linux/arch/powerpc/kernel/eeh_pe.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * The file intends to implement PE based on the information from
   4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
   5 * All the PEs should be organized as hierarchy tree. The first level
   6 * of the tree will be associated to existing PHBs since the particular
   7 * PE is only meaningful in one PHB domain.
   8 *
   9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
  10 */
  11
  12#include <linux/delay.h>
  13#include <linux/export.h>
  14#include <linux/gfp.h>
  15#include <linux/kernel.h>
  16#include <linux/pci.h>
  17#include <linux/string.h>
  18
  19#include <asm/pci-bridge.h>
  20#include <asm/ppc-pci.h>
  21
  22static int eeh_pe_aux_size = 0;
  23static LIST_HEAD(eeh_phb_pe);
  24
  25/**
  26 * eeh_set_pe_aux_size - Set PE auxillary data size
  27 * @size: PE auxillary data size
  28 *
  29 * Set PE auxillary data size
  30 */
  31void eeh_set_pe_aux_size(int size)
  32{
  33        if (size < 0)
  34                return;
  35
  36        eeh_pe_aux_size = size;
  37}
  38
  39/**
  40 * eeh_pe_alloc - Allocate PE
  41 * @phb: PCI controller
  42 * @type: PE type
  43 *
  44 * Allocate PE instance dynamically.
  45 */
  46static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
  47{
  48        struct eeh_pe *pe;
  49        size_t alloc_size;
  50
  51        alloc_size = sizeof(struct eeh_pe);
  52        if (eeh_pe_aux_size) {
  53                alloc_size = ALIGN(alloc_size, cache_line_size());
  54                alloc_size += eeh_pe_aux_size;
  55        }
  56
  57        /* Allocate PHB PE */
  58        pe = kzalloc(alloc_size, GFP_KERNEL);
  59        if (!pe) return NULL;
  60
  61        /* Initialize PHB PE */
  62        pe->type = type;
  63        pe->phb = phb;
  64        INIT_LIST_HEAD(&pe->child_list);
  65        INIT_LIST_HEAD(&pe->edevs);
  66
  67        pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
  68                                      cache_line_size());
  69        return pe;
  70}
  71
  72/**
  73 * eeh_phb_pe_create - Create PHB PE
  74 * @phb: PCI controller
  75 *
  76 * The function should be called while the PHB is detected during
  77 * system boot or PCI hotplug in order to create PHB PE.
  78 */
  79int eeh_phb_pe_create(struct pci_controller *phb)
  80{
  81        struct eeh_pe *pe;
  82
  83        /* Allocate PHB PE */
  84        pe = eeh_pe_alloc(phb, EEH_PE_PHB);
  85        if (!pe) {
  86                pr_err("%s: out of memory!\n", __func__);
  87                return -ENOMEM;
  88        }
  89
  90        /* Put it into the list */
  91        list_add_tail(&pe->child, &eeh_phb_pe);
  92
  93        pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
  94
  95        return 0;
  96}
  97
  98/**
  99 * eeh_wait_state - Wait for PE state
 100 * @pe: EEH PE
 101 * @max_wait: maximal period in millisecond
 102 *
 103 * Wait for the state of associated PE. It might take some time
 104 * to retrieve the PE's state.
 105 */
 106int eeh_wait_state(struct eeh_pe *pe, int max_wait)
 107{
 108        int ret;
 109        int mwait;
 110
 111        /*
 112         * According to PAPR, the state of PE might be temporarily
 113         * unavailable. Under the circumstance, we have to wait
 114         * for indicated time determined by firmware. The maximal
 115         * wait time is 5 minutes, which is acquired from the original
 116         * EEH implementation. Also, the original implementation
 117         * also defined the minimal wait time as 1 second.
 118         */
 119#define EEH_STATE_MIN_WAIT_TIME (1000)
 120#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
 121
 122        while (1) {
 123                ret = eeh_ops->get_state(pe, &mwait);
 124
 125                if (ret != EEH_STATE_UNAVAILABLE)
 126                        return ret;
 127
 128                if (max_wait <= 0) {
 129                        pr_warn("%s: Timeout when getting PE's state (%d)\n",
 130                                __func__, max_wait);
 131                        return EEH_STATE_NOT_SUPPORT;
 132                }
 133
 134                if (mwait < EEH_STATE_MIN_WAIT_TIME) {
 135                        pr_warn("%s: Firmware returned bad wait value %d\n",
 136                                __func__, mwait);
 137                        mwait = EEH_STATE_MIN_WAIT_TIME;
 138                } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
 139                        pr_warn("%s: Firmware returned too long wait value %d\n",
 140                                __func__, mwait);
 141                        mwait = EEH_STATE_MAX_WAIT_TIME;
 142                }
 143
 144                msleep(min(mwait, max_wait));
 145                max_wait -= mwait;
 146        }
 147}
 148
 149/**
 150 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
 151 * @phb: PCI controller
 152 *
 153 * The overall PEs form hierarchy tree. The first layer of the
 154 * hierarchy tree is composed of PHB PEs. The function is used
 155 * to retrieve the corresponding PHB PE according to the given PHB.
 156 */
 157struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
 158{
 159        struct eeh_pe *pe;
 160
 161        list_for_each_entry(pe, &eeh_phb_pe, child) {
 162                /*
 163                 * Actually, we needn't check the type since
 164                 * the PE for PHB has been determined when that
 165                 * was created.
 166                 */
 167                if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
 168                        return pe;
 169        }
 170
 171        return NULL;
 172}
 173
 174/**
 175 * eeh_pe_next - Retrieve the next PE in the tree
 176 * @pe: current PE
 177 * @root: root PE
 178 *
 179 * The function is used to retrieve the next PE in the
 180 * hierarchy PE tree.
 181 */
 182struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
 183{
 184        struct list_head *next = pe->child_list.next;
 185
 186        if (next == &pe->child_list) {
 187                while (1) {
 188                        if (pe == root)
 189                                return NULL;
 190                        next = pe->child.next;
 191                        if (next != &pe->parent->child_list)
 192                                break;
 193                        pe = pe->parent;
 194                }
 195        }
 196
 197        return list_entry(next, struct eeh_pe, child);
 198}
 199
 200/**
 201 * eeh_pe_traverse - Traverse PEs in the specified PHB
 202 * @root: root PE
 203 * @fn: callback
 204 * @flag: extra parameter to callback
 205 *
 206 * The function is used to traverse the specified PE and its
 207 * child PEs. The traversing is to be terminated once the
 208 * callback returns something other than NULL, or no more PEs
 209 * to be traversed.
 210 */
 211void *eeh_pe_traverse(struct eeh_pe *root,
 212                      eeh_pe_traverse_func fn, void *flag)
 213{
 214        struct eeh_pe *pe;
 215        void *ret;
 216
 217        eeh_for_each_pe(root, pe) {
 218                ret = fn(pe, flag);
 219                if (ret) return ret;
 220        }
 221
 222        return NULL;
 223}
 224
 225/**
 226 * eeh_pe_dev_traverse - Traverse the devices from the PE
 227 * @root: EEH PE
 228 * @fn: function callback
 229 * @flag: extra parameter to callback
 230 *
 231 * The function is used to traverse the devices of the specified
 232 * PE and its child PEs.
 233 */
 234void eeh_pe_dev_traverse(struct eeh_pe *root,
 235                          eeh_edev_traverse_func fn, void *flag)
 236{
 237        struct eeh_pe *pe;
 238        struct eeh_dev *edev, *tmp;
 239
 240        if (!root) {
 241                pr_warn("%s: Invalid PE %p\n",
 242                        __func__, root);
 243                return;
 244        }
 245
 246        /* Traverse root PE */
 247        eeh_for_each_pe(root, pe)
 248                eeh_pe_for_each_dev(pe, edev, tmp)
 249                        fn(edev, flag);
 250}
 251
 252/**
 253 * __eeh_pe_get - Check the PE address
 254 * @data: EEH PE
 255 * @flag: EEH device
 256 *
 257 * For one particular PE, it can be identified by PE address
 258 * or tranditional BDF address. BDF address is composed of
 259 * Bus/Device/Function number. The extra data referred by flag
 260 * indicates which type of address should be used.
 261 */
 262struct eeh_pe_get_flag {
 263        int pe_no;
 264        int config_addr;
 265};
 266
 267static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
 268{
 269        struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
 270
 271        /* Unexpected PHB PE */
 272        if (pe->type & EEH_PE_PHB)
 273                return NULL;
 274
 275        /*
 276         * We prefer PE address. For most cases, we should
 277         * have non-zero PE address
 278         */
 279        if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
 280                if (tmp->pe_no == pe->addr)
 281                        return pe;
 282        } else {
 283                if (tmp->pe_no &&
 284                    (tmp->pe_no == pe->addr))
 285                        return pe;
 286        }
 287
 288        /* Try BDF address */
 289        if (tmp->config_addr &&
 290           (tmp->config_addr == pe->config_addr))
 291                return pe;
 292
 293        return NULL;
 294}
 295
 296/**
 297 * eeh_pe_get - Search PE based on the given address
 298 * @phb: PCI controller
 299 * @pe_no: PE number
 300 * @config_addr: Config address
 301 *
 302 * Search the corresponding PE based on the specified address which
 303 * is included in the eeh device. The function is used to check if
 304 * the associated PE has been created against the PE address. It's
 305 * notable that the PE address has 2 format: traditional PE address
 306 * which is composed of PCI bus/device/function number, or unified
 307 * PE address.
 308 */
 309struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
 310                int pe_no, int config_addr)
 311{
 312        struct eeh_pe *root = eeh_phb_pe_get(phb);
 313        struct eeh_pe_get_flag tmp = { pe_no, config_addr };
 314        struct eeh_pe *pe;
 315
 316        pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
 317
 318        return pe;
 319}
 320
 321/**
 322 * eeh_pe_get_parent - Retrieve the parent PE
 323 * @edev: EEH device
 324 *
 325 * The whole PEs existing in the system are organized as hierarchy
 326 * tree. The function is used to retrieve the parent PE according
 327 * to the parent EEH device.
 328 */
 329static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
 330{
 331        struct eeh_dev *parent;
 332        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 333
 334        /*
 335         * It might have the case for the indirect parent
 336         * EEH device already having associated PE, but
 337         * the direct parent EEH device doesn't have yet.
 338         */
 339        if (edev->physfn)
 340                pdn = pci_get_pdn(edev->physfn);
 341        else
 342                pdn = pdn ? pdn->parent : NULL;
 343        while (pdn) {
 344                /* We're poking out of PCI territory */
 345                parent = pdn_to_eeh_dev(pdn);
 346                if (!parent)
 347                        return NULL;
 348
 349                if (parent->pe)
 350                        return parent->pe;
 351
 352                pdn = pdn->parent;
 353        }
 354
 355        return NULL;
 356}
 357
 358/**
 359 * eeh_add_to_parent_pe - Add EEH device to parent PE
 360 * @edev: EEH device
 361 *
 362 * Add EEH device to the parent PE. If the parent PE already
 363 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
 364 * we have to create new PE to hold the EEH device and the new
 365 * PE will be linked to its parent PE as well.
 366 */
 367int eeh_add_to_parent_pe(struct eeh_dev *edev)
 368{
 369        struct eeh_pe *pe, *parent;
 370        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 371        int config_addr = (pdn->busno << 8) | (pdn->devfn);
 372
 373        /* Check if the PE number is valid */
 374        if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
 375                eeh_edev_err(edev, "PE#0 is invalid for this PHB!\n");
 376                return -EINVAL;
 377        }
 378
 379        /*
 380         * Search the PE has been existing or not according
 381         * to the PE address. If that has been existing, the
 382         * PE should be composed of PCI bus and its subordinate
 383         * components.
 384         */
 385        pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
 386        if (pe) {
 387                if (pe->type & EEH_PE_INVALID) {
 388                        list_add_tail(&edev->entry, &pe->edevs);
 389                        edev->pe = pe;
 390                        /*
 391                         * We're running to here because of PCI hotplug caused by
 392                         * EEH recovery. We need clear EEH_PE_INVALID until the top.
 393                         */
 394                        parent = pe;
 395                        while (parent) {
 396                                if (!(parent->type & EEH_PE_INVALID))
 397                                        break;
 398                                parent->type &= ~EEH_PE_INVALID;
 399                                parent = parent->parent;
 400                        }
 401
 402                        eeh_edev_dbg(edev,
 403                                     "Added to device PE (parent: PE#%x)\n",
 404                                     pe->parent->addr);
 405                } else {
 406                        /* Mark the PE as type of PCI bus */
 407                        pe->type = EEH_PE_BUS;
 408                        edev->pe = pe;
 409
 410                        /* Put the edev to PE */
 411                        list_add_tail(&edev->entry, &pe->edevs);
 412                        eeh_edev_dbg(edev, "Added to bus PE\n");
 413                }
 414                return 0;
 415        }
 416
 417        /* Create a new EEH PE */
 418        if (edev->physfn)
 419                pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
 420        else
 421                pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
 422        if (!pe) {
 423                pr_err("%s: out of memory!\n", __func__);
 424                return -ENOMEM;
 425        }
 426        pe->addr        = edev->pe_config_addr;
 427        pe->config_addr = config_addr;
 428
 429        /*
 430         * Put the new EEH PE into hierarchy tree. If the parent
 431         * can't be found, the newly created PE will be attached
 432         * to PHB directly. Otherwise, we have to associate the
 433         * PE with its parent.
 434         */
 435        parent = eeh_pe_get_parent(edev);
 436        if (!parent) {
 437                parent = eeh_phb_pe_get(pdn->phb);
 438                if (!parent) {
 439                        pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
 440                                __func__, pdn->phb->global_number);
 441                        edev->pe = NULL;
 442                        kfree(pe);
 443                        return -EEXIST;
 444                }
 445        }
 446        pe->parent = parent;
 447
 448        /*
 449         * Put the newly created PE into the child list and
 450         * link the EEH device accordingly.
 451         */
 452        list_add_tail(&pe->child, &parent->child_list);
 453        list_add_tail(&edev->entry, &pe->edevs);
 454        edev->pe = pe;
 455        eeh_edev_dbg(edev, "Added to device PE (parent: PE#%x)\n",
 456                     pe->parent->addr);
 457
 458        return 0;
 459}
 460
 461/**
 462 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
 463 * @edev: EEH device
 464 *
 465 * The PE hierarchy tree might be changed when doing PCI hotplug.
 466 * Also, the PCI devices or buses could be removed from the system
 467 * during EEH recovery. So we have to call the function remove the
 468 * corresponding PE accordingly if necessary.
 469 */
 470int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
 471{
 472        struct eeh_pe *pe, *parent, *child;
 473        bool keep, recover;
 474        int cnt;
 475
 476        pe = eeh_dev_to_pe(edev);
 477        if (!pe) {
 478                eeh_edev_dbg(edev, "No PE found for device.\n");
 479                return -EEXIST;
 480        }
 481
 482        /* Remove the EEH device */
 483        edev->pe = NULL;
 484        list_del(&edev->entry);
 485
 486        /*
 487         * Check if the parent PE includes any EEH devices.
 488         * If not, we should delete that. Also, we should
 489         * delete the parent PE if it doesn't have associated
 490         * child PEs and EEH devices.
 491         */
 492        while (1) {
 493                parent = pe->parent;
 494
 495                /* PHB PEs should never be removed */
 496                if (pe->type & EEH_PE_PHB)
 497                        break;
 498
 499                /*
 500                 * XXX: KEEP is set while resetting a PE. I don't think it's
 501                 * ever set without RECOVERING also being set. I could
 502                 * be wrong though so catch that with a WARN.
 503                 */
 504                keep = !!(pe->state & EEH_PE_KEEP);
 505                recover = !!(pe->state & EEH_PE_RECOVERING);
 506                WARN_ON(keep && !recover);
 507
 508                if (!keep && !recover) {
 509                        if (list_empty(&pe->edevs) &&
 510                            list_empty(&pe->child_list)) {
 511                                list_del(&pe->child);
 512                                kfree(pe);
 513                        } else {
 514                                break;
 515                        }
 516                } else {
 517                        /*
 518                         * Mark the PE as invalid. At the end of the recovery
 519                         * process any invalid PEs will be garbage collected.
 520                         *
 521                         * We need to delay the free()ing of them since we can
 522                         * remove edev's while traversing the PE tree which
 523                         * might trigger the removal of a PE and we can't
 524                         * deal with that (yet).
 525                         */
 526                        if (list_empty(&pe->edevs)) {
 527                                cnt = 0;
 528                                list_for_each_entry(child, &pe->child_list, child) {
 529                                        if (!(child->type & EEH_PE_INVALID)) {
 530                                                cnt++;
 531                                                break;
 532                                        }
 533                                }
 534
 535                                if (!cnt)
 536                                        pe->type |= EEH_PE_INVALID;
 537                                else
 538                                        break;
 539                        }
 540                }
 541
 542                pe = parent;
 543        }
 544
 545        return 0;
 546}
 547
 548/**
 549 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
 550 * @pe: EEH PE
 551 *
 552 * We have time stamp for each PE to trace its time of getting
 553 * frozen in last hour. The function should be called to update
 554 * the time stamp on first error of the specific PE. On the other
 555 * handle, we needn't account for errors happened in last hour.
 556 */
 557void eeh_pe_update_time_stamp(struct eeh_pe *pe)
 558{
 559        time64_t tstamp;
 560
 561        if (!pe) return;
 562
 563        if (pe->freeze_count <= 0) {
 564                pe->freeze_count = 0;
 565                pe->tstamp = ktime_get_seconds();
 566        } else {
 567                tstamp = ktime_get_seconds();
 568                if (tstamp - pe->tstamp > 3600) {
 569                        pe->tstamp = tstamp;
 570                        pe->freeze_count = 0;
 571                }
 572        }
 573}
 574
 575/**
 576 * eeh_pe_state_mark - Mark specified state for PE and its associated device
 577 * @pe: EEH PE
 578 *
 579 * EEH error affects the current PE and its child PEs. The function
 580 * is used to mark appropriate state for the affected PEs and the
 581 * associated devices.
 582 */
 583void eeh_pe_state_mark(struct eeh_pe *root, int state)
 584{
 585        struct eeh_pe *pe;
 586
 587        eeh_for_each_pe(root, pe)
 588                if (!(pe->state & EEH_PE_REMOVED))
 589                        pe->state |= state;
 590}
 591EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
 592
 593/**
 594 * eeh_pe_mark_isolated
 595 * @pe: EEH PE
 596 *
 597 * Record that a PE has been isolated by marking the PE and it's children as
 598 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
 599 * as pci_channel_io_frozen.
 600 */
 601void eeh_pe_mark_isolated(struct eeh_pe *root)
 602{
 603        struct eeh_pe *pe;
 604        struct eeh_dev *edev;
 605        struct pci_dev *pdev;
 606
 607        eeh_pe_state_mark(root, EEH_PE_ISOLATED);
 608        eeh_for_each_pe(root, pe) {
 609                list_for_each_entry(edev, &pe->edevs, entry) {
 610                        pdev = eeh_dev_to_pci_dev(edev);
 611                        if (pdev)
 612                                pdev->error_state = pci_channel_io_frozen;
 613                }
 614                /* Block PCI config access if required */
 615                if (pe->state & EEH_PE_CFG_RESTRICTED)
 616                        pe->state |= EEH_PE_CFG_BLOCKED;
 617        }
 618}
 619EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
 620
 621static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
 622{
 623        int mode = *((int *)flag);
 624
 625        edev->mode |= mode;
 626}
 627
 628/**
 629 * eeh_pe_dev_state_mark - Mark state for all device under the PE
 630 * @pe: EEH PE
 631 *
 632 * Mark specific state for all child devices of the PE.
 633 */
 634void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
 635{
 636        eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
 637}
 638
 639/**
 640 * eeh_pe_state_clear - Clear state for the PE
 641 * @data: EEH PE
 642 * @state: state
 643 * @include_passed: include passed-through devices?
 644 *
 645 * The function is used to clear the indicated state from the
 646 * given PE. Besides, we also clear the check count of the PE
 647 * as well.
 648 */
 649void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
 650{
 651        struct eeh_pe *pe;
 652        struct eeh_dev *edev, *tmp;
 653        struct pci_dev *pdev;
 654
 655        eeh_for_each_pe(root, pe) {
 656                /* Keep the state of permanently removed PE intact */
 657                if (pe->state & EEH_PE_REMOVED)
 658                        continue;
 659
 660                if (!include_passed && eeh_pe_passed(pe))
 661                        continue;
 662
 663                pe->state &= ~state;
 664
 665                /*
 666                 * Special treatment on clearing isolated state. Clear
 667                 * check count since last isolation and put all affected
 668                 * devices to normal state.
 669                 */
 670                if (!(state & EEH_PE_ISOLATED))
 671                        continue;
 672
 673                pe->check_count = 0;
 674                eeh_pe_for_each_dev(pe, edev, tmp) {
 675                        pdev = eeh_dev_to_pci_dev(edev);
 676                        if (!pdev)
 677                                continue;
 678
 679                        pdev->error_state = pci_channel_io_normal;
 680                }
 681
 682                /* Unblock PCI config access if required */
 683                if (pe->state & EEH_PE_CFG_RESTRICTED)
 684                        pe->state &= ~EEH_PE_CFG_BLOCKED;
 685        }
 686}
 687
 688/*
 689 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
 690 * buses assigned explicitly by firmware, and we probably have
 691 * lost that after reset. So we have to delay the check until
 692 * the PCI-CFG registers have been restored for the parent
 693 * bridge.
 694 *
 695 * Don't use normal PCI-CFG accessors, which probably has been
 696 * blocked on normal path during the stage. So we need utilize
 697 * eeh operations, which is always permitted.
 698 */
 699static void eeh_bridge_check_link(struct eeh_dev *edev)
 700{
 701        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 702        int cap;
 703        uint32_t val;
 704        int timeout = 0;
 705
 706        /*
 707         * We only check root port and downstream ports of
 708         * PCIe switches
 709         */
 710        if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
 711                return;
 712
 713        eeh_edev_dbg(edev, "Checking PCIe link...\n");
 714
 715        /* Check slot status */
 716        cap = edev->pcie_cap;
 717        eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
 718        if (!(val & PCI_EXP_SLTSTA_PDS)) {
 719                eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
 720                return;
 721        }
 722
 723        /* Check power status if we have the capability */
 724        eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
 725        if (val & PCI_EXP_SLTCAP_PCP) {
 726                eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
 727                if (val & PCI_EXP_SLTCTL_PCC) {
 728                        eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
 729                        val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
 730                        val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
 731                        eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
 732                        msleep(2 * 1000);
 733                }
 734        }
 735
 736        /* Enable link */
 737        eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
 738        val &= ~PCI_EXP_LNKCTL_LD;
 739        eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
 740
 741        /* Check link */
 742        eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
 743        if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
 744                eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
 745                msleep(1000);
 746                return;
 747        }
 748
 749        /* Wait the link is up until timeout (5s) */
 750        timeout = 0;
 751        while (timeout < 5000) {
 752                msleep(20);
 753                timeout += 20;
 754
 755                eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
 756                if (val & PCI_EXP_LNKSTA_DLLLA)
 757                        break;
 758        }
 759
 760        if (val & PCI_EXP_LNKSTA_DLLLA)
 761                eeh_edev_dbg(edev, "Link up (%s)\n",
 762                         (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
 763        else
 764                eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
 765}
 766
 767#define BYTE_SWAP(OFF)  (8*((OFF)/4)+3-(OFF))
 768#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
 769
 770static void eeh_restore_bridge_bars(struct eeh_dev *edev)
 771{
 772        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 773        int i;
 774
 775        /*
 776         * Device BARs: 0x10 - 0x18
 777         * Bus numbers and windows: 0x18 - 0x30
 778         */
 779        for (i = 4; i < 13; i++)
 780                eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
 781        /* Rom: 0x38 */
 782        eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
 783
 784        /* Cache line & Latency timer: 0xC 0xD */
 785        eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
 786                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 787        eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
 788                SAVED_BYTE(PCI_LATENCY_TIMER));
 789        /* Max latency, min grant, interrupt ping and line: 0x3C */
 790        eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
 791
 792        /* PCI Command: 0x4 */
 793        eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] |
 794                              PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
 795
 796        /* Check the PCIe link is ready */
 797        eeh_bridge_check_link(edev);
 798}
 799
 800static void eeh_restore_device_bars(struct eeh_dev *edev)
 801{
 802        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 803        int i;
 804        u32 cmd;
 805
 806        for (i = 4; i < 10; i++)
 807                eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
 808        /* 12 == Expansion ROM Address */
 809        eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
 810
 811        eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
 812                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 813        eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
 814                SAVED_BYTE(PCI_LATENCY_TIMER));
 815
 816        /* max latency, min grant, interrupt pin and line */
 817        eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
 818
 819        /*
 820         * Restore PERR & SERR bits, some devices require it,
 821         * don't touch the other command bits
 822         */
 823        eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
 824        if (edev->config_space[1] & PCI_COMMAND_PARITY)
 825                cmd |= PCI_COMMAND_PARITY;
 826        else
 827                cmd &= ~PCI_COMMAND_PARITY;
 828        if (edev->config_space[1] & PCI_COMMAND_SERR)
 829                cmd |= PCI_COMMAND_SERR;
 830        else
 831                cmd &= ~PCI_COMMAND_SERR;
 832        eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
 833}
 834
 835/**
 836 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
 837 * @data: EEH device
 838 * @flag: Unused
 839 *
 840 * Loads the PCI configuration space base address registers,
 841 * the expansion ROM base address, the latency timer, and etc.
 842 * from the saved values in the device node.
 843 */
 844static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
 845{
 846        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 847
 848        /* Do special restore for bridges */
 849        if (edev->mode & EEH_DEV_BRIDGE)
 850                eeh_restore_bridge_bars(edev);
 851        else
 852                eeh_restore_device_bars(edev);
 853
 854        if (eeh_ops->restore_config && pdn)
 855                eeh_ops->restore_config(pdn);
 856}
 857
 858/**
 859 * eeh_pe_restore_bars - Restore the PCI config space info
 860 * @pe: EEH PE
 861 *
 862 * This routine performs a recursive walk to the children
 863 * of this device as well.
 864 */
 865void eeh_pe_restore_bars(struct eeh_pe *pe)
 866{
 867        /*
 868         * We needn't take the EEH lock since eeh_pe_dev_traverse()
 869         * will take that.
 870         */
 871        eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
 872}
 873
 874/**
 875 * eeh_pe_loc_get - Retrieve location code binding to the given PE
 876 * @pe: EEH PE
 877 *
 878 * Retrieve the location code of the given PE. If the primary PE bus
 879 * is root bus, we will grab location code from PHB device tree node
 880 * or root port. Otherwise, the upstream bridge's device tree node
 881 * of the primary PE bus will be checked for the location code.
 882 */
 883const char *eeh_pe_loc_get(struct eeh_pe *pe)
 884{
 885        struct pci_bus *bus = eeh_pe_bus_get(pe);
 886        struct device_node *dn;
 887        const char *loc = NULL;
 888
 889        while (bus) {
 890                dn = pci_bus_to_OF_node(bus);
 891                if (!dn) {
 892                        bus = bus->parent;
 893                        continue;
 894                }
 895
 896                if (pci_is_root_bus(bus))
 897                        loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
 898                else
 899                        loc = of_get_property(dn, "ibm,slot-location-code",
 900                                              NULL);
 901
 902                if (loc)
 903                        return loc;
 904
 905                bus = bus->parent;
 906        }
 907
 908        return "N/A";
 909}
 910
 911/**
 912 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
 913 * @pe: EEH PE
 914 *
 915 * Retrieve the PCI bus according to the given PE. Basically,
 916 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
 917 * primary PCI bus will be retrieved. The parent bus will be
 918 * returned for BUS PE. However, we don't have associated PCI
 919 * bus for DEVICE PE.
 920 */
 921struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
 922{
 923        struct eeh_dev *edev;
 924        struct pci_dev *pdev;
 925
 926        if (pe->type & EEH_PE_PHB)
 927                return pe->phb->bus;
 928
 929        /* The primary bus might be cached during probe time */
 930        if (pe->state & EEH_PE_PRI_BUS)
 931                return pe->bus;
 932
 933        /* Retrieve the parent PCI bus of first (top) PCI device */
 934        edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
 935        pdev = eeh_dev_to_pci_dev(edev);
 936        if (pdev)
 937                return pdev->bus;
 938
 939        return NULL;
 940}
 941