linux/arch/x86/kernel/dumpstack.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 */
   5#include <linux/kallsyms.h>
   6#include <linux/kprobes.h>
   7#include <linux/uaccess.h>
   8#include <linux/utsname.h>
   9#include <linux/hardirq.h>
  10#include <linux/kdebug.h>
  11#include <linux/module.h>
  12#include <linux/ptrace.h>
  13#include <linux/sched/debug.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/ftrace.h>
  16#include <linux/kexec.h>
  17#include <linux/bug.h>
  18#include <linux/nmi.h>
  19#include <linux/sysfs.h>
  20#include <linux/kasan.h>
  21
  22#include <asm/cpu_entry_area.h>
  23#include <asm/stacktrace.h>
  24#include <asm/unwind.h>
  25
  26int panic_on_unrecovered_nmi;
  27int panic_on_io_nmi;
  28static int die_counter;
  29
  30static struct pt_regs exec_summary_regs;
  31
  32bool in_task_stack(unsigned long *stack, struct task_struct *task,
  33                   struct stack_info *info)
  34{
  35        unsigned long *begin = task_stack_page(task);
  36        unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
  37
  38        if (stack < begin || stack >= end)
  39                return false;
  40
  41        info->type      = STACK_TYPE_TASK;
  42        info->begin     = begin;
  43        info->end       = end;
  44        info->next_sp   = NULL;
  45
  46        return true;
  47}
  48
  49bool in_entry_stack(unsigned long *stack, struct stack_info *info)
  50{
  51        struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
  52
  53        void *begin = ss;
  54        void *end = ss + 1;
  55
  56        if ((void *)stack < begin || (void *)stack >= end)
  57                return false;
  58
  59        info->type      = STACK_TYPE_ENTRY;
  60        info->begin     = begin;
  61        info->end       = end;
  62        info->next_sp   = NULL;
  63
  64        return true;
  65}
  66
  67static void printk_stack_address(unsigned long address, int reliable,
  68                                 char *log_lvl)
  69{
  70        touch_nmi_watchdog();
  71        printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
  72}
  73
  74/*
  75 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
  76 *
  77 * In case where we don't have the exact kernel image (which, if we did, we can
  78 * simply disassemble and navigate to the RIP), the purpose of the bigger
  79 * prologue is to have more context and to be able to correlate the code from
  80 * the different toolchains better.
  81 *
  82 * In addition, it helps in recreating the register allocation of the failing
  83 * kernel and thus make sense of the register dump.
  84 *
  85 * What is more, the additional complication of a variable length insn arch like
  86 * x86 warrants having longer byte sequence before rIP so that the disassembler
  87 * can "sync" up properly and find instruction boundaries when decoding the
  88 * opcode bytes.
  89 *
  90 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
  91 * guesstimate in attempt to achieve all of the above.
  92 */
  93void show_opcodes(struct pt_regs *regs, const char *loglvl)
  94{
  95#define PROLOGUE_SIZE 42
  96#define EPILOGUE_SIZE 21
  97#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
  98        u8 opcodes[OPCODE_BUFSIZE];
  99        unsigned long prologue = regs->ip - PROLOGUE_SIZE;
 100        bool bad_ip;
 101
 102        /*
 103         * Make sure userspace isn't trying to trick us into dumping kernel
 104         * memory by pointing the userspace instruction pointer at it.
 105         */
 106        bad_ip = user_mode(regs) &&
 107                __chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
 108
 109        if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
 110                                        OPCODE_BUFSIZE)) {
 111                printk("%sCode: Bad RIP value.\n", loglvl);
 112        } else {
 113                printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
 114                       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
 115                       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
 116        }
 117}
 118
 119void show_ip(struct pt_regs *regs, const char *loglvl)
 120{
 121#ifdef CONFIG_X86_32
 122        printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
 123#else
 124        printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
 125#endif
 126        show_opcodes(regs, loglvl);
 127}
 128
 129void show_iret_regs(struct pt_regs *regs)
 130{
 131        show_ip(regs, KERN_DEFAULT);
 132        printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
 133                regs->sp, regs->flags);
 134}
 135
 136static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
 137                                  bool partial)
 138{
 139        /*
 140         * These on_stack() checks aren't strictly necessary: the unwind code
 141         * has already validated the 'regs' pointer.  The checks are done for
 142         * ordering reasons: if the registers are on the next stack, we don't
 143         * want to print them out yet.  Otherwise they'll be shown as part of
 144         * the wrong stack.  Later, when show_trace_log_lvl() switches to the
 145         * next stack, this function will be called again with the same regs so
 146         * they can be printed in the right context.
 147         */
 148        if (!partial && on_stack(info, regs, sizeof(*regs))) {
 149                __show_regs(regs, SHOW_REGS_SHORT);
 150
 151        } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
 152                                       IRET_FRAME_SIZE)) {
 153                /*
 154                 * When an interrupt or exception occurs in entry code, the
 155                 * full pt_regs might not have been saved yet.  In that case
 156                 * just print the iret frame.
 157                 */
 158                show_iret_regs(regs);
 159        }
 160}
 161
 162void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
 163                        unsigned long *stack, char *log_lvl)
 164{
 165        struct unwind_state state;
 166        struct stack_info stack_info = {0};
 167        unsigned long visit_mask = 0;
 168        int graph_idx = 0;
 169        bool partial = false;
 170
 171        printk("%sCall Trace:\n", log_lvl);
 172
 173        unwind_start(&state, task, regs, stack);
 174        stack = stack ? : get_stack_pointer(task, regs);
 175        regs = unwind_get_entry_regs(&state, &partial);
 176
 177        /*
 178         * Iterate through the stacks, starting with the current stack pointer.
 179         * Each stack has a pointer to the next one.
 180         *
 181         * x86-64 can have several stacks:
 182         * - task stack
 183         * - interrupt stack
 184         * - HW exception stacks (double fault, nmi, debug, mce)
 185         * - entry stack
 186         *
 187         * x86-32 can have up to four stacks:
 188         * - task stack
 189         * - softirq stack
 190         * - hardirq stack
 191         * - entry stack
 192         */
 193        for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
 194                const char *stack_name;
 195
 196                if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
 197                        /*
 198                         * We weren't on a valid stack.  It's possible that
 199                         * we overflowed a valid stack into a guard page.
 200                         * See if the next page up is valid so that we can
 201                         * generate some kind of backtrace if this happens.
 202                         */
 203                        stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
 204                        if (get_stack_info(stack, task, &stack_info, &visit_mask))
 205                                break;
 206                }
 207
 208                stack_name = stack_type_name(stack_info.type);
 209                if (stack_name)
 210                        printk("%s <%s>\n", log_lvl, stack_name);
 211
 212                if (regs)
 213                        show_regs_if_on_stack(&stack_info, regs, partial);
 214
 215                /*
 216                 * Scan the stack, printing any text addresses we find.  At the
 217                 * same time, follow proper stack frames with the unwinder.
 218                 *
 219                 * Addresses found during the scan which are not reported by
 220                 * the unwinder are considered to be additional clues which are
 221                 * sometimes useful for debugging and are prefixed with '?'.
 222                 * This also serves as a failsafe option in case the unwinder
 223                 * goes off in the weeds.
 224                 */
 225                for (; stack < stack_info.end; stack++) {
 226                        unsigned long real_addr;
 227                        int reliable = 0;
 228                        unsigned long addr = READ_ONCE_NOCHECK(*stack);
 229                        unsigned long *ret_addr_p =
 230                                unwind_get_return_address_ptr(&state);
 231
 232                        if (!__kernel_text_address(addr))
 233                                continue;
 234
 235                        /*
 236                         * Don't print regs->ip again if it was already printed
 237                         * by show_regs_if_on_stack().
 238                         */
 239                        if (regs && stack == &regs->ip)
 240                                goto next;
 241
 242                        if (stack == ret_addr_p)
 243                                reliable = 1;
 244
 245                        /*
 246                         * When function graph tracing is enabled for a
 247                         * function, its return address on the stack is
 248                         * replaced with the address of an ftrace handler
 249                         * (return_to_handler).  In that case, before printing
 250                         * the "real" address, we want to print the handler
 251                         * address as an "unreliable" hint that function graph
 252                         * tracing was involved.
 253                         */
 254                        real_addr = ftrace_graph_ret_addr(task, &graph_idx,
 255                                                          addr, stack);
 256                        if (real_addr != addr)
 257                                printk_stack_address(addr, 0, log_lvl);
 258                        printk_stack_address(real_addr, reliable, log_lvl);
 259
 260                        if (!reliable)
 261                                continue;
 262
 263next:
 264                        /*
 265                         * Get the next frame from the unwinder.  No need to
 266                         * check for an error: if anything goes wrong, the rest
 267                         * of the addresses will just be printed as unreliable.
 268                         */
 269                        unwind_next_frame(&state);
 270
 271                        /* if the frame has entry regs, print them */
 272                        regs = unwind_get_entry_regs(&state, &partial);
 273                        if (regs)
 274                                show_regs_if_on_stack(&stack_info, regs, partial);
 275                }
 276
 277                if (stack_name)
 278                        printk("%s </%s>\n", log_lvl, stack_name);
 279        }
 280}
 281
 282void show_stack(struct task_struct *task, unsigned long *sp)
 283{
 284        task = task ? : current;
 285
 286        /*
 287         * Stack frames below this one aren't interesting.  Don't show them
 288         * if we're printing for %current.
 289         */
 290        if (!sp && task == current)
 291                sp = get_stack_pointer(current, NULL);
 292
 293        show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
 294}
 295
 296void show_stack_regs(struct pt_regs *regs)
 297{
 298        show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 299}
 300
 301static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 302static int die_owner = -1;
 303static unsigned int die_nest_count;
 304
 305unsigned long oops_begin(void)
 306{
 307        int cpu;
 308        unsigned long flags;
 309
 310        oops_enter();
 311
 312        /* racy, but better than risking deadlock. */
 313        raw_local_irq_save(flags);
 314        cpu = smp_processor_id();
 315        if (!arch_spin_trylock(&die_lock)) {
 316                if (cpu == die_owner)
 317                        /* nested oops. should stop eventually */;
 318                else
 319                        arch_spin_lock(&die_lock);
 320        }
 321        die_nest_count++;
 322        die_owner = cpu;
 323        console_verbose();
 324        bust_spinlocks(1);
 325        return flags;
 326}
 327NOKPROBE_SYMBOL(oops_begin);
 328
 329void __noreturn rewind_stack_do_exit(int signr);
 330
 331void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
 332{
 333        if (regs && kexec_should_crash(current))
 334                crash_kexec(regs);
 335
 336        bust_spinlocks(0);
 337        die_owner = -1;
 338        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 339        die_nest_count--;
 340        if (!die_nest_count)
 341                /* Nest count reaches zero, release the lock. */
 342                arch_spin_unlock(&die_lock);
 343        raw_local_irq_restore(flags);
 344        oops_exit();
 345
 346        /* Executive summary in case the oops scrolled away */
 347        __show_regs(&exec_summary_regs, SHOW_REGS_ALL);
 348
 349        if (!signr)
 350                return;
 351        if (in_interrupt())
 352                panic("Fatal exception in interrupt");
 353        if (panic_on_oops)
 354                panic("Fatal exception");
 355
 356        /*
 357         * We're not going to return, but we might be on an IST stack or
 358         * have very little stack space left.  Rewind the stack and kill
 359         * the task.
 360         * Before we rewind the stack, we have to tell KASAN that we're going to
 361         * reuse the task stack and that existing poisons are invalid.
 362         */
 363        kasan_unpoison_task_stack(current);
 364        rewind_stack_do_exit(signr);
 365}
 366NOKPROBE_SYMBOL(oops_end);
 367
 368static void __die_header(const char *str, struct pt_regs *regs, long err)
 369{
 370        const char *pr = "";
 371
 372        /* Save the regs of the first oops for the executive summary later. */
 373        if (!die_counter)
 374                exec_summary_regs = *regs;
 375
 376        if (IS_ENABLED(CONFIG_PREEMPTION))
 377                pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
 378
 379        printk(KERN_DEFAULT
 380               "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
 381               pr,
 382               IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
 383               debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
 384               IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
 385               IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
 386               (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
 387}
 388NOKPROBE_SYMBOL(__die_header);
 389
 390static int __die_body(const char *str, struct pt_regs *regs, long err)
 391{
 392        show_regs(regs);
 393        print_modules();
 394
 395        if (notify_die(DIE_OOPS, str, regs, err,
 396                        current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
 397                return 1;
 398
 399        return 0;
 400}
 401NOKPROBE_SYMBOL(__die_body);
 402
 403int __die(const char *str, struct pt_regs *regs, long err)
 404{
 405        __die_header(str, regs, err);
 406        return __die_body(str, regs, err);
 407}
 408NOKPROBE_SYMBOL(__die);
 409
 410/*
 411 * This is gone through when something in the kernel has done something bad
 412 * and is about to be terminated:
 413 */
 414void die(const char *str, struct pt_regs *regs, long err)
 415{
 416        unsigned long flags = oops_begin();
 417        int sig = SIGSEGV;
 418
 419        if (__die(str, regs, err))
 420                sig = 0;
 421        oops_end(flags, regs, sig);
 422}
 423
 424void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
 425{
 426        unsigned long flags = oops_begin();
 427        int sig = SIGSEGV;
 428
 429        __die_header(str, regs, err);
 430        if (gp_addr)
 431                kasan_non_canonical_hook(gp_addr);
 432        if (__die_body(str, regs, err))
 433                sig = 0;
 434        oops_end(flags, regs, sig);
 435}
 436
 437void show_regs(struct pt_regs *regs)
 438{
 439        show_regs_print_info(KERN_DEFAULT);
 440
 441        __show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
 442
 443        /*
 444         * When in-kernel, we also print out the stack at the time of the fault..
 445         */
 446        if (!user_mode(regs))
 447                show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 448}
 449