start = 0, end = ~0ULL;
1444        int ret;
1445
1446        if (kernel == NULL)
1447                return -1;
1448
1449        ret = __machine__create_kernel_maps(machine, kernel);
1450        if (ret < 0)
1451                goto out_put;
1452
1453        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1454                if (machine__is_host(machine))
1455                        pr_debug("Problems creating module maps, "
1456                                 "continuing anyway...\n");
1457                else
1458                        pr_debug("Problems creating module maps for guest %d, "
1459                                 "continuing anyway...\n", machine->pid);
1460        }
1461
1462        if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1463                if (name &&
1464                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1465                        machine__destroy_kernel_maps(machine);
1466                        ret = -1;
1467                        goto out_put;
1468                }
1469
1470                /*
1471                 * we have a real start address now, so re-order the kmaps
1472                 * assume it's the last in the kmaps
1473                 */
1474                machine__update_kernel_mmap(machine, start, end);
1475        }
1476
1477        if (machine__create_extra_kernel_maps(machine, kernel))
1478                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1479
1480        if (end == ~0ULL) {
1481                /* update end address of the kernel map using adjacent module address */
1482                map = map__next(machine__kernel_map(machine));
1483                if (map)
1484                        machine__set_kernel_mmap(machine, start, map->start);
1485        }
1486
1487out_put:
1488        dso__put(kernel);
1489        return ret;
1490}
1491
1492static bool machine__uses_kcore(struct machine *machine)
1493{
1494        struct dso *dso;
1495
1496        list_for_each_entry(dso, &machine->dsos.head, node) {
1497                if (dso__is_kcore(dso))
1498                        return true;
1499        }
1500
1501        return false;
1502}
1503
1504static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1505                                             union perf_event *event)
1506{
1507        return machine__is(machine, "x86_64") &&
1508               is_entry_trampoline(event->mmap.filename);
1509}
1510
1511static int machine__process_extra_kernel_map(struct machine *machine,
1512                                             union perf_event *event)
1513{
1514        struct dso *kernel = machine__kernel_dso(machine);
1515        struct extra_kernel_map xm = {
1516                .start = event->mmap.start,
1517                .end   = event->mmap.start + event->mmap.len,
1518                .pgoff = event->mmap.pgoff,
1519        };
1520
1521        if (kernel == NULL)
1522                return -1;
1523
1524        strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1525
1526        return machine__create_extra_kernel_map(machine, kernel, &xm);
1527}
1528
1529static int machine__process_kernel_mmap_event(struct machine *machine,
1530                                              union perf_event *event)
1531{
1532        struct map *map;
1533        enum dso_kernel_type kernel_type;
1534        bool is_kernel_mmap;
1535
1536        /* If we have maps from kcore then we do not need or want any others */
1537        if (machine__uses_kcore(machine))
1538                return 0;
1539
1540        if (machine__is_host(machine))
1541                kernel_type = DSO_TYPE_KERNEL;
1542        else
1543                kernel_type = DSO_TYPE_GUEST_KERNEL;
1544
1545        is_kernel_mmap = memcmp(event->mmap.filename,
1546                                machine->mmap_name,
1547                                strlen(machine->mmap_name) - 1) == 0;
1548        if (event->mmap.filename[0] == '/' ||
1549            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1550                map = machine__addnew_module_map(machine, event->mmap.start,
1551                                                 event->mmap.filename);
1552                if (map == NULL)
1553                        goto out_problem;
1554
1555                map->end = map->start + event->mmap.len;
1556        } else if (is_kernel_mmap) {
1557                const char *symbol_name = (event->mmap.filename +
1558                                strlen(machine->mmap_name));
1559                /*
1560                 * Should be there already, from the build-id table in
1561                 * the header.
1562                 */
1563                struct dso *kernel = NULL;
1564                struct dso *dso;
1565
1566                down_read(&machine->dsos.lock);
1567
1568                list_for_each_entry(dso, &machine->dsos.head, node) {
1569
1570                        /*
1571                         * The cpumode passed to is_kernel_module is not the
1572                         * cpumode of *this* event. If we insist on passing
1573                         * correct cpumode to is_kernel_module, we should
1574                         * record the cpumode when we adding this dso to the
1575                         * linked list.
1576                         *
1577                         * However we don't really need passing correct
1578                         * cpumode.  We know the correct cpumode must be kernel
1579                         * mode (if not, we should not link it onto kernel_dsos
1580                         * list).
1581                         *
1582                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1583                         * is_kernel_module() treats it as a kernel cpumode.
1584                         */
1585
1586                        if (!dso->kernel ||
1587                            is_kernel_module(dso->long_name,
1588                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1589                                continue;
1590
1591
1592                        kernel = dso;
1593                        break;
1594                }
1595
1596                up_read(&machine->dsos.lock);
1597
1598                if (kernel == NULL)
1599                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1600                if (kernel == NULL)
1601                        goto out_problem;
1602
1603                kernel->kernel = kernel_type;
1604                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1605                        dso__put(kernel);
1606                        goto out_problem;
1607                }
1608
1609                if (strstr(kernel->long_name, "vmlinux"))
1610                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1611
1612                machine__update_kernel_mmap(machine, event->mmap.start,
1613                                         event->mmap.start + event->mmap.len);
1614
1615                /*
1616                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1617                 * symbol. Effectively having zero here means that at record
1618                 * time /proc/sys/kernel/kptr_restrict was non zero.
1619                 */
1620                if (event->mmap.pgoff != 0) {
1621                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1622                                                        symbol_name,
1623                                                        event->mmap.pgoff);
1624                }
1625
1626                if (machine__is_default_guest(machine)) {
1627                        /*
1628                         * preload dso of guest kernel and modules
1629                         */
1630                        dso__load(kernel, machine__kernel_map(machine));
1631                }
1632        } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1633                return machine__process_extra_kernel_map(machine, event);
1634        }
1635        return 0;
1636out_problem:
1637        return -1;
1638}
1639
1640int machine__process_mmap2_event(struct machine *machine,
1641                                 union perf_event *event,
1642                                 struct perf_sample *sample)
1643{
1644        struct thread *thread;
1645        struct map *map;
1646        struct dso_id dso_id = {
1647                .maj = event->mmap2.maj,
1648                .min = event->mmap2.min,
1649                .ino = event->mmap2.ino,
1650                .ino_generation = event->mmap2.ino_generation,
1651        };
1652        int ret = 0;
1653
1654        if (dump_trace)
1655                perf_event__fprintf_mmap2(event, stdout);
1656
1657        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1658            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1659                ret = machine__process_kernel_mmap_event(machine, event);
1660                if (ret < 0)
1661                        goto out_problem;
1662                return 0;
1663        }
1664
1665        thread = machine__findnew_thread(machine, event->mmap2.pid,
1666                                        event->mmap2.tid);
1667        if (thread == NULL)
1668                goto out_problem;
1669
1670        map = map__new(machine, event->mmap2.start,
1671                        event->mmap2.len, event->mmap2.pgoff,
1672                        &dso_id, event->mmap2.prot,
1673                        event->mmap2.flags,
1674                        event->mmap2.filename, thread);
1675
1676        if (map == NULL)
1677                goto out_problem_map;
1678
1679        ret = thread__insert_map(thread, map);
1680        if (ret)
1681                goto out_problem_insert;
1682
1683        thread__put(thread);
1684        map__put(map);
1685        return 0;
1686
1687out_problem_insert:
1688        map__put(map);
1689out_problem_map:
1690        thread__put(thread);
1691out_problem:
1692        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1693        return 0;
1694}
1695
1696int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1697                                struct perf_sample *sample)
1698{
1699        struct thread *thread;
1700        struct map *map;
1701        u32 prot = 0;
1702        int ret = 0;
1703
1704        if (dump_trace)
1705                perf_event__fprintf_mmap(event, stdout);
1706
1707        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1708            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1709                ret = machine__process_kernel_mmap_event(machine, event);
1710                if (ret < 0)
1711                        goto out_problem;
1712                return 0;
1713        }
1714
1715        thread = machine__findnew_thread(machine, event->mmap.pid,
1716                                         event->mmap.tid);
1717        if (thread == NULL)
1718                goto out_problem;
1719
1720        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1721                prot = PROT_EXEC;
1722
1723        map = map__new(machine, event->mmap.start,
1724                        event->mmap.len, event->mmap.pgoff,
1725                        NULL, prot, 0, event->mmap.filename, thread);
1726
1727        if (map == NULL)
1728                goto out_problem_map;
1729
1730        ret = thread__insert_map(thread, map);
1731        if (ret)
1732                goto out_problem_insert;
1733
1734        thread__put(thread);
1735        map__put(map);
1736        return 0;
1737
1738out_problem_insert:
1739        map__put(map);
1740out_problem_map:
1741        thread__put(thread);
1742out_problem:
1743        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1744        return 0;
1745}
1746
1747static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1748{
1749        struct threads *threads = machine__threads(machine, th->tid);
1750
1751        if (threads->last_match == th)
1752                threads__set_last_match(threads, NULL);
1753
1754        if (lock)
1755                down_write(&threads->lock);
1756
1757        BUG_ON(refcount_read(&th->refcnt) == 0);
1758
1759        rb_erase_cached(&th->rb_node, &threads->entries);
1760        RB_CLEAR_NODE(&th->rb_node);
1761        --threads->nr;
1762        /*
1763         * Move it first to the dead_threads list, then drop the reference,
1764         * if this is the last reference, then the thread__delete destructor
1765         * will be called and we will remove it from the dead_threads list.
1766         */
1767        list_add_tail(&th->node, &threads->dead);
1768
1769        /*
1770         * We need to do the put here because if this is the last refcount,
1771         * then we will be touching the threads->dead head when removing the
1772         * thread.
1773         */
1774        thread__put(th);
1775
1776        if (lock)
1777                up_write(&threads->lock);
1778}
1779
1780void machine__remove_thread(struct machine *machine, struct thread *th)
1781{
1782        return __machine__remove_thread(machine, th, true);
1783}
1784
1785int machine__process_fork_event(struct machine *machine, union perf_event *event,
1786                                struct perf_sample *sample)
1787{
1788        struct thread *thread = machine__find_thread(machine,
1789                                                     event->fork.pid,
1790                                                     event->fork.tid);
1791        struct thread *parent = machine__findnew_thread(machine,
1792                                                        event->fork.ppid,
1793                                                        event->fork.ptid);
1794        bool do_maps_clone = true;
1795        int err = 0;
1796
1797        if (dump_trace)
1798                perf_event__fprintf_task(event, stdout);
1799
1800        /*
1801         * There may be an existing thread that is not actually the parent,
1802         * either because we are processing events out of order, or because the
1803         * (fork) event that would have removed the thread was lost. Assume the
1804         * latter case and continue on as best we can.
1805         */
1806        if (parent->pid_ != (pid_t)event->fork.ppid) {
1807                dump_printf("removing erroneous parent thread %d/%d\n",
1808                            parent->pid_, parent->tid);
1809                machine__remove_thread(machine, parent);
1810                thread__put(parent);
1811                parent = machine__findnew_thread(machine, event->fork.ppid,
1812                                                 event->fork.ptid);
1813        }
1814
1815        /* if a thread currently exists for the thread id remove it */
1816        if (thread != NULL) {
1817                machine__remove_thread(machine, thread);
1818                thread__put(thread);
1819        }
1820
1821        thread = machine__findnew_thread(machine, event->fork.pid,
1822                                         event->fork.tid);
1823        /*
1824         * When synthesizing FORK events, we are trying to create thread
1825         * objects for the already running tasks on the machine.
1826         *
1827         * Normally, for a kernel FORK event, we want to clone the parent's
1828         * maps because that is what the kernel just did.
1829         *
1830         * But when synthesizing, this should not be done.  If we do, we end up
1831         * with overlapping maps as we process the sythesized MMAP2 events that
1832         * get delivered shortly thereafter.
1833         *
1834         * Use the FORK event misc flags in an internal way to signal this
1835         * situation, so we can elide the map clone when appropriate.
1836         */
1837        if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1838                do_maps_clone = false;
1839
1840        if (thread == NULL || parent == NULL ||
1841            thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1842                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1843                err = -1;
1844        }
1845        thread__put(thread);
1846        thread__put(parent);
1847
1848        return err;
1849}
1850
1851int machine__process_exit_event(struct machine *machine, union perf_event *event,
1852                                struct perf_sample *sample __maybe_unused)
1853{
1854        struct thread *thread = machine__find_thread(machine,
1855                                                     event->fork.pid,
1856                                                     event->fork.tid);
1857
1858        if (dump_trace)
1859                perf_event__fprintf_task(event, stdout);
1860
1861        if (thread != NULL) {
1862                thread__exited(thread);
1863                thread__put(thread);
1864        }
1865
1866        return 0;
1867}
1868
1869int machine__process_event(struct machine *machine, union perf_event *event,
1870                           struct perf_sample *sample)
1871{
1872        int ret;
1873
1874        switch (event->header.type) {
1875        case PERF_RECORD_COMM:
1876                ret = machine__process_comm_event(machine, event, sample); break;
1877        case PERF_RECORD_MMAP:
1878                ret = machine__process_mmap_event(machine, event, sample); break;
1879        case PERF_RECORD_NAMESPACES:
1880                ret = machine__process_namespaces_event(machine, event, sample); break;
1881        case PERF_RECORD_MMAP2:
1882                ret = machine__process_mmap2_event(machine, event, sample); break;
1883        case PERF_RECORD_FORK:
1884                ret = machine__process_fork_event(machine, event, sample); break;
1885        case PERF_RECORD_EXIT:
1886                ret = machine__process_exit_event(machine, event, sample); break;
1887        case PERF_RECORD_LOST:
1888                ret = machine__process_lost_event(machine, event, sample); break;
1889        case PERF_RECORD_AUX:
1890                ret = machine__process_aux_event(machine, event); break;
1891        case PERF_RECORD_ITRACE_START:
1892                ret = machine__process_itrace_start_event(machine, event); break;
1893        case PERF_RECORD_LOST_SAMPLES:
1894                ret = machine__process_lost_samples_event(machine, event, sample); break;
1895        case PERF_RECORD_SWITCH:
1896        case PERF_RECORD_SWITCH_CPU_WIDE:
1897                ret = machine__process_switch_event(machine, event); break;
1898        case PERF_RECORD_KSYMBOL:
1899                ret = machine__process_ksymbol(machine, event, sample); break;
1900        case PERF_RECORD_BPF_EVENT:
1901                ret = machine__process_bpf(machine, event, sample); break;
1902        default:
1903                ret = -1;
1904                break;
1905        }
1906
1907        return ret;
1908}
1909
1910static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1911{
1912        if (!regexec(regex, sym->name, 0, NULL, 0))
1913                return 1;
1914        return 0;
1915}
1916
1917static void ip__resolve_ams(struct thread *thread,
1918                            struct addr_map_symbol *ams,
1919                            u64 ip)
1920{
1921        struct addr_location al;
1922
1923        memset(&al, 0, sizeof(al));
1924        /*
1925         * We cannot use the header.misc hint to determine whether a
1926         * branch stack address is user, kernel, guest, hypervisor.
1927         * Branches may straddle the kernel/user/hypervisor boundaries.
1928         * Thus, we have to try consecutively until we find a match
1929         * or else, the symbol is unknown
1930         */
1931        thread__find_cpumode_addr_location(thread, ip, &al);
1932
1933        ams->addr = ip;
1934        ams->al_addr = al.addr;
1935        ams->ms.maps = al.maps;
1936        ams->ms.sym = al.sym;
1937        ams->ms.map = al.map;
1938        ams->phys_addr = 0;
1939}
1940
1941static void ip__resolve_data(struct thread *thread,
1942                             u8 m, struct addr_map_symbol *ams,
1943                             u64 addr, u64 phys_addr)
1944{
1945        struct addr_location al;
1946
1947        memset(&al, 0, sizeof(al));
1948
1949        thread__find_symbol(thread, m, addr, &al);
1950
1951        ams->addr = addr;
1952        ams->al_addr = al.addr;
1953        ams->ms.maps = al.maps;
1954        ams->ms.sym = al.sym;
1955        ams->ms.map = al.map;
1956        ams->phys_addr = phys_addr;
1957}
1958
1959struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1960                                     struct addr_location *al)
1961{
1962        struct mem_info *mi = mem_info__new();
1963
1964        if (!mi)
1965                return NULL;
1966
1967        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1968        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1969                         sample->addr, sample->phys_addr);
1970        mi->data_src.val = sample->data_src;
1971
1972        return mi;
1973}
1974
1975static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1976{
1977        struct map *map = ms->map;
1978        char *srcline = NULL;
1979
1980        if (!map || callchain_param.key == CCKEY_FUNCTION)
1981                return srcline;
1982
1983        srcline = srcline__tree_find(&map->dso->srclines, ip);
1984        if (!srcline) {
1985                bool show_sym = false;
1986                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1987
1988                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1989                                      ms->sym, show_sym, show_addr, ip);
1990                srcline__tree_insert(&map->dso->srclines, ip, srcline);
1991        }
1992
1993        return srcline;
1994}
1995
1996struct iterations {
1997        int nr_loop_iter;
1998        u64 cycles;
1999};
2000
2001static int add_callchain_ip(struct thread *thread,
2002                            struct callchain_cursor *cursor,
2003                            struct symbol **parent,
2004                            struct addr_location *root_al,
2005                            u8 *cpumode,
2006                            u64 ip,
2007                            bool branch,
2008                            struct branch_flags *flags,
2009                            struct iterations *iter,
2010                            u64 branch_from)
2011{
2012        struct map_symbol ms;
2013        struct addr_location al;
2014        int nr_loop_iter = 0;
2015        u64 iter_cycles = 0;
2016        const char *srcline = NULL;
2017
2018        al.filtered = 0;
2019        al.sym = NULL;
2020        if (!cpumode) {
2021                thread__find_cpumode_addr_location(thread, ip, &al);
2022        } else {
2023                if (ip >= PERF_CONTEXT_MAX) {
2024                        switch (ip) {
2025                        case PERF_CONTEXT_HV:
2026                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2027                                break;
2028                        case PERF_CONTEXT_KERNEL:
2029                                *cpumode = PERF_RECORD_MISC_KERNEL;
2030                                break;
2031                        case PERF_CONTEXT_USER:
2032                                *cpumode = PERF_RECORD_MISC_USER;
2033                                break;
2034                        default:
2035                                pr_debug("invalid callchain context: "
2036                                         "%"PRId64"\n", (s64) ip);
2037                                /*
2038                                 * It seems the callchain is corrupted.
2039                                 * Discard all.
2040                                 */
2041                                callchain_cursor_reset(cursor);
2042                                return 1;
2043                        }
2044                        return 0;
2045                }
2046                thread__find_symbol(thread, *cpumode, ip, &al);
2047        }
2048
2049        if (al.sym != NULL) {
2050                if (perf_hpp_list.parent && !*parent &&
2051                    symbol__match_regex(al.sym, &parent_regex))
2052                        *parent = al.sym;
2053                else if (have_ignore_callees && root_al &&
2054                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2055                        /* Treat this symbol as the root,
2056                           forgetting its callees. */
2057                        *root_al = al;
2058                        callchain_cursor_reset(cursor);
2059                }
2060        }
2061
2062        if (symbol_conf.hide_unresolved && al.sym == NULL)
2063                return 0;
2064
2065        if (iter) {
2066                nr_loop_iter = iter->nr_loop_iter;
2067                iter_cycles = iter->cycles;
2068        }
2069
2070        ms.maps = al.maps;
2071        ms.map = al.map;
2072        ms.sym = al.sym;
2073        srcline = callchain_srcline(&ms, al.addr);
2074        return callchain_cursor_append(cursor, ip, &ms,
2075                                       branch, flags, nr_loop_iter,
2076                                       iter_cycles, branch_from, srcline);
2077}
2078
2079struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2080                                           struct addr_location *al)
2081{
2082        unsigned int i;
2083        const struct branch_stack *bs = sample->branch_stack;
2084        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2085
2086        if (!bi)
2087                return NULL;
2088
2089        for (i = 0; i < bs->nr; i++) {
2090                ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2091                ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2092                bi[i].flags = bs->entries[i].flags;
2093        }
2094        return bi;
2095}
2096
2097static void save_iterations(struct iterations *iter,
2098                            struct branch_entry *be, int nr)
2099{
2100        int i;
2101
2102        iter->nr_loop_iter++;
2103        iter->cycles = 0;
2104
2105        for (i = 0; i < nr; i++)
2106                iter->cycles += be[i].flags.cycles;
2107}
2108
2109#define CHASHSZ 127
2110#define CHASHBITS 7
2111#define NO_ENTRY 0xff
2112
2113#define PERF_MAX_BRANCH_DEPTH 127
2114
2115/* Remove loops. */
2116static int remove_loops(struct branch_entry *l, int nr,
2117                        struct iterations *iter)
2118{
2119        int i, j, off;
2120        unsigned char chash[CHASHSZ];
2121
2122        memset(chash, NO_ENTRY, sizeof(chash));
2123
2124        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2125
2126        for (i = 0; i < nr; i++) {
2127                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2128
2129                /* no collision handling for now */
2130                if (chash[h] == NO_ENTRY) {
2131                        chash[h] = i;
2132                } else if (l[chash[h]].from == l[i].from) {
2133                        bool is_loop = true;
2134                        /* check if it is a real loop */
2135                        off = 0;
2136                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2137                                if (l[j].from != l[i + off].from) {
2138                                        is_loop = false;
2139                                        break;
2140                                }
2141                        if (is_loop) {
2142                                j = nr - (i + off);
2143                                if (j > 0) {
2144                                        save_iterations(iter + i + off,
2145                                                l + i, off);
2146
2147                                        memmove(iter + i, iter + i + off,
2148                                                j * sizeof(*iter));
2149
2150                                        memmove(l + i, l + i + off,
2151                                                j * sizeof(*l));
2152                                }
2153
2154                                nr -= off;
2155                        }
2156                }
2157        }
2158        return nr;
2159}
2160
2161/*
2162 * Recolve LBR callstack chain sample
2163 * Return:
2164 * 1 on success get LBR callchain information
2165 * 0 no available LBR callchain information, should try fp
2166 * negative error code on other errors.
2167 */
2168static int resolve_lbr_callchain_sample(struct thread *thread,
2169                                        struct callchain_cursor *cursor,
2170                                        struct perf_sample *sample,
2171                                        struct symbol **parent,
2172                                        struct addr_location *root_al,
2173                                        int max_stack)
2174{
2175        struct ip_callchain *chain = sample->callchain;
2176        int chain_nr = min(max_stack, (int)chain->nr), i;
2177        u8 cpumode = PERF_RECORD_MISC_USER;
2178        u64 ip, branch_from = 0;
2179
2180        for (i = 0; i < chain_nr; i++) {
2181                if (chain->ips[i] == PERF_CONTEXT_USER)
2182                        break;
2183        }
2184
2185        /* LBR only affects the user callchain */
2186        if (i != chain_nr) {
2187                struct branch_stack *lbr_stack = sample->branch_stack;
2188                int lbr_nr = lbr_stack->nr, j, k;
2189                bool branch;
2190                struct branch_flags *flags;
2191                /*
2192                 * LBR callstack can only get user call chain.
2193                 * The mix_chain_nr is kernel call chain
2194                 * number plus LBR user call chain number.
2195                 * i is kernel call chain number,
2196                 * 1 is PERF_CONTEXT_USER,
2197                 * lbr_nr + 1 is the user call chain number.
2198                 * For details, please refer to the comments
2199                 * in callchain__printf
2200                 */
2201                int mix_chain_nr = i + 1 + lbr_nr + 1;
2202
2203                for (j = 0; j < mix_chain_nr; j++) {
2204                        int err;
2205                        branch = false;
2206                        flags = NULL;
2207
2208                        if (callchain_param.order == ORDER_CALLEE) {
2209                                if (j < i + 1)
2210                                        ip = chain->ips[j];
2211                                else if (j > i + 1) {
2212                                        k = j - i - 2;
2213                                        ip = lbr_stack->entries[k].from;
2214                                        branch = true;
2215                                        flags = &lbr_stack->entries[k].flags;
2216                                } else {
2217                                        ip = lbr_stack->entries[0].to;
2218                                        branch = true;
2219                                        flags = &lbr_stack->entries[0].flags;
2220                                        branch_from =
2221                                                lbr_stack->entries[0].from;
2222                                }
2223                        } else {
2224                                if (j < lbr_nr) {
2225                                        k = lbr_nr - j - 1;
2226                                        ip = lbr_stack->entries[k].from;
2227                                        branch = true;
2228                                        flags = &lbr_stack->entries[k].flags;
2229                                }
2230                                else if (j > lbr_nr)
2231                                        ip = chain->ips[i + 1 - (j - lbr_nr)];
2232                                else {
2233                                        ip = lbr_stack->entries[0].to;
2234                                        branch = true;
2235                                        flags = &lbr_stack->entries[0].flags;
2236                                        branch_from =
2237                                                lbr_stack->entries[0].from;
2238                                }
2239                        }
2240
2241                        err = add_callchain_ip(thread, cursor, parent,
2242                                               root_al, &cpumode, ip,
2243                                               branch, flags, NULL,
2244                                               branch_from);
2245                        if (err)
2246                                return (err < 0) ? err : 0;
2247                }
2248                return 1;
2249        }
2250
2251        return 0;
2252}
2253
2254static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2255                             struct callchain_cursor *cursor,
2256                             struct symbol **parent,
2257                             struct addr_location *root_al,
2258                             u8 *cpumode, int ent)
2259{
2260        int err = 0;
2261
2262        while (--ent >= 0) {
2263                u64 ip = chain->ips[ent];
2264
2265                if (ip >= PERF_CONTEXT_MAX) {
2266                        err = add_callchain_ip(thread, cursor, parent,
2267                                               root_al, cpumode, ip,
2268                                               false, NULL, NULL, 0);
2269                        break;
2270                }
2271        }
2272        return err;
2273}
2274
2275static int thread__resolve_callchain_sample(struct thread *thread,
2276                                            struct callchain_cursor *cursor,
2277                                            struct evsel *evsel,
2278                                            struct perf_sample *sample,
2279                                            struct symbol **parent,
2280                                            struct addr_location *root_al,
2281                                            int max_stack)
2282{
2283        struct branch_stack *branch = sample->branch_stack;
2284        struct ip_callchain *chain = sample->callchain;
2285        int chain_nr = 0;
2286        u8 cpumode = PERF_RECORD_MISC_USER;
2287        int i, j, err, nr_entries;
2288        int skip_idx = -1;
2289        int first_call = 0;
2290
2291        if (chain)
2292                chain_nr = chain->nr;
2293
2294        if (perf_evsel__has_branch_callstack(evsel)) {
2295                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2296                                                   root_al, max_stack);
2297                if (err)
2298                        return (err < 0) ? err : 0;
2299        }
2300
2301        /*
2302         * Based on DWARF debug information, some architectures skip
2303         * a callchain entry saved by the kernel.
2304         */
2305        skip_idx = arch_skip_callchain_idx(thread, chain);
2306
2307        /*
2308         * Add branches to call stack for easier browsing. This gives
2309         * more context for a sample than just the callers.
2310         *
2311         * This uses individual histograms of paths compared to the
2312         * aggregated histograms the normal LBR mode uses.
2313         *
2314         * Limitations for now:
2315         * - No extra filters
2316         * - No annotations (should annotate somehow)
2317         */
2318
2319        if (branch && callchain_param.branch_callstack) {
2320                int nr = min(max_stack, (int)branch->nr);
2321                struct branch_entry be[nr];
2322                struct iterations iter[nr];
2323
2324                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2325                        pr_warning("corrupted branch chain. skipping...\n");
2326                        goto check_calls;
2327                }
2328
2329                for (i = 0; i < nr; i++) {
2330                        if (callchain_param.order == ORDER_CALLEE) {
2331                                be[i] = branch->entries[i];
2332
2333                                if (chain == NULL)
2334                                        continue;
2335
2336                                /*
2337                                 * Check for overlap into the callchain.
2338                                 * The return address is one off compared to
2339                                 * the branch entry. To adjust for this
2340                                 * assume the calling instruction is not longer
2341                                 * than 8 bytes.
2342                                 */
2343                                if (i == skip_idx ||
2344                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2345                                        first_call++;
2346                                else if (be[i].from < chain->ips[first_call] &&
2347                                    be[i].from >= chain->ips[first_call] - 8)
2348                                        first_call++;
2349                        } else
2350                                be[i] = branch->entries[branch->nr - i - 1];
2351                }
2352
2353                memset(iter, 0, sizeof(struct iterations) * nr);
2354                nr = remove_loops(be, nr, iter);
2355
2356                for (i = 0; i < nr; i++) {
2357                        err = add_callchain_ip(thread, cursor, parent,
2358                                               root_al,
2359                                               NULL, be[i].to,
2360                                               true, &be[i].flags,
2361                                               NULL, be[i].from);
2362
2363                        if (!err)
2364                                err = add_callchain_ip(thread, cursor, parent, root_al,
2365                                                       NULL, be[i].from,
2366                                                       true, &be[i].flags,
2367                                                       &iter[i], 0);
2368                        if (err == -EINVAL)
2369                                break;
2370                        if (err)
2371                                return err;
2372                }
2373
2374                if (chain_nr == 0)
2375                        return 0;
2376
2377                chain_nr -= nr;
2378        }
2379
2380check_calls:
2381        if (chain && callchain_param.order != ORDER_CALLEE) {
2382                err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2383                                        &cpumode, chain->nr - first_call);
2384                if (err)
2385                        return (err < 0) ? err : 0;
2386        }
2387        for (i = first_call, nr_entries = 0;
2388             i < chain_nr && nr_entries < max_stack; i++) {
2389                u64 ip;
2390
2391                if (callchain_param.order == ORDER_CALLEE)
2392                        j = i;
2393                else
2394                        j = chain->nr - i - 1;
2395
2396#ifdef HAVE_SKIP_CALLCHAIN_IDX
2397                if (j == skip_idx)
2398                        continue;
2399#endif
2400                ip = chain->ips[j];
2401                if (ip < PERF_CONTEXT_MAX)
2402                       ++nr_entries;
2403                else if (callchain_param.order != ORDER_CALLEE) {
2404                        err = find_prev_cpumode(chain, thread, cursor, parent,
2405                                                root_al, &cpumode, j);
2406                        if (err)
2407                                return (err < 0) ? err : 0;
2408                        continue;
2409                }
2410
2411                err = add_callchain_ip(thread, cursor, parent,
2412                                       root_al, &cpumode, ip,
2413                                       false, NULL, NULL, 0);
2414
2415                if (err)
2416                        return (err < 0) ? err : 0;
2417        }
2418
2419        return 0;
2420}
2421
2422static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2423{
2424        struct symbol *sym = ms->sym;
2425        struct map *map = ms->map;
2426        struct inline_node *inline_node;
2427        struct inline_list *ilist;
2428        u64 addr;
2429        int ret = 1;
2430
2431        if (!symbol_conf.inline_name || !map || !sym)
2432                return ret;
2433
2434        addr = map__map_ip(map, ip);
2435        addr = map__rip_2objdump(map, addr);
2436
2437        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2438        if (!inline_node) {
2439                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2440                if (!inline_node)
2441                        return ret;
2442                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2443        }
2444
2445        list_for_each_entry(ilist, &inline_node->val, list) {
2446                struct map_symbol ilist_ms = {
2447                        .maps = ms->maps,
2448                        .map = map,
2449                        .sym = ilist->symbol,
2450                };
2451                ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2452                                              NULL, 0, 0, 0, ilist->srcline);
2453
2454                if (ret != 0)
2455                        return ret;
2456        }
2457
2458        return ret;
2459}
2460
2461static int unwind_entry(struct unwind_entry *entry, void *arg)
2462{
2463        struct callchain_cursor *cursor = arg;
2464        const char *srcline = NULL;
2465        u64 addr = entry->ip;
2466
2467        if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2468                return 0;
2469
2470        if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2471                return 0;
2472
2473        /*
2474         * Convert entry->ip from a virtual address to an offset in
2475         * its corresponding binary.
2476         */
2477        if (entry->ms.map)
2478                addr = map__map_ip(entry->ms.map, entry->ip);
2479
2480        srcline = callchain_srcline(&entry->ms, addr);
2481        return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2482                                       false, NULL, 0, 0, 0, srcline);
2483}
2484
2485static int thread__resolve_callchain_unwind(struct thread *thread,
2486                                            struct callchain_cursor *cursor,
2487                                            struct evsel *evsel,
2488                                            struct perf_sample *sample,
2489                                            int max_stack)
2490{
2491        /* Can we do dwarf post unwind? */
2492        if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2493              (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2494                return 0;
2495
2496        /* Bail out if nothing was captured. */
2497        if ((!sample->user_regs.regs) ||
2498            (!sample->user_stack.size))
2499                return 0;
2500
2501        return unwind__get_entries(unwind_entry, cursor,
2502                                   thread, sample, max_stack);
2503}
2504
2505int thread__resolve_callchain(struct thread *thread,
2506                              struct callchain_cursor *cursor,
2507                              struct evsel *evsel,
2508                              struct perf_sample *sample,
2509                              struct symbol **parent,
2510                              struct addr_location *root_al,
2511                              int max_stack)
2512{
2513        int ret = 0;
2514
2515        callchain_cursor_reset(cursor);
2516
2517        if (callchain_param.order == ORDER_CALLEE) {
2518                ret = thread__resolve_callchain_sample(thread, cursor,
2519                                                       evsel, sample,
2520                                                       parent, root_al,
2521                                                       max_stack);
2522                if (ret)
2523                        return ret;
2524                ret = thread__resolve_callchain_unwind(thread, cursor,
2525                                                       evsel, sample,
2526                                                       max_stack);
2527        } else {
2528                ret = thread__resolve_callchain_unwind(thread, cursor,
2529                                                       evsel, sample,
2530                                                       max_stack);
2531                if (ret)
2532                        return ret;
2533                ret = thread__resolve_callchain_sample(thread, cursor,
2534                                                       evsel, sample,
2535                                                       parent, root_al,
2536                                                       max_stack);
2537        }
2538
2539        return ret;
2540}
2541
2542int machine__for_each_thread(struct machine *machine,
2543                             int (*fn)(struct thread *thread, void *p),
2544                             void *priv)
2545{
2546        struct threads *threads;
2547        struct rb_node *nd;
2548        struct thread *thread;
2549        int rc = 0;
2550        int i;
2551
2552        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2553                threads = &machine->threads[i];
2554                for (nd = rb_first_cached(&threads->entries); nd;
2555                     nd = rb_next(nd)) {
2556                        thread = rb_entry(nd, struct thread, rb_node);
2557                        rc = fn(thread, priv);
2558                        if (rc != 0)
2559                                return rc;
2560                }
2561
2562                list_for_each_entry(thread, &threads->dead, node) {
2563                        rc = fn(thread, priv);
2564                        if (rc != 0)
2565                                return rc;
2566                }
2567        }
2568        return rc;
2569}
2570
2571int machines__for_each_thread(struct machines *machines,
2572                              int (*fn)(struct thread *thread, void *p),
2573                              void *priv)
2574{
2575        struct rb_node *nd;
2576        int rc = 0;
2577
2578        rc = machine__for_each_thread(&machines->host, fn, priv);
2579        if (rc != 0)
2580                return rc;
2581
2582        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2583                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2584
2585                rc = machine__for_each_thread(machine, fn, priv);
2586                if (rc != 0)
2587                        return rc;
2588        }
2589        return rc;
2590}
2591
2592pid_t machine__get_current_tid(struct machine *machine, int cpu)
2593{
2594        int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2595
2596        if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2597                return -1;
2598
2599        return machine->current_tid[cpu];
2600}
2601
2602int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2603                             pid_t tid)
2604{
2605        struct thread *thread;
2606        int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2607
2608        if (cpu < 0)
2609                return -EINVAL;
2610
2611        if (!machine->current_tid) {
2612                int i;
2613
2614                machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2615                if (!machine->current_tid)
2616                        return -ENOMEM;
2617                for (i = 0; i < nr_cpus; i++)
2618                        machine->current_tid[i] = -1;
2619        }
2620
2621        if (cpu >= nr_cpus) {
2622                pr_err("Requested CPU %d too large. ", cpu);
2623                pr_err("Consider raising MAX_NR_CPUS\n");
2624                return -EINVAL;
2625        }
2626
2627        machine->current_tid[cpu] = tid;
2628
2629        thread = machine__findnew_thread(machine, pid, tid);
2630        if (!thread)
2631                return -ENOMEM;
2632
2633        thread->cpu = cpu;
2634        thread__put(thread);
2635
2636        return 0;
2637}
2638
2639/*
2640 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2641 * normalized arch is needed.
2642 */
2643bool machine__is(struct machine *machine, const char *arch)
2644{
2645        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2646}
2647
2648int machine__nr_cpus_avail(struct machine *machine)
2649{
2650        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2651}
2652
2653int machine__get_kernel_start(struct machine *machine)
2654{
2655        struct map *map = machine__kernel_map(machine);
2656        int err = 0;
2657
2658        /*
2659         * The only addresses above 2^63 are kernel addresses of a 64-bit
2660         * kernel.  Note that addresses are unsigned so that on a 32-bit system
2661         * all addresses including kernel addresses are less than 2^32.  In
2662         * that case (32-bit system), if the kernel mapping is unknown, all
2663         * addresses will be assumed to be in user space - see
2664         * machine__kernel_ip().
2665         */
2666        machine->kernel_start = 1ULL << 63;
2667        if (map) {
2668                err = map__load(map);
2669                /*
2670                 * On x86_64, PTI entry trampolines are less than the
2671                 * start of kernel text, but still above 2^63. So leave
2672                 * kernel_start = 1ULL << 63 for x86_64.
2673                 */
2674                if (!err && !machine__is(machine, "x86_64"))
2675                        machine->kernel_start = map->start;
2676        }
2677        return err;
2678}
2679
2680u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2681{
2682        u8 addr_cpumode = cpumode;
2683        bool kernel_ip;
2684
2685        if (!machine->single_address_space)
2686                goto out;
2687
2688        kernel_ip = machine__kernel_ip(machine, addr);
2689        switch (cpumode) {
2690        case PERF_RECORD_MISC_KERNEL:
2691        case PERF_RECORD_MISC_USER:
2692                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2693                                           PERF_RECORD_MISC_USER;
2694                break;
2695        case PERF_RECORD_MISC_GUEST_KERNEL:
2696        case PERF_RECORD_MISC_GUEST_USER:
2697                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2698                                           PERF_RECORD_MISC_GUEST_USER;
2699                break;
2700        default:
2701                break;
2702        }
2703out:
2704        return addr_cpumode;
2705}
2706
2707struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
2708{
2709        return dsos__findnew_id(&machine->dsos, filename, id);
2710}
2711
2712struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2713{
2714        return machine__findnew_dso_id(machine, filename, NULL);
2715}
2716
2717char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2718{
2719        struct machine *machine = vmachine;
2720        struct map *map;
2721        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2722
2723        if (sym == NULL)
2724                return NULL;
2725
2726        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2727        *addrp = map->unmap_ip(map, sym->start);
2728        return sym->name;
2729}
2730