linux/arch/ia64/kernel/mca.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * File:        mca.c
   4 * Purpose:     Generic MCA handling layer
   5 *
   6 * Copyright (C) 2003 Hewlett-Packard Co
   7 *      David Mosberger-Tang <davidm@hpl.hp.com>
   8 *
   9 * Copyright (C) 2002 Dell Inc.
  10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
  11 *
  12 * Copyright (C) 2002 Intel
  13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
  14 *
  15 * Copyright (C) 2001 Intel
  16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
  17 *
  18 * Copyright (C) 2000 Intel
  19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
  20 *
  21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
  22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
  23 *
  24 * Copyright (C) 2006 FUJITSU LIMITED
  25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  26 *
  27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
  28 *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
  29 *            added min save state dump, added INIT handler.
  30 *
  31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
  32 *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
  33 *            errors, completed code for logging of corrected & uncorrected
  34 *            machine check errors, and updated for conformance with Nov. 2000
  35 *            revision of the SAL 3.0 spec.
  36 *
  37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
  38 *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
  39 *            set SAL default return values, changed error record structure to
  40 *            linked list, added init call to sal_get_state_info_size().
  41 *
  42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
  43 *            GUID cleanups.
  44 *
  45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
  46 *            Added INIT backtrace support.
  47 *
  48 * 2003-12-08 Keith Owens <kaos@sgi.com>
  49 *            smp_call_function() must not be called from interrupt context
  50 *            (can deadlock on tasklist_lock).
  51 *            Use keventd to call smp_call_function().
  52 *
  53 * 2004-02-01 Keith Owens <kaos@sgi.com>
  54 *            Avoid deadlock when using printk() for MCA and INIT records.
  55 *            Delete all record printing code, moved to salinfo_decode in user
  56 *            space.  Mark variables and functions static where possible.
  57 *            Delete dead variables and functions.  Reorder to remove the need
  58 *            for forward declarations and to consolidate related code.
  59 *
  60 * 2005-08-12 Keith Owens <kaos@sgi.com>
  61 *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
  62 *            state.
  63 *
  64 * 2005-10-07 Keith Owens <kaos@sgi.com>
  65 *            Add notify_die() hooks.
  66 *
  67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  68 *            Add printing support for MCA/INIT.
  69 *
  70 * 2007-04-27 Russ Anderson <rja@sgi.com>
  71 *            Support multiple cpus going through OS_MCA in the same event.
  72 */
  73#include <linux/jiffies.h>
  74#include <linux/types.h>
  75#include <linux/init.h>
  76#include <linux/sched/signal.h>
  77#include <linux/sched/debug.h>
  78#include <linux/sched/task.h>
  79#include <linux/interrupt.h>
  80#include <linux/irq.h>
  81#include <linux/memblock.h>
  82#include <linux/acpi.h>
  83#include <linux/timer.h>
  84#include <linux/module.h>
  85#include <linux/kernel.h>
  86#include <linux/smp.h>
  87#include <linux/workqueue.h>
  88#include <linux/cpumask.h>
  89#include <linux/kdebug.h>
  90#include <linux/cpu.h>
  91#include <linux/gfp.h>
  92
  93#include <asm/delay.h>
  94#include <asm/meminit.h>
  95#include <asm/page.h>
  96#include <asm/ptrace.h>
  97#include <asm/sal.h>
  98#include <asm/mca.h>
  99#include <asm/kexec.h>
 100
 101#include <asm/irq.h>
 102#include <asm/hw_irq.h>
 103#include <asm/tlb.h>
 104
 105#include "mca_drv.h"
 106#include "entry.h"
 107#include "irq.h"
 108
 109#if defined(IA64_MCA_DEBUG_INFO)
 110# define IA64_MCA_DEBUG(fmt...) printk(fmt)
 111#else
 112# define IA64_MCA_DEBUG(fmt...)
 113#endif
 114
 115#define NOTIFY_INIT(event, regs, arg, spin)                             \
 116do {                                                                    \
 117        if ((notify_die((event), "INIT", (regs), (arg), 0, 0)           \
 118                        == NOTIFY_STOP) && ((spin) == 1))               \
 119                ia64_mca_spin(__func__);                                \
 120} while (0)
 121
 122#define NOTIFY_MCA(event, regs, arg, spin)                              \
 123do {                                                                    \
 124        if ((notify_die((event), "MCA", (regs), (arg), 0, 0)            \
 125                        == NOTIFY_STOP) && ((spin) == 1))               \
 126                ia64_mca_spin(__func__);                                \
 127} while (0)
 128
 129/* Used by mca_asm.S */
 130DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
 131DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
 132DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
 133DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
 134DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
 135
 136unsigned long __per_cpu_mca[NR_CPUS];
 137
 138/* In mca_asm.S */
 139extern void                     ia64_os_init_dispatch_monarch (void);
 140extern void                     ia64_os_init_dispatch_slave (void);
 141
 142static int monarch_cpu = -1;
 143
 144static ia64_mc_info_t           ia64_mc_info;
 145
 146#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
 147#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
 148#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
 149#define CPE_HISTORY_LENGTH    5
 150#define CMC_HISTORY_LENGTH    5
 151
 152static struct timer_list cpe_poll_timer;
 153static struct timer_list cmc_poll_timer;
 154/*
 155 * This variable tells whether we are currently in polling mode.
 156 * Start with this in the wrong state so we won't play w/ timers
 157 * before the system is ready.
 158 */
 159static int cmc_polling_enabled = 1;
 160
 161/*
 162 * Clearing this variable prevents CPE polling from getting activated
 163 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
 164 * but encounters problems retrieving CPE logs.  This should only be
 165 * necessary for debugging.
 166 */
 167static int cpe_poll_enabled = 1;
 168
 169extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
 170
 171static int mca_init __initdata;
 172
 173/*
 174 * limited & delayed printing support for MCA/INIT handler
 175 */
 176
 177#define mprintk(fmt...) ia64_mca_printk(fmt)
 178
 179#define MLOGBUF_SIZE (512+256*NR_CPUS)
 180#define MLOGBUF_MSGMAX 256
 181static char mlogbuf[MLOGBUF_SIZE];
 182static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
 183static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
 184static unsigned long mlogbuf_start;
 185static unsigned long mlogbuf_end;
 186static unsigned int mlogbuf_finished = 0;
 187static unsigned long mlogbuf_timestamp = 0;
 188
 189static int loglevel_save = -1;
 190#define BREAK_LOGLEVEL(__console_loglevel)              \
 191        oops_in_progress = 1;                           \
 192        if (loglevel_save < 0)                          \
 193                loglevel_save = __console_loglevel;     \
 194        __console_loglevel = 15;
 195
 196#define RESTORE_LOGLEVEL(__console_loglevel)            \
 197        if (loglevel_save >= 0) {                       \
 198                __console_loglevel = loglevel_save;     \
 199                loglevel_save = -1;                     \
 200        }                                               \
 201        mlogbuf_finished = 0;                           \
 202        oops_in_progress = 0;
 203
 204/*
 205 * Push messages into buffer, print them later if not urgent.
 206 */
 207void ia64_mca_printk(const char *fmt, ...)
 208{
 209        va_list args;
 210        int printed_len;
 211        char temp_buf[MLOGBUF_MSGMAX];
 212        char *p;
 213
 214        va_start(args, fmt);
 215        printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
 216        va_end(args);
 217
 218        /* Copy the output into mlogbuf */
 219        if (oops_in_progress) {
 220                /* mlogbuf was abandoned, use printk directly instead. */
 221                printk("%s", temp_buf);
 222        } else {
 223                spin_lock(&mlogbuf_wlock);
 224                for (p = temp_buf; *p; p++) {
 225                        unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
 226                        if (next != mlogbuf_start) {
 227                                mlogbuf[mlogbuf_end] = *p;
 228                                mlogbuf_end = next;
 229                        } else {
 230                                /* buffer full */
 231                                break;
 232                        }
 233                }
 234                mlogbuf[mlogbuf_end] = '\0';
 235                spin_unlock(&mlogbuf_wlock);
 236        }
 237}
 238EXPORT_SYMBOL(ia64_mca_printk);
 239
 240/*
 241 * Print buffered messages.
 242 *  NOTE: call this after returning normal context. (ex. from salinfod)
 243 */
 244void ia64_mlogbuf_dump(void)
 245{
 246        char temp_buf[MLOGBUF_MSGMAX];
 247        char *p;
 248        unsigned long index;
 249        unsigned long flags;
 250        unsigned int printed_len;
 251
 252        /* Get output from mlogbuf */
 253        while (mlogbuf_start != mlogbuf_end) {
 254                temp_buf[0] = '\0';
 255                p = temp_buf;
 256                printed_len = 0;
 257
 258                spin_lock_irqsave(&mlogbuf_rlock, flags);
 259
 260                index = mlogbuf_start;
 261                while (index != mlogbuf_end) {
 262                        *p = mlogbuf[index];
 263                        index = (index + 1) % MLOGBUF_SIZE;
 264                        if (!*p)
 265                                break;
 266                        p++;
 267                        if (++printed_len >= MLOGBUF_MSGMAX - 1)
 268                                break;
 269                }
 270                *p = '\0';
 271                if (temp_buf[0])
 272                        printk("%s", temp_buf);
 273                mlogbuf_start = index;
 274
 275                mlogbuf_timestamp = 0;
 276                spin_unlock_irqrestore(&mlogbuf_rlock, flags);
 277        }
 278}
 279EXPORT_SYMBOL(ia64_mlogbuf_dump);
 280
 281/*
 282 * Call this if system is going to down or if immediate flushing messages to
 283 * console is required. (ex. recovery was failed, crash dump is going to be
 284 * invoked, long-wait rendezvous etc.)
 285 *  NOTE: this should be called from monarch.
 286 */
 287static void ia64_mlogbuf_finish(int wait)
 288{
 289        BREAK_LOGLEVEL(console_loglevel);
 290
 291        spin_lock_init(&mlogbuf_rlock);
 292        ia64_mlogbuf_dump();
 293        printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
 294                "MCA/INIT might be dodgy or fail.\n");
 295
 296        if (!wait)
 297                return;
 298
 299        /* wait for console */
 300        printk("Delaying for 5 seconds...\n");
 301        udelay(5*1000000);
 302
 303        mlogbuf_finished = 1;
 304}
 305
 306/*
 307 * Print buffered messages from INIT context.
 308 */
 309static void ia64_mlogbuf_dump_from_init(void)
 310{
 311        if (mlogbuf_finished)
 312                return;
 313
 314        if (mlogbuf_timestamp &&
 315                        time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
 316                printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
 317                        " and the system seems to be messed up.\n");
 318                ia64_mlogbuf_finish(0);
 319                return;
 320        }
 321
 322        if (!spin_trylock(&mlogbuf_rlock)) {
 323                printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
 324                        "Generated messages other than stack dump will be "
 325                        "buffered to mlogbuf and will be printed later.\n");
 326                printk(KERN_ERR "INIT: If messages would not printed after "
 327                        "this INIT, wait 30sec and assert INIT again.\n");
 328                if (!mlogbuf_timestamp)
 329                        mlogbuf_timestamp = jiffies;
 330                return;
 331        }
 332        spin_unlock(&mlogbuf_rlock);
 333        ia64_mlogbuf_dump();
 334}
 335
 336static inline void
 337ia64_mca_spin(const char *func)
 338{
 339        if (monarch_cpu == smp_processor_id())
 340                ia64_mlogbuf_finish(0);
 341        mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
 342        while (1)
 343                cpu_relax();
 344}
 345/*
 346 * IA64_MCA log support
 347 */
 348#define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
 349#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
 350
 351typedef struct ia64_state_log_s
 352{
 353        spinlock_t      isl_lock;
 354        int             isl_index;
 355        unsigned long   isl_count;
 356        ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
 357} ia64_state_log_t;
 358
 359static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
 360
 361#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
 362#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
 363#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
 364#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
 365#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
 366#define IA64_LOG_INDEX_INC(it) \
 367    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
 368    ia64_state_log[it].isl_count++;}
 369#define IA64_LOG_INDEX_DEC(it) \
 370    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
 371#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
 372#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
 373#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
 374
 375static inline void ia64_log_allocate(int it, u64 size)
 376{
 377        ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
 378                (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 379        if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
 380                panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 381
 382        ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
 383                (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 384        if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
 385                panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 386}
 387
 388/*
 389 * ia64_log_init
 390 *      Reset the OS ia64 log buffer
 391 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 392 * Outputs      :       None
 393 */
 394static void __init
 395ia64_log_init(int sal_info_type)
 396{
 397        u64     max_size = 0;
 398
 399        IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
 400        IA64_LOG_LOCK_INIT(sal_info_type);
 401
 402        // SAL will tell us the maximum size of any error record of this type
 403        max_size = ia64_sal_get_state_info_size(sal_info_type);
 404        if (!max_size)
 405                /* alloc_bootmem() doesn't like zero-sized allocations! */
 406                return;
 407
 408        // set up OS data structures to hold error info
 409        ia64_log_allocate(sal_info_type, max_size);
 410}
 411
 412/*
 413 * ia64_log_get
 414 *
 415 *      Get the current MCA log from SAL and copy it into the OS log buffer.
 416 *
 417 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 418 *              irq_safe    whether you can use printk at this point
 419 *  Outputs :   size        (total record length)
 420 *              *buffer     (ptr to error record)
 421 *
 422 */
 423static u64
 424ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
 425{
 426        sal_log_record_header_t     *log_buffer;
 427        u64                         total_len = 0;
 428        unsigned long               s;
 429
 430        IA64_LOG_LOCK(sal_info_type);
 431
 432        /* Get the process state information */
 433        log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
 434
 435        total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
 436
 437        if (total_len) {
 438                IA64_LOG_INDEX_INC(sal_info_type);
 439                IA64_LOG_UNLOCK(sal_info_type);
 440                if (irq_safe) {
 441                        IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
 442                                       __func__, sal_info_type, total_len);
 443                }
 444                *buffer = (u8 *) log_buffer;
 445                return total_len;
 446        } else {
 447                IA64_LOG_UNLOCK(sal_info_type);
 448                return 0;
 449        }
 450}
 451
 452/*
 453 *  ia64_mca_log_sal_error_record
 454 *
 455 *  This function retrieves a specified error record type from SAL
 456 *  and wakes up any processes waiting for error records.
 457 *
 458 *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
 459 *              FIXME: remove MCA and irq_safe.
 460 */
 461static void
 462ia64_mca_log_sal_error_record(int sal_info_type)
 463{
 464        u8 *buffer;
 465        sal_log_record_header_t *rh;
 466        u64 size;
 467        int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
 468#ifdef IA64_MCA_DEBUG_INFO
 469        static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
 470#endif
 471
 472        size = ia64_log_get(sal_info_type, &buffer, irq_safe);
 473        if (!size)
 474                return;
 475
 476        salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
 477
 478        if (irq_safe)
 479                IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
 480                        smp_processor_id(),
 481                        sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
 482
 483        /* Clear logs from corrected errors in case there's no user-level logger */
 484        rh = (sal_log_record_header_t *)buffer;
 485        if (rh->severity == sal_log_severity_corrected)
 486                ia64_sal_clear_state_info(sal_info_type);
 487}
 488
 489/*
 490 * search_mca_table
 491 *  See if the MCA surfaced in an instruction range
 492 *  that has been tagged as recoverable.
 493 *
 494 *  Inputs
 495 *      first   First address range to check
 496 *      last    Last address range to check
 497 *      ip      Instruction pointer, address we are looking for
 498 *
 499 * Return value:
 500 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
 501 */
 502int
 503search_mca_table (const struct mca_table_entry *first,
 504                const struct mca_table_entry *last,
 505                unsigned long ip)
 506{
 507        const struct mca_table_entry *curr;
 508        u64 curr_start, curr_end;
 509
 510        curr = first;
 511        while (curr <= last) {
 512                curr_start = (u64) &curr->start_addr + curr->start_addr;
 513                curr_end = (u64) &curr->end_addr + curr->end_addr;
 514
 515                if ((ip >= curr_start) && (ip <= curr_end)) {
 516                        return 1;
 517                }
 518                curr++;
 519        }
 520        return 0;
 521}
 522
 523/* Given an address, look for it in the mca tables. */
 524int mca_recover_range(unsigned long addr)
 525{
 526        extern struct mca_table_entry __start___mca_table[];
 527        extern struct mca_table_entry __stop___mca_table[];
 528
 529        return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
 530}
 531EXPORT_SYMBOL_GPL(mca_recover_range);
 532
 533int cpe_vector = -1;
 534int ia64_cpe_irq = -1;
 535
 536static irqreturn_t
 537ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
 538{
 539        static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
 540        static int              index;
 541        static DEFINE_SPINLOCK(cpe_history_lock);
 542
 543        IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
 544                       __func__, cpe_irq, smp_processor_id());
 545
 546        /* SAL spec states this should run w/ interrupts enabled */
 547        local_irq_enable();
 548
 549        spin_lock(&cpe_history_lock);
 550        if (!cpe_poll_enabled && cpe_vector >= 0) {
 551
 552                int i, count = 1; /* we know 1 happened now */
 553                unsigned long now = jiffies;
 554
 555                for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
 556                        if (now - cpe_history[i] <= HZ)
 557                                count++;
 558                }
 559
 560                IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
 561                if (count >= CPE_HISTORY_LENGTH) {
 562
 563                        cpe_poll_enabled = 1;
 564                        spin_unlock(&cpe_history_lock);
 565                        disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
 566
 567                        /*
 568                         * Corrected errors will still be corrected, but
 569                         * make sure there's a log somewhere that indicates
 570                         * something is generating more than we can handle.
 571                         */
 572                        printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
 573
 574                        mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
 575
 576                        /* lock already released, get out now */
 577                        goto out;
 578                } else {
 579                        cpe_history[index++] = now;
 580                        if (index == CPE_HISTORY_LENGTH)
 581                                index = 0;
 582                }
 583        }
 584        spin_unlock(&cpe_history_lock);
 585out:
 586        /* Get the CPE error record and log it */
 587        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
 588
 589        local_irq_disable();
 590
 591        return IRQ_HANDLED;
 592}
 593
 594/*
 595 * ia64_mca_register_cpev
 596 *
 597 *  Register the corrected platform error vector with SAL.
 598 *
 599 *  Inputs
 600 *      cpev        Corrected Platform Error Vector number
 601 *
 602 *  Outputs
 603 *      None
 604 */
 605void
 606ia64_mca_register_cpev (int cpev)
 607{
 608        /* Register the CPE interrupt vector with SAL */
 609        struct ia64_sal_retval isrv;
 610
 611        isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
 612        if (isrv.status) {
 613                printk(KERN_ERR "Failed to register Corrected Platform "
 614                       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
 615                return;
 616        }
 617
 618        IA64_MCA_DEBUG("%s: corrected platform error "
 619                       "vector %#x registered\n", __func__, cpev);
 620}
 621
 622/*
 623 * ia64_mca_cmc_vector_setup
 624 *
 625 *  Setup the corrected machine check vector register in the processor.
 626 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
 627 *  This function is invoked on a per-processor basis.
 628 *
 629 * Inputs
 630 *      None
 631 *
 632 * Outputs
 633 *      None
 634 */
 635void
 636ia64_mca_cmc_vector_setup (void)
 637{
 638        cmcv_reg_t      cmcv;
 639
 640        cmcv.cmcv_regval        = 0;
 641        cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
 642        cmcv.cmcv_vector        = IA64_CMC_VECTOR;
 643        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 644
 645        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
 646                       __func__, smp_processor_id(), IA64_CMC_VECTOR);
 647
 648        IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
 649                       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
 650}
 651
 652/*
 653 * ia64_mca_cmc_vector_disable
 654 *
 655 *  Mask the corrected machine check vector register in the processor.
 656 *  This function is invoked on a per-processor basis.
 657 *
 658 * Inputs
 659 *      dummy(unused)
 660 *
 661 * Outputs
 662 *      None
 663 */
 664static void
 665ia64_mca_cmc_vector_disable (void *dummy)
 666{
 667        cmcv_reg_t      cmcv;
 668
 669        cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 670
 671        cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
 672        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 673
 674        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
 675                       __func__, smp_processor_id(), cmcv.cmcv_vector);
 676}
 677
 678/*
 679 * ia64_mca_cmc_vector_enable
 680 *
 681 *  Unmask the corrected machine check vector register in the processor.
 682 *  This function is invoked on a per-processor basis.
 683 *
 684 * Inputs
 685 *      dummy(unused)
 686 *
 687 * Outputs
 688 *      None
 689 */
 690static void
 691ia64_mca_cmc_vector_enable (void *dummy)
 692{
 693        cmcv_reg_t      cmcv;
 694
 695        cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 696
 697        cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
 698        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 699
 700        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
 701                       __func__, smp_processor_id(), cmcv.cmcv_vector);
 702}
 703
 704/*
 705 * ia64_mca_cmc_vector_disable_keventd
 706 *
 707 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 708 * disable the cmc interrupt vector.
 709 */
 710static void
 711ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
 712{
 713        on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
 714}
 715
 716/*
 717 * ia64_mca_cmc_vector_enable_keventd
 718 *
 719 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 720 * enable the cmc interrupt vector.
 721 */
 722static void
 723ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
 724{
 725        on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
 726}
 727
 728/*
 729 * ia64_mca_wakeup
 730 *
 731 *      Send an inter-cpu interrupt to wake-up a particular cpu.
 732 *
 733 *  Inputs  :   cpuid
 734 *  Outputs :   None
 735 */
 736static void
 737ia64_mca_wakeup(int cpu)
 738{
 739        ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
 740}
 741
 742/*
 743 * ia64_mca_wakeup_all
 744 *
 745 *      Wakeup all the slave cpus which have rendez'ed previously.
 746 *
 747 *  Inputs  :   None
 748 *  Outputs :   None
 749 */
 750static void
 751ia64_mca_wakeup_all(void)
 752{
 753        int cpu;
 754
 755        /* Clear the Rendez checkin flag for all cpus */
 756        for_each_online_cpu(cpu) {
 757                if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
 758                        ia64_mca_wakeup(cpu);
 759        }
 760
 761}
 762
 763/*
 764 * ia64_mca_rendez_interrupt_handler
 765 *
 766 *      This is handler used to put slave processors into spinloop
 767 *      while the monarch processor does the mca handling and later
 768 *      wake each slave up once the monarch is done.  The state
 769 *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
 770 *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
 771 *      the cpu has come out of OS rendezvous.
 772 *
 773 *  Inputs  :   None
 774 *  Outputs :   None
 775 */
 776static irqreturn_t
 777ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
 778{
 779        unsigned long flags;
 780        int cpu = smp_processor_id();
 781        struct ia64_mca_notify_die nd =
 782                { .sos = NULL, .monarch_cpu = &monarch_cpu };
 783
 784        /* Mask all interrupts */
 785        local_irq_save(flags);
 786
 787        NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
 788
 789        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
 790        /* Register with the SAL monarch that the slave has
 791         * reached SAL
 792         */
 793        ia64_sal_mc_rendez();
 794
 795        NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
 796
 797        /* Wait for the monarch cpu to exit. */
 798        while (monarch_cpu != -1)
 799               cpu_relax();     /* spin until monarch leaves */
 800
 801        NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
 802
 803        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
 804        /* Enable all interrupts */
 805        local_irq_restore(flags);
 806        return IRQ_HANDLED;
 807}
 808
 809/*
 810 * ia64_mca_wakeup_int_handler
 811 *
 812 *      The interrupt handler for processing the inter-cpu interrupt to the
 813 *      slave cpu which was spinning in the rendez loop.
 814 *      Since this spinning is done by turning off the interrupts and
 815 *      polling on the wakeup-interrupt bit in the IRR, there is
 816 *      nothing useful to be done in the handler.
 817 *
 818 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
 819 *      arg             (Interrupt handler specific argument)
 820 *  Outputs :   None
 821 *
 822 */
 823static irqreturn_t
 824ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
 825{
 826        return IRQ_HANDLED;
 827}
 828
 829/* Function pointer for extra MCA recovery */
 830int (*ia64_mca_ucmc_extension)
 831        (void*,struct ia64_sal_os_state*)
 832        = NULL;
 833
 834int
 835ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
 836{
 837        if (ia64_mca_ucmc_extension)
 838                return 1;
 839
 840        ia64_mca_ucmc_extension = fn;
 841        return 0;
 842}
 843
 844void
 845ia64_unreg_MCA_extension(void)
 846{
 847        if (ia64_mca_ucmc_extension)
 848                ia64_mca_ucmc_extension = NULL;
 849}
 850
 851EXPORT_SYMBOL(ia64_reg_MCA_extension);
 852EXPORT_SYMBOL(ia64_unreg_MCA_extension);
 853
 854
 855static inline void
 856copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
 857{
 858        u64 fslot, tslot, nat;
 859        *tr = *fr;
 860        fslot = ((unsigned long)fr >> 3) & 63;
 861        tslot = ((unsigned long)tr >> 3) & 63;
 862        *tnat &= ~(1UL << tslot);
 863        nat = (fnat >> fslot) & 1;
 864        *tnat |= (nat << tslot);
 865}
 866
 867/* Change the comm field on the MCA/INT task to include the pid that
 868 * was interrupted, it makes for easier debugging.  If that pid was 0
 869 * (swapper or nested MCA/INIT) then use the start of the previous comm
 870 * field suffixed with its cpu.
 871 */
 872
 873static void
 874ia64_mca_modify_comm(const struct task_struct *previous_current)
 875{
 876        char *p, comm[sizeof(current->comm)];
 877        if (previous_current->pid)
 878                snprintf(comm, sizeof(comm), "%s %d",
 879                        current->comm, previous_current->pid);
 880        else {
 881                int l;
 882                if ((p = strchr(previous_current->comm, ' ')))
 883                        l = p - previous_current->comm;
 884                else
 885                        l = strlen(previous_current->comm);
 886                snprintf(comm, sizeof(comm), "%s %*s %d",
 887                        current->comm, l, previous_current->comm,
 888                        task_thread_info(previous_current)->cpu);
 889        }
 890        memcpy(current->comm, comm, sizeof(current->comm));
 891}
 892
 893static void
 894finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
 895                unsigned long *nat)
 896{
 897        const pal_min_state_area_t *ms = sos->pal_min_state;
 898        const u64 *bank;
 899
 900        /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
 901         * pmsa_{xip,xpsr,xfs}
 902         */
 903        if (ia64_psr(regs)->ic) {
 904                regs->cr_iip = ms->pmsa_iip;
 905                regs->cr_ipsr = ms->pmsa_ipsr;
 906                regs->cr_ifs = ms->pmsa_ifs;
 907        } else {
 908                regs->cr_iip = ms->pmsa_xip;
 909                regs->cr_ipsr = ms->pmsa_xpsr;
 910                regs->cr_ifs = ms->pmsa_xfs;
 911
 912                sos->iip = ms->pmsa_iip;
 913                sos->ipsr = ms->pmsa_ipsr;
 914                sos->ifs = ms->pmsa_ifs;
 915        }
 916        regs->pr = ms->pmsa_pr;
 917        regs->b0 = ms->pmsa_br0;
 918        regs->ar_rsc = ms->pmsa_rsc;
 919        copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
 920        copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
 921        copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
 922        copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
 923        copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
 924        copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
 925        copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
 926        copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
 927        copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
 928        copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
 929        copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
 930        if (ia64_psr(regs)->bn)
 931                bank = ms->pmsa_bank1_gr;
 932        else
 933                bank = ms->pmsa_bank0_gr;
 934        copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
 935        copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
 936        copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
 937        copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
 938        copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
 939        copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
 940        copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
 941        copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
 942        copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
 943        copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
 944        copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
 945        copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
 946        copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
 947        copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
 948        copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
 949        copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
 950}
 951
 952/* On entry to this routine, we are running on the per cpu stack, see
 953 * mca_asm.h.  The original stack has not been touched by this event.  Some of
 954 * the original stack's registers will be in the RBS on this stack.  This stack
 955 * also contains a partial pt_regs and switch_stack, the rest of the data is in
 956 * PAL minstate.
 957 *
 958 * The first thing to do is modify the original stack to look like a blocked
 959 * task so we can run backtrace on the original task.  Also mark the per cpu
 960 * stack as current to ensure that we use the correct task state, it also means
 961 * that we can do backtrace on the MCA/INIT handler code itself.
 962 */
 963
 964static struct task_struct *
 965ia64_mca_modify_original_stack(struct pt_regs *regs,
 966                const struct switch_stack *sw,
 967                struct ia64_sal_os_state *sos,
 968                const char *type)
 969{
 970        char *p;
 971        ia64_va va;
 972        extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
 973        const pal_min_state_area_t *ms = sos->pal_min_state;
 974        struct task_struct *previous_current;
 975        struct pt_regs *old_regs;
 976        struct switch_stack *old_sw;
 977        unsigned size = sizeof(struct pt_regs) +
 978                        sizeof(struct switch_stack) + 16;
 979        unsigned long *old_bspstore, *old_bsp;
 980        unsigned long *new_bspstore, *new_bsp;
 981        unsigned long old_unat, old_rnat, new_rnat, nat;
 982        u64 slots, loadrs = regs->loadrs;
 983        u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
 984        u64 ar_bspstore = regs->ar_bspstore;
 985        u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
 986        const char *msg;
 987        int cpu = smp_processor_id();
 988
 989        previous_current = curr_task(cpu);
 990        ia64_set_curr_task(cpu, current);
 991        if ((p = strchr(current->comm, ' ')))
 992                *p = '\0';
 993
 994        /* Best effort attempt to cope with MCA/INIT delivered while in
 995         * physical mode.
 996         */
 997        regs->cr_ipsr = ms->pmsa_ipsr;
 998        if (ia64_psr(regs)->dt == 0) {
 999                va.l = r12;
1000                if (va.f.reg == 0) {
1001                        va.f.reg = 7;
1002                        r12 = va.l;
1003                }
1004                va.l = r13;
1005                if (va.f.reg == 0) {
1006                        va.f.reg = 7;
1007                        r13 = va.l;
1008                }
1009        }
1010        if (ia64_psr(regs)->rt == 0) {
1011                va.l = ar_bspstore;
1012                if (va.f.reg == 0) {
1013                        va.f.reg = 7;
1014                        ar_bspstore = va.l;
1015                }
1016                va.l = ar_bsp;
1017                if (va.f.reg == 0) {
1018                        va.f.reg = 7;
1019                        ar_bsp = va.l;
1020                }
1021        }
1022
1023        /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1024         * have been copied to the old stack, the old stack may fail the
1025         * validation tests below.  So ia64_old_stack() must restore the dirty
1026         * registers from the new stack.  The old and new bspstore probably
1027         * have different alignments, so loadrs calculated on the old bsp
1028         * cannot be used to restore from the new bsp.  Calculate a suitable
1029         * loadrs for the new stack and save it in the new pt_regs, where
1030         * ia64_old_stack() can get it.
1031         */
1032        old_bspstore = (unsigned long *)ar_bspstore;
1033        old_bsp = (unsigned long *)ar_bsp;
1034        slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1035        new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1036        new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1037        regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1038
1039        /* Verify the previous stack state before we change it */
1040        if (user_mode(regs)) {
1041                msg = "occurred in user space";
1042                /* previous_current is guaranteed to be valid when the task was
1043                 * in user space, so ...
1044                 */
1045                ia64_mca_modify_comm(previous_current);
1046                goto no_mod;
1047        }
1048
1049        if (r13 != sos->prev_IA64_KR_CURRENT) {
1050                msg = "inconsistent previous current and r13";
1051                goto no_mod;
1052        }
1053
1054        if (!mca_recover_range(ms->pmsa_iip)) {
1055                if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1056                        msg = "inconsistent r12 and r13";
1057                        goto no_mod;
1058                }
1059                if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1060                        msg = "inconsistent ar.bspstore and r13";
1061                        goto no_mod;
1062                }
1063                va.p = old_bspstore;
1064                if (va.f.reg < 5) {
1065                        msg = "old_bspstore is in the wrong region";
1066                        goto no_mod;
1067                }
1068                if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1069                        msg = "inconsistent ar.bsp and r13";
1070                        goto no_mod;
1071                }
1072                size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1073                if (ar_bspstore + size > r12) {
1074                        msg = "no room for blocked state";
1075                        goto no_mod;
1076                }
1077        }
1078
1079        ia64_mca_modify_comm(previous_current);
1080
1081        /* Make the original task look blocked.  First stack a struct pt_regs,
1082         * describing the state at the time of interrupt.  mca_asm.S built a
1083         * partial pt_regs, copy it and fill in the blanks using minstate.
1084         */
1085        p = (char *)r12 - sizeof(*regs);
1086        old_regs = (struct pt_regs *)p;
1087        memcpy(old_regs, regs, sizeof(*regs));
1088        old_regs->loadrs = loadrs;
1089        old_unat = old_regs->ar_unat;
1090        finish_pt_regs(old_regs, sos, &old_unat);
1091
1092        /* Next stack a struct switch_stack.  mca_asm.S built a partial
1093         * switch_stack, copy it and fill in the blanks using pt_regs and
1094         * minstate.
1095         *
1096         * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1097         * ar.pfs is set to 0.
1098         *
1099         * unwind.c::unw_unwind() does special processing for interrupt frames.
1100         * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1101         * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1102         * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1103         * switch_stack on the original stack so it will unwind correctly when
1104         * unwind.c reads pt_regs.
1105         *
1106         * thread.ksp is updated to point to the synthesized switch_stack.
1107         */
1108        p -= sizeof(struct switch_stack);
1109        old_sw = (struct switch_stack *)p;
1110        memcpy(old_sw, sw, sizeof(*sw));
1111        old_sw->caller_unat = old_unat;
1112        old_sw->ar_fpsr = old_regs->ar_fpsr;
1113        copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1114        copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1115        copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1116        copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1117        old_sw->b0 = (u64)ia64_leave_kernel;
1118        old_sw->b1 = ms->pmsa_br1;
1119        old_sw->ar_pfs = 0;
1120        old_sw->ar_unat = old_unat;
1121        old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1122        previous_current->thread.ksp = (u64)p - 16;
1123
1124        /* Finally copy the original stack's registers back to its RBS.
1125         * Registers from ar.bspstore through ar.bsp at the time of the event
1126         * are in the current RBS, copy them back to the original stack.  The
1127         * copy must be done register by register because the original bspstore
1128         * and the current one have different alignments, so the saved RNAT
1129         * data occurs at different places.
1130         *
1131         * mca_asm does cover, so the old_bsp already includes all registers at
1132         * the time of MCA/INIT.  It also does flushrs, so all registers before
1133         * this function have been written to backing store on the MCA/INIT
1134         * stack.
1135         */
1136        new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1137        old_rnat = regs->ar_rnat;
1138        while (slots--) {
1139                if (ia64_rse_is_rnat_slot(new_bspstore)) {
1140                        new_rnat = ia64_get_rnat(new_bspstore++);
1141                }
1142                if (ia64_rse_is_rnat_slot(old_bspstore)) {
1143                        *old_bspstore++ = old_rnat;
1144                        old_rnat = 0;
1145                }
1146                nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1147                old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1148                old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1149                *old_bspstore++ = *new_bspstore++;
1150        }
1151        old_sw->ar_bspstore = (unsigned long)old_bspstore;
1152        old_sw->ar_rnat = old_rnat;
1153
1154        sos->prev_task = previous_current;
1155        return previous_current;
1156
1157no_mod:
1158        mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1159                        smp_processor_id(), type, msg);
1160        old_unat = regs->ar_unat;
1161        finish_pt_regs(regs, sos, &old_unat);
1162        return previous_current;
1163}
1164
1165/* The monarch/slave interaction is based on monarch_cpu and requires that all
1166 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1167 * not entered rendezvous yet then wait a bit.  The assumption is that any
1168 * slave that has not rendezvoused after a reasonable time is never going to do
1169 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1170 * interrupt, as well as cpus that receive the INIT slave event.
1171 */
1172
1173static void
1174ia64_wait_for_slaves(int monarch, const char *type)
1175{
1176        int c, i , wait;
1177
1178        /*
1179         * wait 5 seconds total for slaves (arbitrary)
1180         */
1181        for (i = 0; i < 5000; i++) {
1182                wait = 0;
1183                for_each_online_cpu(c) {
1184                        if (c == monarch)
1185                                continue;
1186                        if (ia64_mc_info.imi_rendez_checkin[c]
1187                                        == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1188                                udelay(1000);           /* short wait */
1189                                wait = 1;
1190                                break;
1191                        }
1192                }
1193                if (!wait)
1194                        goto all_in;
1195        }
1196
1197        /*
1198         * Maybe slave(s) dead. Print buffered messages immediately.
1199         */
1200        ia64_mlogbuf_finish(0);
1201        mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1202        for_each_online_cpu(c) {
1203                if (c == monarch)
1204                        continue;
1205                if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1206                        mprintk(" %d", c);
1207        }
1208        mprintk("\n");
1209        return;
1210
1211all_in:
1212        mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1213        return;
1214}
1215
1216/*  mca_insert_tr
1217 *
1218 *  Switch rid when TR reload and needed!
1219 *  iord: 1: itr, 2: itr;
1220 *
1221*/
1222static void mca_insert_tr(u64 iord)
1223{
1224
1225        int i;
1226        u64 old_rr;
1227        struct ia64_tr_entry *p;
1228        unsigned long psr;
1229        int cpu = smp_processor_id();
1230
1231        if (!ia64_idtrs[cpu])
1232                return;
1233
1234        psr = ia64_clear_ic();
1235        for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1236                p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1237                if (p->pte & 0x1) {
1238                        old_rr = ia64_get_rr(p->ifa);
1239                        if (old_rr != p->rr) {
1240                                ia64_set_rr(p->ifa, p->rr);
1241                                ia64_srlz_d();
1242                        }
1243                        ia64_ptr(iord, p->ifa, p->itir >> 2);
1244                        ia64_srlz_i();
1245                        if (iord & 0x1) {
1246                                ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1247                                ia64_srlz_i();
1248                        }
1249                        if (iord & 0x2) {
1250                                ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1251                                ia64_srlz_i();
1252                        }
1253                        if (old_rr != p->rr) {
1254                                ia64_set_rr(p->ifa, old_rr);
1255                                ia64_srlz_d();
1256                        }
1257                }
1258        }
1259        ia64_set_psr(psr);
1260}
1261
1262/*
1263 * ia64_mca_handler
1264 *
1265 *      This is uncorrectable machine check handler called from OS_MCA
1266 *      dispatch code which is in turn called from SAL_CHECK().
1267 *      This is the place where the core of OS MCA handling is done.
1268 *      Right now the logs are extracted and displayed in a well-defined
1269 *      format. This handler code is supposed to be run only on the
1270 *      monarch processor. Once the monarch is done with MCA handling
1271 *      further MCA logging is enabled by clearing logs.
1272 *      Monarch also has the duty of sending wakeup-IPIs to pull the
1273 *      slave processors out of rendezvous spinloop.
1274 *
1275 *      If multiple processors call into OS_MCA, the first will become
1276 *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1277 *      bitmask.  After the first monarch has processed its MCA, it
1278 *      will wake up the next cpu in the mca_cpu bitmask and then go
1279 *      into the rendezvous loop.  When all processors have serviced
1280 *      their MCA, the last monarch frees up the rest of the processors.
1281 */
1282void
1283ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1284                 struct ia64_sal_os_state *sos)
1285{
1286        int recover, cpu = smp_processor_id();
1287        struct task_struct *previous_current;
1288        struct ia64_mca_notify_die nd =
1289                { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1290        static atomic_t mca_count;
1291        static cpumask_t mca_cpu;
1292
1293        if (atomic_add_return(1, &mca_count) == 1) {
1294                monarch_cpu = cpu;
1295                sos->monarch = 1;
1296        } else {
1297                cpumask_set_cpu(cpu, &mca_cpu);
1298                sos->monarch = 0;
1299        }
1300        mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1301                "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1302
1303        previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1304
1305        NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1306
1307        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1308        if (sos->monarch) {
1309                ia64_wait_for_slaves(cpu, "MCA");
1310
1311                /* Wakeup all the processors which are spinning in the
1312                 * rendezvous loop.  They will leave SAL, then spin in the OS
1313                 * with interrupts disabled until this monarch cpu leaves the
1314                 * MCA handler.  That gets control back to the OS so we can
1315                 * backtrace the other cpus, backtrace when spinning in SAL
1316                 * does not work.
1317                 */
1318                ia64_mca_wakeup_all();
1319        } else {
1320                while (cpumask_test_cpu(cpu, &mca_cpu))
1321                        cpu_relax();    /* spin until monarch wakes us */
1322        }
1323
1324        NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1325
1326        /* Get the MCA error record and log it */
1327        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1328
1329        /* MCA error recovery */
1330        recover = (ia64_mca_ucmc_extension
1331                && ia64_mca_ucmc_extension(
1332                        IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1333                        sos));
1334
1335        if (recover) {
1336                sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1337                rh->severity = sal_log_severity_corrected;
1338                ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1339                sos->os_status = IA64_MCA_CORRECTED;
1340        } else {
1341                /* Dump buffered message to console */
1342                ia64_mlogbuf_finish(1);
1343        }
1344
1345        if (__this_cpu_read(ia64_mca_tr_reload)) {
1346                mca_insert_tr(0x1); /*Reload dynamic itrs*/
1347                mca_insert_tr(0x2); /*Reload dynamic itrs*/
1348        }
1349
1350        NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1351
1352        if (atomic_dec_return(&mca_count) > 0) {
1353                int i;
1354
1355                /* wake up the next monarch cpu,
1356                 * and put this cpu in the rendez loop.
1357                 */
1358                for_each_online_cpu(i) {
1359                        if (cpumask_test_cpu(i, &mca_cpu)) {
1360                                monarch_cpu = i;
1361                                cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1362                                while (monarch_cpu != -1)
1363                                        cpu_relax();    /* spin until last cpu leaves */
1364                                ia64_set_curr_task(cpu, previous_current);
1365                                ia64_mc_info.imi_rendez_checkin[cpu]
1366                                                = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1367                                return;
1368                        }
1369                }
1370        }
1371        ia64_set_curr_task(cpu, previous_current);
1372        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1373        monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1374}
1375
1376static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1377static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1378
1379/*
1380 * ia64_mca_cmc_int_handler
1381 *
1382 *  This is corrected machine check interrupt handler.
1383 *      Right now the logs are extracted and displayed in a well-defined
1384 *      format.
1385 *
1386 * Inputs
1387 *      interrupt number
1388 *      client data arg ptr
1389 *
1390 * Outputs
1391 *      None
1392 */
1393static irqreturn_t
1394ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1395{
1396        static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1397        static int              index;
1398        static DEFINE_SPINLOCK(cmc_history_lock);
1399
1400        IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1401                       __func__, cmc_irq, smp_processor_id());
1402
1403        /* SAL spec states this should run w/ interrupts enabled */
1404        local_irq_enable();
1405
1406        spin_lock(&cmc_history_lock);
1407        if (!cmc_polling_enabled) {
1408                int i, count = 1; /* we know 1 happened now */
1409                unsigned long now = jiffies;
1410
1411                for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1412                        if (now - cmc_history[i] <= HZ)
1413                                count++;
1414                }
1415
1416                IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1417                if (count >= CMC_HISTORY_LENGTH) {
1418
1419                        cmc_polling_enabled = 1;
1420                        spin_unlock(&cmc_history_lock);
1421                        /* If we're being hit with CMC interrupts, we won't
1422                         * ever execute the schedule_work() below.  Need to
1423                         * disable CMC interrupts on this processor now.
1424                         */
1425                        ia64_mca_cmc_vector_disable(NULL);
1426                        schedule_work(&cmc_disable_work);
1427
1428                        /*
1429                         * Corrected errors will still be corrected, but
1430                         * make sure there's a log somewhere that indicates
1431                         * something is generating more than we can handle.
1432                         */
1433                        printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1434
1435                        mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1436
1437                        /* lock already released, get out now */
1438                        goto out;
1439                } else {
1440                        cmc_history[index++] = now;
1441                        if (index == CMC_HISTORY_LENGTH)
1442                                index = 0;
1443                }
1444        }
1445        spin_unlock(&cmc_history_lock);
1446out:
1447        /* Get the CMC error record and log it */
1448        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1449
1450        local_irq_disable();
1451
1452        return IRQ_HANDLED;
1453}
1454
1455/*
1456 *  ia64_mca_cmc_int_caller
1457 *
1458 *      Triggered by sw interrupt from CMC polling routine.  Calls
1459 *      real interrupt handler and either triggers a sw interrupt
1460 *      on the next cpu or does cleanup at the end.
1461 *
1462 * Inputs
1463 *      interrupt number
1464 *      client data arg ptr
1465 * Outputs
1466 *      handled
1467 */
1468static irqreturn_t
1469ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1470{
1471        static int start_count = -1;
1472        unsigned int cpuid;
1473
1474        cpuid = smp_processor_id();
1475
1476        /* If first cpu, update count */
1477        if (start_count == -1)
1478                start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1479
1480        ia64_mca_cmc_int_handler(cmc_irq, arg);
1481
1482        cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1483
1484        if (cpuid < nr_cpu_ids) {
1485                ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1486        } else {
1487                /* If no log record, switch out of polling mode */
1488                if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1489
1490                        printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1491                        schedule_work(&cmc_enable_work);
1492                        cmc_polling_enabled = 0;
1493
1494                } else {
1495
1496                        mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1497                }
1498
1499                start_count = -1;
1500        }
1501
1502        return IRQ_HANDLED;
1503}
1504
1505/*
1506 *  ia64_mca_cmc_poll
1507 *
1508 *      Poll for Corrected Machine Checks (CMCs)
1509 *
1510 * Inputs   :   dummy(unused)
1511 * Outputs  :   None
1512 *
1513 */
1514static void
1515ia64_mca_cmc_poll (struct timer_list *unused)
1516{
1517        /* Trigger a CMC interrupt cascade  */
1518        ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1519                                                        IA64_IPI_DM_INT, 0);
1520}
1521
1522/*
1523 *  ia64_mca_cpe_int_caller
1524 *
1525 *      Triggered by sw interrupt from CPE polling routine.  Calls
1526 *      real interrupt handler and either triggers a sw interrupt
1527 *      on the next cpu or does cleanup at the end.
1528 *
1529 * Inputs
1530 *      interrupt number
1531 *      client data arg ptr
1532 * Outputs
1533 *      handled
1534 */
1535static irqreturn_t
1536ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1537{
1538        static int start_count = -1;
1539        static int poll_time = MIN_CPE_POLL_INTERVAL;
1540        unsigned int cpuid;
1541
1542        cpuid = smp_processor_id();
1543
1544        /* If first cpu, update count */
1545        if (start_count == -1)
1546                start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1547
1548        ia64_mca_cpe_int_handler(cpe_irq, arg);
1549
1550        cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1551
1552        if (cpuid < NR_CPUS) {
1553                ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1554        } else {
1555                /*
1556                 * If a log was recorded, increase our polling frequency,
1557                 * otherwise, backoff or return to interrupt mode.
1558                 */
1559                if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1560                        poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1561                } else if (cpe_vector < 0) {
1562                        poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1563                } else {
1564                        poll_time = MIN_CPE_POLL_INTERVAL;
1565
1566                        printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1567                        enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1568                        cpe_poll_enabled = 0;
1569                }
1570
1571                if (cpe_poll_enabled)
1572                        mod_timer(&cpe_poll_timer, jiffies + poll_time);
1573                start_count = -1;
1574        }
1575
1576        return IRQ_HANDLED;
1577}
1578
1579/*
1580 *  ia64_mca_cpe_poll
1581 *
1582 *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1583 *      on first cpu, from there it will trickle through all the cpus.
1584 *
1585 * Inputs   :   dummy(unused)
1586 * Outputs  :   None
1587 *
1588 */
1589static void
1590ia64_mca_cpe_poll (struct timer_list *unused)
1591{
1592        /* Trigger a CPE interrupt cascade  */
1593        ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1594                                                        IA64_IPI_DM_INT, 0);
1595}
1596
1597static int
1598default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1599{
1600        int c;
1601        struct task_struct *g, *t;
1602        if (val != DIE_INIT_MONARCH_PROCESS)
1603                return NOTIFY_DONE;
1604#ifdef CONFIG_KEXEC
1605        if (atomic_read(&kdump_in_progress))
1606                return NOTIFY_DONE;
1607#endif
1608
1609        /*
1610         * FIXME: mlogbuf will brim over with INIT stack dumps.
1611         * To enable show_stack from INIT, we use oops_in_progress which should
1612         * be used in real oops. This would cause something wrong after INIT.
1613         */
1614        BREAK_LOGLEVEL(console_loglevel);
1615        ia64_mlogbuf_dump_from_init();
1616
1617        printk(KERN_ERR "Processes interrupted by INIT -");
1618        for_each_online_cpu(c) {
1619                struct ia64_sal_os_state *s;
1620                t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1621                s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1622                g = s->prev_task;
1623                if (g) {
1624                        if (g->pid)
1625                                printk(" %d", g->pid);
1626                        else
1627                                printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1628                }
1629        }
1630        printk("\n\n");
1631        if (read_trylock(&tasklist_lock)) {
1632                do_each_thread (g, t) {
1633                        printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1634                        show_stack(t, NULL);
1635                } while_each_thread (g, t);
1636                read_unlock(&tasklist_lock);
1637        }
1638        /* FIXME: This will not restore zapped printk locks. */
1639        RESTORE_LOGLEVEL(console_loglevel);
1640        return NOTIFY_DONE;
1641}
1642
1643/*
1644 * C portion of the OS INIT handler
1645 *
1646 * Called from ia64_os_init_dispatch
1647 *
1648 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1649 * this event.  This code is used for both monarch and slave INIT events, see
1650 * sos->monarch.
1651 *
1652 * All INIT events switch to the INIT stack and change the previous process to
1653 * blocked status.  If one of the INIT events is the monarch then we are
1654 * probably processing the nmi button/command.  Use the monarch cpu to dump all
1655 * the processes.  The slave INIT events all spin until the monarch cpu
1656 * returns.  We can also get INIT slave events for MCA, in which case the MCA
1657 * process is the monarch.
1658 */
1659
1660void
1661ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1662                  struct ia64_sal_os_state *sos)
1663{
1664        static atomic_t slaves;
1665        static atomic_t monarchs;
1666        struct task_struct *previous_current;
1667        int cpu = smp_processor_id();
1668        struct ia64_mca_notify_die nd =
1669                { .sos = sos, .monarch_cpu = &monarch_cpu };
1670
1671        NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1672
1673        mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1674                sos->proc_state_param, cpu, sos->monarch);
1675        salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1676
1677        previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1678        sos->os_status = IA64_INIT_RESUME;
1679
1680        /* FIXME: Workaround for broken proms that drive all INIT events as
1681         * slaves.  The last slave that enters is promoted to be a monarch.
1682         * Remove this code in September 2006, that gives platforms a year to
1683         * fix their proms and get their customers updated.
1684         */
1685        if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1686                mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1687                        __func__, cpu);
1688                atomic_dec(&slaves);
1689                sos->monarch = 1;
1690        }
1691
1692        /* FIXME: Workaround for broken proms that drive all INIT events as
1693         * monarchs.  Second and subsequent monarchs are demoted to slaves.
1694         * Remove this code in September 2006, that gives platforms a year to
1695         * fix their proms and get their customers updated.
1696         */
1697        if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1698                mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1699                               __func__, cpu);
1700                atomic_dec(&monarchs);
1701                sos->monarch = 0;
1702        }
1703
1704        if (!sos->monarch) {
1705                ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1706
1707#ifdef CONFIG_KEXEC
1708                while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1709                        udelay(1000);
1710#else
1711                while (monarch_cpu == -1)
1712                        cpu_relax();    /* spin until monarch enters */
1713#endif
1714
1715                NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1716                NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1717
1718#ifdef CONFIG_KEXEC
1719                while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1720                        udelay(1000);
1721#else
1722                while (monarch_cpu != -1)
1723                        cpu_relax();    /* spin until monarch leaves */
1724#endif
1725
1726                NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1727
1728                mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1729                ia64_set_curr_task(cpu, previous_current);
1730                ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1731                atomic_dec(&slaves);
1732                return;
1733        }
1734
1735        monarch_cpu = cpu;
1736        NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1737
1738        /*
1739         * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1740         * generated via the BMC's command-line interface, but since the console is on the
1741         * same serial line, the user will need some time to switch out of the BMC before
1742         * the dump begins.
1743         */
1744        mprintk("Delaying for 5 seconds...\n");
1745        udelay(5*1000000);
1746        ia64_wait_for_slaves(cpu, "INIT");
1747        /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1748         * to default_monarch_init_process() above and just print all the
1749         * tasks.
1750         */
1751        NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1752        NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1753
1754        mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1755        atomic_dec(&monarchs);
1756        ia64_set_curr_task(cpu, previous_current);
1757        monarch_cpu = -1;
1758        return;
1759}
1760
1761static int __init
1762ia64_mca_disable_cpe_polling(char *str)
1763{
1764        cpe_poll_enabled = 0;
1765        return 1;
1766}
1767
1768__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1769
1770/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1771 * these stacks can never sleep, they cannot return from the kernel to user
1772 * space, they do not appear in a normal ps listing.  So there is no need to
1773 * format most of the fields.
1774 */
1775
1776static void
1777format_mca_init_stack(void *mca_data, unsigned long offset,
1778                const char *type, int cpu)
1779{
1780        struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1781        struct thread_info *ti;
1782        memset(p, 0, KERNEL_STACK_SIZE);
1783        ti = task_thread_info(p);
1784        ti->flags = _TIF_MCA_INIT;
1785        ti->preempt_count = 1;
1786        ti->task = p;
1787        ti->cpu = cpu;
1788        p->stack = ti;
1789        p->state = TASK_UNINTERRUPTIBLE;
1790        cpumask_set_cpu(cpu, &p->cpus_mask);
1791        INIT_LIST_HEAD(&p->tasks);
1792        p->parent = p->real_parent = p->group_leader = p;
1793        INIT_LIST_HEAD(&p->children);
1794        INIT_LIST_HEAD(&p->sibling);
1795        strncpy(p->comm, type, sizeof(p->comm)-1);
1796}
1797
1798/* Caller prevents this from being called after init */
1799static void * __ref mca_bootmem(void)
1800{
1801        return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1802}
1803
1804/* Do per-CPU MCA-related initialization.  */
1805void
1806ia64_mca_cpu_init(void *cpu_data)
1807{
1808        void *pal_vaddr;
1809        void *data;
1810        long sz = sizeof(struct ia64_mca_cpu);
1811        int cpu = smp_processor_id();
1812        static int first_time = 1;
1813
1814        /*
1815         * Structure will already be allocated if cpu has been online,
1816         * then offlined.
1817         */
1818        if (__per_cpu_mca[cpu]) {
1819                data = __va(__per_cpu_mca[cpu]);
1820        } else {
1821                if (first_time) {
1822                        data = mca_bootmem();
1823                        first_time = 0;
1824                } else
1825                        data = (void *)__get_free_pages(GFP_KERNEL,
1826                                                        get_order(sz));
1827                if (!data)
1828                        panic("Could not allocate MCA memory for cpu %d\n",
1829                                        cpu);
1830        }
1831        format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1832                "MCA", cpu);
1833        format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1834                "INIT", cpu);
1835        __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1836
1837        /*
1838         * Stash away a copy of the PTE needed to map the per-CPU page.
1839         * We may need it during MCA recovery.
1840         */
1841        __this_cpu_write(ia64_mca_per_cpu_pte,
1842                pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1843
1844        /*
1845         * Also, stash away a copy of the PAL address and the PTE
1846         * needed to map it.
1847         */
1848        pal_vaddr = efi_get_pal_addr();
1849        if (!pal_vaddr)
1850                return;
1851        __this_cpu_write(ia64_mca_pal_base,
1852                GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1853        __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1854                                                              PAGE_KERNEL)));
1855}
1856
1857static int ia64_mca_cpu_online(unsigned int cpu)
1858{
1859        unsigned long flags;
1860
1861        local_irq_save(flags);
1862        if (!cmc_polling_enabled)
1863                ia64_mca_cmc_vector_enable(NULL);
1864        local_irq_restore(flags);
1865        return 0;
1866}
1867
1868/*
1869 * ia64_mca_init
1870 *
1871 *  Do all the system level mca specific initialization.
1872 *
1873 *      1. Register spinloop and wakeup request interrupt vectors
1874 *
1875 *      2. Register OS_MCA handler entry point
1876 *
1877 *      3. Register OS_INIT handler entry point
1878 *
1879 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1880 *
1881 *  Note that this initialization is done very early before some kernel
1882 *  services are available.
1883 *
1884 *  Inputs  :   None
1885 *
1886 *  Outputs :   None
1887 */
1888void __init
1889ia64_mca_init(void)
1890{
1891        ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1892        ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1893        ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1894        int i;
1895        long rc;
1896        struct ia64_sal_retval isrv;
1897        unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1898        static struct notifier_block default_init_monarch_nb = {
1899                .notifier_call = default_monarch_init_process,
1900                .priority = 0/* we need to notified last */
1901        };
1902
1903        IA64_MCA_DEBUG("%s: begin\n", __func__);
1904
1905        /* Clear the Rendez checkin flag for all cpus */
1906        for(i = 0 ; i < NR_CPUS; i++)
1907                ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1908
1909        /*
1910         * Register the rendezvous spinloop and wakeup mechanism with SAL
1911         */
1912
1913        /* Register the rendezvous interrupt vector with SAL */
1914        while (1) {
1915                isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1916                                              SAL_MC_PARAM_MECHANISM_INT,
1917                                              IA64_MCA_RENDEZ_VECTOR,
1918                                              timeout,
1919                                              SAL_MC_PARAM_RZ_ALWAYS);
1920                rc = isrv.status;
1921                if (rc == 0)
1922                        break;
1923                if (rc == -2) {
1924                        printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1925                                "%ld to %ld milliseconds\n", timeout, isrv.v0);
1926                        timeout = isrv.v0;
1927                        NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1928                        continue;
1929                }
1930                printk(KERN_ERR "Failed to register rendezvous interrupt "
1931                       "with SAL (status %ld)\n", rc);
1932                return;
1933        }
1934
1935        /* Register the wakeup interrupt vector with SAL */
1936        isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1937                                      SAL_MC_PARAM_MECHANISM_INT,
1938                                      IA64_MCA_WAKEUP_VECTOR,
1939                                      0, 0);
1940        rc = isrv.status;
1941        if (rc) {
1942                printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1943                       "(status %ld)\n", rc);
1944                return;
1945        }
1946
1947        IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1948
1949        ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1950        /*
1951         * XXX - disable SAL checksum by setting size to 0; should be
1952         *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1953         */
1954        ia64_mc_info.imi_mca_handler_size       = 0;
1955
1956        /* Register the os mca handler with SAL */
1957        if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1958                                       ia64_mc_info.imi_mca_handler,
1959                                       ia64_tpa(mca_hldlr_ptr->gp),
1960                                       ia64_mc_info.imi_mca_handler_size,
1961                                       0, 0, 0)))
1962        {
1963                printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1964                       "(status %ld)\n", rc);
1965                return;
1966        }
1967
1968        IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1969                       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1970
1971        /*
1972         * XXX - disable SAL checksum by setting size to 0, should be
1973         * size of the actual init handler in mca_asm.S.
1974         */
1975        ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1976        ia64_mc_info.imi_monarch_init_handler_size      = 0;
1977        ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1978        ia64_mc_info.imi_slave_init_handler_size        = 0;
1979
1980        IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1981                       ia64_mc_info.imi_monarch_init_handler);
1982
1983        /* Register the os init handler with SAL */
1984        if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1985                                       ia64_mc_info.imi_monarch_init_handler,
1986                                       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1987                                       ia64_mc_info.imi_monarch_init_handler_size,
1988                                       ia64_mc_info.imi_slave_init_handler,
1989                                       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1990                                       ia64_mc_info.imi_slave_init_handler_size)))
1991        {
1992                printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1993                       "(status %ld)\n", rc);
1994                return;
1995        }
1996        if (register_die_notifier(&default_init_monarch_nb)) {
1997                printk(KERN_ERR "Failed to register default monarch INIT process\n");
1998                return;
1999        }
2000
2001        IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2002
2003        /* Initialize the areas set aside by the OS to buffer the
2004         * platform/processor error states for MCA/INIT/CMC
2005         * handling.
2006         */
2007        ia64_log_init(SAL_INFO_TYPE_MCA);
2008        ia64_log_init(SAL_INFO_TYPE_INIT);
2009        ia64_log_init(SAL_INFO_TYPE_CMC);
2010        ia64_log_init(SAL_INFO_TYPE_CPE);
2011
2012        mca_init = 1;
2013        printk(KERN_INFO "MCA related initialization done\n");
2014}
2015
2016
2017/*
2018 * These pieces cannot be done in ia64_mca_init() because it is called before
2019 * early_irq_init() which would wipe out our percpu irq registrations. But we
2020 * cannot leave them until ia64_mca_late_init() because by then all the other
2021 * processors have been brought online and have set their own CMC vectors to
2022 * point at a non-existant action. Called from arch_early_irq_init().
2023 */
2024void __init ia64_mca_irq_init(void)
2025{
2026        /*
2027         *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2028         *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2029         */
2030        register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2031                            "cmc_hndlr");
2032        register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2033                            "cmc_poll");
2034        ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2035
2036        /* Setup the MCA rendezvous interrupt vector */
2037        register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2038                            0, "mca_rdzv");
2039
2040        /* Setup the MCA wakeup interrupt vector */
2041        register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2042                            0, "mca_wkup");
2043
2044        /* Setup the CPEI/P handler */
2045        register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2046                            "cpe_poll");
2047}
2048
2049/*
2050 * ia64_mca_late_init
2051 *
2052 *      Opportunity to setup things that require initialization later
2053 *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2054 *      platform doesn't support an interrupt driven mechanism.
2055 *
2056 *  Inputs  :   None
2057 *  Outputs :   Status
2058 */
2059static int __init
2060ia64_mca_late_init(void)
2061{
2062        if (!mca_init)
2063                return 0;
2064
2065        /* Setup the CMCI/P vector and handler */
2066        timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2067
2068        /* Unmask/enable the vector */
2069        cmc_polling_enabled = 0;
2070        cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2071                          ia64_mca_cpu_online, NULL);
2072        IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2073
2074        /* Setup the CPEI/P vector and handler */
2075        cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2076        timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2077
2078        {
2079                unsigned int irq;
2080
2081                if (cpe_vector >= 0) {
2082                        /* If platform supports CPEI, enable the irq. */
2083                        irq = local_vector_to_irq(cpe_vector);
2084                        if (irq > 0) {
2085                                cpe_poll_enabled = 0;
2086                                irq_set_status_flags(irq, IRQ_PER_CPU);
2087                                if (request_irq(irq, ia64_mca_cpe_int_handler,
2088                                                0, "cpe_hndlr", NULL))
2089                                        pr_err("Failed to register cpe_hndlr interrupt\n");
2090                                ia64_cpe_irq = irq;
2091                                ia64_mca_register_cpev(cpe_vector);
2092                                IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2093                                        __func__);
2094                                return 0;
2095                        }
2096                        printk(KERN_ERR "%s: Failed to find irq for CPE "
2097                                        "interrupt handler, vector %d\n",
2098                                        __func__, cpe_vector);
2099                }
2100                /* If platform doesn't support CPEI, get the timer going. */
2101                if (cpe_poll_enabled) {
2102                        ia64_mca_cpe_poll(0UL);
2103                        IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2104                }
2105        }
2106
2107        return 0;
2108}
2109
2110device_initcall(ia64_mca_late_init);
2111