linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/swapfile.h>
   7#include <linux/swapops.h>
   8#include <linux/kmemleak.h>
   9#include <linux/sched/task.h>
  10
  11#include <asm/set_memory.h>
  12#include <asm/e820/api.h>
  13#include <asm/init.h>
  14#include <asm/page.h>
  15#include <asm/page_types.h>
  16#include <asm/sections.h>
  17#include <asm/setup.h>
  18#include <asm/tlbflush.h>
  19#include <asm/tlb.h>
  20#include <asm/proto.h>
  21#include <asm/dma.h>            /* for MAX_DMA_PFN */
  22#include <asm/microcode.h>
  23#include <asm/kaslr.h>
  24#include <asm/hypervisor.h>
  25#include <asm/cpufeature.h>
  26#include <asm/pti.h>
  27#include <asm/text-patching.h>
  28
  29/*
  30 * We need to define the tracepoints somewhere, and tlb.c
  31 * is only compied when SMP=y.
  32 */
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/tlb.h>
  35
  36#include "mm_internal.h"
  37
  38/*
  39 * Tables translating between page_cache_type_t and pte encoding.
  40 *
  41 * The default values are defined statically as minimal supported mode;
  42 * WC and WT fall back to UC-.  pat_init() updates these values to support
  43 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
  44 * for the details.  Note, __early_ioremap() used during early boot-time
  45 * takes pgprot_t (pte encoding) and does not use these tables.
  46 *
  47 *   Index into __cachemode2pte_tbl[] is the cachemode.
  48 *
  49 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  50 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  51 */
  52uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  53        [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
  54        [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
  55        [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
  56        [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
  57        [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
  58        [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
  59};
  60EXPORT_SYMBOL(__cachemode2pte_tbl);
  61
  62uint8_t __pte2cachemode_tbl[8] = {
  63        [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
  64        [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  65        [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  66        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
  67        [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  68        [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  69        [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  70        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  71};
  72EXPORT_SYMBOL(__pte2cachemode_tbl);
  73
  74static unsigned long __initdata pgt_buf_start;
  75static unsigned long __initdata pgt_buf_end;
  76static unsigned long __initdata pgt_buf_top;
  77
  78static unsigned long min_pfn_mapped;
  79
  80static bool __initdata can_use_brk_pgt = true;
  81
  82/*
  83 * Pages returned are already directly mapped.
  84 *
  85 * Changing that is likely to break Xen, see commit:
  86 *
  87 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  88 *
  89 * for detailed information.
  90 */
  91__ref void *alloc_low_pages(unsigned int num)
  92{
  93        unsigned long pfn;
  94        int i;
  95
  96        if (after_bootmem) {
  97                unsigned int order;
  98
  99                order = get_order((unsigned long)num << PAGE_SHIFT);
 100                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 101        }
 102
 103        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 104                unsigned long ret = 0;
 105
 106                if (min_pfn_mapped < max_pfn_mapped) {
 107                        ret = memblock_find_in_range(
 108                                        min_pfn_mapped << PAGE_SHIFT,
 109                                        max_pfn_mapped << PAGE_SHIFT,
 110                                        PAGE_SIZE * num , PAGE_SIZE);
 111                }
 112                if (ret)
 113                        memblock_reserve(ret, PAGE_SIZE * num);
 114                else if (can_use_brk_pgt)
 115                        ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
 116
 117                if (!ret)
 118                        panic("alloc_low_pages: can not alloc memory");
 119
 120                pfn = ret >> PAGE_SHIFT;
 121        } else {
 122                pfn = pgt_buf_end;
 123                pgt_buf_end += num;
 124                printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 125                        pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 126        }
 127
 128        for (i = 0; i < num; i++) {
 129                void *adr;
 130
 131                adr = __va((pfn + i) << PAGE_SHIFT);
 132                clear_page(adr);
 133        }
 134
 135        return __va(pfn << PAGE_SHIFT);
 136}
 137
 138/*
 139 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
 140 * With KASLR memory randomization, depending on the machine e820 memory
 141 * and the PUD alignment. We may need twice more pages when KASLR memory
 142 * randomization is enabled.
 143 */
 144#ifndef CONFIG_RANDOMIZE_MEMORY
 145#define INIT_PGD_PAGE_COUNT      6
 146#else
 147#define INIT_PGD_PAGE_COUNT      12
 148#endif
 149#define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
 150RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 151void  __init early_alloc_pgt_buf(void)
 152{
 153        unsigned long tables = INIT_PGT_BUF_SIZE;
 154        phys_addr_t base;
 155
 156        base = __pa(extend_brk(tables, PAGE_SIZE));
 157
 158        pgt_buf_start = base >> PAGE_SHIFT;
 159        pgt_buf_end = pgt_buf_start;
 160        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 161}
 162
 163int after_bootmem;
 164
 165early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 166
 167struct map_range {
 168        unsigned long start;
 169        unsigned long end;
 170        unsigned page_size_mask;
 171};
 172
 173static int page_size_mask;
 174
 175static void __init probe_page_size_mask(void)
 176{
 177        /*
 178         * For pagealloc debugging, identity mapping will use small pages.
 179         * This will simplify cpa(), which otherwise needs to support splitting
 180         * large pages into small in interrupt context, etc.
 181         */
 182        if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
 183                page_size_mask |= 1 << PG_LEVEL_2M;
 184        else
 185                direct_gbpages = 0;
 186
 187        /* Enable PSE if available */
 188        if (boot_cpu_has(X86_FEATURE_PSE))
 189                cr4_set_bits_and_update_boot(X86_CR4_PSE);
 190
 191        /* Enable PGE if available */
 192        __supported_pte_mask &= ~_PAGE_GLOBAL;
 193        if (boot_cpu_has(X86_FEATURE_PGE)) {
 194                cr4_set_bits_and_update_boot(X86_CR4_PGE);
 195                __supported_pte_mask |= _PAGE_GLOBAL;
 196        }
 197
 198        /* By the default is everything supported: */
 199        __default_kernel_pte_mask = __supported_pte_mask;
 200        /* Except when with PTI where the kernel is mostly non-Global: */
 201        if (cpu_feature_enabled(X86_FEATURE_PTI))
 202                __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
 203
 204        /* Enable 1 GB linear kernel mappings if available: */
 205        if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
 206                printk(KERN_INFO "Using GB pages for direct mapping\n");
 207                page_size_mask |= 1 << PG_LEVEL_1G;
 208        } else {
 209                direct_gbpages = 0;
 210        }
 211}
 212
 213static void setup_pcid(void)
 214{
 215        if (!IS_ENABLED(CONFIG_X86_64))
 216                return;
 217
 218        if (!boot_cpu_has(X86_FEATURE_PCID))
 219                return;
 220
 221        if (boot_cpu_has(X86_FEATURE_PGE)) {
 222                /*
 223                 * This can't be cr4_set_bits_and_update_boot() -- the
 224                 * trampoline code can't handle CR4.PCIDE and it wouldn't
 225                 * do any good anyway.  Despite the name,
 226                 * cr4_set_bits_and_update_boot() doesn't actually cause
 227                 * the bits in question to remain set all the way through
 228                 * the secondary boot asm.
 229                 *
 230                 * Instead, we brute-force it and set CR4.PCIDE manually in
 231                 * start_secondary().
 232                 */
 233                cr4_set_bits(X86_CR4_PCIDE);
 234
 235                /*
 236                 * INVPCID's single-context modes (2/3) only work if we set
 237                 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
 238                 * on systems that have X86_CR4_PCIDE clear, or that have
 239                 * no INVPCID support at all.
 240                 */
 241                if (boot_cpu_has(X86_FEATURE_INVPCID))
 242                        setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
 243        } else {
 244                /*
 245                 * flush_tlb_all(), as currently implemented, won't work if
 246                 * PCID is on but PGE is not.  Since that combination
 247                 * doesn't exist on real hardware, there's no reason to try
 248                 * to fully support it, but it's polite to avoid corrupting
 249                 * data if we're on an improperly configured VM.
 250                 */
 251                setup_clear_cpu_cap(X86_FEATURE_PCID);
 252        }
 253}
 254
 255#ifdef CONFIG_X86_32
 256#define NR_RANGE_MR 3
 257#else /* CONFIG_X86_64 */
 258#define NR_RANGE_MR 5
 259#endif
 260
 261static int __meminit save_mr(struct map_range *mr, int nr_range,
 262                             unsigned long start_pfn, unsigned long end_pfn,
 263                             unsigned long page_size_mask)
 264{
 265        if (start_pfn < end_pfn) {
 266                if (nr_range >= NR_RANGE_MR)
 267                        panic("run out of range for init_memory_mapping\n");
 268                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 269                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 270                mr[nr_range].page_size_mask = page_size_mask;
 271                nr_range++;
 272        }
 273
 274        return nr_range;
 275}
 276
 277/*
 278 * adjust the page_size_mask for small range to go with
 279 *      big page size instead small one if nearby are ram too.
 280 */
 281static void __ref adjust_range_page_size_mask(struct map_range *mr,
 282                                                         int nr_range)
 283{
 284        int i;
 285
 286        for (i = 0; i < nr_range; i++) {
 287                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 288                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 289                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 290                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 291
 292#ifdef CONFIG_X86_32
 293                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 294                                continue;
 295#endif
 296
 297                        if (memblock_is_region_memory(start, end - start))
 298                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 299                }
 300                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 301                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 302                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 303                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 304
 305                        if (memblock_is_region_memory(start, end - start))
 306                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 307                }
 308        }
 309}
 310
 311static const char *page_size_string(struct map_range *mr)
 312{
 313        static const char str_1g[] = "1G";
 314        static const char str_2m[] = "2M";
 315        static const char str_4m[] = "4M";
 316        static const char str_4k[] = "4k";
 317
 318        if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 319                return str_1g;
 320        /*
 321         * 32-bit without PAE has a 4M large page size.
 322         * PG_LEVEL_2M is misnamed, but we can at least
 323         * print out the right size in the string.
 324         */
 325        if (IS_ENABLED(CONFIG_X86_32) &&
 326            !IS_ENABLED(CONFIG_X86_PAE) &&
 327            mr->page_size_mask & (1<<PG_LEVEL_2M))
 328                return str_4m;
 329
 330        if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 331                return str_2m;
 332
 333        return str_4k;
 334}
 335
 336static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 337                                     unsigned long start,
 338                                     unsigned long end)
 339{
 340        unsigned long start_pfn, end_pfn, limit_pfn;
 341        unsigned long pfn;
 342        int i;
 343
 344        limit_pfn = PFN_DOWN(end);
 345
 346        /* head if not big page alignment ? */
 347        pfn = start_pfn = PFN_DOWN(start);
 348#ifdef CONFIG_X86_32
 349        /*
 350         * Don't use a large page for the first 2/4MB of memory
 351         * because there are often fixed size MTRRs in there
 352         * and overlapping MTRRs into large pages can cause
 353         * slowdowns.
 354         */
 355        if (pfn == 0)
 356                end_pfn = PFN_DOWN(PMD_SIZE);
 357        else
 358                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 359#else /* CONFIG_X86_64 */
 360        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 361#endif
 362        if (end_pfn > limit_pfn)
 363                end_pfn = limit_pfn;
 364        if (start_pfn < end_pfn) {
 365                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 366                pfn = end_pfn;
 367        }
 368
 369        /* big page (2M) range */
 370        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 371#ifdef CONFIG_X86_32
 372        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 373#else /* CONFIG_X86_64 */
 374        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 375        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 376                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 377#endif
 378
 379        if (start_pfn < end_pfn) {
 380                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 381                                page_size_mask & (1<<PG_LEVEL_2M));
 382                pfn = end_pfn;
 383        }
 384
 385#ifdef CONFIG_X86_64
 386        /* big page (1G) range */
 387        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 388        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 389        if (start_pfn < end_pfn) {
 390                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 391                                page_size_mask &
 392                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 393                pfn = end_pfn;
 394        }
 395
 396        /* tail is not big page (1G) alignment */
 397        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 398        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 399        if (start_pfn < end_pfn) {
 400                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 401                                page_size_mask & (1<<PG_LEVEL_2M));
 402                pfn = end_pfn;
 403        }
 404#endif
 405
 406        /* tail is not big page (2M) alignment */
 407        start_pfn = pfn;
 408        end_pfn = limit_pfn;
 409        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 410
 411        if (!after_bootmem)
 412                adjust_range_page_size_mask(mr, nr_range);
 413
 414        /* try to merge same page size and continuous */
 415        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 416                unsigned long old_start;
 417                if (mr[i].end != mr[i+1].start ||
 418                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 419                        continue;
 420                /* move it */
 421                old_start = mr[i].start;
 422                memmove(&mr[i], &mr[i+1],
 423                        (nr_range - 1 - i) * sizeof(struct map_range));
 424                mr[i--].start = old_start;
 425                nr_range--;
 426        }
 427
 428        for (i = 0; i < nr_range; i++)
 429                pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 430                                mr[i].start, mr[i].end - 1,
 431                                page_size_string(&mr[i]));
 432
 433        return nr_range;
 434}
 435
 436struct range pfn_mapped[E820_MAX_ENTRIES];
 437int nr_pfn_mapped;
 438
 439static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 440{
 441        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
 442                                             nr_pfn_mapped, start_pfn, end_pfn);
 443        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
 444
 445        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 446
 447        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 448                max_low_pfn_mapped = max(max_low_pfn_mapped,
 449                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 450}
 451
 452bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 453{
 454        int i;
 455
 456        for (i = 0; i < nr_pfn_mapped; i++)
 457                if ((start_pfn >= pfn_mapped[i].start) &&
 458                    (end_pfn <= pfn_mapped[i].end))
 459                        return true;
 460
 461        return false;
 462}
 463
 464/*
 465 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 466 * This runs before bootmem is initialized and gets pages directly from
 467 * the physical memory. To access them they are temporarily mapped.
 468 */
 469unsigned long __ref init_memory_mapping(unsigned long start,
 470                                        unsigned long end, pgprot_t prot)
 471{
 472        struct map_range mr[NR_RANGE_MR];
 473        unsigned long ret = 0;
 474        int nr_range, i;
 475
 476        pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 477               start, end - 1);
 478
 479        memset(mr, 0, sizeof(mr));
 480        nr_range = split_mem_range(mr, 0, start, end);
 481
 482        for (i = 0; i < nr_range; i++)
 483                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 484                                                   mr[i].page_size_mask,
 485                                                   prot);
 486
 487        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 488
 489        return ret >> PAGE_SHIFT;
 490}
 491
 492/*
 493 * We need to iterate through the E820 memory map and create direct mappings
 494 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
 495 * create direct mappings for all pfns from [0 to max_low_pfn) and
 496 * [4GB to max_pfn) because of possible memory holes in high addresses
 497 * that cannot be marked as UC by fixed/variable range MTRRs.
 498 * Depending on the alignment of E820 ranges, this may possibly result
 499 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 500 *
 501 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 502 * That range would have hole in the middle or ends, and only ram parts
 503 * will be mapped in init_range_memory_mapping().
 504 */
 505static unsigned long __init init_range_memory_mapping(
 506                                           unsigned long r_start,
 507                                           unsigned long r_end)
 508{
 509        unsigned long start_pfn, end_pfn;
 510        unsigned long mapped_ram_size = 0;
 511        int i;
 512
 513        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 514                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 515                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 516                if (start >= end)
 517                        continue;
 518
 519                /*
 520                 * if it is overlapping with brk pgt, we need to
 521                 * alloc pgt buf from memblock instead.
 522                 */
 523                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 524                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 525                init_memory_mapping(start, end, PAGE_KERNEL);
 526                mapped_ram_size += end - start;
 527                can_use_brk_pgt = true;
 528        }
 529
 530        return mapped_ram_size;
 531}
 532
 533static unsigned long __init get_new_step_size(unsigned long step_size)
 534{
 535        /*
 536         * Initial mapped size is PMD_SIZE (2M).
 537         * We can not set step_size to be PUD_SIZE (1G) yet.
 538         * In worse case, when we cross the 1G boundary, and
 539         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 540         * to map 1G range with PTE. Hence we use one less than the
 541         * difference of page table level shifts.
 542         *
 543         * Don't need to worry about overflow in the top-down case, on 32bit,
 544         * when step_size is 0, round_down() returns 0 for start, and that
 545         * turns it into 0x100000000ULL.
 546         * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 547         * needs to be taken into consideration by the code below.
 548         */
 549        return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 550}
 551
 552/**
 553 * memory_map_top_down - Map [map_start, map_end) top down
 554 * @map_start: start address of the target memory range
 555 * @map_end: end address of the target memory range
 556 *
 557 * This function will setup direct mapping for memory range
 558 * [map_start, map_end) in top-down. That said, the page tables
 559 * will be allocated at the end of the memory, and we map the
 560 * memory in top-down.
 561 */
 562static void __init memory_map_top_down(unsigned long map_start,
 563                                       unsigned long map_end)
 564{
 565        unsigned long real_end, start, last_start;
 566        unsigned long step_size;
 567        unsigned long addr;
 568        unsigned long mapped_ram_size = 0;
 569
 570        /* xen has big range in reserved near end of ram, skip it at first.*/
 571        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 572        real_end = addr + PMD_SIZE;
 573
 574        /* step_size need to be small so pgt_buf from BRK could cover it */
 575        step_size = PMD_SIZE;
 576        max_pfn_mapped = 0; /* will get exact value next */
 577        min_pfn_mapped = real_end >> PAGE_SHIFT;
 578        last_start = start = real_end;
 579
 580        /*
 581         * We start from the top (end of memory) and go to the bottom.
 582         * The memblock_find_in_range() gets us a block of RAM from the
 583         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 584         * for page table.
 585         */
 586        while (last_start > map_start) {
 587                if (last_start > step_size) {
 588                        start = round_down(last_start - 1, step_size);
 589                        if (start < map_start)
 590                                start = map_start;
 591                } else
 592                        start = map_start;
 593                mapped_ram_size += init_range_memory_mapping(start,
 594                                                        last_start);
 595                last_start = start;
 596                min_pfn_mapped = last_start >> PAGE_SHIFT;
 597                if (mapped_ram_size >= step_size)
 598                        step_size = get_new_step_size(step_size);
 599        }
 600
 601        if (real_end < map_end)
 602                init_range_memory_mapping(real_end, map_end);
 603}
 604
 605/**
 606 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 607 * @map_start: start address of the target memory range
 608 * @map_end: end address of the target memory range
 609 *
 610 * This function will setup direct mapping for memory range
 611 * [map_start, map_end) in bottom-up. Since we have limited the
 612 * bottom-up allocation above the kernel, the page tables will
 613 * be allocated just above the kernel and we map the memory
 614 * in [map_start, map_end) in bottom-up.
 615 */
 616static void __init memory_map_bottom_up(unsigned long map_start,
 617                                        unsigned long map_end)
 618{
 619        unsigned long next, start;
 620        unsigned long mapped_ram_size = 0;
 621        /* step_size need to be small so pgt_buf from BRK could cover it */
 622        unsigned long step_size = PMD_SIZE;
 623
 624        start = map_start;
 625        min_pfn_mapped = start >> PAGE_SHIFT;
 626
 627        /*
 628         * We start from the bottom (@map_start) and go to the top (@map_end).
 629         * The memblock_find_in_range() gets us a block of RAM from the
 630         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 631         * for page table.
 632         */
 633        while (start < map_end) {
 634                if (step_size && map_end - start > step_size) {
 635                        next = round_up(start + 1, step_size);
 636                        if (next > map_end)
 637                                next = map_end;
 638                } else {
 639                        next = map_end;
 640                }
 641
 642                mapped_ram_size += init_range_memory_mapping(start, next);
 643                start = next;
 644
 645                if (mapped_ram_size >= step_size)
 646                        step_size = get_new_step_size(step_size);
 647        }
 648}
 649
 650void __init init_mem_mapping(void)
 651{
 652        unsigned long end;
 653
 654        pti_check_boottime_disable();
 655        probe_page_size_mask();
 656        setup_pcid();
 657
 658#ifdef CONFIG_X86_64
 659        end = max_pfn << PAGE_SHIFT;
 660#else
 661        end = max_low_pfn << PAGE_SHIFT;
 662#endif
 663
 664        /* the ISA range is always mapped regardless of memory holes */
 665        init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
 666
 667        /* Init the trampoline, possibly with KASLR memory offset */
 668        init_trampoline();
 669
 670        /*
 671         * If the allocation is in bottom-up direction, we setup direct mapping
 672         * in bottom-up, otherwise we setup direct mapping in top-down.
 673         */
 674        if (memblock_bottom_up()) {
 675                unsigned long kernel_end = __pa_symbol(_end);
 676
 677                /*
 678                 * we need two separate calls here. This is because we want to
 679                 * allocate page tables above the kernel. So we first map
 680                 * [kernel_end, end) to make memory above the kernel be mapped
 681                 * as soon as possible. And then use page tables allocated above
 682                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 683                 */
 684                memory_map_bottom_up(kernel_end, end);
 685                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 686        } else {
 687                memory_map_top_down(ISA_END_ADDRESS, end);
 688        }
 689
 690#ifdef CONFIG_X86_64
 691        if (max_pfn > max_low_pfn) {
 692                /* can we preseve max_low_pfn ?*/
 693                max_low_pfn = max_pfn;
 694        }
 695#else
 696        early_ioremap_page_table_range_init();
 697#endif
 698
 699        load_cr3(swapper_pg_dir);
 700        __flush_tlb_all();
 701
 702        x86_init.hyper.init_mem_mapping();
 703
 704        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 705}
 706
 707/*
 708 * Initialize an mm_struct to be used during poking and a pointer to be used
 709 * during patching.
 710 */
 711void __init poking_init(void)
 712{
 713        spinlock_t *ptl;
 714        pte_t *ptep;
 715
 716        poking_mm = copy_init_mm();
 717        BUG_ON(!poking_mm);
 718
 719        /*
 720         * Randomize the poking address, but make sure that the following page
 721         * will be mapped at the same PMD. We need 2 pages, so find space for 3,
 722         * and adjust the address if the PMD ends after the first one.
 723         */
 724        poking_addr = TASK_UNMAPPED_BASE;
 725        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
 726                poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
 727                        (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
 728
 729        if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
 730                poking_addr += PAGE_SIZE;
 731
 732        /*
 733         * We need to trigger the allocation of the page-tables that will be
 734         * needed for poking now. Later, poking may be performed in an atomic
 735         * section, which might cause allocation to fail.
 736         */
 737        ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 738        BUG_ON(!ptep);
 739        pte_unmap_unlock(ptep, ptl);
 740}
 741
 742/*
 743 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 744 * is valid. The argument is a physical page number.
 745 *
 746 * On x86, access has to be given to the first megabyte of RAM because that
 747 * area traditionally contains BIOS code and data regions used by X, dosemu,
 748 * and similar apps. Since they map the entire memory range, the whole range
 749 * must be allowed (for mapping), but any areas that would otherwise be
 750 * disallowed are flagged as being "zero filled" instead of rejected.
 751 * Access has to be given to non-kernel-ram areas as well, these contain the
 752 * PCI mmio resources as well as potential bios/acpi data regions.
 753 */
 754int devmem_is_allowed(unsigned long pagenr)
 755{
 756        if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
 757                                IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
 758                        != REGION_DISJOINT) {
 759                /*
 760                 * For disallowed memory regions in the low 1MB range,
 761                 * request that the page be shown as all zeros.
 762                 */
 763                if (pagenr < 256)
 764                        return 2;
 765
 766                return 0;
 767        }
 768
 769        /*
 770         * This must follow RAM test, since System RAM is considered a
 771         * restricted resource under CONFIG_STRICT_IOMEM.
 772         */
 773        if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
 774                /* Low 1MB bypasses iomem restrictions. */
 775                if (pagenr < 256)
 776                        return 1;
 777
 778                return 0;
 779        }
 780
 781        return 1;
 782}
 783
 784void free_init_pages(const char *what, unsigned long begin, unsigned long end)
 785{
 786        unsigned long begin_aligned, end_aligned;
 787
 788        /* Make sure boundaries are page aligned */
 789        begin_aligned = PAGE_ALIGN(begin);
 790        end_aligned   = end & PAGE_MASK;
 791
 792        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 793                begin = begin_aligned;
 794                end   = end_aligned;
 795        }
 796
 797        if (begin >= end)
 798                return;
 799
 800        /*
 801         * If debugging page accesses then do not free this memory but
 802         * mark them not present - any buggy init-section access will
 803         * create a kernel page fault:
 804         */
 805        if (debug_pagealloc_enabled()) {
 806                pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 807                        begin, end - 1);
 808                /*
 809                 * Inform kmemleak about the hole in the memory since the
 810                 * corresponding pages will be unmapped.
 811                 */
 812                kmemleak_free_part((void *)begin, end - begin);
 813                set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 814        } else {
 815                /*
 816                 * We just marked the kernel text read only above, now that
 817                 * we are going to free part of that, we need to make that
 818                 * writeable and non-executable first.
 819                 */
 820                set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 821                set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 822
 823                free_reserved_area((void *)begin, (void *)end,
 824                                   POISON_FREE_INITMEM, what);
 825        }
 826}
 827
 828/*
 829 * begin/end can be in the direct map or the "high kernel mapping"
 830 * used for the kernel image only.  free_init_pages() will do the
 831 * right thing for either kind of address.
 832 */
 833void free_kernel_image_pages(const char *what, void *begin, void *end)
 834{
 835        unsigned long begin_ul = (unsigned long)begin;
 836        unsigned long end_ul = (unsigned long)end;
 837        unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
 838
 839        free_init_pages(what, begin_ul, end_ul);
 840
 841        /*
 842         * PTI maps some of the kernel into userspace.  For performance,
 843         * this includes some kernel areas that do not contain secrets.
 844         * Those areas might be adjacent to the parts of the kernel image
 845         * being freed, which may contain secrets.  Remove the "high kernel
 846         * image mapping" for these freed areas, ensuring they are not even
 847         * potentially vulnerable to Meltdown regardless of the specific
 848         * optimizations PTI is currently using.
 849         *
 850         * The "noalias" prevents unmapping the direct map alias which is
 851         * needed to access the freed pages.
 852         *
 853         * This is only valid for 64bit kernels. 32bit has only one mapping
 854         * which can't be treated in this way for obvious reasons.
 855         */
 856        if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
 857                set_memory_np_noalias(begin_ul, len_pages);
 858}
 859
 860void __weak mem_encrypt_free_decrypted_mem(void) { }
 861
 862void __ref free_initmem(void)
 863{
 864        e820__reallocate_tables();
 865
 866        mem_encrypt_free_decrypted_mem();
 867
 868        free_kernel_image_pages("unused kernel image (initmem)",
 869                                &__init_begin, &__init_end);
 870}
 871
 872#ifdef CONFIG_BLK_DEV_INITRD
 873void __init free_initrd_mem(unsigned long start, unsigned long end)
 874{
 875        /*
 876         * end could be not aligned, and We can not align that,
 877         * decompresser could be confused by aligned initrd_end
 878         * We already reserve the end partial page before in
 879         *   - i386_start_kernel()
 880         *   - x86_64_start_kernel()
 881         *   - relocate_initrd()
 882         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 883         */
 884        free_init_pages("initrd", start, PAGE_ALIGN(end));
 885}
 886#endif
 887
 888/*
 889 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 890 * and pass it to the MM layer - to help it set zone watermarks more
 891 * accurately.
 892 *
 893 * Done on 64-bit systems only for the time being, although 32-bit systems
 894 * might benefit from this as well.
 895 */
 896void __init memblock_find_dma_reserve(void)
 897{
 898#ifdef CONFIG_X86_64
 899        u64 nr_pages = 0, nr_free_pages = 0;
 900        unsigned long start_pfn, end_pfn;
 901        phys_addr_t start_addr, end_addr;
 902        int i;
 903        u64 u;
 904
 905        /*
 906         * Iterate over all memory ranges (free and reserved ones alike),
 907         * to calculate the total number of pages in the first 16 MB of RAM:
 908         */
 909        nr_pages = 0;
 910        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 911                start_pfn = min(start_pfn, MAX_DMA_PFN);
 912                end_pfn   = min(end_pfn,   MAX_DMA_PFN);
 913
 914                nr_pages += end_pfn - start_pfn;
 915        }
 916
 917        /*
 918         * Iterate over free memory ranges to calculate the number of free
 919         * pages in the DMA zone, while not counting potential partial
 920         * pages at the beginning or the end of the range:
 921         */
 922        nr_free_pages = 0;
 923        for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
 924                start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
 925                end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
 926
 927                if (start_pfn < end_pfn)
 928                        nr_free_pages += end_pfn - start_pfn;
 929        }
 930
 931        set_dma_reserve(nr_pages - nr_free_pages);
 932#endif
 933}
 934
 935void __init zone_sizes_init(void)
 936{
 937        unsigned long max_zone_pfns[MAX_NR_ZONES];
 938
 939        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 940
 941#ifdef CONFIG_ZONE_DMA
 942        max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
 943#endif
 944#ifdef CONFIG_ZONE_DMA32
 945        max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
 946#endif
 947        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
 948#ifdef CONFIG_HIGHMEM
 949        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
 950#endif
 951
 952        free_area_init_nodes(max_zone_pfns);
 953}
 954
 955__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
 956        .loaded_mm = &init_mm,
 957        .next_asid = 1,
 958        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
 959};
 960EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
 961
 962void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
 963{
 964        /* entry 0 MUST be WB (hardwired to speed up translations) */
 965        BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
 966
 967        __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
 968        __pte2cachemode_tbl[entry] = cache;
 969}
 970
 971#ifdef CONFIG_SWAP
 972unsigned long max_swapfile_size(void)
 973{
 974        unsigned long pages;
 975
 976        pages = generic_max_swapfile_size();
 977
 978        if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
 979                /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
 980                unsigned long long l1tf_limit = l1tf_pfn_limit();
 981                /*
 982                 * We encode swap offsets also with 3 bits below those for pfn
 983                 * which makes the usable limit higher.
 984                 */
 985#if CONFIG_PGTABLE_LEVELS > 2
 986                l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
 987#endif
 988                pages = min_t(unsigned long long, l1tf_limit, pages);
 989        }
 990        return pages;
 991}
 992#endif
 993