linux/arch/x86/crypto/sha512-avx-asm.S
<<
>>
Prefs
   1########################################################################
   2# Implement fast SHA-512 with AVX instructions. (x86_64)
   3#
   4# Copyright (C) 2013 Intel Corporation.
   5#
   6# Authors:
   7#     James Guilford <james.guilford@intel.com>
   8#     Kirk Yap <kirk.s.yap@intel.com>
   9#     David Cote <david.m.cote@intel.com>
  10#     Tim Chen <tim.c.chen@linux.intel.com>
  11#
  12# This software is available to you under a choice of one of two
  13# licenses.  You may choose to be licensed under the terms of the GNU
  14# General Public License (GPL) Version 2, available from the file
  15# COPYING in the main directory of this source tree, or the
  16# OpenIB.org BSD license below:
  17#
  18#     Redistribution and use in source and binary forms, with or
  19#     without modification, are permitted provided that the following
  20#     conditions are met:
  21#
  22#      - Redistributions of source code must retain the above
  23#        copyright notice, this list of conditions and the following
  24#        disclaimer.
  25#
  26#      - Redistributions in binary form must reproduce the above
  27#        copyright notice, this list of conditions and the following
  28#        disclaimer in the documentation and/or other materials
  29#        provided with the distribution.
  30#
  31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  38# SOFTWARE.
  39#
  40########################################################################
  41#
  42# This code is described in an Intel White-Paper:
  43# "Fast SHA-512 Implementations on Intel Architecture Processors"
  44#
  45# To find it, surf to http://www.intel.com/p/en_US/embedded
  46# and search for that title.
  47#
  48########################################################################
  49
  50#include <linux/linkage.h>
  51
  52.text
  53
  54# Virtual Registers
  55# ARG1
  56digest  = %rdi
  57# ARG2
  58msg     = %rsi
  59# ARG3
  60msglen  = %rdx
  61T1      = %rcx
  62T2      = %r8
  63a_64    = %r9
  64b_64    = %r10
  65c_64    = %r11
  66d_64    = %r12
  67e_64    = %r13
  68f_64    = %r14
  69g_64    = %r15
  70h_64    = %rbx
  71tmp0    = %rax
  72
  73# Local variables (stack frame)
  74
  75# Message Schedule
  76W_SIZE = 80*8
  77# W[t] + K[t] | W[t+1] + K[t+1]
  78WK_SIZE = 2*8
  79RSPSAVE_SIZE = 1*8
  80GPRSAVE_SIZE = 5*8
  81
  82frame_W = 0
  83frame_WK = frame_W + W_SIZE
  84frame_RSPSAVE = frame_WK + WK_SIZE
  85frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
  86frame_size = frame_GPRSAVE + GPRSAVE_SIZE
  87
  88# Useful QWORD "arrays" for simpler memory references
  89# MSG, DIGEST, K_t, W_t are arrays
  90# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
  91
  92# Input message (arg1)
  93#define MSG(i)    8*i(msg)
  94
  95# Output Digest (arg2)
  96#define DIGEST(i) 8*i(digest)
  97
  98# SHA Constants (static mem)
  99#define K_t(i)    8*i+K512(%rip)
 100
 101# Message Schedule (stack frame)
 102#define W_t(i)    8*i+frame_W(%rsp)
 103
 104# W[t]+K[t] (stack frame)
 105#define WK_2(i)   8*((i%2))+frame_WK(%rsp)
 106
 107.macro RotateState
 108        # Rotate symbols a..h right
 109        TMP   = h_64
 110        h_64  = g_64
 111        g_64  = f_64
 112        f_64  = e_64
 113        e_64  = d_64
 114        d_64  = c_64
 115        c_64  = b_64
 116        b_64  = a_64
 117        a_64  = TMP
 118.endm
 119
 120.macro RORQ p1 p2
 121        # shld is faster than ror on Sandybridge
 122        shld    $(64-\p2), \p1, \p1
 123.endm
 124
 125.macro SHA512_Round rnd
 126        # Compute Round %%t
 127        mov     f_64, T1          # T1 = f
 128        mov     e_64, tmp0        # tmp = e
 129        xor     g_64, T1          # T1 = f ^ g
 130        RORQ    tmp0, 23   # 41    # tmp = e ror 23
 131        and     e_64, T1          # T1 = (f ^ g) & e
 132        xor     e_64, tmp0        # tmp = (e ror 23) ^ e
 133        xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
 134        idx = \rnd
 135        add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
 136        RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
 137        xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
 138        mov     a_64, T2          # T2 = a
 139        add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
 140        RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
 141        add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
 142        mov     a_64, tmp0        # tmp = a
 143        xor     c_64, T2          # T2 = a ^ c
 144        and     c_64, tmp0        # tmp = a & c
 145        and     b_64, T2          # T2 = (a ^ c) & b
 146        xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
 147        mov     a_64, tmp0        # tmp = a
 148        RORQ    tmp0, 5  # 39     # tmp = a ror 5
 149        xor     a_64, tmp0        # tmp = (a ror 5) ^ a
 150        add     T1, d_64          # e(next_state) = d + T1
 151        RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
 152        xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
 153        lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
 154        RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
 155        add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
 156        RotateState
 157.endm
 158
 159.macro SHA512_2Sched_2Round_avx rnd
 160        # Compute rounds t-2 and t-1
 161        # Compute message schedule QWORDS t and t+1
 162
 163        #   Two rounds are computed based on the values for K[t-2]+W[t-2] and
 164        # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
 165        # scheduler.
 166        #   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
 167        # They are then added to their respective SHA512 constants at
 168        # [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
 169        #   For brievity, the comments following vectored instructions only refer to
 170        # the first of a pair of QWORDS.
 171        # Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
 172        #   The computation of the message schedule and the rounds are tightly
 173        # stitched to take advantage of instruction-level parallelism.
 174
 175        idx = \rnd - 2
 176        vmovdqa W_t(idx), %xmm4         # XMM4 = W[t-2]
 177        idx = \rnd - 15
 178        vmovdqu W_t(idx), %xmm5         # XMM5 = W[t-15]
 179        mov     f_64, T1
 180        vpsrlq  $61, %xmm4, %xmm0       # XMM0 = W[t-2]>>61
 181        mov     e_64, tmp0
 182        vpsrlq  $1, %xmm5, %xmm6        # XMM6 = W[t-15]>>1
 183        xor     g_64, T1
 184        RORQ    tmp0, 23 # 41
 185        vpsrlq  $19, %xmm4, %xmm1       # XMM1 = W[t-2]>>19
 186        and     e_64, T1
 187        xor     e_64, tmp0
 188        vpxor   %xmm1, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19
 189        xor     g_64, T1
 190        idx = \rnd
 191        add     WK_2(idx), T1#
 192        vpsrlq  $8, %xmm5, %xmm7        # XMM7 = W[t-15]>>8
 193        RORQ    tmp0, 4 # 18
 194        vpsrlq  $6, %xmm4, %xmm2        # XMM2 = W[t-2]>>6
 195        xor     e_64, tmp0
 196        mov     a_64, T2
 197        add     h_64, T1
 198        vpxor   %xmm7, %xmm6, %xmm6     # XMM6 = W[t-15]>>1 ^ W[t-15]>>8
 199        RORQ    tmp0, 14 # 14
 200        add     tmp0, T1
 201        vpsrlq  $7, %xmm5, %xmm8        # XMM8 = W[t-15]>>7
 202        mov     a_64, tmp0
 203        xor     c_64, T2
 204        vpsllq  $(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
 205        and     c_64, tmp0
 206        and     b_64, T2
 207        vpxor   %xmm3, %xmm2, %xmm2     # XMM2 = W[t-2]>>6 ^ W[t-2]<<3
 208        xor     tmp0, T2
 209        mov     a_64, tmp0
 210        vpsllq  $(64-1), %xmm5, %xmm9   # XMM9 = W[t-15]<<63
 211        RORQ    tmp0, 5 # 39
 212        vpxor   %xmm9, %xmm8, %xmm8     # XMM8 = W[t-15]>>7 ^ W[t-15]<<63
 213        xor     a_64, tmp0
 214        add     T1, d_64
 215        RORQ    tmp0, 6 # 34
 216        xor     a_64, tmp0
 217        vpxor   %xmm8, %xmm6, %xmm6     # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
 218                                        #  W[t-15]>>7 ^ W[t-15]<<63
 219        lea     (T1, T2), h_64
 220        RORQ    tmp0, 28 # 28
 221        vpsllq  $(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
 222        add     tmp0, h_64
 223        RotateState
 224        vpxor   %xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
 225                                        #        W[t-2]<<25
 226        mov     f_64, T1
 227        vpxor   %xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
 228        mov     e_64, tmp0
 229        xor     g_64, T1
 230        idx = \rnd - 16
 231        vpaddq  W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
 232        idx = \rnd - 7
 233        vmovdqu W_t(idx), %xmm1         # XMM1 = W[t-7]
 234        RORQ    tmp0, 23 # 41
 235        and     e_64, T1
 236        xor     e_64, tmp0
 237        xor     g_64, T1
 238        vpsllq  $(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
 239        idx = \rnd + 1
 240        add     WK_2(idx), T1
 241        vpxor   %xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
 242        RORQ    tmp0, 4 # 18
 243        vpaddq  %xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
 244        xor     e_64, tmp0
 245        vpaddq  %xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
 246                                        #               s0(W[t-15]) + W[t-16]
 247        mov     a_64, T2
 248        add     h_64, T1
 249        RORQ    tmp0, 14 # 14
 250        add     tmp0, T1
 251        idx = \rnd
 252        vmovdqa %xmm0, W_t(idx)         # Store W[t]
 253        vpaddq  K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
 254        vmovdqa %xmm0, WK_2(idx)        # Store W[t]+K[t] for next rounds
 255        mov     a_64, tmp0
 256        xor     c_64, T2
 257        and     c_64, tmp0
 258        and     b_64, T2
 259        xor     tmp0, T2
 260        mov     a_64, tmp0
 261        RORQ    tmp0, 5 # 39
 262        xor     a_64, tmp0
 263        add     T1, d_64
 264        RORQ    tmp0, 6 # 34
 265        xor     a_64, tmp0
 266        lea     (T1, T2), h_64
 267        RORQ    tmp0, 28 # 28
 268        add     tmp0, h_64
 269        RotateState
 270.endm
 271
 272########################################################################
 273# void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
 274# Purpose: Updates the SHA512 digest stored at "state" with the message
 275# stored in "data".
 276# The size of the message pointed to by "data" must be an integer multiple
 277# of SHA512 message blocks.
 278# "blocks" is the message length in SHA512 blocks
 279########################################################################
 280SYM_FUNC_START(sha512_transform_avx)
 281        cmp $0, msglen
 282        je nowork
 283
 284        # Allocate Stack Space
 285        mov     %rsp, %rax
 286        sub     $frame_size, %rsp
 287        and     $~(0x20 - 1), %rsp
 288        mov     %rax, frame_RSPSAVE(%rsp)
 289
 290        # Save GPRs
 291        mov     %rbx, frame_GPRSAVE(%rsp)
 292        mov     %r12, frame_GPRSAVE +8*1(%rsp)
 293        mov     %r13, frame_GPRSAVE +8*2(%rsp)
 294        mov     %r14, frame_GPRSAVE +8*3(%rsp)
 295        mov     %r15, frame_GPRSAVE +8*4(%rsp)
 296
 297updateblock:
 298
 299        # Load state variables
 300        mov     DIGEST(0), a_64
 301        mov     DIGEST(1), b_64
 302        mov     DIGEST(2), c_64
 303        mov     DIGEST(3), d_64
 304        mov     DIGEST(4), e_64
 305        mov     DIGEST(5), f_64
 306        mov     DIGEST(6), g_64
 307        mov     DIGEST(7), h_64
 308
 309        t = 0
 310        .rept 80/2 + 1
 311        # (80 rounds) / (2 rounds/iteration) + (1 iteration)
 312        # +1 iteration because the scheduler leads hashing by 1 iteration
 313                .if t < 2
 314                        # BSWAP 2 QWORDS
 315                        vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
 316                        vmovdqu  MSG(t), %xmm0
 317                        vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
 318                        vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
 319                        vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
 320                        vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
 321                .elseif t < 16
 322                        # BSWAP 2 QWORDS# Compute 2 Rounds
 323                        vmovdqu  MSG(t), %xmm0
 324                        vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
 325                        SHA512_Round t-2    # Round t-2
 326                        vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
 327                        vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
 328                        SHA512_Round t-1    # Round t-1
 329                        vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
 330                .elseif t < 79
 331                        # Schedule 2 QWORDS# Compute 2 Rounds
 332                        SHA512_2Sched_2Round_avx t
 333                .else
 334                        # Compute 2 Rounds
 335                        SHA512_Round t-2
 336                        SHA512_Round t-1
 337                .endif
 338                t = t+2
 339        .endr
 340
 341        # Update digest
 342        add     a_64, DIGEST(0)
 343        add     b_64, DIGEST(1)
 344        add     c_64, DIGEST(2)
 345        add     d_64, DIGEST(3)
 346        add     e_64, DIGEST(4)
 347        add     f_64, DIGEST(5)
 348        add     g_64, DIGEST(6)
 349        add     h_64, DIGEST(7)
 350
 351        # Advance to next message block
 352        add     $16*8, msg
 353        dec     msglen
 354        jnz     updateblock
 355
 356        # Restore GPRs
 357        mov     frame_GPRSAVE(%rsp),      %rbx
 358        mov     frame_GPRSAVE +8*1(%rsp), %r12
 359        mov     frame_GPRSAVE +8*2(%rsp), %r13
 360        mov     frame_GPRSAVE +8*3(%rsp), %r14
 361        mov     frame_GPRSAVE +8*4(%rsp), %r15
 362
 363        # Restore Stack Pointer
 364        mov     frame_RSPSAVE(%rsp), %rsp
 365
 366nowork:
 367        ret
 368SYM_FUNC_END(sha512_transform_avx)
 369
 370########################################################################
 371### Binary Data
 372
 373.section        .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
 374.align 16
 375# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
 376XMM_QWORD_BSWAP:
 377        .octa 0x08090a0b0c0d0e0f0001020304050607
 378
 379# Mergeable 640-byte rodata section. This allows linker to merge the table
 380# with other, exactly the same 640-byte fragment of another rodata section
 381# (if such section exists).
 382.section        .rodata.cst640.K512, "aM", @progbits, 640
 383.align 64
 384# K[t] used in SHA512 hashing
 385K512:
 386        .quad 0x428a2f98d728ae22,0x7137449123ef65cd
 387        .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
 388        .quad 0x3956c25bf348b538,0x59f111f1b605d019
 389        .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
 390        .quad 0xd807aa98a3030242,0x12835b0145706fbe
 391        .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
 392        .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
 393        .quad 0x9bdc06a725c71235,0xc19bf174cf692694
 394        .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
 395        .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
 396        .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
 397        .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
 398        .quad 0x983e5152ee66dfab,0xa831c66d2db43210
 399        .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
 400        .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
 401        .quad 0x06ca6351e003826f,0x142929670a0e6e70
 402        .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
 403        .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
 404        .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
 405        .quad 0x81c2c92e47edaee6,0x92722c851482353b
 406        .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
 407        .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
 408        .quad 0xd192e819d6ef5218,0xd69906245565a910
 409        .quad 0xf40e35855771202a,0x106aa07032bbd1b8
 410        .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
 411        .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
 412        .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
 413        .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
 414        .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
 415        .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
 416        .quad 0x90befffa23631e28,0xa4506cebde82bde9
 417        .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
 418        .quad 0xca273eceea26619c,0xd186b8c721c0c207
 419        .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
 420        .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
 421        .quad 0x113f9804bef90dae,0x1b710b35131c471b
 422        .quad 0x28db77f523047d84,0x32caab7b40c72493
 423        .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
 424        .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
 425        .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
 426