linux/arch/x86/kernel/nmi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   5 *  Copyright (C) 2011  Don Zickus Red Hat, Inc.
   6 *
   7 *  Pentium III FXSR, SSE support
   8 *      Gareth Hughes <gareth@valinux.com>, May 2000
   9 */
  10
  11/*
  12 * Handle hardware traps and faults.
  13 */
  14#include <linux/spinlock.h>
  15#include <linux/kprobes.h>
  16#include <linux/kdebug.h>
  17#include <linux/sched/debug.h>
  18#include <linux/nmi.h>
  19#include <linux/debugfs.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/ratelimit.h>
  23#include <linux/slab.h>
  24#include <linux/export.h>
  25#include <linux/atomic.h>
  26#include <linux/sched/clock.h>
  27
  28#if defined(CONFIG_EDAC)
  29#include <linux/edac.h>
  30#endif
  31
  32#include <asm/cpu_entry_area.h>
  33#include <asm/traps.h>
  34#include <asm/mach_traps.h>
  35#include <asm/nmi.h>
  36#include <asm/x86_init.h>
  37#include <asm/reboot.h>
  38#include <asm/cache.h>
  39#include <asm/nospec-branch.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/nmi.h>
  43
  44struct nmi_desc {
  45        raw_spinlock_t lock;
  46        struct list_head head;
  47};
  48
  49static struct nmi_desc nmi_desc[NMI_MAX] = 
  50{
  51        {
  52                .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  53                .head = LIST_HEAD_INIT(nmi_desc[0].head),
  54        },
  55        {
  56                .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  57                .head = LIST_HEAD_INIT(nmi_desc[1].head),
  58        },
  59        {
  60                .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  61                .head = LIST_HEAD_INIT(nmi_desc[2].head),
  62        },
  63        {
  64                .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  65                .head = LIST_HEAD_INIT(nmi_desc[3].head),
  66        },
  67
  68};
  69
  70struct nmi_stats {
  71        unsigned int normal;
  72        unsigned int unknown;
  73        unsigned int external;
  74        unsigned int swallow;
  75};
  76
  77static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  78
  79static int ignore_nmis __read_mostly;
  80
  81int unknown_nmi_panic;
  82/*
  83 * Prevent NMI reason port (0x61) being accessed simultaneously, can
  84 * only be used in NMI handler.
  85 */
  86static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  87
  88static int __init setup_unknown_nmi_panic(char *str)
  89{
  90        unknown_nmi_panic = 1;
  91        return 1;
  92}
  93__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  94
  95#define nmi_to_desc(type) (&nmi_desc[type])
  96
  97static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  98
  99static int __init nmi_warning_debugfs(void)
 100{
 101        debugfs_create_u64("nmi_longest_ns", 0644,
 102                        arch_debugfs_dir, &nmi_longest_ns);
 103        return 0;
 104}
 105fs_initcall(nmi_warning_debugfs);
 106
 107static void nmi_check_duration(struct nmiaction *action, u64 duration)
 108{
 109        u64 whole_msecs = READ_ONCE(action->max_duration);
 110        int remainder_ns, decimal_msecs;
 111
 112        if (duration < nmi_longest_ns || duration < action->max_duration)
 113                return;
 114
 115        action->max_duration = duration;
 116
 117        remainder_ns = do_div(whole_msecs, (1000 * 1000));
 118        decimal_msecs = remainder_ns / 1000;
 119
 120        printk_ratelimited(KERN_INFO
 121                "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
 122                action->handler, whole_msecs, decimal_msecs);
 123}
 124
 125static int nmi_handle(unsigned int type, struct pt_regs *regs)
 126{
 127        struct nmi_desc *desc = nmi_to_desc(type);
 128        struct nmiaction *a;
 129        int handled=0;
 130
 131        rcu_read_lock();
 132
 133        /*
 134         * NMIs are edge-triggered, which means if you have enough
 135         * of them concurrently, you can lose some because only one
 136         * can be latched at any given time.  Walk the whole list
 137         * to handle those situations.
 138         */
 139        list_for_each_entry_rcu(a, &desc->head, list) {
 140                int thishandled;
 141                u64 delta;
 142
 143                delta = sched_clock();
 144                thishandled = a->handler(type, regs);
 145                handled += thishandled;
 146                delta = sched_clock() - delta;
 147                trace_nmi_handler(a->handler, (int)delta, thishandled);
 148
 149                nmi_check_duration(a, delta);
 150        }
 151
 152        rcu_read_unlock();
 153
 154        /* return total number of NMI events handled */
 155        return handled;
 156}
 157NOKPROBE_SYMBOL(nmi_handle);
 158
 159int __register_nmi_handler(unsigned int type, struct nmiaction *action)
 160{
 161        struct nmi_desc *desc = nmi_to_desc(type);
 162        unsigned long flags;
 163
 164        if (!action->handler)
 165                return -EINVAL;
 166
 167        raw_spin_lock_irqsave(&desc->lock, flags);
 168
 169        /*
 170         * Indicate if there are multiple registrations on the
 171         * internal NMI handler call chains (SERR and IO_CHECK).
 172         */
 173        WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
 174        WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
 175
 176        /*
 177         * some handlers need to be executed first otherwise a fake
 178         * event confuses some handlers (kdump uses this flag)
 179         */
 180        if (action->flags & NMI_FLAG_FIRST)
 181                list_add_rcu(&action->list, &desc->head);
 182        else
 183                list_add_tail_rcu(&action->list, &desc->head);
 184        
 185        raw_spin_unlock_irqrestore(&desc->lock, flags);
 186        return 0;
 187}
 188EXPORT_SYMBOL(__register_nmi_handler);
 189
 190void unregister_nmi_handler(unsigned int type, const char *name)
 191{
 192        struct nmi_desc *desc = nmi_to_desc(type);
 193        struct nmiaction *n;
 194        unsigned long flags;
 195
 196        raw_spin_lock_irqsave(&desc->lock, flags);
 197
 198        list_for_each_entry_rcu(n, &desc->head, list) {
 199                /*
 200                 * the name passed in to describe the nmi handler
 201                 * is used as the lookup key
 202                 */
 203                if (!strcmp(n->name, name)) {
 204                        WARN(in_nmi(),
 205                                "Trying to free NMI (%s) from NMI context!\n", n->name);
 206                        list_del_rcu(&n->list);
 207                        break;
 208                }
 209        }
 210
 211        raw_spin_unlock_irqrestore(&desc->lock, flags);
 212        synchronize_rcu();
 213}
 214EXPORT_SYMBOL_GPL(unregister_nmi_handler);
 215
 216static void
 217pci_serr_error(unsigned char reason, struct pt_regs *regs)
 218{
 219        /* check to see if anyone registered against these types of errors */
 220        if (nmi_handle(NMI_SERR, regs))
 221                return;
 222
 223        pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
 224                 reason, smp_processor_id());
 225
 226        if (panic_on_unrecovered_nmi)
 227                nmi_panic(regs, "NMI: Not continuing");
 228
 229        pr_emerg("Dazed and confused, but trying to continue\n");
 230
 231        /* Clear and disable the PCI SERR error line. */
 232        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
 233        outb(reason, NMI_REASON_PORT);
 234}
 235NOKPROBE_SYMBOL(pci_serr_error);
 236
 237static void
 238io_check_error(unsigned char reason, struct pt_regs *regs)
 239{
 240        unsigned long i;
 241
 242        /* check to see if anyone registered against these types of errors */
 243        if (nmi_handle(NMI_IO_CHECK, regs))
 244                return;
 245
 246        pr_emerg(
 247        "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
 248                 reason, smp_processor_id());
 249        show_regs(regs);
 250
 251        if (panic_on_io_nmi) {
 252                nmi_panic(regs, "NMI IOCK error: Not continuing");
 253
 254                /*
 255                 * If we end up here, it means we have received an NMI while
 256                 * processing panic(). Simply return without delaying and
 257                 * re-enabling NMIs.
 258                 */
 259                return;
 260        }
 261
 262        /* Re-enable the IOCK line, wait for a few seconds */
 263        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
 264        outb(reason, NMI_REASON_PORT);
 265
 266        i = 20000;
 267        while (--i) {
 268                touch_nmi_watchdog();
 269                udelay(100);
 270        }
 271
 272        reason &= ~NMI_REASON_CLEAR_IOCHK;
 273        outb(reason, NMI_REASON_PORT);
 274}
 275NOKPROBE_SYMBOL(io_check_error);
 276
 277static void
 278unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
 279{
 280        int handled;
 281
 282        /*
 283         * Use 'false' as back-to-back NMIs are dealt with one level up.
 284         * Of course this makes having multiple 'unknown' handlers useless
 285         * as only the first one is ever run (unless it can actually determine
 286         * if it caused the NMI)
 287         */
 288        handled = nmi_handle(NMI_UNKNOWN, regs);
 289        if (handled) {
 290                __this_cpu_add(nmi_stats.unknown, handled);
 291                return;
 292        }
 293
 294        __this_cpu_add(nmi_stats.unknown, 1);
 295
 296        pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
 297                 reason, smp_processor_id());
 298
 299        pr_emerg("Do you have a strange power saving mode enabled?\n");
 300        if (unknown_nmi_panic || panic_on_unrecovered_nmi)
 301                nmi_panic(regs, "NMI: Not continuing");
 302
 303        pr_emerg("Dazed and confused, but trying to continue\n");
 304}
 305NOKPROBE_SYMBOL(unknown_nmi_error);
 306
 307static DEFINE_PER_CPU(bool, swallow_nmi);
 308static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
 309
 310static void default_do_nmi(struct pt_regs *regs)
 311{
 312        unsigned char reason = 0;
 313        int handled;
 314        bool b2b = false;
 315
 316        /*
 317         * CPU-specific NMI must be processed before non-CPU-specific
 318         * NMI, otherwise we may lose it, because the CPU-specific
 319         * NMI can not be detected/processed on other CPUs.
 320         */
 321
 322        /*
 323         * Back-to-back NMIs are interesting because they can either
 324         * be two NMI or more than two NMIs (any thing over two is dropped
 325         * due to NMI being edge-triggered).  If this is the second half
 326         * of the back-to-back NMI, assume we dropped things and process
 327         * more handlers.  Otherwise reset the 'swallow' NMI behaviour
 328         */
 329        if (regs->ip == __this_cpu_read(last_nmi_rip))
 330                b2b = true;
 331        else
 332                __this_cpu_write(swallow_nmi, false);
 333
 334        __this_cpu_write(last_nmi_rip, regs->ip);
 335
 336        handled = nmi_handle(NMI_LOCAL, regs);
 337        __this_cpu_add(nmi_stats.normal, handled);
 338        if (handled) {
 339                /*
 340                 * There are cases when a NMI handler handles multiple
 341                 * events in the current NMI.  One of these events may
 342                 * be queued for in the next NMI.  Because the event is
 343                 * already handled, the next NMI will result in an unknown
 344                 * NMI.  Instead lets flag this for a potential NMI to
 345                 * swallow.
 346                 */
 347                if (handled > 1)
 348                        __this_cpu_write(swallow_nmi, true);
 349                return;
 350        }
 351
 352        /*
 353         * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
 354         *
 355         * Another CPU may be processing panic routines while holding
 356         * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
 357         * and if so, call its callback directly.  If there is no CPU preparing
 358         * crash dump, we simply loop here.
 359         */
 360        while (!raw_spin_trylock(&nmi_reason_lock)) {
 361                run_crash_ipi_callback(regs);
 362                cpu_relax();
 363        }
 364
 365        reason = x86_platform.get_nmi_reason();
 366
 367        if (reason & NMI_REASON_MASK) {
 368                if (reason & NMI_REASON_SERR)
 369                        pci_serr_error(reason, regs);
 370                else if (reason & NMI_REASON_IOCHK)
 371                        io_check_error(reason, regs);
 372#ifdef CONFIG_X86_32
 373                /*
 374                 * Reassert NMI in case it became active
 375                 * meanwhile as it's edge-triggered:
 376                 */
 377                reassert_nmi();
 378#endif
 379                __this_cpu_add(nmi_stats.external, 1);
 380                raw_spin_unlock(&nmi_reason_lock);
 381                return;
 382        }
 383        raw_spin_unlock(&nmi_reason_lock);
 384
 385        /*
 386         * Only one NMI can be latched at a time.  To handle
 387         * this we may process multiple nmi handlers at once to
 388         * cover the case where an NMI is dropped.  The downside
 389         * to this approach is we may process an NMI prematurely,
 390         * while its real NMI is sitting latched.  This will cause
 391         * an unknown NMI on the next run of the NMI processing.
 392         *
 393         * We tried to flag that condition above, by setting the
 394         * swallow_nmi flag when we process more than one event.
 395         * This condition is also only present on the second half
 396         * of a back-to-back NMI, so we flag that condition too.
 397         *
 398         * If both are true, we assume we already processed this
 399         * NMI previously and we swallow it.  Otherwise we reset
 400         * the logic.
 401         *
 402         * There are scenarios where we may accidentally swallow
 403         * a 'real' unknown NMI.  For example, while processing
 404         * a perf NMI another perf NMI comes in along with a
 405         * 'real' unknown NMI.  These two NMIs get combined into
 406         * one (as described above).  When the next NMI gets
 407         * processed, it will be flagged by perf as handled, but
 408         * no one will know that there was a 'real' unknown NMI sent
 409         * also.  As a result it gets swallowed.  Or if the first
 410         * perf NMI returns two events handled then the second
 411         * NMI will get eaten by the logic below, again losing a
 412         * 'real' unknown NMI.  But this is the best we can do
 413         * for now.
 414         */
 415        if (b2b && __this_cpu_read(swallow_nmi))
 416                __this_cpu_add(nmi_stats.swallow, 1);
 417        else
 418                unknown_nmi_error(reason, regs);
 419}
 420NOKPROBE_SYMBOL(default_do_nmi);
 421
 422/*
 423 * NMIs can page fault or hit breakpoints which will cause it to lose
 424 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
 425 *
 426 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
 427 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
 428 * if the outer NMI came from kernel mode, but we can still nest if the
 429 * outer NMI came from user mode.
 430 *
 431 * To handle these nested NMIs, we have three states:
 432 *
 433 *  1) not running
 434 *  2) executing
 435 *  3) latched
 436 *
 437 * When no NMI is in progress, it is in the "not running" state.
 438 * When an NMI comes in, it goes into the "executing" state.
 439 * Normally, if another NMI is triggered, it does not interrupt
 440 * the running NMI and the HW will simply latch it so that when
 441 * the first NMI finishes, it will restart the second NMI.
 442 * (Note, the latch is binary, thus multiple NMIs triggering,
 443 *  when one is running, are ignored. Only one NMI is restarted.)
 444 *
 445 * If an NMI executes an iret, another NMI can preempt it. We do not
 446 * want to allow this new NMI to run, but we want to execute it when the
 447 * first one finishes.  We set the state to "latched", and the exit of
 448 * the first NMI will perform a dec_return, if the result is zero
 449 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
 450 * dec_return would have set the state to NMI_EXECUTING (what we want it
 451 * to be when we are running). In this case, we simply jump back to
 452 * rerun the NMI handler again, and restart the 'latched' NMI.
 453 *
 454 * No trap (breakpoint or page fault) should be hit before nmi_restart,
 455 * thus there is no race between the first check of state for NOT_RUNNING
 456 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 457 * at this point.
 458 *
 459 * In case the NMI takes a page fault, we need to save off the CR2
 460 * because the NMI could have preempted another page fault and corrupt
 461 * the CR2 that is about to be read. As nested NMIs must be restarted
 462 * and they can not take breakpoints or page faults, the update of the
 463 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 464 * Otherwise, there would be a race of another nested NMI coming in
 465 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
 466 */
 467enum nmi_states {
 468        NMI_NOT_RUNNING = 0,
 469        NMI_EXECUTING,
 470        NMI_LATCHED,
 471};
 472static DEFINE_PER_CPU(enum nmi_states, nmi_state);
 473static DEFINE_PER_CPU(unsigned long, nmi_cr2);
 474
 475#ifdef CONFIG_X86_64
 476/*
 477 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
 478 * some care, the inner breakpoint will clobber the outer breakpoint's
 479 * stack.
 480 *
 481 * If a breakpoint is being processed, and the debug stack is being
 482 * used, if an NMI comes in and also hits a breakpoint, the stack
 483 * pointer will be set to the same fixed address as the breakpoint that
 484 * was interrupted, causing that stack to be corrupted. To handle this
 485 * case, check if the stack that was interrupted is the debug stack, and
 486 * if so, change the IDT so that new breakpoints will use the current
 487 * stack and not switch to the fixed address. On return of the NMI,
 488 * switch back to the original IDT.
 489 */
 490static DEFINE_PER_CPU(int, update_debug_stack);
 491
 492static bool notrace is_debug_stack(unsigned long addr)
 493{
 494        struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
 495        unsigned long top = CEA_ESTACK_TOP(cs, DB);
 496        unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
 497
 498        if (__this_cpu_read(debug_stack_usage))
 499                return true;
 500        /*
 501         * Note, this covers the guard page between DB and DB1 as well to
 502         * avoid two checks. But by all means @addr can never point into
 503         * the guard page.
 504         */
 505        return addr >= bot && addr < top;
 506}
 507NOKPROBE_SYMBOL(is_debug_stack);
 508#endif
 509
 510dotraplinkage notrace void
 511do_nmi(struct pt_regs *regs, long error_code)
 512{
 513        if (IS_ENABLED(CONFIG_SMP) && cpu_is_offline(smp_processor_id()))
 514                return;
 515
 516        if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
 517                this_cpu_write(nmi_state, NMI_LATCHED);
 518                return;
 519        }
 520        this_cpu_write(nmi_state, NMI_EXECUTING);
 521        this_cpu_write(nmi_cr2, read_cr2());
 522nmi_restart:
 523
 524#ifdef CONFIG_X86_64
 525        /*
 526         * If we interrupted a breakpoint, it is possible that
 527         * the nmi handler will have breakpoints too. We need to
 528         * change the IDT such that breakpoints that happen here
 529         * continue to use the NMI stack.
 530         */
 531        if (unlikely(is_debug_stack(regs->sp))) {
 532                debug_stack_set_zero();
 533                this_cpu_write(update_debug_stack, 1);
 534        }
 535#endif
 536
 537        nmi_enter();
 538
 539        inc_irq_stat(__nmi_count);
 540
 541        if (!ignore_nmis)
 542                default_do_nmi(regs);
 543
 544        nmi_exit();
 545
 546#ifdef CONFIG_X86_64
 547        if (unlikely(this_cpu_read(update_debug_stack))) {
 548                debug_stack_reset();
 549                this_cpu_write(update_debug_stack, 0);
 550        }
 551#endif
 552
 553        if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
 554                write_cr2(this_cpu_read(nmi_cr2));
 555        if (this_cpu_dec_return(nmi_state))
 556                goto nmi_restart;
 557
 558        if (user_mode(regs))
 559                mds_user_clear_cpu_buffers();
 560}
 561NOKPROBE_SYMBOL(do_nmi);
 562
 563void stop_nmi(void)
 564{
 565        ignore_nmis++;
 566}
 567
 568void restart_nmi(void)
 569{
 570        ignore_nmis--;
 571}
 572
 573/* reset the back-to-back NMI logic */
 574void local_touch_nmi(void)
 575{
 576        __this_cpu_write(last_nmi_rip, 0);
 577}
 578EXPORT_SYMBOL_GPL(local_touch_nmi);
 579