linux/arch/x86/kernel/smpboot.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *      x86 SMP booting functions
   4 *
   5 *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *      Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *      Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *      whom a great many thanks are extended.
  11 *
  12 *      Thanks to Intel for making available several different Pentium,
  13 *      Pentium Pro and Pentium-II/Xeon MP machines.
  14 *      Original development of Linux SMP code supported by Caldera.
  15 *
  16 *      Fixes
  17 *              Felix Koop      :       NR_CPUS used properly
  18 *              Jose Renau      :       Handle single CPU case.
  19 *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
  20 *              Greg Wright     :       Fix for kernel stacks panic.
  21 *              Erich Boleyn    :       MP v1.4 and additional changes.
  22 *      Matthias Sattler        :       Changes for 2.1 kernel map.
  23 *      Michel Lespinasse       :       Changes for 2.1 kernel map.
  24 *      Michael Chastain        :       Change trampoline.S to gnu as.
  25 *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
  26 *              Ingo Molnar     :       Added APIC timers, based on code
  27 *                                      from Jose Renau
  28 *              Ingo Molnar     :       various cleanups and rewrites
  29 *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
  30 *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
  31 *      Andi Kleen              :       Changed for SMP boot into long mode.
  32 *              Martin J. Bligh :       Added support for multi-quad systems
  33 *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
  34 *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *      Ashok Raj               :       CPU hotplug support
  37 *      Glauber Costa           :       i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/stackprotector.h>
  55#include <linux/gfp.h>
  56#include <linux/cpuidle.h>
  57#include <linux/numa.h>
  58
  59#include <asm/acpi.h>
  60#include <asm/desc.h>
  61#include <asm/nmi.h>
  62#include <asm/irq.h>
  63#include <asm/realmode.h>
  64#include <asm/cpu.h>
  65#include <asm/numa.h>
  66#include <asm/pgtable.h>
  67#include <asm/tlbflush.h>
  68#include <asm/mtrr.h>
  69#include <asm/mwait.h>
  70#include <asm/apic.h>
  71#include <asm/io_apic.h>
  72#include <asm/fpu/internal.h>
  73#include <asm/setup.h>
  74#include <asm/uv/uv.h>
  75#include <linux/mc146818rtc.h>
  76#include <asm/i8259.h>
  77#include <asm/misc.h>
  78#include <asm/qspinlock.h>
  79#include <asm/intel-family.h>
  80#include <asm/cpu_device_id.h>
  81#include <asm/spec-ctrl.h>
  82#include <asm/hw_irq.h>
  83
  84/* representing HT siblings of each logical CPU */
  85DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  86EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  87
  88/* representing HT and core siblings of each logical CPU */
  89DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  90EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  91
  92/* representing HT, core, and die siblings of each logical CPU */
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
  94EXPORT_PER_CPU_SYMBOL(cpu_die_map);
  95
  96DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
  97
  98/* Per CPU bogomips and other parameters */
  99DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 100EXPORT_PER_CPU_SYMBOL(cpu_info);
 101
 102/* Logical package management. We might want to allocate that dynamically */
 103unsigned int __max_logical_packages __read_mostly;
 104EXPORT_SYMBOL(__max_logical_packages);
 105static unsigned int logical_packages __read_mostly;
 106static unsigned int logical_die __read_mostly;
 107
 108/* Maximum number of SMT threads on any online core */
 109int __read_mostly __max_smt_threads = 1;
 110
 111/* Flag to indicate if a complete sched domain rebuild is required */
 112bool x86_topology_update;
 113
 114int arch_update_cpu_topology(void)
 115{
 116        int retval = x86_topology_update;
 117
 118        x86_topology_update = false;
 119        return retval;
 120}
 121
 122static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 123{
 124        unsigned long flags;
 125
 126        spin_lock_irqsave(&rtc_lock, flags);
 127        CMOS_WRITE(0xa, 0xf);
 128        spin_unlock_irqrestore(&rtc_lock, flags);
 129        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
 130                                                        start_eip >> 4;
 131        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
 132                                                        start_eip & 0xf;
 133}
 134
 135static inline void smpboot_restore_warm_reset_vector(void)
 136{
 137        unsigned long flags;
 138
 139        /*
 140         * Paranoid:  Set warm reset code and vector here back
 141         * to default values.
 142         */
 143        spin_lock_irqsave(&rtc_lock, flags);
 144        CMOS_WRITE(0, 0xf);
 145        spin_unlock_irqrestore(&rtc_lock, flags);
 146
 147        *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 148}
 149
 150static void init_freq_invariance(bool secondary);
 151
 152/*
 153 * Report back to the Boot Processor during boot time or to the caller processor
 154 * during CPU online.
 155 */
 156static void smp_callin(void)
 157{
 158        int cpuid;
 159
 160        /*
 161         * If waken up by an INIT in an 82489DX configuration
 162         * cpu_callout_mask guarantees we don't get here before
 163         * an INIT_deassert IPI reaches our local APIC, so it is
 164         * now safe to touch our local APIC.
 165         */
 166        cpuid = smp_processor_id();
 167
 168        /*
 169         * the boot CPU has finished the init stage and is spinning
 170         * on callin_map until we finish. We are free to set up this
 171         * CPU, first the APIC. (this is probably redundant on most
 172         * boards)
 173         */
 174        apic_ap_setup();
 175
 176        /*
 177         * Save our processor parameters. Note: this information
 178         * is needed for clock calibration.
 179         */
 180        smp_store_cpu_info(cpuid);
 181
 182        /*
 183         * The topology information must be up to date before
 184         * calibrate_delay() and notify_cpu_starting().
 185         */
 186        set_cpu_sibling_map(raw_smp_processor_id());
 187
 188        init_freq_invariance(true);
 189
 190        /*
 191         * Get our bogomips.
 192         * Update loops_per_jiffy in cpu_data. Previous call to
 193         * smp_store_cpu_info() stored a value that is close but not as
 194         * accurate as the value just calculated.
 195         */
 196        calibrate_delay();
 197        cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
 198        pr_debug("Stack at about %p\n", &cpuid);
 199
 200        wmb();
 201
 202        notify_cpu_starting(cpuid);
 203
 204        /*
 205         * Allow the master to continue.
 206         */
 207        cpumask_set_cpu(cpuid, cpu_callin_mask);
 208}
 209
 210static int cpu0_logical_apicid;
 211static int enable_start_cpu0;
 212/*
 213 * Activate a secondary processor.
 214 */
 215static void notrace start_secondary(void *unused)
 216{
 217        /*
 218         * Don't put *anything* except direct CPU state initialization
 219         * before cpu_init(), SMP booting is too fragile that we want to
 220         * limit the things done here to the most necessary things.
 221         */
 222        cr4_init();
 223
 224#ifdef CONFIG_X86_32
 225        /* switch away from the initial page table */
 226        load_cr3(swapper_pg_dir);
 227        __flush_tlb_all();
 228#endif
 229        load_current_idt();
 230        cpu_init();
 231        x86_cpuinit.early_percpu_clock_init();
 232        preempt_disable();
 233        smp_callin();
 234
 235        enable_start_cpu0 = 0;
 236
 237        /* otherwise gcc will move up smp_processor_id before the cpu_init */
 238        barrier();
 239        /*
 240         * Check TSC synchronization with the boot CPU:
 241         */
 242        check_tsc_sync_target();
 243
 244        speculative_store_bypass_ht_init();
 245
 246        /*
 247         * Lock vector_lock, set CPU online and bring the vector
 248         * allocator online. Online must be set with vector_lock held
 249         * to prevent a concurrent irq setup/teardown from seeing a
 250         * half valid vector space.
 251         */
 252        lock_vector_lock();
 253        set_cpu_online(smp_processor_id(), true);
 254        lapic_online();
 255        unlock_vector_lock();
 256        cpu_set_state_online(smp_processor_id());
 257        x86_platform.nmi_init();
 258
 259        /* enable local interrupts */
 260        local_irq_enable();
 261
 262        /* to prevent fake stack check failure in clock setup */
 263        boot_init_stack_canary();
 264
 265        x86_cpuinit.setup_percpu_clockev();
 266
 267        wmb();
 268        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 269
 270        /*
 271         * Prevent tail call to cpu_startup_entry() because the stack protector
 272         * guard has been changed a couple of function calls up, in
 273         * boot_init_stack_canary() and must not be checked before tail calling
 274         * another function.
 275         */
 276        prevent_tail_call_optimization();
 277}
 278
 279/**
 280 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
 281 * @cpu:        CPU to check
 282 */
 283bool topology_is_primary_thread(unsigned int cpu)
 284{
 285        return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
 286}
 287
 288/**
 289 * topology_smt_supported - Check whether SMT is supported by the CPUs
 290 */
 291bool topology_smt_supported(void)
 292{
 293        return smp_num_siblings > 1;
 294}
 295
 296/**
 297 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 298 *
 299 * Returns logical package id or -1 if not found
 300 */
 301int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 302{
 303        int cpu;
 304
 305        for_each_possible_cpu(cpu) {
 306                struct cpuinfo_x86 *c = &cpu_data(cpu);
 307
 308                if (c->initialized && c->phys_proc_id == phys_pkg)
 309                        return c->logical_proc_id;
 310        }
 311        return -1;
 312}
 313EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 314/**
 315 * topology_phys_to_logical_die - Map a physical die id to logical
 316 *
 317 * Returns logical die id or -1 if not found
 318 */
 319int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
 320{
 321        int cpu;
 322        int proc_id = cpu_data(cur_cpu).phys_proc_id;
 323
 324        for_each_possible_cpu(cpu) {
 325                struct cpuinfo_x86 *c = &cpu_data(cpu);
 326
 327                if (c->initialized && c->cpu_die_id == die_id &&
 328                    c->phys_proc_id == proc_id)
 329                        return c->logical_die_id;
 330        }
 331        return -1;
 332}
 333EXPORT_SYMBOL(topology_phys_to_logical_die);
 334
 335/**
 336 * topology_update_package_map - Update the physical to logical package map
 337 * @pkg:        The physical package id as retrieved via CPUID
 338 * @cpu:        The cpu for which this is updated
 339 */
 340int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 341{
 342        int new;
 343
 344        /* Already available somewhere? */
 345        new = topology_phys_to_logical_pkg(pkg);
 346        if (new >= 0)
 347                goto found;
 348
 349        new = logical_packages++;
 350        if (new != pkg) {
 351                pr_info("CPU %u Converting physical %u to logical package %u\n",
 352                        cpu, pkg, new);
 353        }
 354found:
 355        cpu_data(cpu).logical_proc_id = new;
 356        return 0;
 357}
 358/**
 359 * topology_update_die_map - Update the physical to logical die map
 360 * @die:        The die id as retrieved via CPUID
 361 * @cpu:        The cpu for which this is updated
 362 */
 363int topology_update_die_map(unsigned int die, unsigned int cpu)
 364{
 365        int new;
 366
 367        /* Already available somewhere? */
 368        new = topology_phys_to_logical_die(die, cpu);
 369        if (new >= 0)
 370                goto found;
 371
 372        new = logical_die++;
 373        if (new != die) {
 374                pr_info("CPU %u Converting physical %u to logical die %u\n",
 375                        cpu, die, new);
 376        }
 377found:
 378        cpu_data(cpu).logical_die_id = new;
 379        return 0;
 380}
 381
 382void __init smp_store_boot_cpu_info(void)
 383{
 384        int id = 0; /* CPU 0 */
 385        struct cpuinfo_x86 *c = &cpu_data(id);
 386
 387        *c = boot_cpu_data;
 388        c->cpu_index = id;
 389        topology_update_package_map(c->phys_proc_id, id);
 390        topology_update_die_map(c->cpu_die_id, id);
 391        c->initialized = true;
 392}
 393
 394/*
 395 * The bootstrap kernel entry code has set these up. Save them for
 396 * a given CPU
 397 */
 398void smp_store_cpu_info(int id)
 399{
 400        struct cpuinfo_x86 *c = &cpu_data(id);
 401
 402        /* Copy boot_cpu_data only on the first bringup */
 403        if (!c->initialized)
 404                *c = boot_cpu_data;
 405        c->cpu_index = id;
 406        /*
 407         * During boot time, CPU0 has this setup already. Save the info when
 408         * bringing up AP or offlined CPU0.
 409         */
 410        identify_secondary_cpu(c);
 411        c->initialized = true;
 412}
 413
 414static bool
 415topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 416{
 417        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 418
 419        return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 420}
 421
 422static bool
 423topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 424{
 425        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 426
 427        return !WARN_ONCE(!topology_same_node(c, o),
 428                "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 429                "[node: %d != %d]. Ignoring dependency.\n",
 430                cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 431}
 432
 433#define link_mask(mfunc, c1, c2)                                        \
 434do {                                                                    \
 435        cpumask_set_cpu((c1), mfunc(c2));                               \
 436        cpumask_set_cpu((c2), mfunc(c1));                               \
 437} while (0)
 438
 439static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 440{
 441        if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 442                int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 443
 444                if (c->phys_proc_id == o->phys_proc_id &&
 445                    c->cpu_die_id == o->cpu_die_id &&
 446                    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
 447                        if (c->cpu_core_id == o->cpu_core_id)
 448                                return topology_sane(c, o, "smt");
 449
 450                        if ((c->cu_id != 0xff) &&
 451                            (o->cu_id != 0xff) &&
 452                            (c->cu_id == o->cu_id))
 453                                return topology_sane(c, o, "smt");
 454                }
 455
 456        } else if (c->phys_proc_id == o->phys_proc_id &&
 457                   c->cpu_die_id == o->cpu_die_id &&
 458                   c->cpu_core_id == o->cpu_core_id) {
 459                return topology_sane(c, o, "smt");
 460        }
 461
 462        return false;
 463}
 464
 465/*
 466 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
 467 *
 468 * These are Intel CPUs that enumerate an LLC that is shared by
 469 * multiple NUMA nodes. The LLC on these systems is shared for
 470 * off-package data access but private to the NUMA node (half
 471 * of the package) for on-package access.
 472 *
 473 * CPUID (the source of the information about the LLC) can only
 474 * enumerate the cache as being shared *or* unshared, but not
 475 * this particular configuration. The CPU in this case enumerates
 476 * the cache to be shared across the entire package (spanning both
 477 * NUMA nodes).
 478 */
 479
 480static const struct x86_cpu_id snc_cpu[] = {
 481        X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
 482        {}
 483};
 484
 485static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 486{
 487        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 488
 489        /* Do not match if we do not have a valid APICID for cpu: */
 490        if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
 491                return false;
 492
 493        /* Do not match if LLC id does not match: */
 494        if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
 495                return false;
 496
 497        /*
 498         * Allow the SNC topology without warning. Return of false
 499         * means 'c' does not share the LLC of 'o'. This will be
 500         * reflected to userspace.
 501         */
 502        if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
 503                return false;
 504
 505        return topology_sane(c, o, "llc");
 506}
 507
 508/*
 509 * Unlike the other levels, we do not enforce keeping a
 510 * multicore group inside a NUMA node.  If this happens, we will
 511 * discard the MC level of the topology later.
 512 */
 513static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 514{
 515        if (c->phys_proc_id == o->phys_proc_id)
 516                return true;
 517        return false;
 518}
 519
 520static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 521{
 522        if ((c->phys_proc_id == o->phys_proc_id) &&
 523                (c->cpu_die_id == o->cpu_die_id))
 524                return true;
 525        return false;
 526}
 527
 528
 529#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
 530static inline int x86_sched_itmt_flags(void)
 531{
 532        return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 533}
 534
 535#ifdef CONFIG_SCHED_MC
 536static int x86_core_flags(void)
 537{
 538        return cpu_core_flags() | x86_sched_itmt_flags();
 539}
 540#endif
 541#ifdef CONFIG_SCHED_SMT
 542static int x86_smt_flags(void)
 543{
 544        return cpu_smt_flags() | x86_sched_itmt_flags();
 545}
 546#endif
 547#endif
 548
 549static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
 550#ifdef CONFIG_SCHED_SMT
 551        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 552#endif
 553#ifdef CONFIG_SCHED_MC
 554        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 555#endif
 556        { NULL, },
 557};
 558
 559static struct sched_domain_topology_level x86_topology[] = {
 560#ifdef CONFIG_SCHED_SMT
 561        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 562#endif
 563#ifdef CONFIG_SCHED_MC
 564        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 565#endif
 566        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
 567        { NULL, },
 568};
 569
 570/*
 571 * Set if a package/die has multiple NUMA nodes inside.
 572 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 573 * Sub-NUMA Clustering have this.
 574 */
 575static bool x86_has_numa_in_package;
 576
 577void set_cpu_sibling_map(int cpu)
 578{
 579        bool has_smt = smp_num_siblings > 1;
 580        bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 581        struct cpuinfo_x86 *c = &cpu_data(cpu);
 582        struct cpuinfo_x86 *o;
 583        int i, threads;
 584
 585        cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 586
 587        if (!has_mp) {
 588                cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 589                cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 590                cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 591                cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 592                c->booted_cores = 1;
 593                return;
 594        }
 595
 596        for_each_cpu(i, cpu_sibling_setup_mask) {
 597                o = &cpu_data(i);
 598
 599                if ((i == cpu) || (has_smt && match_smt(c, o)))
 600                        link_mask(topology_sibling_cpumask, cpu, i);
 601
 602                if ((i == cpu) || (has_mp && match_llc(c, o)))
 603                        link_mask(cpu_llc_shared_mask, cpu, i);
 604
 605        }
 606
 607        /*
 608         * This needs a separate iteration over the cpus because we rely on all
 609         * topology_sibling_cpumask links to be set-up.
 610         */
 611        for_each_cpu(i, cpu_sibling_setup_mask) {
 612                o = &cpu_data(i);
 613
 614                if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 615                        link_mask(topology_core_cpumask, cpu, i);
 616
 617                        /*
 618                         *  Does this new cpu bringup a new core?
 619                         */
 620                        if (cpumask_weight(
 621                            topology_sibling_cpumask(cpu)) == 1) {
 622                                /*
 623                                 * for each core in package, increment
 624                                 * the booted_cores for this new cpu
 625                                 */
 626                                if (cpumask_first(
 627                                    topology_sibling_cpumask(i)) == i)
 628                                        c->booted_cores++;
 629                                /*
 630                                 * increment the core count for all
 631                                 * the other cpus in this package
 632                                 */
 633                                if (i != cpu)
 634                                        cpu_data(i).booted_cores++;
 635                        } else if (i != cpu && !c->booted_cores)
 636                                c->booted_cores = cpu_data(i).booted_cores;
 637                }
 638                if (match_pkg(c, o) && !topology_same_node(c, o))
 639                        x86_has_numa_in_package = true;
 640
 641                if ((i == cpu) || (has_mp && match_die(c, o)))
 642                        link_mask(topology_die_cpumask, cpu, i);
 643        }
 644
 645        threads = cpumask_weight(topology_sibling_cpumask(cpu));
 646        if (threads > __max_smt_threads)
 647                __max_smt_threads = threads;
 648}
 649
 650/* maps the cpu to the sched domain representing multi-core */
 651const struct cpumask *cpu_coregroup_mask(int cpu)
 652{
 653        return cpu_llc_shared_mask(cpu);
 654}
 655
 656static void impress_friends(void)
 657{
 658        int cpu;
 659        unsigned long bogosum = 0;
 660        /*
 661         * Allow the user to impress friends.
 662         */
 663        pr_debug("Before bogomips\n");
 664        for_each_possible_cpu(cpu)
 665                if (cpumask_test_cpu(cpu, cpu_callout_mask))
 666                        bogosum += cpu_data(cpu).loops_per_jiffy;
 667        pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 668                num_online_cpus(),
 669                bogosum/(500000/HZ),
 670                (bogosum/(5000/HZ))%100);
 671
 672        pr_debug("Before bogocount - setting activated=1\n");
 673}
 674
 675void __inquire_remote_apic(int apicid)
 676{
 677        unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 678        const char * const names[] = { "ID", "VERSION", "SPIV" };
 679        int timeout;
 680        u32 status;
 681
 682        pr_info("Inquiring remote APIC 0x%x...\n", apicid);
 683
 684        for (i = 0; i < ARRAY_SIZE(regs); i++) {
 685                pr_info("... APIC 0x%x %s: ", apicid, names[i]);
 686
 687                /*
 688                 * Wait for idle.
 689                 */
 690                status = safe_apic_wait_icr_idle();
 691                if (status)
 692                        pr_cont("a previous APIC delivery may have failed\n");
 693
 694                apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 695
 696                timeout = 0;
 697                do {
 698                        udelay(100);
 699                        status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 700                } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 701
 702                switch (status) {
 703                case APIC_ICR_RR_VALID:
 704                        status = apic_read(APIC_RRR);
 705                        pr_cont("%08x\n", status);
 706                        break;
 707                default:
 708                        pr_cont("failed\n");
 709                }
 710        }
 711}
 712
 713/*
 714 * The Multiprocessor Specification 1.4 (1997) example code suggests
 715 * that there should be a 10ms delay between the BSP asserting INIT
 716 * and de-asserting INIT, when starting a remote processor.
 717 * But that slows boot and resume on modern processors, which include
 718 * many cores and don't require that delay.
 719 *
 720 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 721 * Modern processor families are quirked to remove the delay entirely.
 722 */
 723#define UDELAY_10MS_DEFAULT 10000
 724
 725static unsigned int init_udelay = UINT_MAX;
 726
 727static int __init cpu_init_udelay(char *str)
 728{
 729        get_option(&str, &init_udelay);
 730
 731        return 0;
 732}
 733early_param("cpu_init_udelay", cpu_init_udelay);
 734
 735static void __init smp_quirk_init_udelay(void)
 736{
 737        /* if cmdline changed it from default, leave it alone */
 738        if (init_udelay != UINT_MAX)
 739                return;
 740
 741        /* if modern processor, use no delay */
 742        if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 743            ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 744            ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 745                init_udelay = 0;
 746                return;
 747        }
 748        /* else, use legacy delay */
 749        init_udelay = UDELAY_10MS_DEFAULT;
 750}
 751
 752/*
 753 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 754 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 755 * won't ... remember to clear down the APIC, etc later.
 756 */
 757int
 758wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
 759{
 760        unsigned long send_status, accept_status = 0;
 761        int maxlvt;
 762
 763        /* Target chip */
 764        /* Boot on the stack */
 765        /* Kick the second */
 766        apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
 767
 768        pr_debug("Waiting for send to finish...\n");
 769        send_status = safe_apic_wait_icr_idle();
 770
 771        /*
 772         * Give the other CPU some time to accept the IPI.
 773         */
 774        udelay(200);
 775        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 776                maxlvt = lapic_get_maxlvt();
 777                if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
 778                        apic_write(APIC_ESR, 0);
 779                accept_status = (apic_read(APIC_ESR) & 0xEF);
 780        }
 781        pr_debug("NMI sent\n");
 782
 783        if (send_status)
 784                pr_err("APIC never delivered???\n");
 785        if (accept_status)
 786                pr_err("APIC delivery error (%lx)\n", accept_status);
 787
 788        return (send_status | accept_status);
 789}
 790
 791static int
 792wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 793{
 794        unsigned long send_status = 0, accept_status = 0;
 795        int maxlvt, num_starts, j;
 796
 797        maxlvt = lapic_get_maxlvt();
 798
 799        /*
 800         * Be paranoid about clearing APIC errors.
 801         */
 802        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 803                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 804                        apic_write(APIC_ESR, 0);
 805                apic_read(APIC_ESR);
 806        }
 807
 808        pr_debug("Asserting INIT\n");
 809
 810        /*
 811         * Turn INIT on target chip
 812         */
 813        /*
 814         * Send IPI
 815         */
 816        apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 817                       phys_apicid);
 818
 819        pr_debug("Waiting for send to finish...\n");
 820        send_status = safe_apic_wait_icr_idle();
 821
 822        udelay(init_udelay);
 823
 824        pr_debug("Deasserting INIT\n");
 825
 826        /* Target chip */
 827        /* Send IPI */
 828        apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 829
 830        pr_debug("Waiting for send to finish...\n");
 831        send_status = safe_apic_wait_icr_idle();
 832
 833        mb();
 834
 835        /*
 836         * Should we send STARTUP IPIs ?
 837         *
 838         * Determine this based on the APIC version.
 839         * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 840         */
 841        if (APIC_INTEGRATED(boot_cpu_apic_version))
 842                num_starts = 2;
 843        else
 844                num_starts = 0;
 845
 846        /*
 847         * Run STARTUP IPI loop.
 848         */
 849        pr_debug("#startup loops: %d\n", num_starts);
 850
 851        for (j = 1; j <= num_starts; j++) {
 852                pr_debug("Sending STARTUP #%d\n", j);
 853                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 854                        apic_write(APIC_ESR, 0);
 855                apic_read(APIC_ESR);
 856                pr_debug("After apic_write\n");
 857
 858                /*
 859                 * STARTUP IPI
 860                 */
 861
 862                /* Target chip */
 863                /* Boot on the stack */
 864                /* Kick the second */
 865                apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 866                               phys_apicid);
 867
 868                /*
 869                 * Give the other CPU some time to accept the IPI.
 870                 */
 871                if (init_udelay == 0)
 872                        udelay(10);
 873                else
 874                        udelay(300);
 875
 876                pr_debug("Startup point 1\n");
 877
 878                pr_debug("Waiting for send to finish...\n");
 879                send_status = safe_apic_wait_icr_idle();
 880
 881                /*
 882                 * Give the other CPU some time to accept the IPI.
 883                 */
 884                if (init_udelay == 0)
 885                        udelay(10);
 886                else
 887                        udelay(200);
 888
 889                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 890                        apic_write(APIC_ESR, 0);
 891                accept_status = (apic_read(APIC_ESR) & 0xEF);
 892                if (send_status || accept_status)
 893                        break;
 894        }
 895        pr_debug("After Startup\n");
 896
 897        if (send_status)
 898                pr_err("APIC never delivered???\n");
 899        if (accept_status)
 900                pr_err("APIC delivery error (%lx)\n", accept_status);
 901
 902        return (send_status | accept_status);
 903}
 904
 905/* reduce the number of lines printed when booting a large cpu count system */
 906static void announce_cpu(int cpu, int apicid)
 907{
 908        static int current_node = NUMA_NO_NODE;
 909        int node = early_cpu_to_node(cpu);
 910        static int width, node_width;
 911
 912        if (!width)
 913                width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 914
 915        if (!node_width)
 916                node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 917
 918        if (cpu == 1)
 919                printk(KERN_INFO "x86: Booting SMP configuration:\n");
 920
 921        if (system_state < SYSTEM_RUNNING) {
 922                if (node != current_node) {
 923                        if (current_node > (-1))
 924                                pr_cont("\n");
 925                        current_node = node;
 926
 927                        printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 928                               node_width - num_digits(node), " ", node);
 929                }
 930
 931                /* Add padding for the BSP */
 932                if (cpu == 1)
 933                        pr_cont("%*s", width + 1, " ");
 934
 935                pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 936
 937        } else
 938                pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 939                        node, cpu, apicid);
 940}
 941
 942static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
 943{
 944        int cpu;
 945
 946        cpu = smp_processor_id();
 947        if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
 948                return NMI_HANDLED;
 949
 950        return NMI_DONE;
 951}
 952
 953/*
 954 * Wake up AP by INIT, INIT, STARTUP sequence.
 955 *
 956 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
 957 * boot-strap code which is not a desired behavior for waking up BSP. To
 958 * void the boot-strap code, wake up CPU0 by NMI instead.
 959 *
 960 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
 961 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
 962 * We'll change this code in the future to wake up hard offlined CPU0 if
 963 * real platform and request are available.
 964 */
 965static int
 966wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
 967               int *cpu0_nmi_registered)
 968{
 969        int id;
 970        int boot_error;
 971
 972        preempt_disable();
 973
 974        /*
 975         * Wake up AP by INIT, INIT, STARTUP sequence.
 976         */
 977        if (cpu) {
 978                boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
 979                goto out;
 980        }
 981
 982        /*
 983         * Wake up BSP by nmi.
 984         *
 985         * Register a NMI handler to help wake up CPU0.
 986         */
 987        boot_error = register_nmi_handler(NMI_LOCAL,
 988                                          wakeup_cpu0_nmi, 0, "wake_cpu0");
 989
 990        if (!boot_error) {
 991                enable_start_cpu0 = 1;
 992                *cpu0_nmi_registered = 1;
 993                if (apic->dest_logical == APIC_DEST_LOGICAL)
 994                        id = cpu0_logical_apicid;
 995                else
 996                        id = apicid;
 997                boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
 998        }
 999
1000out:
1001        preempt_enable();
1002
1003        return boot_error;
1004}
1005
1006int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1007{
1008        int ret;
1009
1010        /* Just in case we booted with a single CPU. */
1011        alternatives_enable_smp();
1012
1013        per_cpu(current_task, cpu) = idle;
1014
1015        /* Initialize the interrupt stack(s) */
1016        ret = irq_init_percpu_irqstack(cpu);
1017        if (ret)
1018                return ret;
1019
1020#ifdef CONFIG_X86_32
1021        /* Stack for startup_32 can be just as for start_secondary onwards */
1022        per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1023#else
1024        initial_gs = per_cpu_offset(cpu);
1025#endif
1026        return 0;
1027}
1028
1029/*
1030 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1031 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1032 * Returns zero if CPU booted OK, else error code from
1033 * ->wakeup_secondary_cpu.
1034 */
1035static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1036                       int *cpu0_nmi_registered)
1037{
1038        /* start_ip had better be page-aligned! */
1039        unsigned long start_ip = real_mode_header->trampoline_start;
1040
1041        unsigned long boot_error = 0;
1042        unsigned long timeout;
1043
1044        idle->thread.sp = (unsigned long)task_pt_regs(idle);
1045        early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1046        initial_code = (unsigned long)start_secondary;
1047        initial_stack  = idle->thread.sp;
1048
1049        /* Enable the espfix hack for this CPU */
1050        init_espfix_ap(cpu);
1051
1052        /* So we see what's up */
1053        announce_cpu(cpu, apicid);
1054
1055        /*
1056         * This grunge runs the startup process for
1057         * the targeted processor.
1058         */
1059
1060        if (x86_platform.legacy.warm_reset) {
1061
1062                pr_debug("Setting warm reset code and vector.\n");
1063
1064                smpboot_setup_warm_reset_vector(start_ip);
1065                /*
1066                 * Be paranoid about clearing APIC errors.
1067                */
1068                if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1069                        apic_write(APIC_ESR, 0);
1070                        apic_read(APIC_ESR);
1071                }
1072        }
1073
1074        /*
1075         * AP might wait on cpu_callout_mask in cpu_init() with
1076         * cpu_initialized_mask set if previous attempt to online
1077         * it timed-out. Clear cpu_initialized_mask so that after
1078         * INIT/SIPI it could start with a clean state.
1079         */
1080        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1081        smp_mb();
1082
1083        /*
1084         * Wake up a CPU in difference cases:
1085         * - Use the method in the APIC driver if it's defined
1086         * Otherwise,
1087         * - Use an INIT boot APIC message for APs or NMI for BSP.
1088         */
1089        if (apic->wakeup_secondary_cpu)
1090                boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1091        else
1092                boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1093                                                     cpu0_nmi_registered);
1094
1095        if (!boot_error) {
1096                /*
1097                 * Wait 10s total for first sign of life from AP
1098                 */
1099                boot_error = -1;
1100                timeout = jiffies + 10*HZ;
1101                while (time_before(jiffies, timeout)) {
1102                        if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1103                                /*
1104                                 * Tell AP to proceed with initialization
1105                                 */
1106                                cpumask_set_cpu(cpu, cpu_callout_mask);
1107                                boot_error = 0;
1108                                break;
1109                        }
1110                        schedule();
1111                }
1112        }
1113
1114        if (!boot_error) {
1115                /*
1116                 * Wait till AP completes initial initialization
1117                 */
1118                while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1119                        /*
1120                         * Allow other tasks to run while we wait for the
1121                         * AP to come online. This also gives a chance
1122                         * for the MTRR work(triggered by the AP coming online)
1123                         * to be completed in the stop machine context.
1124                         */
1125                        schedule();
1126                }
1127        }
1128
1129        if (x86_platform.legacy.warm_reset) {
1130                /*
1131                 * Cleanup possible dangling ends...
1132                 */
1133                smpboot_restore_warm_reset_vector();
1134        }
1135
1136        return boot_error;
1137}
1138
1139int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1140{
1141        int apicid = apic->cpu_present_to_apicid(cpu);
1142        int cpu0_nmi_registered = 0;
1143        unsigned long flags;
1144        int err, ret = 0;
1145
1146        lockdep_assert_irqs_enabled();
1147
1148        pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1149
1150        if (apicid == BAD_APICID ||
1151            !physid_isset(apicid, phys_cpu_present_map) ||
1152            !apic->apic_id_valid(apicid)) {
1153                pr_err("%s: bad cpu %d\n", __func__, cpu);
1154                return -EINVAL;
1155        }
1156
1157        /*
1158         * Already booted CPU?
1159         */
1160        if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1161                pr_debug("do_boot_cpu %d Already started\n", cpu);
1162                return -ENOSYS;
1163        }
1164
1165        /*
1166         * Save current MTRR state in case it was changed since early boot
1167         * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1168         */
1169        mtrr_save_state();
1170
1171        /* x86 CPUs take themselves offline, so delayed offline is OK. */
1172        err = cpu_check_up_prepare(cpu);
1173        if (err && err != -EBUSY)
1174                return err;
1175
1176        /* the FPU context is blank, nobody can own it */
1177        per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1178
1179        err = common_cpu_up(cpu, tidle);
1180        if (err)
1181                return err;
1182
1183        err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1184        if (err) {
1185                pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1186                ret = -EIO;
1187                goto unreg_nmi;
1188        }
1189
1190        /*
1191         * Check TSC synchronization with the AP (keep irqs disabled
1192         * while doing so):
1193         */
1194        local_irq_save(flags);
1195        check_tsc_sync_source(cpu);
1196        local_irq_restore(flags);
1197
1198        while (!cpu_online(cpu)) {
1199                cpu_relax();
1200                touch_nmi_watchdog();
1201        }
1202
1203unreg_nmi:
1204        /*
1205         * Clean up the nmi handler. Do this after the callin and callout sync
1206         * to avoid impact of possible long unregister time.
1207         */
1208        if (cpu0_nmi_registered)
1209                unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1210
1211        return ret;
1212}
1213
1214/**
1215 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1216 */
1217void arch_disable_smp_support(void)
1218{
1219        disable_ioapic_support();
1220}
1221
1222/*
1223 * Fall back to non SMP mode after errors.
1224 *
1225 * RED-PEN audit/test this more. I bet there is more state messed up here.
1226 */
1227static __init void disable_smp(void)
1228{
1229        pr_info("SMP disabled\n");
1230
1231        disable_ioapic_support();
1232
1233        init_cpu_present(cpumask_of(0));
1234        init_cpu_possible(cpumask_of(0));
1235
1236        if (smp_found_config)
1237                physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1238        else
1239                physid_set_mask_of_physid(0, &phys_cpu_present_map);
1240        cpumask_set_cpu(0, topology_sibling_cpumask(0));
1241        cpumask_set_cpu(0, topology_core_cpumask(0));
1242        cpumask_set_cpu(0, topology_die_cpumask(0));
1243}
1244
1245/*
1246 * Various sanity checks.
1247 */
1248static void __init smp_sanity_check(void)
1249{
1250        preempt_disable();
1251
1252#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1253        if (def_to_bigsmp && nr_cpu_ids > 8) {
1254                unsigned int cpu;
1255                unsigned nr;
1256
1257                pr_warn("More than 8 CPUs detected - skipping them\n"
1258                        "Use CONFIG_X86_BIGSMP\n");
1259
1260                nr = 0;
1261                for_each_present_cpu(cpu) {
1262                        if (nr >= 8)
1263                                set_cpu_present(cpu, false);
1264                        nr++;
1265                }
1266
1267                nr = 0;
1268                for_each_possible_cpu(cpu) {
1269                        if (nr >= 8)
1270                                set_cpu_possible(cpu, false);
1271                        nr++;
1272                }
1273
1274                nr_cpu_ids = 8;
1275        }
1276#endif
1277
1278        if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1279                pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1280                        hard_smp_processor_id());
1281
1282                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1283        }
1284
1285        /*
1286         * Should not be necessary because the MP table should list the boot
1287         * CPU too, but we do it for the sake of robustness anyway.
1288         */
1289        if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1290                pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1291                          boot_cpu_physical_apicid);
1292                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1293        }
1294        preempt_enable();
1295}
1296
1297static void __init smp_cpu_index_default(void)
1298{
1299        int i;
1300        struct cpuinfo_x86 *c;
1301
1302        for_each_possible_cpu(i) {
1303                c = &cpu_data(i);
1304                /* mark all to hotplug */
1305                c->cpu_index = nr_cpu_ids;
1306        }
1307}
1308
1309static void __init smp_get_logical_apicid(void)
1310{
1311        if (x2apic_mode)
1312                cpu0_logical_apicid = apic_read(APIC_LDR);
1313        else
1314                cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1315}
1316
1317/*
1318 * Prepare for SMP bootup.
1319 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1320 *            for common interface support.
1321 */
1322void __init native_smp_prepare_cpus(unsigned int max_cpus)
1323{
1324        unsigned int i;
1325
1326        smp_cpu_index_default();
1327
1328        /*
1329         * Setup boot CPU information
1330         */
1331        smp_store_boot_cpu_info(); /* Final full version of the data */
1332        cpumask_copy(cpu_callin_mask, cpumask_of(0));
1333        mb();
1334
1335        for_each_possible_cpu(i) {
1336                zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1337                zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1338                zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1339                zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1340        }
1341
1342        /*
1343         * Set 'default' x86 topology, this matches default_topology() in that
1344         * it has NUMA nodes as a topology level. See also
1345         * native_smp_cpus_done().
1346         *
1347         * Must be done before set_cpus_sibling_map() is ran.
1348         */
1349        set_sched_topology(x86_topology);
1350
1351        set_cpu_sibling_map(0);
1352        init_freq_invariance(false);
1353        smp_sanity_check();
1354
1355        switch (apic_intr_mode) {
1356        case APIC_PIC:
1357        case APIC_VIRTUAL_WIRE_NO_CONFIG:
1358                disable_smp();
1359                return;
1360        case APIC_SYMMETRIC_IO_NO_ROUTING:
1361                disable_smp();
1362                /* Setup local timer */
1363                x86_init.timers.setup_percpu_clockev();
1364                return;
1365        case APIC_VIRTUAL_WIRE:
1366        case APIC_SYMMETRIC_IO:
1367                break;
1368        }
1369
1370        /* Setup local timer */
1371        x86_init.timers.setup_percpu_clockev();
1372
1373        smp_get_logical_apicid();
1374
1375        pr_info("CPU0: ");
1376        print_cpu_info(&cpu_data(0));
1377
1378        uv_system_init();
1379
1380        set_mtrr_aps_delayed_init();
1381
1382        smp_quirk_init_udelay();
1383
1384        speculative_store_bypass_ht_init();
1385}
1386
1387void arch_enable_nonboot_cpus_begin(void)
1388{
1389        set_mtrr_aps_delayed_init();
1390}
1391
1392void arch_enable_nonboot_cpus_end(void)
1393{
1394        mtrr_aps_init();
1395}
1396
1397/*
1398 * Early setup to make printk work.
1399 */
1400void __init native_smp_prepare_boot_cpu(void)
1401{
1402        int me = smp_processor_id();
1403        switch_to_new_gdt(me);
1404        /* already set me in cpu_online_mask in boot_cpu_init() */
1405        cpumask_set_cpu(me, cpu_callout_mask);
1406        cpu_set_state_online(me);
1407        native_pv_lock_init();
1408}
1409
1410void __init calculate_max_logical_packages(void)
1411{
1412        int ncpus;
1413
1414        /*
1415         * Today neither Intel nor AMD support heterogenous systems so
1416         * extrapolate the boot cpu's data to all packages.
1417         */
1418        ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1419        __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1420        pr_info("Max logical packages: %u\n", __max_logical_packages);
1421}
1422
1423void __init native_smp_cpus_done(unsigned int max_cpus)
1424{
1425        pr_debug("Boot done\n");
1426
1427        calculate_max_logical_packages();
1428
1429        if (x86_has_numa_in_package)
1430                set_sched_topology(x86_numa_in_package_topology);
1431
1432        nmi_selftest();
1433        impress_friends();
1434        mtrr_aps_init();
1435}
1436
1437static int __initdata setup_possible_cpus = -1;
1438static int __init _setup_possible_cpus(char *str)
1439{
1440        get_option(&str, &setup_possible_cpus);
1441        return 0;
1442}
1443early_param("possible_cpus", _setup_possible_cpus);
1444
1445
1446/*
1447 * cpu_possible_mask should be static, it cannot change as cpu's
1448 * are onlined, or offlined. The reason is per-cpu data-structures
1449 * are allocated by some modules at init time, and don't expect to
1450 * do this dynamically on cpu arrival/departure.
1451 * cpu_present_mask on the other hand can change dynamically.
1452 * In case when cpu_hotplug is not compiled, then we resort to current
1453 * behaviour, which is cpu_possible == cpu_present.
1454 * - Ashok Raj
1455 *
1456 * Three ways to find out the number of additional hotplug CPUs:
1457 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1458 * - The user can overwrite it with possible_cpus=NUM
1459 * - Otherwise don't reserve additional CPUs.
1460 * We do this because additional CPUs waste a lot of memory.
1461 * -AK
1462 */
1463__init void prefill_possible_map(void)
1464{
1465        int i, possible;
1466
1467        /* No boot processor was found in mptable or ACPI MADT */
1468        if (!num_processors) {
1469                if (boot_cpu_has(X86_FEATURE_APIC)) {
1470                        int apicid = boot_cpu_physical_apicid;
1471                        int cpu = hard_smp_processor_id();
1472
1473                        pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1474
1475                        /* Make sure boot cpu is enumerated */
1476                        if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1477                            apic->apic_id_valid(apicid))
1478                                generic_processor_info(apicid, boot_cpu_apic_version);
1479                }
1480
1481                if (!num_processors)
1482                        num_processors = 1;
1483        }
1484
1485        i = setup_max_cpus ?: 1;
1486        if (setup_possible_cpus == -1) {
1487                possible = num_processors;
1488#ifdef CONFIG_HOTPLUG_CPU
1489                if (setup_max_cpus)
1490                        possible += disabled_cpus;
1491#else
1492                if (possible > i)
1493                        possible = i;
1494#endif
1495        } else
1496                possible = setup_possible_cpus;
1497
1498        total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1499
1500        /* nr_cpu_ids could be reduced via nr_cpus= */
1501        if (possible > nr_cpu_ids) {
1502                pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1503                        possible, nr_cpu_ids);
1504                possible = nr_cpu_ids;
1505        }
1506
1507#ifdef CONFIG_HOTPLUG_CPU
1508        if (!setup_max_cpus)
1509#endif
1510        if (possible > i) {
1511                pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1512                        possible, setup_max_cpus);
1513                possible = i;
1514        }
1515
1516        nr_cpu_ids = possible;
1517
1518        pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1519                possible, max_t(int, possible - num_processors, 0));
1520
1521        reset_cpu_possible_mask();
1522
1523        for (i = 0; i < possible; i++)
1524                set_cpu_possible(i, true);
1525}
1526
1527#ifdef CONFIG_HOTPLUG_CPU
1528
1529/* Recompute SMT state for all CPUs on offline */
1530static void recompute_smt_state(void)
1531{
1532        int max_threads, cpu;
1533
1534        max_threads = 0;
1535        for_each_online_cpu (cpu) {
1536                int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1537
1538                if (threads > max_threads)
1539                        max_threads = threads;
1540        }
1541        __max_smt_threads = max_threads;
1542}
1543
1544static void remove_siblinginfo(int cpu)
1545{
1546        int sibling;
1547        struct cpuinfo_x86 *c = &cpu_data(cpu);
1548
1549        for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1550                cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1551                /*/
1552                 * last thread sibling in this cpu core going down
1553                 */
1554                if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1555                        cpu_data(sibling).booted_cores--;
1556        }
1557
1558        for_each_cpu(sibling, topology_die_cpumask(cpu))
1559                cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1560        for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1561                cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1562        for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1563                cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1564        cpumask_clear(cpu_llc_shared_mask(cpu));
1565        cpumask_clear(topology_sibling_cpumask(cpu));
1566        cpumask_clear(topology_core_cpumask(cpu));
1567        cpumask_clear(topology_die_cpumask(cpu));
1568        c->cpu_core_id = 0;
1569        c->booted_cores = 0;
1570        cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1571        recompute_smt_state();
1572}
1573
1574static void remove_cpu_from_maps(int cpu)
1575{
1576        set_cpu_online(cpu, false);
1577        cpumask_clear_cpu(cpu, cpu_callout_mask);
1578        cpumask_clear_cpu(cpu, cpu_callin_mask);
1579        /* was set by cpu_init() */
1580        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1581        numa_remove_cpu(cpu);
1582}
1583
1584void cpu_disable_common(void)
1585{
1586        int cpu = smp_processor_id();
1587
1588        remove_siblinginfo(cpu);
1589
1590        /* It's now safe to remove this processor from the online map */
1591        lock_vector_lock();
1592        remove_cpu_from_maps(cpu);
1593        unlock_vector_lock();
1594        fixup_irqs();
1595        lapic_offline();
1596}
1597
1598int native_cpu_disable(void)
1599{
1600        int ret;
1601
1602        ret = lapic_can_unplug_cpu();
1603        if (ret)
1604                return ret;
1605
1606        /*
1607         * Disable the local APIC. Otherwise IPI broadcasts will reach
1608         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1609         * messages.
1610         */
1611        apic_soft_disable();
1612        cpu_disable_common();
1613
1614        return 0;
1615}
1616
1617int common_cpu_die(unsigned int cpu)
1618{
1619        int ret = 0;
1620
1621        /* We don't do anything here: idle task is faking death itself. */
1622
1623        /* They ack this in play_dead() by setting CPU_DEAD */
1624        if (cpu_wait_death(cpu, 5)) {
1625                if (system_state == SYSTEM_RUNNING)
1626                        pr_info("CPU %u is now offline\n", cpu);
1627        } else {
1628                pr_err("CPU %u didn't die...\n", cpu);
1629                ret = -1;
1630        }
1631
1632        return ret;
1633}
1634
1635void native_cpu_die(unsigned int cpu)
1636{
1637        common_cpu_die(cpu);
1638}
1639
1640void play_dead_common(void)
1641{
1642        idle_task_exit();
1643
1644        /* Ack it */
1645        (void)cpu_report_death();
1646
1647        /*
1648         * With physical CPU hotplug, we should halt the cpu
1649         */
1650        local_irq_disable();
1651}
1652
1653static bool wakeup_cpu0(void)
1654{
1655        if (smp_processor_id() == 0 && enable_start_cpu0)
1656                return true;
1657
1658        return false;
1659}
1660
1661/*
1662 * We need to flush the caches before going to sleep, lest we have
1663 * dirty data in our caches when we come back up.
1664 */
1665static inline void mwait_play_dead(void)
1666{
1667        unsigned int eax, ebx, ecx, edx;
1668        unsigned int highest_cstate = 0;
1669        unsigned int highest_subcstate = 0;
1670        void *mwait_ptr;
1671        int i;
1672
1673        if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1674            boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1675                return;
1676        if (!this_cpu_has(X86_FEATURE_MWAIT))
1677                return;
1678        if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1679                return;
1680        if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1681                return;
1682
1683        eax = CPUID_MWAIT_LEAF;
1684        ecx = 0;
1685        native_cpuid(&eax, &ebx, &ecx, &edx);
1686
1687        /*
1688         * eax will be 0 if EDX enumeration is not valid.
1689         * Initialized below to cstate, sub_cstate value when EDX is valid.
1690         */
1691        if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1692                eax = 0;
1693        } else {
1694                edx >>= MWAIT_SUBSTATE_SIZE;
1695                for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1696                        if (edx & MWAIT_SUBSTATE_MASK) {
1697                                highest_cstate = i;
1698                                highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1699                        }
1700                }
1701                eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1702                        (highest_subcstate - 1);
1703        }
1704
1705        /*
1706         * This should be a memory location in a cache line which is
1707         * unlikely to be touched by other processors.  The actual
1708         * content is immaterial as it is not actually modified in any way.
1709         */
1710        mwait_ptr = &current_thread_info()->flags;
1711
1712        wbinvd();
1713
1714        while (1) {
1715                /*
1716                 * The CLFLUSH is a workaround for erratum AAI65 for
1717                 * the Xeon 7400 series.  It's not clear it is actually
1718                 * needed, but it should be harmless in either case.
1719                 * The WBINVD is insufficient due to the spurious-wakeup
1720                 * case where we return around the loop.
1721                 */
1722                mb();
1723                clflush(mwait_ptr);
1724                mb();
1725                __monitor(mwait_ptr, 0, 0);
1726                mb();
1727                __mwait(eax, 0);
1728                /*
1729                 * If NMI wants to wake up CPU0, start CPU0.
1730                 */
1731                if (wakeup_cpu0())
1732                        start_cpu0();
1733        }
1734}
1735
1736void hlt_play_dead(void)
1737{
1738        if (__this_cpu_read(cpu_info.x86) >= 4)
1739                wbinvd();
1740
1741        while (1) {
1742                native_halt();
1743                /*
1744                 * If NMI wants to wake up CPU0, start CPU0.
1745                 */
1746                if (wakeup_cpu0())
1747                        start_cpu0();
1748        }
1749}
1750
1751void native_play_dead(void)
1752{
1753        play_dead_common();
1754        tboot_shutdown(TB_SHUTDOWN_WFS);
1755
1756        mwait_play_dead();      /* Only returns on failure */
1757        if (cpuidle_play_dead())
1758                hlt_play_dead();
1759}
1760
1761#else /* ... !CONFIG_HOTPLUG_CPU */
1762int native_cpu_disable(void)
1763{
1764        return -ENOSYS;
1765}
1766
1767void native_cpu_die(unsigned int cpu)
1768{
1769        /* We said "no" in __cpu_disable */
1770        BUG();
1771}
1772
1773void native_play_dead(void)
1774{
1775        BUG();
1776}
1777
1778#endif
1779
1780/*
1781 * APERF/MPERF frequency ratio computation.
1782 *
1783 * The scheduler wants to do frequency invariant accounting and needs a <1
1784 * ratio to account for the 'current' frequency, corresponding to
1785 * freq_curr / freq_max.
1786 *
1787 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1788 * our P-state setting is little more than a request/hint, we need to observe
1789 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1790 * interval after discarding idle time. This is given by:
1791 *
1792 *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1793 *
1794 * where freq_base is the max non-turbo P-state.
1795 *
1796 * The freq_max term has to be set to a somewhat arbitrary value, because we
1797 * can't know which turbo states will be available at a given point in time:
1798 * it all depends on the thermal headroom of the entire package. We set it to
1799 * the turbo level with 4 cores active.
1800 *
1801 * Benchmarks show that's a good compromise between the 1C turbo ratio
1802 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1803 * which would ignore the entire turbo range (a conspicuous part, making
1804 * freq_curr/freq_max always maxed out).
1805 *
1806 * An exception to the heuristic above is the Atom uarch, where we choose the
1807 * highest turbo level for freq_max since Atom's are generally oriented towards
1808 * power efficiency.
1809 *
1810 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1811 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1812 */
1813
1814DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1815
1816static DEFINE_PER_CPU(u64, arch_prev_aperf);
1817static DEFINE_PER_CPU(u64, arch_prev_mperf);
1818static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1819static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1820
1821void arch_set_max_freq_ratio(bool turbo_disabled)
1822{
1823        arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1824                                        arch_turbo_freq_ratio;
1825}
1826
1827static bool turbo_disabled(void)
1828{
1829        u64 misc_en;
1830        int err;
1831
1832        err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1833        if (err)
1834                return false;
1835
1836        return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1837}
1838
1839static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1840{
1841        int err;
1842
1843        err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1844        if (err)
1845                return false;
1846
1847        err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1848        if (err)
1849                return false;
1850
1851        *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1852        *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1853
1854        return true;
1855}
1856
1857#include <asm/cpu_device_id.h>
1858#include <asm/intel-family.h>
1859
1860#define ICPU(model) \
1861        {X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF, 0}
1862
1863static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1864        ICPU(INTEL_FAM6_XEON_PHI_KNL),
1865        ICPU(INTEL_FAM6_XEON_PHI_KNM),
1866        {}
1867};
1868
1869static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1870        ICPU(INTEL_FAM6_SKYLAKE_X),
1871        {}
1872};
1873
1874static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1875        ICPU(INTEL_FAM6_ATOM_GOLDMONT),
1876        ICPU(INTEL_FAM6_ATOM_GOLDMONT_D),
1877        ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS),
1878        {}
1879};
1880
1881static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1882                                int num_delta_fratio)
1883{
1884        int fratio, delta_fratio, found;
1885        int err, i;
1886        u64 msr;
1887
1888        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1889        if (err)
1890                return false;
1891
1892        *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1893
1894        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1895        if (err)
1896                return false;
1897
1898        fratio = (msr >> 8) & 0xFF;
1899        i = 16;
1900        found = 0;
1901        do {
1902                if (found >= num_delta_fratio) {
1903                        *turbo_freq = fratio;
1904                        return true;
1905                }
1906
1907                delta_fratio = (msr >> (i + 5)) & 0x7;
1908
1909                if (delta_fratio) {
1910                        found += 1;
1911                        fratio -= delta_fratio;
1912                }
1913
1914                i += 8;
1915        } while (i < 64);
1916
1917        return true;
1918}
1919
1920static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1921{
1922        u64 ratios, counts;
1923        u32 group_size;
1924        int err, i;
1925
1926        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1927        if (err)
1928                return false;
1929
1930        *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1931
1932        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1933        if (err)
1934                return false;
1935
1936        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1937        if (err)
1938                return false;
1939
1940        for (i = 0; i < 64; i += 8) {
1941                group_size = (counts >> i) & 0xFF;
1942                if (group_size >= size) {
1943                        *turbo_freq = (ratios >> i) & 0xFF;
1944                        return true;
1945                }
1946        }
1947
1948        return false;
1949}
1950
1951static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1952{
1953        u64 msr;
1954        int err;
1955
1956        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1957        if (err)
1958                return false;
1959
1960        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1961        if (err)
1962                return false;
1963
1964        *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1965        *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1966
1967        /* The CPU may have less than 4 cores */
1968        if (!*turbo_freq)
1969                *turbo_freq = msr & 0xFF;         /* 1C turbo    */
1970
1971        return true;
1972}
1973
1974static bool intel_set_max_freq_ratio(void)
1975{
1976        u64 base_freq, turbo_freq;
1977
1978        if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1979                goto out;
1980
1981        if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1982            skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1983                goto out;
1984
1985        if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1986            knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1987                goto out;
1988
1989        if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1990            skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1991                goto out;
1992
1993        if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
1994                goto out;
1995
1996        return false;
1997
1998out:
1999        /*
2000         * Some hypervisors advertise X86_FEATURE_APERFMPERF
2001         * but then fill all MSR's with zeroes.
2002         */
2003        if (!base_freq) {
2004                pr_debug("Couldn't determine cpu base frequency, necessary for scale-invariant accounting.\n");
2005                return false;
2006        }
2007
2008        arch_turbo_freq_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE,
2009                                        base_freq);
2010        arch_set_max_freq_ratio(turbo_disabled());
2011        return true;
2012}
2013
2014static void init_counter_refs(void)
2015{
2016        u64 aperf, mperf;
2017
2018        rdmsrl(MSR_IA32_APERF, aperf);
2019        rdmsrl(MSR_IA32_MPERF, mperf);
2020
2021        this_cpu_write(arch_prev_aperf, aperf);
2022        this_cpu_write(arch_prev_mperf, mperf);
2023}
2024
2025static void init_freq_invariance(bool secondary)
2026{
2027        bool ret = false;
2028
2029        if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2030                return;
2031
2032        if (secondary) {
2033                if (static_branch_likely(&arch_scale_freq_key)) {
2034                        init_counter_refs();
2035                }
2036                return;
2037        }
2038
2039        if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2040                ret = intel_set_max_freq_ratio();
2041
2042        if (ret) {
2043                init_counter_refs();
2044                static_branch_enable(&arch_scale_freq_key);
2045        } else {
2046                pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2047        }
2048}
2049
2050DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2051
2052void arch_scale_freq_tick(void)
2053{
2054        u64 freq_scale;
2055        u64 aperf, mperf;
2056        u64 acnt, mcnt;
2057
2058        if (!arch_scale_freq_invariant())
2059                return;
2060
2061        rdmsrl(MSR_IA32_APERF, aperf);
2062        rdmsrl(MSR_IA32_MPERF, mperf);
2063
2064        acnt = aperf - this_cpu_read(arch_prev_aperf);
2065        mcnt = mperf - this_cpu_read(arch_prev_mperf);
2066        if (!mcnt)
2067                return;
2068
2069        this_cpu_write(arch_prev_aperf, aperf);
2070        this_cpu_write(arch_prev_mperf, mperf);
2071
2072        acnt <<= 2*SCHED_CAPACITY_SHIFT;
2073        mcnt *= arch_max_freq_ratio;
2074
2075        freq_scale = div64_u64(acnt, mcnt);
2076
2077        if (freq_scale > SCHED_CAPACITY_SCALE)
2078                freq_scale = SCHED_CAPACITY_SCALE;
2079
2080        this_cpu_write(arch_freq_scale, freq_scale);
2081}
2082