linux/crypto/vmac.c
<<
>>
Prefs
   1/*
   2 * VMAC: Message Authentication Code using Universal Hashing
   3 *
   4 * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
   5 *
   6 * Copyright (c) 2009, Intel Corporation.
   7 * Copyright (c) 2018, Google Inc.
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms and conditions of the GNU General Public License,
  11 * version 2, as published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  20 * Place - Suite 330, Boston, MA 02111-1307 USA.
  21 */
  22
  23/*
  24 * Derived from:
  25 *      VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
  26 *      This implementation is herby placed in the public domain.
  27 *      The authors offers no warranty. Use at your own risk.
  28 *      Last modified: 17 APR 08, 1700 PDT
  29 */
  30
  31#include <asm/unaligned.h>
  32#include <linux/init.h>
  33#include <linux/types.h>
  34#include <linux/crypto.h>
  35#include <linux/module.h>
  36#include <linux/scatterlist.h>
  37#include <asm/byteorder.h>
  38#include <crypto/scatterwalk.h>
  39#include <crypto/internal/hash.h>
  40
  41/*
  42 * User definable settings.
  43 */
  44#define VMAC_TAG_LEN    64
  45#define VMAC_KEY_SIZE   128/* Must be 128, 192 or 256                   */
  46#define VMAC_KEY_LEN    (VMAC_KEY_SIZE/8)
  47#define VMAC_NHBYTES    128/* Must 2^i for any 3 < i < 13 Standard = 128*/
  48#define VMAC_NONCEBYTES 16
  49
  50/* per-transform (per-key) context */
  51struct vmac_tfm_ctx {
  52        struct crypto_cipher *cipher;
  53        u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
  54        u64 polykey[2*VMAC_TAG_LEN/64];
  55        u64 l3key[2*VMAC_TAG_LEN/64];
  56};
  57
  58/* per-request context */
  59struct vmac_desc_ctx {
  60        union {
  61                u8 partial[VMAC_NHBYTES];       /* partial block */
  62                __le64 partial_words[VMAC_NHBYTES / 8];
  63        };
  64        unsigned int partial_size;      /* size of the partial block */
  65        bool first_block_processed;
  66        u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
  67        union {
  68                u8 bytes[VMAC_NONCEBYTES];
  69                __be64 pads[VMAC_NONCEBYTES / 8];
  70        } nonce;
  71        unsigned int nonce_size; /* nonce bytes filled so far */
  72};
  73
  74/*
  75 * Constants and masks
  76 */
  77#define UINT64_C(x) x##ULL
  78static const u64 p64   = UINT64_C(0xfffffffffffffeff);  /* 2^64 - 257 prime  */
  79static const u64 m62   = UINT64_C(0x3fffffffffffffff);  /* 62-bit mask       */
  80static const u64 m63   = UINT64_C(0x7fffffffffffffff);  /* 63-bit mask       */
  81static const u64 m64   = UINT64_C(0xffffffffffffffff);  /* 64-bit mask       */
  82static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);  /* Poly key mask     */
  83
  84#define pe64_to_cpup le64_to_cpup               /* Prefer little endian */
  85
  86#ifdef __LITTLE_ENDIAN
  87#define INDEX_HIGH 1
  88#define INDEX_LOW 0
  89#else
  90#define INDEX_HIGH 0
  91#define INDEX_LOW 1
  92#endif
  93
  94/*
  95 * The following routines are used in this implementation. They are
  96 * written via macros to simulate zero-overhead call-by-reference.
  97 *
  98 * MUL64: 64x64->128-bit multiplication
  99 * PMUL64: assumes top bits cleared on inputs
 100 * ADD128: 128x128->128-bit addition
 101 */
 102
 103#define ADD128(rh, rl, ih, il)                                          \
 104        do {                                                            \
 105                u64 _il = (il);                                         \
 106                (rl) += (_il);                                          \
 107                if ((rl) < (_il))                                       \
 108                        (rh)++;                                         \
 109                (rh) += (ih);                                           \
 110        } while (0)
 111
 112#define MUL32(i1, i2)   ((u64)(u32)(i1)*(u32)(i2))
 113
 114#define PMUL64(rh, rl, i1, i2)  /* Assumes m doesn't overflow */        \
 115        do {                                                            \
 116                u64 _i1 = (i1), _i2 = (i2);                             \
 117                u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);      \
 118                rh = MUL32(_i1>>32, _i2>>32);                           \
 119                rl = MUL32(_i1, _i2);                                   \
 120                ADD128(rh, rl, (m >> 32), (m << 32));                   \
 121        } while (0)
 122
 123#define MUL64(rh, rl, i1, i2)                                           \
 124        do {                                                            \
 125                u64 _i1 = (i1), _i2 = (i2);                             \
 126                u64 m1 = MUL32(_i1, _i2>>32);                           \
 127                u64 m2 = MUL32(_i1>>32, _i2);                           \
 128                rh = MUL32(_i1>>32, _i2>>32);                           \
 129                rl = MUL32(_i1, _i2);                                   \
 130                ADD128(rh, rl, (m1 >> 32), (m1 << 32));                 \
 131                ADD128(rh, rl, (m2 >> 32), (m2 << 32));                 \
 132        } while (0)
 133
 134/*
 135 * For highest performance the L1 NH and L2 polynomial hashes should be
 136 * carefully implemented to take advantage of one's target architecture.
 137 * Here these two hash functions are defined multiple time; once for
 138 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
 139 * for the rest (32-bit) architectures.
 140 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
 141 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
 142 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
 143 * NH computations at once).
 144 */
 145
 146#ifdef CONFIG_64BIT
 147
 148#define nh_16(mp, kp, nw, rh, rl)                                       \
 149        do {                                                            \
 150                int i; u64 th, tl;                                      \
 151                rh = rl = 0;                                            \
 152                for (i = 0; i < nw; i += 2) {                           \
 153                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
 154                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
 155                        ADD128(rh, rl, th, tl);                         \
 156                }                                                       \
 157        } while (0)
 158
 159#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)                           \
 160        do {                                                            \
 161                int i; u64 th, tl;                                      \
 162                rh1 = rl1 = rh = rl = 0;                                \
 163                for (i = 0; i < nw; i += 2) {                           \
 164                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
 165                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
 166                        ADD128(rh, rl, th, tl);                         \
 167                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
 168                                pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
 169                        ADD128(rh1, rl1, th, tl);                       \
 170                }                                                       \
 171        } while (0)
 172
 173#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
 174#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
 175        do {                                                            \
 176                int i; u64 th, tl;                                      \
 177                rh = rl = 0;                                            \
 178                for (i = 0; i < nw; i += 8) {                           \
 179                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
 180                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
 181                        ADD128(rh, rl, th, tl);                         \
 182                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
 183                                pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
 184                        ADD128(rh, rl, th, tl);                         \
 185                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
 186                                pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
 187                        ADD128(rh, rl, th, tl);                         \
 188                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
 189                                pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
 190                        ADD128(rh, rl, th, tl);                         \
 191                }                                                       \
 192        } while (0)
 193
 194#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)                 \
 195        do {                                                            \
 196                int i; u64 th, tl;                                      \
 197                rh1 = rl1 = rh = rl = 0;                                \
 198                for (i = 0; i < nw; i += 8) {                           \
 199                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
 200                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
 201                        ADD128(rh, rl, th, tl);                         \
 202                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
 203                                pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
 204                        ADD128(rh1, rl1, th, tl);                       \
 205                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
 206                                pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
 207                        ADD128(rh, rl, th, tl);                         \
 208                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
 209                                pe64_to_cpup((mp)+i+3)+(kp)[i+5]);      \
 210                        ADD128(rh1, rl1, th, tl);                       \
 211                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
 212                                pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
 213                        ADD128(rh, rl, th, tl);                         \
 214                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
 215                                pe64_to_cpup((mp)+i+5)+(kp)[i+7]);      \
 216                        ADD128(rh1, rl1, th, tl);                       \
 217                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
 218                                pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
 219                        ADD128(rh, rl, th, tl);                         \
 220                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
 221                                pe64_to_cpup((mp)+i+7)+(kp)[i+9]);      \
 222                        ADD128(rh1, rl1, th, tl);                       \
 223                }                                                       \
 224        } while (0)
 225#endif
 226
 227#define poly_step(ah, al, kh, kl, mh, ml)                               \
 228        do {                                                            \
 229                u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;                \
 230                /* compute ab*cd, put bd into result registers */       \
 231                PMUL64(t3h, t3l, al, kh);                               \
 232                PMUL64(t2h, t2l, ah, kl);                               \
 233                PMUL64(t1h, t1l, ah, 2*kh);                             \
 234                PMUL64(ah, al, al, kl);                                 \
 235                /* add 2 * ac to result */                              \
 236                ADD128(ah, al, t1h, t1l);                               \
 237                /* add together ad + bc */                              \
 238                ADD128(t2h, t2l, t3h, t3l);                             \
 239                /* now (ah,al), (t2l,2*t2h) need summing */             \
 240                /* first add the high registers, carrying into t2h */   \
 241                ADD128(t2h, ah, z, t2l);                                \
 242                /* double t2h and add top bit of ah */                  \
 243                t2h = 2 * t2h + (ah >> 63);                             \
 244                ah &= m63;                                              \
 245                /* now add the low registers */                         \
 246                ADD128(ah, al, mh, ml);                                 \
 247                ADD128(ah, al, z, t2h);                                 \
 248        } while (0)
 249
 250#else /* ! CONFIG_64BIT */
 251
 252#ifndef nh_16
 253#define nh_16(mp, kp, nw, rh, rl)                                       \
 254        do {                                                            \
 255                u64 t1, t2, m1, m2, t;                                  \
 256                int i;                                                  \
 257                rh = rl = t = 0;                                        \
 258                for (i = 0; i < nw; i += 2)  {                          \
 259                        t1 = pe64_to_cpup(mp+i) + kp[i];                \
 260                        t2 = pe64_to_cpup(mp+i+1) + kp[i+1];            \
 261                        m2 = MUL32(t1 >> 32, t2);                       \
 262                        m1 = MUL32(t1, t2 >> 32);                       \
 263                        ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),       \
 264                                MUL32(t1, t2));                         \
 265                        rh += (u64)(u32)(m1 >> 32)                      \
 266                                + (u32)(m2 >> 32);                      \
 267                        t += (u64)(u32)m1 + (u32)m2;                    \
 268                }                                                       \
 269                ADD128(rh, rl, (t >> 32), (t << 32));                   \
 270        } while (0)
 271#endif
 272
 273static void poly_step_func(u64 *ahi, u64 *alo,
 274                        const u64 *kh, const u64 *kl,
 275                        const u64 *mh, const u64 *ml)
 276{
 277#define a0 (*(((u32 *)alo)+INDEX_LOW))
 278#define a1 (*(((u32 *)alo)+INDEX_HIGH))
 279#define a2 (*(((u32 *)ahi)+INDEX_LOW))
 280#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
 281#define k0 (*(((u32 *)kl)+INDEX_LOW))
 282#define k1 (*(((u32 *)kl)+INDEX_HIGH))
 283#define k2 (*(((u32 *)kh)+INDEX_LOW))
 284#define k3 (*(((u32 *)kh)+INDEX_HIGH))
 285
 286        u64 p, q, t;
 287        u32 t2;
 288
 289        p = MUL32(a3, k3);
 290        p += p;
 291        p += *(u64 *)mh;
 292        p += MUL32(a0, k2);
 293        p += MUL32(a1, k1);
 294        p += MUL32(a2, k0);
 295        t = (u32)(p);
 296        p >>= 32;
 297        p += MUL32(a0, k3);
 298        p += MUL32(a1, k2);
 299        p += MUL32(a2, k1);
 300        p += MUL32(a3, k0);
 301        t |= ((u64)((u32)p & 0x7fffffff)) << 32;
 302        p >>= 31;
 303        p += (u64)(((u32 *)ml)[INDEX_LOW]);
 304        p += MUL32(a0, k0);
 305        q =  MUL32(a1, k3);
 306        q += MUL32(a2, k2);
 307        q += MUL32(a3, k1);
 308        q += q;
 309        p += q;
 310        t2 = (u32)(p);
 311        p >>= 32;
 312        p += (u64)(((u32 *)ml)[INDEX_HIGH]);
 313        p += MUL32(a0, k1);
 314        p += MUL32(a1, k0);
 315        q =  MUL32(a2, k3);
 316        q += MUL32(a3, k2);
 317        q += q;
 318        p += q;
 319        *(u64 *)(alo) = (p << 32) | t2;
 320        p >>= 32;
 321        *(u64 *)(ahi) = p + t;
 322
 323#undef a0
 324#undef a1
 325#undef a2
 326#undef a3
 327#undef k0
 328#undef k1
 329#undef k2
 330#undef k3
 331}
 332
 333#define poly_step(ah, al, kh, kl, mh, ml)                               \
 334        poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
 335
 336#endif  /* end of specialized NH and poly definitions */
 337
 338/* At least nh_16 is defined. Defined others as needed here */
 339#ifndef nh_16_2
 340#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)                           \
 341        do {                                                            \
 342                nh_16(mp, kp, nw, rh, rl);                              \
 343                nh_16(mp, ((kp)+2), nw, rh2, rl2);                      \
 344        } while (0)
 345#endif
 346#ifndef nh_vmac_nhbytes
 347#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
 348        nh_16(mp, kp, nw, rh, rl)
 349#endif
 350#ifndef nh_vmac_nhbytes_2
 351#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)                 \
 352        do {                                                            \
 353                nh_vmac_nhbytes(mp, kp, nw, rh, rl);                    \
 354                nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);            \
 355        } while (0)
 356#endif
 357
 358static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
 359{
 360        u64 rh, rl, t, z = 0;
 361
 362        /* fully reduce (p1,p2)+(len,0) mod p127 */
 363        t = p1 >> 63;
 364        p1 &= m63;
 365        ADD128(p1, p2, len, t);
 366        /* At this point, (p1,p2) is at most 2^127+(len<<64) */
 367        t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
 368        ADD128(p1, p2, z, t);
 369        p1 &= m63;
 370
 371        /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
 372        t = p1 + (p2 >> 32);
 373        t += (t >> 32);
 374        t += (u32)t > 0xfffffffeu;
 375        p1 += (t >> 32);
 376        p2 += (p1 << 32);
 377
 378        /* compute (p1+k1)%p64 and (p2+k2)%p64 */
 379        p1 += k1;
 380        p1 += (0 - (p1 < k1)) & 257;
 381        p2 += k2;
 382        p2 += (0 - (p2 < k2)) & 257;
 383
 384        /* compute (p1+k1)*(p2+k2)%p64 */
 385        MUL64(rh, rl, p1, p2);
 386        t = rh >> 56;
 387        ADD128(t, rl, z, rh);
 388        rh <<= 8;
 389        ADD128(t, rl, z, rh);
 390        t += t << 8;
 391        rl += t;
 392        rl += (0 - (rl < t)) & 257;
 393        rl += (0 - (rl > p64-1)) & 257;
 394        return rl;
 395}
 396
 397/* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
 398static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
 399                         struct vmac_desc_ctx *dctx,
 400                         const __le64 *mptr, unsigned int blocks)
 401{
 402        const u64 *kptr = tctx->nhkey;
 403        const u64 pkh = tctx->polykey[0];
 404        const u64 pkl = tctx->polykey[1];
 405        u64 ch = dctx->polytmp[0];
 406        u64 cl = dctx->polytmp[1];
 407        u64 rh, rl;
 408
 409        if (!dctx->first_block_processed) {
 410                dctx->first_block_processed = true;
 411                nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
 412                rh &= m62;
 413                ADD128(ch, cl, rh, rl);
 414                mptr += (VMAC_NHBYTES/sizeof(u64));
 415                blocks--;
 416        }
 417
 418        while (blocks--) {
 419                nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
 420                rh &= m62;
 421                poly_step(ch, cl, pkh, pkl, rh, rl);
 422                mptr += (VMAC_NHBYTES/sizeof(u64));
 423        }
 424
 425        dctx->polytmp[0] = ch;
 426        dctx->polytmp[1] = cl;
 427}
 428
 429static int vmac_setkey(struct crypto_shash *tfm,
 430                       const u8 *key, unsigned int keylen)
 431{
 432        struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
 433        __be64 out[2];
 434        u8 in[16] = { 0 };
 435        unsigned int i;
 436        int err;
 437
 438        if (keylen != VMAC_KEY_LEN)
 439                return -EINVAL;
 440
 441        err = crypto_cipher_setkey(tctx->cipher, key, keylen);
 442        if (err)
 443                return err;
 444
 445        /* Fill nh key */
 446        in[0] = 0x80;
 447        for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
 448                crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
 449                tctx->nhkey[i] = be64_to_cpu(out[0]);
 450                tctx->nhkey[i+1] = be64_to_cpu(out[1]);
 451                in[15]++;
 452        }
 453
 454        /* Fill poly key */
 455        in[0] = 0xC0;
 456        in[15] = 0;
 457        for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
 458                crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
 459                tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
 460                tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
 461                in[15]++;
 462        }
 463
 464        /* Fill ip key */
 465        in[0] = 0xE0;
 466        in[15] = 0;
 467        for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
 468                do {
 469                        crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
 470                        tctx->l3key[i] = be64_to_cpu(out[0]);
 471                        tctx->l3key[i+1] = be64_to_cpu(out[1]);
 472                        in[15]++;
 473                } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
 474        }
 475
 476        return 0;
 477}
 478
 479static int vmac_init(struct shash_desc *desc)
 480{
 481        const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
 482        struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
 483
 484        dctx->partial_size = 0;
 485        dctx->first_block_processed = false;
 486        memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
 487        dctx->nonce_size = 0;
 488        return 0;
 489}
 490
 491static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
 492{
 493        const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
 494        struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
 495        unsigned int n;
 496
 497        /* Nonce is passed as first VMAC_NONCEBYTES bytes of data */
 498        if (dctx->nonce_size < VMAC_NONCEBYTES) {
 499                n = min(len, VMAC_NONCEBYTES - dctx->nonce_size);
 500                memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n);
 501                dctx->nonce_size += n;
 502                p += n;
 503                len -= n;
 504        }
 505
 506        if (dctx->partial_size) {
 507                n = min(len, VMAC_NHBYTES - dctx->partial_size);
 508                memcpy(&dctx->partial[dctx->partial_size], p, n);
 509                dctx->partial_size += n;
 510                p += n;
 511                len -= n;
 512                if (dctx->partial_size == VMAC_NHBYTES) {
 513                        vhash_blocks(tctx, dctx, dctx->partial_words, 1);
 514                        dctx->partial_size = 0;
 515                }
 516        }
 517
 518        if (len >= VMAC_NHBYTES) {
 519                n = round_down(len, VMAC_NHBYTES);
 520                /* TODO: 'p' may be misaligned here */
 521                vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
 522                p += n;
 523                len -= n;
 524        }
 525
 526        if (len) {
 527                memcpy(dctx->partial, p, len);
 528                dctx->partial_size = len;
 529        }
 530
 531        return 0;
 532}
 533
 534static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
 535                       struct vmac_desc_ctx *dctx)
 536{
 537        unsigned int partial = dctx->partial_size;
 538        u64 ch = dctx->polytmp[0];
 539        u64 cl = dctx->polytmp[1];
 540
 541        /* L1 and L2-hash the final block if needed */
 542        if (partial) {
 543                /* Zero-pad to next 128-bit boundary */
 544                unsigned int n = round_up(partial, 16);
 545                u64 rh, rl;
 546
 547                memset(&dctx->partial[partial], 0, n - partial);
 548                nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
 549                rh &= m62;
 550                if (dctx->first_block_processed)
 551                        poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
 552                                  rh, rl);
 553                else
 554                        ADD128(ch, cl, rh, rl);
 555        }
 556
 557        /* L3-hash the 128-bit output of L2-hash */
 558        return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
 559}
 560
 561static int vmac_final(struct shash_desc *desc, u8 *out)
 562{
 563        const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
 564        struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
 565        int index;
 566        u64 hash, pad;
 567
 568        if (dctx->nonce_size != VMAC_NONCEBYTES)
 569                return -EINVAL;
 570
 571        /*
 572         * The VMAC specification requires a nonce at least 1 bit shorter than
 573         * the block cipher's block length, so we actually only accept a 127-bit
 574         * nonce.  We define the unused bit to be the first one and require that
 575         * it be 0, so the needed prepending of a 0 bit is implicit.
 576         */
 577        if (dctx->nonce.bytes[0] & 0x80)
 578                return -EINVAL;
 579
 580        /* Finish calculating the VHASH of the message */
 581        hash = vhash_final(tctx, dctx);
 582
 583        /* Generate pseudorandom pad by encrypting the nonce */
 584        BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8));
 585        index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1;
 586        dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1;
 587        crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes,
 588                                  dctx->nonce.bytes);
 589        pad = be64_to_cpu(dctx->nonce.pads[index]);
 590
 591        /* The VMAC is the sum of VHASH and the pseudorandom pad */
 592        put_unaligned_be64(hash + pad, out);
 593        return 0;
 594}
 595
 596static int vmac_init_tfm(struct crypto_tfm *tfm)
 597{
 598        struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
 599        struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
 600        struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
 601        struct crypto_cipher *cipher;
 602
 603        cipher = crypto_spawn_cipher(spawn);
 604        if (IS_ERR(cipher))
 605                return PTR_ERR(cipher);
 606
 607        tctx->cipher = cipher;
 608        return 0;
 609}
 610
 611static void vmac_exit_tfm(struct crypto_tfm *tfm)
 612{
 613        struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
 614
 615        crypto_free_cipher(tctx->cipher);
 616}
 617
 618static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
 619{
 620        struct shash_instance *inst;
 621        struct crypto_cipher_spawn *spawn;
 622        struct crypto_alg *alg;
 623        int err;
 624
 625        err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
 626        if (err)
 627                return err;
 628
 629        inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
 630        if (!inst)
 631                return -ENOMEM;
 632        spawn = shash_instance_ctx(inst);
 633
 634        err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
 635                                 crypto_attr_alg_name(tb[1]), 0, 0);
 636        if (err)
 637                goto err_free_inst;
 638        alg = crypto_spawn_cipher_alg(spawn);
 639
 640        err = -EINVAL;
 641        if (alg->cra_blocksize != VMAC_NONCEBYTES)
 642                goto err_free_inst;
 643
 644        err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
 645        if (err)
 646                goto err_free_inst;
 647
 648        inst->alg.base.cra_priority = alg->cra_priority;
 649        inst->alg.base.cra_blocksize = alg->cra_blocksize;
 650        inst->alg.base.cra_alignmask = alg->cra_alignmask;
 651
 652        inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
 653        inst->alg.base.cra_init = vmac_init_tfm;
 654        inst->alg.base.cra_exit = vmac_exit_tfm;
 655
 656        inst->alg.descsize = sizeof(struct vmac_desc_ctx);
 657        inst->alg.digestsize = VMAC_TAG_LEN / 8;
 658        inst->alg.init = vmac_init;
 659        inst->alg.update = vmac_update;
 660        inst->alg.final = vmac_final;
 661        inst->alg.setkey = vmac_setkey;
 662
 663        inst->free = shash_free_singlespawn_instance;
 664
 665        err = shash_register_instance(tmpl, inst);
 666        if (err) {
 667err_free_inst:
 668                shash_free_singlespawn_instance(inst);
 669        }
 670        return err;
 671}
 672
 673static struct crypto_template vmac64_tmpl = {
 674        .name = "vmac64",
 675        .create = vmac_create,
 676        .module = THIS_MODULE,
 677};
 678
 679static int __init vmac_module_init(void)
 680{
 681        return crypto_register_template(&vmac64_tmpl);
 682}
 683
 684static void __exit vmac_module_exit(void)
 685{
 686        crypto_unregister_template(&vmac64_tmpl);
 687}
 688
 689subsys_initcall(vmac_module_init);
 690module_exit(vmac_module_exit);
 691
 692MODULE_LICENSE("GPL");
 693MODULE_DESCRIPTION("VMAC hash algorithm");
 694MODULE_ALIAS_CRYPTO("vmac64");
 695